

Ansible for DevOps
Server and configuration management for
humans

Jeff Geerling

This book is for sale at http://leanpub.com/ansible-for-devops

This version was published on 2020-03-21

ISBN 978-0-9863934-0-2

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2014 - 2020 Jeff Geerling

http://leanpub.com/ansible-for-devops
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Jeff Geerling by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just purchased @Ansible4DevOps by @geerlingguy on @leanpub -
https://leanpub.com/ansible-for-devops #ansible

The suggested hashtag for this book is #ansible.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#ansible

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20purchased%20@Ansible4DevOps%20by%20@geerlingguy%20on%20@leanpub%20-%20https://leanpub.com/ansible-for-devops%20%23ansible
https://twitter.com/intent/tweet?text=I%20just%20purchased%20@Ansible4DevOps%20by%20@geerlingguy%20on%20@leanpub%20-%20https://leanpub.com/ansible-for-devops%20%23ansible
https://twitter.com/search?q=%23ansible
https://twitter.com/search?q=%23ansible

Also By Jeff Geerling
Ansible for Kubernetes

http://leanpub.com/u/geerlingguy
http://leanpub.com/ansible-for-kubernetes

This book is dedicated to my wife, Natalie, and my children.

Editing by Margie Newman and Katherine Geerling.

Cover photograph and illustration © 2011 Jeff Geerling.

Ansible is a software product distributed under the GNU GPLv3 open source license.

Contents

Foreword . i

Preface . iii
Who is this book for? . iv
Typographic conventions . iv
Please help improve this book! . v

Current Published Book Version Information vi
About the Author . vi

Introduction . vii
In the beginning, there were sysadmins . vii
Modern infrastructure management . vii
Ansible and Red Hat . viii
Ansible Examples . x
Other resources . x

Chapter 1 - Getting Started with Ansible . 1
Ansible and Infrastructure Management . 1

On snowflakes and shell scripts . 1
Configuration management . 2

Installing Ansible . 3
Creating a basic inventory file . 6
Running your first Ad-Hoc Ansible command 7
Summary . 8

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 9
Prototyping and testing with local virtual machines 9
Your first local server: Setting up Vagrant . 10

CONTENTS

Using Ansible with Vagrant . 11
Your first Ansible playbook . 12
Cleaning Up . 16
Summary . 16

Chapter 3 - Ad-Hoc Commands . 17
Conducting an orchestra . 17
Build infrastructure with Vagrant for testing 18
Inventory file for multiple servers . 20
Your first ad-hoc commands . 22

Discover Ansible’s parallel nature . 22
Learning about your environment . 24
Make changes using Ansible modules 27

Configure groups of servers, or individual servers 28
Configure the Application servers . 29
Configure the Database servers . 30
Make changes to just one server . 31

Manage users and groups . 32
Manage packages . 33
Manage files and directories . 34

Get information about a file . 34
Copy a file to the servers . 34
Retrieve a file from the servers . 35
Create directories and files . 35
Delete directories and files . 36

Run operations in the background . 36
Update servers asynchronously with asynchronous jobs 37

Check log files . 38
Manage cron jobs . 40
Deploy a version-controlled application . 41
Ansible’s SSH connection history . 42

Paramiko . 42
OpenSSH (default) . 43
Faster OpenSSH with Pipelining . 43

Summary . 44

CONTENTS

Chapter 4 - Ansible Playbooks . 45
Power plays . 45
Running Playbooks with ansible-playbook 50

Limiting playbooks to particular hosts and groups 50
Setting user and sudo options with ansible-playbook 51
Other options for ansible-playbook . 52

Real-world playbook: CentOS Node.js app server 53
Add extra repositories . 55
Deploy a Node.js app . 58
Launch a Node.js app . 60
Node.js app server summary . 61

Real-world playbook: Ubuntu LAMP server with Drupal 62
Include a variables file, and discover pre_tasks and handlers 62
Basic LAMP server setup . 64
Configure Apache . 66
Configure PHP with lineinfile . 68
Configure MySQL . 69
Install Composer and Drush . 70
Install Drupal with Git and Drush . 73
Drupal LAMP server summary . 75

Real-world playbook: Ubuntu server with Solr 76
Include a variables file, and more pre_tasks 76
Install Java 8 . 77
Install Apache Solr . 78
Apache Solr server summary . 80

Summary . 81

Chapter 5 - Ansible Playbooks - Beyond the Basics 82
Handlers . 82
Environment variables . 84

Per-play environment variables . 85
Variables . 87

Playbook Variables . 87
Inventory variables . 89
Registered Variables . 90
Accessing Variables . 91

CONTENTS

Host and Group variables . 93
Automatically-loaded group_vars and host_vars 94
Magic variables with host and group variables and information . 95

Facts (Variables derived from system information) 96
Local Facts (Facts.d) . 97

Ansible Vault - Keeping secrets secret 99
Variable Precedence . 103

If/then/when - Conditionals . 104
Jinja Expressions, Python built-ins, and Logic 104
register . 106
when . 107
changed_when and failed_when . 109
ignore_errors . 110

Delegation, Local Actions, and Pauses . 110
Pausing playbook execution with wait_for 111
Running an entire playbook locally . 112

Prompts . 113
Tags . 114
Blocks . 116
Summary . 118

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 120
Imports . 120

Includes . 122
Dynamic includes . 123
Handler imports and includes . 124
Playbook imports . 124
Complete includes example . 125

Roles . 128
Role scaffolding . 128
Building your first role . 129
More flexibility with role vars and defaults 131
Other role parts: handlers, files, and templates 134

Handlers . 134
Files and Templates . 134

Organizing more complex and cross-platform roles 135

CONTENTS

Ansible Galaxy . 138
Getting roles from Galaxy . 138

Using role requirements files to manage dependencies 139
A LAMP server in nine lines of YAML 140
A Solr server in seven lines of YAML . 142
Helpful Galaxy commands . 143
Contributing to Ansible Galaxy . 143

Summary . 143

Chapter 7 - Inventories . 145
A real-world web application server inventory 146

Non-prod environments, separate inventory files 150
Inventory variables . 151

host_vars . 153
group_vars . 154

Ephemeral infrastructure: Dynamic inventory 155
Dynamic inventory with DigitalOcean 156

DigitalOcean account prerequisites 156
Connecting to your DigitalOcean account 157
Creating a droplet with Ansible . 157
DigitalOcean dynamic inventory with digital_ocean.py 163

Dynamic inventory with AWS . 164
Inventory on-the-fly: add_host and group_by 165
Multiple inventory sources - mixing static and dynamic inventories . 166
Creating custom dynamic inventories 166

Building a Custom Dynamic Inventory in Python 168
Building a Custom Dynamic Inventory in PHP 173
Managing a PaaS with a Custom Dynamic Inventory 176

Summary . 177

Chapter 8 - Ansible Cookbooks . 178
Highly-Available Infrastructure with Ansible 178

Directory Structure . 180
Individual Server Playbooks . 180
Main Playbook for Configuring All Servers 192
Getting the required roles . 192

CONTENTS

Vagrantfile for Local Infrastructure via VirtualBox 193
Provisioner Configuration: DigitalOcean 198
Provisioner Configuration: Amazon Web Services (EC2) 203
Summary . 209

ELK Logging with Ansible . 210
ELK Playbook . 211
Forwarding Logs from Other Servers . 217
Summary . 223

GlusterFS Distributed File System Configuration with Ansible 224
Configuring Gluster - Basic Overview 225
Configuring Gluster with Ansible . 226
Summary . 233

Mac Provisioning with Ansible and Homebrew 233
Running Ansible playbooks locally . 234
Automating Homebrew package and app management 234
Configuring Mac OS X through dotfiles 236
Summary . 238

Chapter 9 - Deployments with Ansible . 239
Deployment strategies . 239
Simple single-server deployments . 240

Provisioning a Ruby on Rails server . 241
Deploying a Rails app to the server . 244
Provisioning and Deploying the Rails App 249
Deploying application updates . 251

Zero-downtime multi-server deployments 254
Ensuring zero downtime with serial and integration tests 263
Deploying to app servers behind a load balancer 265

Capistrano-style and blue-green deployments 272
Additional Deployment Features . 274
Summary . 275

Chapter 10 - Server Security and Ansible . 276
A brief history of SSH and remote access . 276

Telnet . 277
rlogin, rsh and rcp . 278

CONTENTS

SSH . 279
The evolution of SSH and the future of remote access 281

Use secure and encrypted communication . 282
Disable root login and use sudo . 284
Remove unused software, open only required ports 286
Use the principle of least privilege . 286

User account configuration . 287
File permissions . 287

Update the OS and installed software . 289
Automating updates . 289
Automating updates for RHEL systems 290
Automating updates for Debian-based systems 290

Use a properly-configured firewall . 292
Configuring a firewall with ufw on Debian or Ubuntu 292
Configuring a firewall with firewalld on RHEL, Fedora, or CentOS . 294

Make sure log files are populated and rotated 295
Monitor logins and block suspect IP addresses 296
Use SELinux (Security-Enhanced Linux) or AppArmor 297
Summary and further reading . 299

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD . . 301
Ansible Tower . 301

Getting and Installing Ansible Tower . 302
Using Ansible Tower . 304
Other Tower Features of Note . 307
Tower Alternatives . 307

Jenkins CI . 308
Build a local Jenkins server with Ansible 308
Create an Ansible playbook on the Jenkins server 311
Create a Jenkins job to run an Ansible Playbook 311

Unit, Integration, and Functional Testing . 313
Debugging and Asserting . 314

The debug module . 314
The fail and assert modules . 316

Checking syntax and performing dry runs 317
Automated testing on GitHub using Travis CI 318

CONTENTS

Testing on multiple OSes with Docker 319
Setting up the test . 320
Building Docker containers in Travis . 322
Testing the role’s syntax . 325
Role success - first run . 326
Role idempotence . 326
Role success - final result . 327
Some notes about Travis CI . 328
Real-world examples . 329

Functional testing using serverspec . 329
Other server and role testing tools . 330

Summary . 331

Chapter 12 - Automating HTTPS and TLS Certificates 332
Generating Self-Signed Certificates with Ansible 332

Idempotent Nginx HTTPS playbook with a self-signed cert 334
Automating Let’s Encrypt with Ansible for free Certs 342

Use Galaxy roles to get things done faster 342
Create the playbook . 343
Create a server and configure DNS . 349
Point the playbook inventory at the server 350
Access your server over HTTPS! . 350

Configuring Nginx to proxy HTTP traffic and serve it over HTTPS 351
Modify the Nginx configuration to proxy traffic 352

Summary . 355

Chapter 13 - Docker and Ansible . 356
A brief introduction to Docker containers . 356
Using Ansible to build and manage containers 358
Building a Flask app with Ansible and Docker 360

Data storage container . 366
Flask container . 367
MySQL container . 372
Ship it! . 373

Building containers with Ansible from the outside 373
Build a Hubot Slack bot container with ansible_connection: docker 374

CONTENTS

Hubot and Slack . 374
Building a Docker container with Ansible 375
Building the hubot-slack role . 378
Building and running the Hubot Slack bot container 380

Summary . 381
Summary . 382

Chapter 14 - Kubernetes and Ansible . 383
A bit of Kubernetes history . 383
Evaluating the need for Kubernetes . 384
Building a Kubernetes cluster with Ansible 385
Managing Kubernetes with Ansible . 393

Ansible’s k8s module . 394
Managing Kubernetes Applications with Helm 400
Interacting with Pods using the kubectl connection plugin . . . 405

Summary . 407

Afterword . 409

Appendix A - Using Ansible on Windows workstations 410
Method 1 - Use the Windows Subsystem for Linux / Bash on Ubuntu . . . 410

Installing Ansible inside Bash on Ubuntu 411
Method 2 - When WSL is not an option . 412

Prerequisites . 413
Set up an Ubuntu Linux Virtual Machine 413
Log into the Virtual Machine . 414
Install Ansible . 416

Summary . 417

Appendix B - Ansible Best Practices and Conventions 418
Playbook Organization . 418

Write comments and use name liberally 418
Include related variables and tasks . 419
Use Roles to bundle logical groupings of configuration 420
Use role defaults and vars correctly . 421

YAML Conventions and Best Practices . 422
YAML for Ansible tasks . 423

CONTENTS

Three ways to format Ansible tasks . 424
Shorthand/one-line (key=value) . 424
Structured map/multi-line (key:value) 425
Folded scalars/multi-line (>) . 426

Using | to format multiline variables . 427
Using ansible-playbook . 427
Use Ansible Tower . 428
Specify --forks for playbooks running on > 5 servers 428
Use Ansible’s Configuration file . 428
Summary . 429

Foreword
Over the last few years, Ansible has rapidly become one of the most popular IT
automation tools in the world. We’ve seen the open source community expand from
the beginning of the project in early 2012 to over 1200 individual contributors today.
Ansible’s modular architecture and broad applicability to a variety of automation
and orchestration problems created a perfect storm for hundreds of thousands of
users worldwide.

Ansible is a general purpose IT automation platform, and it can be used for a variety
of purposes. From configuration management: enforcing declared state across your
infrastructure, to procedural application deployment, to broad multi-component and
multi-system orchestration of complicated interconnected systems. It is agentless, so
it can coexist with legacy tools, and it’s easy to install, configure, and maintain.

Ansible had its beginnings in 2012, when Michael DeHaan, the project’s founder,
took inspiration from several tools he had written prior, along with some hands-on
experience with the state of configuration management at the time, and launched the
project in February of 2012. Some of Ansible’s unique attributes like its module-based
architecture and agentless approach quickly attracted attention in the open source
world.

In 2013, Said Ziouani, Michael DeHaan, and I launched Ansible, Inc. We wanted
to harness the growing adoption of Ansible in the open source world, and create
products to fill the gaps in the IT automation space as we saw them. The existing
tools were complicated, error-prone, and hard to learn. Ansible gave users across
an IT organization a low barrier of entry into automation, and it could be deployed
incrementally, solving as few or as many problems as the team needed without a big
shift in methodology.

This book is about using Ansible in a DevOps environment. I’m not going to try to
define what DevOps is or isn’t, or who’s doing it or not. My personal interpretation
of the idea is that DevOps is meant to shorten the distance between the developers
writing the code, and the operators running the application. Now, I don’t believe

Foreword ii

adding a new “DevOps” team in between existing development and operations teams
achieves that objective! (Oops, now I’m trying for a definition, aren’t I?)

Well, definitions aside, one of the first steps towards a DevOps environment is
choosing tools that can be consumed by both developers and operations engineers.
Ansible is one of those tools: you don’t have to be a software developer to use it, and
the playbooks that you write can easily be self-documenting. There have been a lot
of attempts at “write once, run anywhere” models of application development and
deployment, but I think Ansible comes the closest to providing a common language
that’s useful across teams and across clouds and different datacenters.

The author of this book, Jeff, has been a long-time supporter, contributor, and
advocate of Ansible, and he’s maintained a massive collection of impressive Ansible
roles in Galaxy, the public role-sharing service maintained by Ansible, Inc. Jeff has
used Ansible extensively in his professional career, and is eminently qualified to
write the end-to-end book on Ansible in a DevOps environment.

As you read this book, I hope you enjoy your journey into IT automation as much
as we have. Be well, do good work, and automate everything.

Tim Gerla Ansible, Inc. Co-Founder & CTO

Preface
Growing up, I had access to a world that not many kids ever get to enter. At the
local radio stations where my dad was chief engineer, I was fortunate to get to see
networks and IT infrastructure up close: Novell servers and old Mac and Windows
workstations in the ’90s; Microsoft and Linux-based servers; and everything in
between. Best of all, he brought home decommissioned servers and copies of Linux
burned to CD.

I began working with Linux and small-scale infrastructures before I started high
school, and my passion for infrastructure grew as I built a Cat5 wired network
and a small rack of networking equipment for a local grade school. When I started
developing full-time, what was once a hobby became a necessary part of my job, so
I invested more time in managing infrastructure efficiently. Over the past ten years,
I’ve gone from manually booting and configuring physical and virtual servers; to
using relatively complex shell scripts to provision and configure servers; to using
configuration management tools to manage thousands of cloud-based servers.

When I began converting my infrastructure to code, some of the best tools for testing,
provisioning, andmanagingmy servers were still in their infancy, but they have since
matured into fully-featured, robust tools that I use every day. Vagrant is an excellent
tool for managing local virtual machines to mimic real-world infrastructure locally
(or in the cloud), and Ansible — the subject of this book — is an excellent tool for
provisioning servers, managing their configuration, and deploying applications, even
on my local workstation!

These tools are still improving rapidly, and I’m excited for what the future holds.
The time I invest in learning new infrastructure tools well will be helpful for years
to come.

In these pages, I’ll share with you all I’ve learned about Ansible: my favorite tool for
server provisioning, configuration management, and application deployment. I hope
you enjoy reading this book as much as I did writing it!

— Jeff Geerling, 2015

Preface iv

Who is this book for?

Many of the developers and sysadmins I work with are at least moderately com-
fortable administering a Linux server via SSH, and manage between 1-100 servers,
whether bare metal, virtualized, or using containers.

Some of these people have a little experience with configuration management tools
(usually with Puppet or Chef), and maybe a little experience with deployments and
continuous integration using tools like Jenkins, Capistrano, or Fabric. I am writing
this book for these friends who, I think, are representative of most people who have
heard of and/or are beginning to use Ansible.

If you are interested in both development and operations, and have at least a passing
familiarity with managing a server via the command line, this book should provide
you with an intermediate- to expert-level understanding of Ansible and how you can
use it to manage your infrastructure.

Typographic conventions

Ansible uses a simple syntax (YAML) and simple command-line tools (using common
POSIX conventions) for all its powerful abilities. Code samples and commands will
be highlighted throughout the book either inline (for example: ansible [command]),
or in a code block (with or without line numbers) like:

1 ---

2 # This is the beginning of a YAML file.

Some lines of YAML and other code examples require more than 70 characters per
line, resulting in the code wrapping to a new line. Wrapping code is indicated by a \
at the end of the line of code. For example:

Preface v

1 # The line of code wraps due to the extremely long URL.

2 wget http://www.example.com/really/really/really/long/path/in/the/url/c\

3 auses/the/line/to/wrap

When using the code, don’t copy the \ character, and make sure you don’t use a
newline between the first line with the trailing \ and the next line.

Links to pertinent resources and websites are added inline, like the following link to
Ansible¹, and can be viewed directly by clicking on them in eBook formats, or by
following the URL in the footnotes.

Sometimes, asides are added to highlight further information about a specific topic:

Informational asides will provide extra information.

Warning asides will warn about common pitfalls and how to avoid them.

Tip asides will give tips for deepening your understanding or optimizing
your use of Ansible.

When displaying commands run in a terminal session, if the commands are run under
your normal/non-root user account, the commands will be prefixed by the dollar sign
($). If the commands are run as the root user, they will be prefixed with the pound
sign (#).

Please help improve this book!

New revisions of this book are published on a regular basis (see current book
publication stats below). If you think a particular section needs improvement or find

¹https://www.ansible.com/

https://www.ansible.com/
https://www.ansible.com/

Preface vi

something missing, please post an issue in the Ansible for DevOps issue queue² (on
GitHub) or contact me via Twitter (@geerlingguy³).

All known issues with Ansible for DevOps will be aggregated on the book’s online
Errata⁴ page.

Current Published Book Version Information

• Current book version: 1.22
• Current Ansible version as of last publication: 2.9
• Current Date as of last publication: March 20, 2020

About the Author

Jeff Geerling is a developer who has worked in programming and reliability engi-
neering for companies with anywhere between one to thousands of servers. He also
manages many virtual servers for services offered by Midwestern Mac, LLC and has
been using Ansible to manage infrastructure since early 2013.

²https://github.com/geerlingguy/ansible-for-devops/issues
³https://twitter.com/geerlingguy
⁴https://www.ansiblefordevops.com/errata

https://github.com/geerlingguy/ansible-for-devops/issues
https://twitter.com/geerlingguy
https://www.ansiblefordevops.com/errata
https://github.com/geerlingguy/ansible-for-devops/issues
https://twitter.com/geerlingguy
https://www.ansiblefordevops.com/errata

Introduction
In the beginning, there were sysadmins

Since the beginning of networked computing, deploying and managing servers
reliably and efficiently has been a challenge. Historically, system administrators
were walled off from the developers and users who interact with the systems
they administer, and they managed servers by hand, installing software, changing
configurations, and administering services on individual servers.

As data centers grew, and hosted applications became more complex, administrators
realized they couldn’t scale their manual systems management as fast as the
applications they were enabling. That’s why server provisioning and configuration
management tools came to flourish.

Server virtualization brought large-scale infrastructure management to the fore, and
the number of servers managed by one admin (or by a small team of admins), has
grown by an order of magnitude. Instead of deploying, patching, and destroying
every server by hand, admins now are expected to bring up new servers, either
automatically or with minimal intervention. Large-scale IT deployments now may
involve hundreds or thousands of servers; in many of the largest environments,
server provisioning, configuration, and decommissioning are fully automated.

Modern infrastructure management

As the systems that run applications become an ever more complex and integral part
of the software they run, application developers themselves have begun to integrate
their work more fully with operations personnel. In many companies, development
and operations work is integrated. Indeed, this integration is a requirement for
modern test-driven application design.

As a software developer by trade, and a sysadmin by necessity, I have seen the power
in uniting development and operations—more commonly referred to now as DevOps

Introduction viii

or Site Reliability Engineering. When developers begin to think of infrastructure as
part of their application, stability and performance become normative. When sysad-
mins (most of whom have intermediate to advanced knowledge of the applications
and languages being used on servers they manage) work tightly with developers,
development velocity is improved, and more time is spent doing ‘fun’ activities like
performance tuning, experimentation, and getting things done, and less time putting
out fires.

DevOps is a loaded word; some people argue using the word to identify
both the movement of development and operations working more closely
to automate infrastructure-related processes, and the personnel who skew
slightly more towards the system administration side of the equation,
dilutes the word’s meaning. I think the word has come to be a rallying cry
for the employees who are dragging their startups, small businesses, and
enterprises into a new era of infrastructure growth and stability. I’m not
too concerned that the term has become more of a catch-all for modern
infrastructure management. My advice: spend less time arguing over the
definition of the word, and more time making it mean something to you.

Ansible and Red Hat

Ansible was released in 2012 by Michael DeHaan (@laserllama⁵ on Twitter), a
developer who has been working with configuration management and infrastructure
orchestration in one form or another for many years. Through his work with Puppet
Labs and Red Hat (where he worked on Cobbler⁶, a configuration management
tool, Func, a tool for communicating commands to remote servers), and some other
projects⁷), he experienced the trials and tribulations of many different organizations
and individual sysadmins on their quest to simplify and automate their infrastructure
management operations.

Additionally, Michael foundmany shops were using separate tools⁸ for configuration
management (Puppet, Chef, cfengine), server deployment (Capistrano, Fabric), and

⁵https://twitter.com/laserllama
⁶http://cobbler.github.io/
⁷https://www.ansible.com/blog/2013/12/08/the-origins-of-ansible
⁸http://highscalability.com/blog/2012/4/18/ansible-a-simple-model-driven-configuration-management-and-c.html

https://twitter.com/laserllama
http://cobbler.github.io/
https://www.ansible.com/blog/2013/12/08/the-origins-of-ansible
https://www.ansible.com/blog/2013/12/08/the-origins-of-ansible
http://highscalability.com/blog/2012/4/18/ansible-a-simple-model-driven-configuration-management-and-c.html
https://twitter.com/laserllama
http://cobbler.github.io/
https://www.ansible.com/blog/2013/12/08/the-origins-of-ansible
http://highscalability.com/blog/2012/4/18/ansible-a-simple-model-driven-configuration-management-and-c.html

Introduction ix

ad-hoc task execution (Func, plain SSH), and wanted to see if there was a better way.
Ansible wraps up all three of these features into one tool, and does it in a way that’s
actually simpler and more consistent than any of the other task-specific tools!

Ansible aims to be:

1. Clear - Ansible uses a simple syntax (YAML) and is easy for anyone (developers,
sysadmins, managers) to understand. APIs are simple and sensible.

2. Fast - Fast to learn, fast to set up—especially considering you don’t need to
install extra agents or daemons on all your servers!

3. Complete - Ansible does three things in one, and does them verywell. Ansible’s
‘batteries included’ approach means you have everything you need in one
complete package.

4. Efficient - No extra software on your servers means more resources for your
applications. Also, since Ansible modules work via JSON, Ansible is extensible
with modules written in a programming language you already know.

5. Secure - Ansible uses SSH, and requires no extra open ports or potentially-
vulnerable daemons on your servers.

Ansible also has a lighter side that gives the project a little personality. As an example,
Ansible’s major releases are named after Led Zeppelin songs (e.g. 2.0 was named
after 1973’s “Over the Hills and Far Away”, 1.x releases were named after Van Halen
songs). Additionally, Ansible uses cowsay, if installed, to wrap output in an ASCII
cow’s speech bubble (this behavior can be disabled in Ansible’s configuration).

Ansible, Inc.⁹ was founded by Saïd Ziouani (@SaidZiouani¹⁰ on Twitter), Michael
DeHaan, and Tim Gerla, and acquired by Red Hat in 2015. The Ansible team oversees
core Ansible development and provides services (such as Ansible Consulting¹¹) and
extra tooling (such as Ansible Tower¹²) to organizations using Ansible. Hundreds of
individual developers have contributed patches to Ansible, and Ansible is the most
starred infrastructure management tool on GitHub (with over 33,000 stars as of this
writing).

In October 2015, Red Hat acquired Ansible, Inc., and has proven itself to be a good
steward and promoter of Ansible. I see no indication of this changing in the future.

⁹https://www.ansible.com/
¹⁰https://twitter.com/SaidZiouani
¹¹https://www.ansible.com/products/consulting
¹²https://www.ansible.com/tower

https://www.ansible.com/
https://twitter.com/SaidZiouani
https://www.ansible.com/products/consulting
https://www.ansible.com/tower
https://www.ansible.com/
https://twitter.com/SaidZiouani
https://www.ansible.com/products/consulting
https://www.ansible.com/tower

Introduction x

Ansible Examples

There are many Ansible examples (playbooks, roles, infrastructure, configuration,
etc.) throughout this book. Most of the examples are in the Ansible for DevOps
GitHub repository¹³, so you can browse the code in its final state while you’re reading
the book. Some of the line numbering may not match the book exactly (especially if
you’re reading an older version of the book!), but I will try my best to keep everything
synchronized over time.

Other resources

We’ll explore all aspects of using Ansible to provision and manage your infrastruc-
ture in this book, but there’s no substitute for the wealth of documentation and
community interaction that make Ansible great. Check out the links below to find
out more about Ansible and discover the community:

• Ansible Documentation¹⁴ - Covers all Ansible options in depth. There are few
open source projects with documentation as clear and thorough.

• Ansible Glossary¹⁵ - If there’s ever a term in this book you don’t seem to fully
understand, check the glossary.

• Ansible Mailing List¹⁶ - Discuss Ansible and submit questions with Ansible’s
community via this Google group.

• Ansible on GitHub¹⁷ - The official Ansible code repository, where the magic
happens.

• Ansible Example Playbooks on GitHub¹⁸ - Many examples for common server
configurations.

• Getting Started with Ansible¹⁹ - A simple guide to Ansible’s community and
resources.

¹³https://github.com/geerlingguy/ansible-for-devops
¹⁴https://docs.ansible.com/ansible/
¹⁵https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
¹⁶https://groups.google.com/forum/#!forum/ansible-project
¹⁷https://github.com/ansible/ansible
¹⁸https://github.com/ansible/ansible-examples
¹⁹https://www.ansible.com/resources/get-started

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops
https://docs.ansible.com/ansible/
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
https://groups.google.com/forum/#!forum/ansible-project
https://github.com/ansible/ansible
https://github.com/ansible/ansible-examples
https://www.ansible.com/resources/get-started
https://github.com/geerlingguy/ansible-for-devops
https://docs.ansible.com/ansible/
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
https://groups.google.com/forum/#!forum/ansible-project
https://github.com/ansible/ansible
https://github.com/ansible/ansible-examples
https://www.ansible.com/resources/get-started

Introduction xi

• Ansible Blog²⁰

I’d like to especially highlight Ansible’s documentation (the first resource listed
above); one of Ansible’s greatest strengths is its well-written and extremely relevant
documentation, containing a large number of relevant examples and continuously-
updated guides. Very few projects—open source or not—have documentation as
thorough, yet easy-to-read. This book is meant as a supplement to, not a replacement
for, Ansible’s documentation!

²⁰https://www.ansible.com/blog

https://www.ansible.com/blog
https://www.ansible.com/blog

Chapter 1 - Getting Started with
Ansible
Ansible and Infrastructure Management

On snowflakes and shell scripts

Many developers and system administrators manage servers by logging into them via
SSH, making changes, and logging off. Some of these changes would be documented,
some would not. If an admin needed to make the same change to many servers (for
example, changing one value in a config file), the admin would manually log into
each server and repeatedly make this change.

If there were only one or two changes in the course of a server’s lifetime, and if
the server were extremely simple (running only one process, with one configuration,
and a very simple firewall), and if every change were thoroughly documented, this
process wouldn’t be a problem.

But for almost every company in existence, servers are more complex—most run
tens, sometimes hundreds of different applications or application containers. Most
servers have complicated firewalls and dozens of tweaked configuration files. And
even with change documentation, the manual process usually results in some servers
or some steps being forgotten.

If the admins at these companies wanted to set up a new server exactly like one that
is currently running, they would need to spend a good deal of time going through
all of the installed packages, documenting configurations, versions, and settings; and
they would spend a lot of unnecessary time manually reinstalling, updating, and
tweaking everything to get the new server to run close to how the old server did.

Some admins may use shell scripts to try to reach some level of sanity, but I’ve yet to
see a complex shell script that handles all edge cases correctly while synchronizing
multiple servers’ configuration and deploying new code.

Chapter 1 - Getting Started with Ansible 2

Configuration management

Lucky for you, there are tools to help you avoid having these snowflake servers—
servers that are uniquely configured and impossible to recreate from scratch because
they were hand-configured without documentation. Tools like CFEngine²¹, Puppet²²
and Chef²³ became very popular in the mid-to-late 2000s.

But there’s a reason why many developers and sysadmins stick to shell scripting and
command-line configuration: it’s simple and easy-to-use, and they’ve had years of
experience using bash and command-line tools. Why throw all that out the window
and learn a new configuration language and methodology?

Enter Ansible. Ansible was built (and continues to be improved) by developers and
sysadmins who know the command line—and want to make a tool that helps them
manage their servers exactly the same as they have in the past, but in a repeatable
and centrally managed way. Ansible also has other tricks up its sleeve, making it a
true Swiss Army knife for people involved in DevOps (not just the operations side).

One of Ansible’s greatest strengths is its ability to run regular shell commands
verbatim, so you can take existing scripts and commands and work on converting
them into idempotent playbooks as time allows. For someone (like me) who was
comfortable with the command line, but never became proficient in more compli-
cated tools like Puppet or Chef (which both required at least a slight understanding
of Ruby and/or a custom language just to get started), Ansible was a breath of fresh
air.

Ansible works by pushing changes out to all your servers (by default), and requires
no extra software to be installed on your servers (thus no extra memory footprint,
and no extra daemon tomanage), unlikemost other configurationmanagement tools.

²¹http://cfengine.com/
²²http://puppetlabs.com/
²³http://www.getchef.com/chef/

http://cfengine.com/
http://puppetlabs.com/
http://www.getchef.com/chef/
http://cfengine.com/
http://puppetlabs.com/
http://www.getchef.com/chef/

Chapter 1 - Getting Started with Ansible 3

Idempotence is the ability to run an operation which produces the same
result whether run once or multiple times (source²⁴).

An important feature of a configuration management tool is its ability to
ensure the same configuration is maintained whether you run it once or
a thousand times. Many shell scripts have unintended consequences if run
more than once, but Ansible deploys the same configuration to a server over
and over again without making any changes after the first deployment.

In fact, almost every aspect of Ansible modules and commands is idem-
potent, and for those that aren’t, Ansible allows you to define when the
given command should be run, and what constitutes a changed or failed
command, so you can easily maintain an idempotent configuration on all
your servers.

Installing Ansible

Ansible’s only real dependency is Python. Once Python is installed, the simplest way
to get Ansible running is to use pip, a simple package manager for Python.

If you’re on a Mac, installing Ansible is a piece of cake:

1. Check if pip is installed (which pip). If not, install it: sudo easy_install pip

2. Install Ansible: sudo pip install ansible

You could also install Ansible via Homebrew²⁵ with brew install ansible. Either
way (pip or brew) is fine, but make sure you update Ansible using the same system
with which it was installed!

If you’re running Windows (i.e. you work for a large company that forces you to
use Windows), it will take a little extra work to set everything up. There are two
ways you can go about using Ansible if you use Windows:

1. The easiest solution would be to use a Linux virtual machine (with something
like VirtualBox) to do your work, or to work within theWindows Subsystem for

²⁴http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
²⁵http://brew.sh/

http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
http://brew.sh/
http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
http://brew.sh/

Chapter 1 - Getting Started with Ansible 4

Linux. For detailed instructions, see Appendix A - Using Ansible on Windows
workstations.

2. Ansible runs (somewhat) within an appropriately-configured Cygwin²⁶ en-
vironment. For setup instructions, please see my blog post Running Ansible
within Windows²⁷), and note that running Ansible directly within Windows is
unsupported and prone to breaking.

If you’re running Linux, chances are you already have Ansible’s dependencies
installed, but we’ll cover the most common installation methods.

If you have python-pip and python-devel (python-dev on Debian/Ubuntu) installed,
use pip to install Ansible (this assumes you also have the ‘Development Tools’
package installed, so you have gcc, make, etc. available):

$ sudo pip install ansible

Using pip allows you to upgrade Ansible with pip install --upgrade ansible.

Fedora/Red Hat Enterprise Linux/CentOS:

The easiest way to install Ansible on a Fedora-like system is to use the official yum
package. If you’re running Red Hat Enterprise Linux (RHEL) or CentOS, you need
to install EPEL’s RPM before you install Ansible (see the info section below for
instructions):

$ yum -y install ansible

²⁶http://cygwin.com/
²⁷https://servercheck.in/blog/running-ansible-within-windows

http://cygwin.com/
https://servercheck.in/blog/running-ansible-within-windows
https://servercheck.in/blog/running-ansible-within-windows
http://cygwin.com/
https://servercheck.in/blog/running-ansible-within-windows

Chapter 1 - Getting Started with Ansible 5

On RHEL/CentOS systems, python-pip and ansible are available via the
EPEL repository²⁸. If you run the command yum repolist | grep epel (to
see if the EPEL repo is already available) and there are no results, you need
to install it with the following commands:

If you're on RHEL/CentOS 6:

$ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/\

epel-release-6-8.noarch.rpm

If you're on RHEL/CentOS 7:

$ yum install epel-release

Debian/Ubuntu:

The easiest way to install Ansible on a Debian or Ubuntu system is to use the official
apt package.

$ sudo apt-add-repository -y ppa:ansible/ansible

$ sudo apt-get update

$ sudo apt-get install -y ansible

If you get an error like “sudo: add-apt-repository: command not found”,
you’re probably missing the python-software-properties package. Install
it with the command:

$ sudo apt-get install python-software-properties

Once Ansible is installed, make sure it’s working properly by entering ansible

--version on the command line. You should see the currently-installed version:

²⁸https://fedoraproject.org/wiki/EPEL

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

Chapter 1 - Getting Started with Ansible 6

$ ansible --version

ansible 2.9.5

Creating a basic inventory file

Ansible uses an inventory file (basically, a list of servers) to communicate with your
servers. Like a hosts file (at /etc/hosts) that matches IP addresses to domain names,
an Ansible inventory file matches servers (IP addresses or domain names) to groups.
Inventory files can do a lot more, but for now, we’ll just create a simple file with
one server. Create a file at /etc/ansible/hosts (the default location for Ansible’s
inventory file), and add one server to it:

$ sudo mkdir /etc/ansible

$ sudo touch /etc/ansible/hosts

Edit this hosts file with nano, vim, or whatever editor you’d like, but note you’ll need
to edit it with sudo as root. Put the following into the file:

1 [example]

2 www.example.com

…where example is the group of servers you’re managing and www.example.com is the
domain name (or IP address) of a server in that group. If you’re not using port 22 for
SSH on this server, you will need to add it to the address, like www.example.com:2222,
since Ansible defaults to port 22 and won’t get this value from your ssh config file.

This first example assumes you have a server set up that you can test with;
if you don’t already have a spare server somewhere that you can connect
to, you might want to create a small VM using DigitalOcean, AmazonWeb
Services, Linode, or some other service that bills by the hour. That way you
have a full server environment to work with when learning Ansible—and
when you’re finished testing, delete the server and you’ll only be billed a
few pennies!

Replace the www.example.com in the above example with the name or IP
address of your server.

Chapter 1 - Getting Started with Ansible 7

Running your first Ad-Hoc Ansible command

Now that you’ve installed Ansible and created an inventory file, it’s time to run a
command to see if everything works! Enter the following in the terminal (we’ll do
something safe so it doesn’t make any changes on the server):

$ ansible example -m ping -u [username]

…where [username] is the user you use to log into the server. If everything worked,
you should see a message that shows www.example.com | success >>, then the
result of your ping. If it didn’t work, run the command again with -vvvv on the end
to see verbose output. Chances are you don’t have SSH keys configured properly—if
you login with ssh username@www.example.com and that works, the above Ansible
command should work, too.

Ansible assumes you’re using passwordless (key-based) login for SSH (e.g.
you login by entering ssh username@example.com and don’t have to type a
password). If you’re still logging into your remote servers with a username
and password, or if you need a primer on Linux remote authentication
and security best practices, please read Chapter 10 - Server Security and
Ansible. If you insist on using passwords, add the --ask-pass (-k) flag
to Ansible commands (you may also need to install the sshpass package
for this to work). This entire book is written assuming passwordless
authentication, so you’ll need to keep this in mind every time you run a
command or playbook.

Need a primer on SSH key-based authentication? Please read through
Ubuntu’s community documentation on SSH/OpenSSH/Keys²⁹.

Let’s run a more useful command:

²⁹https://help.ubuntu.com/community/SSH/OpenSSH/Keys

https://help.ubuntu.com/community/SSH/OpenSSH/Keys
https://help.ubuntu.com/community/SSH/OpenSSH/Keys

Chapter 1 - Getting Started with Ansible 8

$ ansible example -a "free -h" -u [username]

In this example, we quickly see memory usage (in a human-readable format) on
all the servers (for now, just one) in the example group. Commands like this are
helpful for quickly finding a server that has a value out of a normal range. I often use
commands like free -m (to see memory statistics), df -h (to see disk usage statistics),
and the like tomake sure none ofmy servers is behaving erratically.While it’s good to
track these details in an external tool like Nagios³⁰, Munin³¹, or Cacti³², it’s also nice
to check these stats on all your servers with one simple command and one terminal
window!

Summary

That’s it! You’ve just learned about configuration management and Ansible, installed
it, told it about your server, and ran a couple commands on that server through
Ansible. If you’re not impressed yet, that’s okay—you’ve only seen the tip of the
iceberg.

/ A doctor can bury his mistakes but an \

| architect can only advise his clients |

\ to plant vines. (Frank Lloyd Wright) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

³⁰http://www.nagios.org/
³¹http://munin-monitoring.org/
³²http://www.cacti.net/

http://www.nagios.org/
http://munin-monitoring.org/
http://www.cacti.net/
http://www.nagios.org/
http://munin-monitoring.org/
http://www.cacti.net/

Chapter 2 - Local Infrastructure
Development: Ansible and
Vagrant
Prototyping and testing with local virtual
machines

Ansible works well with any server to which you can connect—remote or local. For
speedier testing and development of Ansible playbooks, and for testing in general, it’s
a very good idea to work locally. Local development and testing of infrastructure is
both safer and faster than doing it on remote/live machines—especially in production
environments!

In the past decade, test-driven development (TDD), in one form or another,
has become the norm for much of the software industry. Infrastructure
development hasn’t been as organized until recently, and best practices
dictate that infrastructure (which is becoming more and more important
to the software that runs on it) should be thoroughly tested as well.

Changes to software are tested either manually or in some automated fash-
ion; there are now systems that integrate both with Ansible and with other
deployment and configuration management tools, to allow some amount
of infrastructure testing as well. Even if it’s just testing a configuration
change locally before applying it to production, that approach is a thousand
times better than what, in the software development world, would be
called ‘cowboy coding’—working directly in a production environment, not
documenting or encapsulating changes in code, and not having a way to
roll back to a previous version.

The past decade has seen the growth of many virtualization tools that allow for
flexible and very powerful infrastructure emulation, all from your local workstation!

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 10

It’s empowering to be able to play around with a config file, or to tweak the order
of a server update to perfection, over and over again, with no fear of breaking an
important server. If you use a local virtual machine, there’s no downtime for a server
rebuild; just re-run the provisioning on a new VM, and you’re back up and running
in minutes—with no one the wiser.

Vagrant³³, a server provisioning tool, and VirtualBox³⁴, a local virtualization envi-
ronment, make a potent combination for testing infrastructure and individual server
configurations locally. Both applications are free and open source, and work well on
Mac, Linux, or Windows hosts.

We’re going to set up Vagrant and VirtualBox for easy testing with Ansible to
provision a new server.

Your first local server: Setting up Vagrant

To get started with your first local virtual server, you need to download and install
Vagrant and VirtualBox, and set up a simple Vagrantfile, which will describe the
virtual server.

1. Download and install Vagrant and VirtualBox (whichever version is appropriate
for your OS): - Download Vagrant³⁵ - Download VirtualBox³⁶ (when installing,
make sure the command line tools are installed, so Vagrant works with it)

2. Create a new folder somewhere on your hard drive where you will keep your
Vagrantfile and provisioning instructions.

3. Open a Terminal or PowerShell window, then navigate to the folder you just
created.

4. Add a CentOS 7.x 64-bit ‘box’ using the vagrant box add³⁷ command: vagrant
box add geerlingguy/centos7 (note: HashiCorp’s Vagrant Cloud³⁸ has a
comprehensive list of different pre-made Linux boxes. Also, check out the
‘official’ Vagrant Ubuntu boxes in Vagrant’s Boxes documentation³⁹.

³³http://www.vagrantup.com/
³⁴https://www.virtualbox.org/
³⁵http://www.vagrantup.com/downloads.html
³⁶https://www.virtualbox.org/wiki/Downloads
³⁷http://docs.vagrantup.com/v2/boxes.html
³⁸https://app.vagrantup.com/boxes/search
³⁹https://www.vagrantup.com/docs/boxes.html

http://www.vagrantup.com/
https://www.virtualbox.org/
http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
http://docs.vagrantup.com/v2/boxes.html
https://app.vagrantup.com/boxes/search
https://www.vagrantup.com/docs/boxes.html
http://www.vagrantup.com/
https://www.virtualbox.org/
http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
http://docs.vagrantup.com/v2/boxes.html
https://app.vagrantup.com/boxes/search
https://www.vagrantup.com/docs/boxes.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 11

5. Create a default virtual server configuration using the box you just downloaded:
vagrant init geerlingguy/centos7

6. Boot your CentOS server: vagrant up

Vagrant downloaded a pre-built 64-bit CentOS 7 virtual machine image (you can
build your own⁴⁰ virtual machine ‘boxes’, if you so desire), loaded the image into
VirtualBox with the configuration defined in the default Vagrantfile (which is now
in the folder you created earlier), and booted the virtual machine.

Managing this virtual server is extremely easy: vagrant halt will shut down the
VM, vagrant up will bring it back up, and vagrant destroy will completely delete
the machine from VirtualBox. A simple vagrant up again will re-create it from the
base box you originally downloaded.

Now that you have a running server, you can use it just like you would any other
server, and you can connect via SSH. To connect, enter vagrant ssh from the folder
where the Vagrantfile is located. If you want to connect manually, or connect from
another application, enter vagrant ssh-config to get the required SSH details.

Using Ansible with Vagrant

Vagrant’s ability to bring up preconfigured boxes is convenient on its own, but you
could do similar things with the same efficiency using VirtualBox’s (or VMWare’s,
or Parallels’) GUI. Vagrant has some other tricks up its sleeve:

• Network interface management⁴¹: You can forward ports to a VM, share the
public network connection, or use private networking for inter-VM and host-
only communication.

• Shared folder management⁴²: Vagrant sets up shares between your host ma-
chine and VMs using NFS or (much slower) native folder sharing in VirtualBox.

• Multi-machine management⁴³: Vagrant is able to configure and control mul-
tiple VMs within one Vagrantfile. This is important because, as stated in the

⁴⁰https://www.vagrantup.com/docs/virtualbox/boxes.html
⁴¹https://www.vagrantup.com/docs/networking/index.html
⁴²https://www.vagrantup.com/docs/synced-folders/index.html
⁴³https://www.vagrantup.com/docs/multi-machine/index.html

https://www.vagrantup.com/docs/virtualbox/boxes.html
https://www.vagrantup.com/docs/networking/index.html
https://www.vagrantup.com/docs/synced-folders/index.html
https://www.vagrantup.com/docs/multi-machine/index.html
https://www.vagrantup.com/docs/virtualbox/boxes.html
https://www.vagrantup.com/docs/networking/index.html
https://www.vagrantup.com/docs/synced-folders/index.html
https://www.vagrantup.com/docs/multi-machine/index.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 12

documentation, “Historically, running complex environments was done by
flattening them onto a single machine. The problem with that is that it is an
inaccurate model of the production setup, which behaves far differently.”

• Provisioning⁴⁴: When running vagrant up the first time, Vagrant automati-
cally provisions the newly-minted VM using whatever provisioner you have
configured in the Vagrantfile. You can also run vagrant provision after the
VM has been created to explicitly run the provisioner again.

It’s this last feature that is most important for us. Ansible is one of many provisioners
integrated with Vagrant (others include basic shell scripts, Chef, Docker, Puppet, and
Salt). When you call vagrant provision (or vagrant up the first time), Vagrant
passes off the VM to Ansible, and tells Ansible to run a defined Ansible playbook.
We’ll get into the details of Ansible playbooks later, but for now, we’re going to edit
our Vagrantfile to use Ansible to provision our virtual machine.

Open the Vagrantfile that was created when we used the vagrant init command
earlier. Add the following lines just before the final ‘end’ (Vagrantfiles use Ruby
syntax, in case you’re wondering):

1 # Provisioning configuration for Ansible.

2 config.vm.provision "ansible" do |ansible|

3 ansible.playbook = "playbook.yml"

4 end

This is a very basic configuration to get you started using Ansible with Vagrant.
There are many other Ansible options⁴⁵ you can use once we get deeper into using
Ansible. For now, we just want to set up a very basic playbook—a simple file you
create to tell Ansible how to configure your VM.

Your first Ansible playbook

Let’s create the Ansible playbook.yml file now. Create an empty text file in the same
folder as your Vagrantfile, and put in the following contents:

⁴⁴https://www.vagrantup.com/docs/provisioning/index.html
⁴⁵https://www.vagrantup.com/docs/provisioning/ansible.html

https://www.vagrantup.com/docs/provisioning/index.html
https://www.vagrantup.com/docs/provisioning/ansible.html
https://www.vagrantup.com/docs/provisioning/index.html
https://www.vagrantup.com/docs/provisioning/ansible.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 13

1 ---

2 - hosts: all

3 become: yes

4 tasks:

5 - name: Ensure NTP (for time synchronization) is installed.

6 yum: name=ntp state=present

7 - name: Ensure NTP is running.

8 service: name=ntpd state=started enabled=yes

I’ll get into what this playbook is doing in a minute. For now, let’s run the playbook
on our VM. Make sure you’re in the same directory as the Vagrantfile and new
playbook.yml file, and enter vagrant provision. You should see status messages
for each of the ‘tasks’ you defined, and then a recap showing what Ansible did on
your VM—something like the following:

PLAY RECAP **

default : ok=3 changed=1 unreachable=0 failed=0

Ansible just took the simple playbook you defined, parsed the YAML syntax, and
ran a bunch of commands via SSH to configure the server as you specified. Let’s go
through the playbook, step by step:

1 ---

This first line is a marker showing that the rest of the document will be formatted in
YAML (read a getting started guide for YAML⁴⁶).

2 - hosts: all

This line tells Ansible to which hosts this playbook applies. all works here, since
Vagrant is invisibly using its own Ansible inventory file (instead of the one we
created earlier in /etc/ansible/hosts), which just defines the Vagrant VM.

⁴⁶http://www.yaml.org/start.html

http://www.yaml.org/start.html
http://www.yaml.org/start.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 14

3 become: yes

Since we need privileged access to install NTP and modify system configuration, this
line tells Ansible to use sudo for all the tasks in the playbook (you’re telling Ansible
to ‘become’ the root user with sudo, or an equivalent).

4 tasks:

All the tasks after this line will be run on all hosts (or, in our case, our one VM).

5 - name: Ensure NTP daemon (for time synchronization) is installed.

6 yum: name=ntp state=present

This command is the equivalent of running yum install ntp, but is much more
intelligent; it will check if ntp is installed, and, if not, install it. This is the equivalent
of the following shell script:

if ! rpm -qa | grep -qw ntp; then

yum install -y ntp

fi

However, the above script is still not quite as robust as Ansible’s yum command.What
if ntpdate is installed, but not ntp? This script would require extra tweaking and
complexity to match the simple Ansible yum command, especially after we explore
the yum module more intimately (or the apt module for Debian-flavored Linux, or
package for OS-agnostic package installation).

7 - name: Ensure NTP is running.

8 service: name=ntpd state=started enabled=yes

This final task both checks and ensures that the ntpd service is started and running,
and sets it to start at system boot. A shell script with the same effect would be:

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 15

Start ntpd if it's not already running.

if ps aux | grep -q "[n]tpd"

then

echo "ntpd is running." > /dev/null

else

systemctl start ntpd.service > /dev/null

echo "Started ntpd."

fi

Make sure ntpd is enabled on system startup.

systemctl enable ntpd.service

You can see how things start getting complex in the land of shell scripts! And this shell
script is still not as robust as what you get with Ansible. To maintain idempotency
and handle error conditions, you’ll have to do a lot more extra work with basic shell
scripts than you do with Ansible.

We could be even more terse (and really demonstrate Ansible’s powerful simplicity)
and not use Ansible’s namemodule to give human-readable names to each command,
resulting in the following playbook:

1 ---

2 - hosts: all

3 become: yes

4 tasks:

5 - yum: name=ntp state=present

6 - service: name=ntpd state=started enabled=yes

Just as with code and configuration files, documentation in Ansible (e.g.
using the name function and/or adding comments to the YAML for com-
plicated tasks) is not absolutely necessary. However, I’m a firm believer in
thorough (but concise) documentation, so I almost always document what
my tasks will do by providing a name for each one. This also helps when
you’re running the playbooks, so you can see what’s going on in a human-
readable format.

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 16

Cleaning Up

Once you’re finished experimenting with the CentOS Vagrant VM, you can remove it
from your system by running vagrant destroy. If you want to rebuild the VM again,
run vagrant up. If you’re like me, you’ll soon be building and rebuilding hundreds
of VMs and containers per week using Vagrant and Ansible!

Summary

Your workstation is on the path to becoming an “infrastructure-in-a-box,” and you
can now ensure your infrastructure is as well-tested as the code that runs on top of
it. With one small example, you’ve got a glimpse at the simple-yet-powerful Ansible
playbook. We’ll dive deeper into Ansible playbooks later, and we’ll also explore
Vagrant a little more as we go.

/ I have not failed, I've just found \

| 10,000 ways that won't work. (Thomas |

\ Edison) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 3 - Ad-Hoc Commands
In the previous chapter, we ended our exploration of local infrastructure testing with
Vagrant by creating a very simple Ansible playbook. Earlier still, we used a simple
ansible ad-hoc command to run a one-off command on a remote server.

We’ll dive deeper into playbooks in coming chapters; for now, we’ll explore how
Ansible helps you quickly perform common tasks on, and gather data from, one or
many servers with ad-hoc commands.

Conducting an orchestra

The number of servers managed by an individual administrator has risen dramati-
cally in the past decade, especially as virtualization and growing cloud application
usage has become standard fare. As a result, admins have had to find new ways of
managing servers in a streamlined fashion.

On any given day, a systems administrator has many tasks:

• Apply patches and updates via yum, apt, and other package managers.
• Check resource usage (disk space, memory, CPU, swap space, network).
• Check log files.
• Manage system users and groups.
• Manage DNS settings, hosts files, etc.
• Copy files to and from servers.
• Deploy applications or run application maintenance.
• Reboot servers.
• Manage cron jobs.

Nearly all of these tasks can be (and usually are) at least partially automated—but
some often need a human touch, especially when it comes to diagnosing issues in

Chapter 3 - Ad-Hoc Commands 18

real time. And in today’s complex multi-server environments, logging into servers
individually is not a workable solution.

Ansible allows admins to run ad-hoc commands on one or hundreds of machines
at the same time, using the ansible command. In Chapter 1, we ran a couple of
commands (ping and free -m) on a server that we added to our Ansible inventory file.
This chapter will explore ad-hoc commands and multi-server environments in much
greater detail. Even if you decide to ignore the rest of Ansible’s powerful features,
you will be able to manage your servers much more efficiently after reading this
chapter.

Some of the examples in this chapter will display how you can configure
certain aspects of a server with ad-hoc commands. It is usually more
appropriate to contain all configuration within playbooks and templates,
so it’s easier to provision your servers (running the playbook the first
time) and then ensure their configuration is idempotent (you can run the
playbooks over and over again, and your servers will be in the correct state).

The examples in this chapter are for illustration purposes only, and all
might not be applicable to your environment. But even if you only used
Ansible for server management and running individual tasks against
groups of servers, and didn’t use Ansible’s playbook functionality at all,
you’d still have a great orchestration and deployment tool in Ansible!

Build infrastructure with Vagrant for testing

For the rest of this chapter, since we want to do a bunch of experimentation without
damaging any production servers, we’re going to use Vagrant’s powerful multi-
machine capabilities to configure a few servers which we’ll manage with Ansible.

Earlier, we used Vagrant to boot up one virtual machine running CentOS 7. In that
example, we used all of Vagrant’s default configuration defined in the Vagrantfile.
In this example, we’ll use Vagrant’s powerful multi-machine management features.

Chapter 3 - Ad-Hoc Commands 19

Three servers: two application, one database.

We’re going to manage three VMs: two app servers and a database server. Many
simple web applications and websites have a similar architecture, and even though
this may not reflect the vast realm of infrastructure combinations that exist, it will
be enough to highlight Ansible’s server management abilities.

To begin, create a new folder somewhere on your local drive (I like using∼/VMs/[dir]),
and create a new blank file named Vagrantfile (this is how we describe our virtual
machines to Vagrant). Open the file in your favorite editor, add the following, and
save the file:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 VAGRANTFILE_API_VERSION = "2"

5

6 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

7 # General Vagrant VM configuration.

8 config.vm.box = "geerlingguy/centos7"

9 config.ssh.insert_key = false

10 config.vm.synced_folder ".", "/vagrant", disabled: true

11 config.vm.provider :virtualbox do |v|

12 v.memory = 256

13 v.linked_clone = true

14 end

15

Chapter 3 - Ad-Hoc Commands 20

16 # Application server 1.

17 config.vm.define "app1" do |app|

18 app.vm.hostname = "orc-app1.test"

19 app.vm.network :private_network, ip: "192.168.60.4"

20 end

21

22 # Application server 2.

23 config.vm.define "app2" do |app|

24 app.vm.hostname = "orc-app2.test"

25 app.vm.network :private_network, ip: "192.168.60.5"

26 end

27

28 # Database server.

29 config.vm.define "db" do |db|

30 db.vm.hostname = "orc-db.test"

31 db.vm.network :private_network, ip: "192.168.60.6"

32 end

33 end

This Vagrantfile defines the three servers we want to manage, and gives each one a
unique hostname, machine name (for VirtualBox), and IP address. For simplicity’s
sake, all three servers will be running CentOS 7.

Open up a terminal window and change directory to the same folder where the
Vagrantfile you just created exists. Enter vagrant up to let Vagrant begin building
the three VMs. If you already downloaded the box while building the example from
Chapter 2, this process shouldn’t take too long—maybe 3-5 minutes.

While that’s going on, we’ll work on telling Ansible about the servers, so we can
start managing them right away.

Inventory file for multiple servers

There aremanyways you can tell Ansible about the servers youmanage, but themost
standard, and simplest, is to add them to your system’s main Ansible inventory file,
which is located at /etc/ansible/hosts. If you didn’t create the file in the previous

Chapter 3 - Ad-Hoc Commands 21

chapter, go ahead and create the file now; make sure your user account has read
permissions for the file.

Add the following to the file:

1 # Lines beginning with a # are comments, and are only included for

2 # illustration. These comments are overkill for most inventory files.

3

4 # Application servers

5 [app]

6 192.168.60.4

7 192.168.60.5

8

9 # Database server

10 [db]

11 192.168.60.6

12

13 # Group 'multi' with all servers

14 [multi:children]

15 app

16 db

17

18 # Variables that will be applied to all servers

19 [multi:vars]

20 ansible_ssh_user=vagrant

21 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

Let’s step through this example, group by group:

1. The first block puts both of our application servers into an ‘app’ group.
2. The second block puts the database server into a ‘db’ group.
3. The third block tells ansible to define a new group ‘multi’, with child groups,

and we add in both the ‘app’ and ‘db’ groups.
4. The fourth block adds variables to the multi group that will be applied to all

servers within multi and all its children.

Chapter 3 - Ad-Hoc Commands 22

We’ll dive deeper into variables, group definitions, group hierarchy, and
other Inventory file topics later. For now, we just want Ansible to know
about our servers, so we can start managing them quickly.

Save the updated inventory file, and then check to see if Vagrant has finished building
the three VMs. Once Vagrant has finished, we can start managing the servers with
Ansible.

Your first ad-hoc commands

One of the first things you need to do is to check in on your servers. Let’s make sure
they’re configured correctly, have the right time and date (we don’t want any time
synchronization-related errors in our application!), and have enough free resources
to run an application.

Many of the things we’re manually checking here should also be monitored
by an automated system on production servers; the best way to prevent
disaster is to know when it could be coming, and to fix the problem before
it happens. You should use tools like Munin, Nagios, Cacti, Hyperic, etc.
to ensure you have a good idea of your servers’ past and present resource
usage! If you’re running a website or web application available over the
Internet, you should probably also use an external monitoring solution like
Pingdom or Server Check.in.

Discover Ansible’s parallel nature

First, I want to make sure Vagrant configured the VMs with the right hostnames. Use
ansible with the -a argument ‘hostname’ to run hostname against all the servers:

$ ansible multi -a "hostname"

Ansible will run this command against all three of the servers, and return the results
(if Ansible can’t reach one server, it will show an error for that server, but continue
running the command on the others).

Chapter 3 - Ad-Hoc Commands 23

If Ansible reports No hosts matched or returns some other inventory-
related error, try setting the ANSIBLE_INVENTORY environment variable ex-
plicitly: export ANSIBLE_INVENTORY=/etc/ansible/hosts. Generally Ansi-
ble will read the file in /etc/ansible/hosts automatically, but depending
on how you installed Ansible, you may need to explicitly set ANSIBLE_-
INVENTORY for the ansible command to work correctly.

If you get an error like The authenticity of host '192.168.60.5' can't

be established., this is because SSH has a security feature which requires
you to confirm the server’s ‘host key’ the first time you connect. You can
type yes on the command line (in this case multiple times) to dismiss
the warning and accept the hostkey, or you can also set the environment
variable ANSIBLE_HOST_KEY_CHECKING=False. The behavior for host key
acceptance can also be configured in your SSH configuration file.

You may have noticed that the command was not run on each server in the order
you’d expect. Go ahead and run the command a few more times, and see the order:

First run results: # Second run results:

192.168.60.5 | success | rc=0 >> 192.168.60.6 | success | rc=0 >>

orc-app2.test orc-db.test

192.168.60.6 | success | rc=0 >> 192.168.60.5 | success | rc=0 >>

orc-db.test orc-app2.test

192.168.60.4 | success | rc=0 >> 192.168.60.4 | success | rc=0 >>

orc-app1.test orc-app1.test

By default, Ansible will run your commands in parallel, using multiple process forks,
so the command will complete more quickly. If you’re managing a few servers, this
may not be much quicker than running the command serially, on one server after
the other, but even managing 5-10 servers, you’ll notice a dramatic speedup if you
use Ansible’s parallelism (which is enabled by default).

Run the same command again, but this time, add the argument -f 1 to tell Ansible
to use only one fork (basically, to perform the command on each server in sequence):

Chapter 3 - Ad-Hoc Commands 24

$ ansible multi -a "hostname" -f 1

192.168.60.4 | success | rc=0 >>

orc-app1.test

192.168.60.5 | success | rc=0 >>

orc-app2.test

192.168.60.6 | success | rc=0 >>

orc-db.test

Run the same command over and over again, and it will always return results in
the same order. It’s fairly rare that you will ever need to do this, but it’s much more
frequent that you’ll want to increase the value (like -f 10, or -f 25… depending on
how much your system and network connection can handle) to speed up the process
of running commands on tens or hundreds of servers.

Most people place the target of the action (multi) before the command/ac-
tion itself (“on X servers, run Y command”), but if your brain works in the
reverse order (“run Y command on X servers”), you could put the target
after the other arguments (ansible -a "hostname" multi)—the commands
are equivalent.

Learning about your environment

Now that we trust Vagrant’s ability to set hostnames correctly, let’s make sure
everything else is in order.

First, let’s make sure the servers have disk space available for our application:

Chapter 3 - Ad-Hoc Commands 25

$ ansible multi -a "df -h"

192.168.60.6 | success | rc=0 >>

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/centos-root 19G 1014M 18G 6% /

devtmpfs 111M 0 111M 0% /dev

tmpfs 120M 0 120M 0% /dev/shm

tmpfs 120M 4.3M 115M 4% /run

tmpfs 120M 0 120M 0% /sys/fs/cgroup

/dev/sda1 497M 124M 374M 25% /boot

none 233G 217G 17G 94% /vagrant

192.168.60.5 | success | rc=0 >>

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/centos-root 19G 1014M 18G 6% /

devtmpfs 111M 0 111M 0% /dev

tmpfs 120M 0 120M 0% /dev/shm

tmpfs 120M 4.3M 115M 4% /run

tmpfs 120M 0 120M 0% /sys/fs/cgroup

/dev/sda1 497M 124M 374M 25% /boot

none 233G 217G 17G 94% /vagrant

192.168.60.4 | success | rc=0 >>

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/centos-root 19G 1014M 18G 6% /

devtmpfs 111M 0 111M 0% /dev

tmpfs 120M 0 120M 0% /dev/shm

tmpfs 120M 4.3M 115M 4% /run

tmpfs 120M 0 120M 0% /sys/fs/cgroup

/dev/sda1 497M 124M 374M 25% /boot

none 233G 217G 17G 94% /vagrant

It looks like we have plenty of room for now; our application is pretty lightweight.

Second, let’s also make sure there is enough memory on our servers:

Chapter 3 - Ad-Hoc Commands 26

$ ansible multi -a "free -m"

192.168.60.4 | success | rc=0 >>

total used free shared buffers cached

Mem: 238 187 50 4 1 69

-/+ buffers/cache: 116 121

Swap: 1055 0 1055

192.168.60.6 | success | rc=0 >>

total used free shared buffers cached

Mem: 238 190 47 4 1 72

-/+ buffers/cache: 116 121

Swap: 1055 0 1055

192.168.60.5 | success | rc=0 >>

total used free shared buffers cached

Mem: 238 186 52 4 1 67

-/+ buffers/cache: 116 121

Swap: 1055 0 1055

Memory is pretty tight, but since we’re running three VMs on our localhost, we need
to be a little conservative.

Third, let’s make sure the date and time on each server is in sync:

$ ansible multi -a "date"

192.168.60.5 | success | rc=0 >>

Sat Feb 1 20:23:08 UTC 2021

192.168.60.4 | success | rc=0 >>

Sat Feb 1 20:23:08 UTC 2021

192.168.60.6 | success | rc=0 >>

Sat Feb 1 20:23:08 UTC 2021

Most applications are written with slight tolerances for per-server time jitter, but it’s
always a good idea to make sure the times on the different servers are as close as

Chapter 3 - Ad-Hoc Commands 27

possible, and the simplest way to do that is to use the Network Time Protocol, which
is easy enough to configure. We’ll do that next, using Ansible’s modules to make the
process painless.

To get an exhaustive list of all the environment details (‘facts’, in Ansible’s
lingo) for a particular server (or for a group of servers), use the command
ansible [host-or-group] -m setup. This will provide a list of every
minute bit of detail about the server (including file systems, memory, OS,
network interfaces… you name it, it’s in the list).

Make changes using Ansible modules

Wewant to install the NTP daemon on the server to keep the time in sync. Instead of
running the command yum install -y ntp on each of the servers, we’ll use ansible’s
yummodule to do the same (just like we did in the playbook example earlier, but this
time using an ad-hoc command).

$ ansible multi -b -m yum -a "name=ntp state=present"

You should see three simple ‘success’ messages, reporting no change, since NTP was
already installed on the three machines; this confirms everything is in working order.

The -b option (alias for --become) tells Ansible to run the command with
become (basically, run commands with ‘sudo’. This will work fine with our
Vagrant VMs, but if you’re running commands against a server where your
user account requires a password for privilege escalation, you should also
pass in -K (alias for --ask-become-pass), so you can enter your password
when Ansible needs it.

Now we’ll make sure the NTP daemon is started and set to run on boot. We could
use two separate commands, service ntpd start and chkconfig ntpd on, but we’ll
use Ansible’s service module instead.

Chapter 3 - Ad-Hoc Commands 28

$ ansible multi -b -m service -a "name=ntpd state=started \

enabled=yes"

All three servers should show a success message like:

"changed": true,

"enabled": true,

"name": "ntpd",

"state": "started"

If you run the exact same command again, everything will be the same, but Ansible
will report that nothing has changed, so the "changed" value becomes false.

When you use Ansible’s modules instead of plain shell commands, you can use the
powers of abstraction and idempotency offered by Ansible. Even if you’re running
shell commands, you could wrap them in Ansible’s shell or command modules (like
ansible multi -m shell -a "date"), but for these kind of commands, there’s usually
no need to use an Ansible module when running them ad-hoc.

The last thing we should do is check to make sure our servers are synced closely to
the official time on the NTP server:

$ ansible multi -b -a "service ntpd stop"

$ ansible multi -b -a "ntpdate -q 0.rhel.pool.ntp.org"

$ ansible multi -b -a "service ntpd start"

For the ntpdate command to work, the ntpd service has to be stopped, so we stop
the service, run the command to check our jitter, then start the service again.

In my test, I was within three one-hundredths of a second on all three servers—close
enough for my purposes.

Configure groups of servers, or individual
servers

Now that we’ve been able to get all our servers to a solid baseline (e.g. all of them
at least have the correct time), we need to set up the application servers, then the
database server.

Chapter 3 - Ad-Hoc Commands 29

Since we set up two separate groups in our inventory file, app and db, we can target
commands to just the servers in those groups.

Configure the Application servers

Our hypothetical web application uses Django, so we need to make sure Django and
its dependencies are installed. Django is not in the official CentOS yum repository,
but we can install it using Python’s easy_install (which, conveniently, has an Ansible
module).

$ ansible app -b -m yum -a "name=MySQL-python state=present"

$ ansible app -b -m yum -a "name=python-setuptools state=present"

$ ansible app -b -m easy_install -a "name=django<2 state=present"

You could also install django using pip, which can be installed via easy_install

(since Ansible’s easy_install module doesn’t allow you to uninstall packages like
pip does), but for simplicity’s sake, we’ve installed it with easy_install.

Check to make sure Django is installed and working correctly.

$ ansible app -a "python -c 'import django; \

print django.get_version()'"

192.168.60.5 | SUCCESS | rc=0 >>

1.11.12

192.168.60.4 | SUCCESS | rc=0 >>

1.11.12

Things look like they’re working correctly on our app servers. We can now move on
to our database server.

Almost all of the configuration we’ve done in this chapter would be much
better off in an Ansible playbook (which will be explored in greater depth
throughout the rest of this book). This chapter demonstrates how easy it
is to manage multiple servers—for whatever purpose—using Ansible. Even
if you set up and configure servers by hand using shell commands, using
Ansible will save you a ton of time and help you do everything in the most
secure and efficient manner possible.

Chapter 3 - Ad-Hoc Commands 30

Configure the Database servers

We configured the application servers using the app group defined in Ansible’s main
inventory, and we can configure the database server (currently the only server in the
db group) using the similarly-defined db group.

Let’s install MariaDB, start it, and configure the server’s firewall to allow access on
MariaDB’s default port, 3306.

$ ansible db -b -m yum -a "name=mariadb-server state=present"

$ ansible db -b -m service -a "name=mariadb state=started \

enabled=yes"

$ ansible db -b -a "iptables -F"

$ ansible db -b -a "iptables -A INPUT -s 192.168.60.0/24 -p tcp \

-m tcp --dport 3306 -j ACCEPT"

If you try connecting to the database from the app servers (or your host machine) at
this point, you won’t be able to connect, since MariaDB still needs to be set up.
Typically, you’d do this by logging into the server and running mysql_secure_-

installation. Luckily, though, Ansible can control a MariaDB server with its
assorted mysql_* modules. For now, we need to allow MySQL access for one user
from our app servers. The MySQL modules require the MySQL-python module to be
present on the managed server.

Why MariaDB and not MySQL? RHEL 7 and CentOS 7 have MariaDB
as the default supported MySQL-compatible database server. Some of the
tooling around MariaDB still uses the old ‘MySQL*’ naming syntax, but if
you’re used to MySQL, things work similarly with MariaDB.

$ ansible db -b -m yum -a "name=MySQL-python state=present"

$ ansible db -b -m mysql_user -a "name=django host=% password=12345 \

priv=*.*:ALL state=present"

At this point, you should be able to create or deploy a Django application on the app
servers, then point it at the database server with the username django and password
12345.

Chapter 3 - Ad-Hoc Commands 31

The MySQL configuration used here is for example/development purposes
only! There are a few other things you should do to secure a production
MySQL server, including removing the test database, adding a password
for the root user account, restricting the IP addresses allowed to access port
3306 more closely, and some other minor cleanups. Some of these things
will be covered later in this book, but, as always, you are responsible for
securing your servers—make sure you’re doing it correctly!

Make changes to just one server

Congratulations! You now have a small web application environment running
Django and MySQL. It’s not much, and there’s not even a load balancer in front
of the app servers to spread out the requests; but we’ve configured everything pretty
quickly, and without ever having to log into a server. What’s even more impressive
is that you could run any of the ansible commands again (besides a couple of the
simple shell commands), and they wouldn’t change anything—they would return
"changed": false, giving you peace of mind that the original configuration is intact.

Now that your local infrastructure has been running a while, you notice (hypotheti-
cally, of course) that the logs indicate one of the two app servers’ time has gotten way
out of sync with the others, likely because the NTP daemon has crashed or somehow
been stopped. Quickly, you enter the following command to check the status of ntpd:

$ ansible app -b -a "service ntpd status"

Then, you restart the service on the affected app server:

$ ansible app -b -a "service ntpd restart" --limit "192.168.60.4"

In this command, we used the --limit argument to limit the command to a specific
host in the specified group. --limit will match either an exact string or a regular
expression (prefixed with ∼). The above command could be stated more simply if
you want to apply the command to only the .4 server (assuming you know there
are no other servers with the an IP address ending in .4), the following would work
exactly the same:

Chapter 3 - Ad-Hoc Commands 32

Limit hosts with a simple pattern (asterisk is a wildcard).

$ ansible app -b -a "service ntpd restart" --limit "*.4"

Limit hosts with a regular expression (prefix with a tilde).

$ ansible app -b -a "service ntpd restart" --limit ~".*\.4"

In these examples, we’ve been using IP addresses instead of hostnames, but in many
real-world scenarios, you’ll probably be using hostnames like nyc-dev-1.example.com;
being able to match on regular expressions is often helpful.

Try to reserve the --limit option for running commands on single servers.
If you often find yourself running commands on the same set of servers
using --limit, consider instead adding them to a group in your inventory
file. That way you can enter ansible [my-new-group-name] [command],
and save yourself a few keystrokes.

Manage users and groups

One of the most common uses for Ansible’s ad-hoc commands in my day-to-day
usage is user and group management. I don’t know how many times I’ve had to re-
read the man pages or do a Google search just to remember which arguments I need
to create a user with or without a home folder, add the user to certain groups, etc.

Ansible’s user and group modules make things pretty simple and standard across
any Linux flavor.

First, add an admin group on the app servers for the server administrators:

$ ansible app -b -m group -a "name=admin state=present"

The groupmodule is pretty simple; you can remove a group by setting state=absent,
set a group id with gid=[gid], and indicate that the group is a system group with
system=yes.

Now add the user johndoe to the app servers with the group I just created and
give him a home folder in /home/johndoe (the default location for most Linux
distributions). Simple:

Chapter 3 - Ad-Hoc Commands 33

$ ansible app -b -m user -a "name=johndoe group=admin createhome=yes"

If you want to automatically create an SSH key for the new user (if one doesn’t
already exist), you can run the same command with the additional parameter
generate_ssh_key=yes. You can also set:

• The UID of the user with uid=[uid]

• The user’s shell with shell=[shell]

• The users’s password with password=[encrypted-password]

What if you want to delete the account?

$ ansible app -b -m user -a "name=johndoe state=absent remove=yes"

You can do just about anything you could do with useradd, userdel, and usermod

using Ansible’s user module, except you can do it more easily. The official docu-
mentation of the User module⁴⁷ explains all the possibilities in great detail.

Manage packages

We’ve already used the yummodule on our example CentOS infrastructure to ensure
certain packages are installed. Ansible has a variety of packagemanagement modules
for any flavor of Linux, but there’s also a generic package module that can be used
for easier cross-platform Ansible usage.

If you want to install a generic package like git on any Debian, RHEL, Fedora,
Ubuntu, CentOS, FreeBSD, etc. system, you can use the command:

$ ansible app -b -m package -a "name=git state=present"

packageworks much the same as yum, apt, and other package management modules.
Later in the book we’ll explore ways of dealing with multi-platform package
management where package names differ between OSes.

⁴⁷http://docs.ansible.com/user_module.html

http://docs.ansible.com/user_module.html
http://docs.ansible.com/user_module.html
http://docs.ansible.com/user_module.html

Chapter 3 - Ad-Hoc Commands 34

Manage files and directories

Another common use for ad-hoc commands is remote file management. Ansible
makes it easy to copy files from your host to remote servers, create directories,
manage file and directory permissions and ownership, and delete files or directories.

Get information about a file

If you need to check a file’s permissions, MD5, or owner, use Ansible’s statmodule:

$ ansible multi -m stat -a "path=/etc/environment"

This gives the same information you’d get when running the stat command, but
passes back information in JSON, which can be parsed a little more easily (or, later,
used in playbooks to conditionally do or not do certain tasks).

Copy a file to the servers

You probably use scp and/or rsync to copy files and directories to remote servers,
and while Ansible has more advanced file copy modules like rsync, most file copy
operations can be completed with Ansible’s copy module:

$ ansible multi -m copy -a "src=/etc/hosts dest=/tmp/hosts"

The src can be a file or a directory. If you include a trailing slash, only the contents of
the directory will be copied into the dest. If you omit the trailing slash, the contents
and the directory itself will be copied into the dest.

The copy module is perfect for single-file copies, and works very well with small
directories. When you want to copy hundreds of files, especially in very deeply-
nested directory structures, you should consider either copying then expanding an
archive of the files with Ansible’s unarchivemodule, or using Ansible’s synchronize
or rsync modules.

Chapter 3 - Ad-Hoc Commands 35

Retrieve a file from the servers

The fetch module works almost exactly the same as the copy module, except in
reverse. The major difference is that files will be copied down to the local dest in a
directory structure that matches the host from which you copied them. For example,
use the following command to grab the hosts file from the servers:

$ ansible multi -b -m fetch -a "src=/etc/hosts dest=/tmp"

Fetch will, by default, put the /etc/hosts file from each server into a folder in
the destination with the name of the host (in our case, the three IP addresses),
then in the location defined by src. So, the db server’s hosts file will end up in
/tmp/192.168.60.6/etc/hosts.

You can add the parameter flat=yes, and set the dest to dest=/tmp/ (add a trailing
slash), to make Ansible fetch the files directly into the /tmp directory. However,
filenames must be unique for this to work, so it’s not as useful when copying down
files from multiple hosts. Only use flat=yes if you’re copying files from a single
host.

Create directories and files

You can use the file module to create files and directories (like touch), manage
permissions and ownership on files and directories, modify SELinux properties, and
create symlinks.

Here’s how to create a directory:

$ ansible multi -m file -a "dest=/tmp/test mode=644 state=directory"

Here’s how to create a symlink (set state=link):

$ ansible multi -m file -a "src=/src/file dest=/dest/symlink \

state=link"

The src is the symlink’s target file, and the dest is the path where the symlink itself
should be.

Chapter 3 - Ad-Hoc Commands 36

Delete directories and files

You can set the state to absent to delete a file, directory, or symlink.

$ ansible multi -m file -a "dest=/tmp/test state=absent"

There are many simple ways to manage files remotely using Ansible. We’ve briefly
covered the copy and file modules here, but be sure to read the documentation for
the other file-management modules like lineinfile, ini_file, and unarchive. This
book will cover these additional modules in depth in later chapters (when dealing
with playbooks).

Run operations in the background

Some operations take quite a while (minutes or even hours). For example, when you
run yum update or apt-get update && apt-get dist-upgrade, it could be a few
minutes before all the packages on your servers are updated.

In these situations, you can tell Ansible to run the commands asynchronously, and
poll the servers to see when the commands finish. When you’re only managing one
server, this is not really helpful, but if you have many servers, Ansible starts the
command very quickly on all your servers (especially if you set a higher --forks
value), then polls the servers for status until they’re all up to date.

To run a command in the background, you set the following options:

• -B <seconds>: the maximum amount of time (in seconds) to let the job run.
• -P <seconds>: the amount of time (in seconds) to wait between polling the
servers for an updated job status.

Note: As of Ansible 2.0, asynchronous polling on the command line (via
the -P flag) no longer displays output in real time. Please follow the
progress of this bug’s resolution in the issue v2 async events are not
triggered⁴⁸. For now, you can still run jobs in the background and get job
status information separately, but you can’t see the polling status real-
time.

⁴⁸https://github.com/ansible/ansible/issues/14681

https://github.com/ansible/ansible/issues/14681
https://github.com/ansible/ansible/issues/14681
https://github.com/ansible/ansible/issues/14681

Chapter 3 - Ad-Hoc Commands 37

Update servers asynchronously with asynchronous
jobs

Let’s run yum -y update on all our servers to get them up to date. If you set -P
0, Ansible fires off the command on the servers, then prints the background job
information to the screen and exits:

$ ansible multi -b -B 3600 -P 0 -a "yum -y update"

192.168.60.4 | CHANGED => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/bin/python"

},

"ansible_job_id": "333866395772.18507",

"changed": true,

"finished": 0,

"results_file": "/root/.ansible_async/333866395772.18507",

"started": 1

}

... [other hosts] ...

While the background task is running, you can check on the status elsewhere using
Ansible’s async_status module, as long as you have the ansible_job_id value to
pass in as jid:

$ ansible multi -b -m async_status -a "jid=169825235950.3572"

192.168.60.6 | CHANGED => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/bin/python"

},

"ansible_job_id": "761320869373.18496",

"changed": true,

"cmd": [

"yum",

"-y",

Chapter 3 - Ad-Hoc Commands 38

"update"

],

"delta": "0:00:09.017121",

"end": "2019-08-23 02:32:58.727209",

"finished": 1,

"rc": 0,

"start": "2019-08-23 02:32:49.710088",

...

"stdout_lines": [

"Loaded plugins: fastestmirror",

"Determining fastest mirrors",

" * base: mirror.genesisadaptive.com",

" * extras: mirror.mobap.edu",

" * updates: mirror.mobap.edu",

"No packages marked for update"

]

}

For tasks you don’t track remotely, it’s usually a good idea to log the
progress of the task somewhere, and also send some sort of alert on
failure—especially, for example, when running backgrounded tasks that
perform backup operations, or when running business-critical database
maintenance tasks.

You can also run tasks in Ansible playbooks in the background, asynchronously,
by defining an async and poll parameter on the play. We’ll discuss playbook task
backgrounding in later chapters.

Check log files

Sometimes, when debugging application errors, or diagnosing outages or other
problems, you need to check server log files. Any common log file operation (like
using tail, cat, grep, etc.) works through the ansible command, with a few caveats:

Chapter 3 - Ad-Hoc Commands 39

1. Operations that continuously monitor a file, like tail -f, won’t work via
Ansible, because Ansible only displays output after the operation is complete,
and you won’t be able to send the Control-C command to stop following the
file. Someday, the async module might have this feature, but for now, it’s not
possible.

2. It’s not a good idea to run a command that returns a huge amount of data via
stdout via Ansible. If you’re going to cat a file larger than a few KB, you should
probably log into the server(s) individually.

3. If you redirect and filter output from a command run via Ansible, you need
to use the shell module instead of Ansible’s default command module (add -m

shell to your commands).

As a simple example, let’s view the last few lines of the messages log file on each of
our servers:

$ ansible multi -b -a "tail /var/log/messages"

As stated in the caveats, if you want to filter the messages log with something like
grep, you can’t use Ansible’s default command module, but instead, shell:

$ ansible multi -b -m shell -a "tail /var/log/messages | \

grep ansible-command | wc -l"

192.168.60.5 | success | rc=0 >>

12

192.168.60.4 | success | rc=0 >>

12

192.168.60.6 | success | rc=0 >>

14

This command shows how many ansible commands have been run on each server
(the numbers you get may be different).

Chapter 3 - Ad-Hoc Commands 40

Manage cron jobs

Periodic tasks run via cron are managed by a system’s crontab. Normally, to change
cron job settings on a server, you would log into the server, use crontab -e under
the account where the cron jobs reside, and type in an entry with the interval and
job.

Ansible makes managing cron jobs easy with its cron module. If you want to run a
shell script on all the servers every day at 4 a.m., add the cron job with:

$ ansible multi -b -m cron -a "name='daily-cron-all-servers' \

hour=4 job='/path/to/daily-script.sh'"

Ansible will assume * for all values you don’t specify (valid values are day, hour,
minute, month, and weekday). You could also specify special time values like reboot,
yearly, or monthly using special_time=[value]. You can also set the user the job
will run under via user=[user], and create a backup of the current crontab by passing
backup=yes.

What if we want to remove the cron job? Simple enough, use the same cron

command, and pass the name of the cron job you want to delete, and state=absent:

$ ansible multi -b -m cron -a "name='daily-cron-all-servers' \

state=absent"

You can also use Ansible to manage custom crontab files; use the same syntax as you
used earlier, but specify the location to the cron file with: cron_file=cron_file_name
(where cron_file_name is a cron file located in /etc/cron.d).

Ansible denotes Ansible-managed crontab entries by adding a comment
on the line above the entry like #Ansible: daily-cron-all-servers. It’s
best to leave things be in the crontab itself, and always manage entries via
ad-hoc commands or playbooks using Ansible’s cron module.

Chapter 3 - Ad-Hoc Commands 41

Deploy a version-controlled application

For simple application deployments, where you may need to update a git checkout,
or copy a new bit of code to a group of servers, then run a command to finish the
deployment, Ansible’s ad-hoc mode can help. For more complicated deployments,
use Ansible playbooks and rolling update features (which will be discussed in later
chapters) to ensure successful deployments with zero downtime.

In the example below, I’ll assume we’re running a simple application on one
or two servers, in the directory /opt/myapp. This directory is a git repository
cloned from a central server or a service like GitHub, and application deploy-
ments and updates are done by updating the clone, then running a shell script at
/opt/myapp/scripts/update.sh.

First, update the git checkout to the application’s new version branch, 1.2.4, on all
the app servers:

$ ansible app -b -m git -a "repo=git://example.com/path/to/repo.git \

dest=/opt/myapp update=yes version=1.2.4"

Ansible’s git module lets you specify a branch, tag, or even a specific commit with the
version parameter (in this case, we chose to checkout tag 1.2.4, but if you run the
command again with a branch name, like prod, Ansible will happily do that instead).
To force Ansible to update the checked-out copy, we passed in update=yes. The repo
and dest options should be self-explanatory.

If you get a message saying “Failed to find required executable git”, you
will need to install Git on the server. To do so, run the ad-hoc command
ansible app -b -m package -a "name=git state=present".

If you get a message saying the Git server has an “unknown hostkey”, add
the option accept_hostkey=yes to the command, or add the hostkey to your
server’s known_hosts file before running this command.

Then, run the application’s update.sh shell script:

Chapter 3 - Ad-Hoc Commands 42

$ ansible app -b -a "/opt/myapp/update.sh"

Ad-hoc commands are fine for the simple deployments (like our example above), but
you should use Ansible’s more powerful and flexible application deployment features
described later in this book if you have complex application or infrastructure needs.
See especially the ‘Rolling Updates’ section later in this book.

Ansible’s SSH connection history

One of Ansible’s greatest features is its ability to function without running any extra
applications or daemons on the servers it manages. Instead of using a proprietary
protocol to communicate with the servers, Ansible uses the standard and secure SSH
connection that is commonly used for basic administration on almost every Linux
server running today.

Since a stable, fast, and secure SSH connection is the heart of Ansible’s communica-
tion abilities, Ansible’s implementation of SSH has continually improved throughout
the past few years—and is still improving today.

One thing that is universal to all of Ansible’s SSH connection methods is that Ansible
uses the connection to transfer one or a few files defining a play or command to the
remote server, then runs the play/command, then deletes the transferred file(s), and
reports back the results. A fast, stable, and secure SSH connection is of paramount
importance to Ansible.

Paramiko

In the beginning, Ansible used paramiko—an open source SSH2 implementation for
Python—exclusively. However, as a single library for a single language (Python),
development of paramiko doesn’t keep pace with development of OpenSSH (the
standard implementation of SSH used almost everywhere), and its performance and
security is slightly worse than OpenSSH.

Ansible continues to support the use of paramiko, and even chooses it as the default
for systems (like RHEL 6) which don’t support ControlPersist—an option present
only in OpenSSH 5.6 or newer. (ControlPersist allows SSH connections to persist so

Chapter 3 - Ad-Hoc Commands 43

frequent commands run over SSH don’t have to go through the initial handshake
over and over again until the ControlPersist timeout set in the server’s SSH config
is reached.)

OpenSSH (default)

In Ansible 1.3, Ansible defaulted to using native OpenSSH connections to connect
to servers supporting ControlPersist. Ansible had this ability since version 0.5, but
didn’t default to it until 1.3.

Most local SSH configuration parameters (like hosts, key files, etc.) are respected, but
if you need to connect via a port other than port 22 (the default SSH port), you should
specify the port in an inventory file (ansible_ssh_port option) or when running
ansible commands.

OpenSSH is faster, and a little more reliable, than paramiko, but there are ways to
make Ansible faster still.

Faster OpenSSH with Pipelining

Modern versions of Ansible allow you to improve on the performance of Ansible’s
default OpenSSH implementation.

Instead of copying files, running them on the remote server, then removing them,
the ‘pipelining’ method of OpenSSH transfer will send and execute commands for
most Ansible modules directly over the SSH connection.

This method of connection can be enabled by adding pipelining=True under the
[ssh_connection] section of the Ansible configuration file (ansible.cfg, which will
be covered in more detail later).

The pipelining=True configuration option won’t help much unless
you have removed or commented the Defaults requiretty option in
/etc/sudoers. This is commented out in the default configuration for most
OSes, but you might want to double-check this setting to make sure you’re
getting the fastest connection possible!

Chapter 3 - Ad-Hoc Commands 44

If you’re running a recent version of Mac OS X, Ubuntu, Windows with
Cygwin, or most other OS for the host from which you run ansible and
ansible-playbook, you should be running OpenSSH version 5.6 or later,
which works perfectly with the ControlPersist setting used with all of
Ansible’s SSH connections settings.

If the host onwhich Ansible runs has RHEL or CentOS, however, youmight
need to update your version of OpenSSH so it supports the faster/persistent
connection method. Any OpenSSH version 5.6 or greater should work.
To install a later version, either compile from source, or use a different
repository (like CentALT⁴⁹ and yum update openssh.

Summary

In this chapter, you learned how to build a multi-server infrastructure for testing on
your local workstation using Vagrant, and you configured, monitored, and managed
the infrastructure without ever logging in to an individual server. You also learned
how Ansible connects to remote servers, and how to use the ansible command to
perform tasks on many servers quickly in parallel, or one by one.

By now, you should be getting familiar with the basics of Ansible, and you should
be able to start managing your own infrastructure more efficiently.

/ It's easier to seek forgiveness than \

\ ask for permission. (Proverb) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

⁴⁹http://mirror.neu.edu.cn/CentALT/readme.txt

http://mirror.neu.edu.cn/CentALT/readme.txt
http://mirror.neu.edu.cn/CentALT/readme.txt

Chapter 4 - Ansible Playbooks
Power plays

Like many other configuration management solutions, Ansible uses a metaphor to
describe its configuration files. They are called ‘playbooks’, and they list sets of tasks
(‘plays’ in Ansible parlance) that will be run against a particular server or set of
servers. In American football, a team follows a set of pre-written playbooks as the
basis for a bunch of plays they execute to try to win a game. In Ansible, you write
playbooks (a list of instructions describing the steps to bring your server to a certain
configuration state) that are then played on your servers.

Playbooks are written in YAML⁵⁰, a simple human-readable syntax popular for
defining configuration. Playbooks may be included within other playbooks, and
certain metadata and options cause different plays or playbooks to be run in different
scenarios on different servers.

Ad-hoc commands alone make Ansible a powerful tool; playbooks turn Ansible into
a top-notch server provisioning and configuration management tool.

What attracts most DevOps personnel to Ansible is the fact that it is easy to convert
shell scripts (or one-off shell commands) directly into Ansible plays. Consider the
following script, which installs Apache on a RHEL/CentOS server:

Shell Script

⁵⁰https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

Chapter 4 - Ansible Playbooks 46

1 # Install Apache.

2 yum install --quiet -y httpd httpd-devel

3 # Copy configuration files.

4 cp httpd.conf /etc/httpd/conf/httpd.conf

5 cp httpd-vhosts.conf /etc/httpd/conf/httpd-vhosts.conf

6 # Start Apache and configure it to run at boot.

7 service httpd start

8 chkconfig httpd on

To run the shell script (in this case, a file named shell-script.sh with the contents
as above), you would call it directly from the command line:

(From the same directory in which the shell script resides).

$./shell-script.sh

Ansible Playbook

1 ---

2 - hosts: all

3

4 tasks:

5 - name: Install Apache.

6 command: yum install --quiet -y httpd httpd-devel

7 - name: Copy configuration files.

8 command: >

9 cp httpd.conf /etc/httpd/conf/httpd.conf

10 - command: >

11 cp httpd-vhosts.conf /etc/httpd/conf/httpd-vhosts.conf

12 - name: Start Apache and configure it to run at boot.

13 command: service httpd start

14 - command: chkconfig httpd on

To run the Ansible Playbook (in this case, a file named playbook.yml with the
contents as above), you would call it using the ansible-playbook command:

Chapter 4 - Ansible Playbooks 47

(From the same directory in which the playbook resides).

$ ansible-playbook playbook.yml

Ansible is powerful in that you quickly transition to using playbooks if you know
how to write standard shell commands—the same commands you’ve been using for
years—and then as you get time, rebuild your configuration to take advantage of
Ansible’s helpful features.

In the above playbook, we use Ansible’s command module to run standard shell
commands. We’re also giving each task a ‘name’, so when we run the playbook, the
task has human-readable output on the screen or in the logs. The command module
has some other tricks up its sleeve (which we’ll see later), but for now, be assured
shell scripts are translated directly into Ansible playbooks without much hassle.

The greater-than sign (>) immediately following the command: module
directive tells YAML “automatically quote the next set of indented lines
as one long string, with each line separated by a space”. It helps improve
task readability in some cases. There are different ways of describing
configuration using valid YAML syntax, and these methods are discussed
in-depth in the YAML Conventions and Best Practices section in Appendix
B.

This book uses three different task-formatting techniques: For tasks which
require one or two simple parameters, Ansible’s shorthand syntax (e.g. yum:
name=apache2 state=present) is used. For most uses of command or shell,
where longer commands are entered, the > technique mentioned above is
used. For tasks which require many parameters, YAML object notation
is used—placing each key and variable on its own line. This assists with
readability and allows for version control systems to easily distinguish
changes line-by-line.

The above playbook will perform exactly like the shell script, but you can improve
things greatly by using some of Ansible’s built-inmodules to handle the heavy lifting:

Revised Ansible Playbook - Now with idempotence!

Chapter 4 - Ansible Playbooks 48

1 ---

2 - hosts: all

3 become: yes

4

5 tasks:

6 - name: Install Apache.

7 yum:

8 name:

9 - httpd

10 - httpd-devel

11 state: present

12 - name: Copy configuration files.

13 copy:

14 src: "{{ item.src }}"

15 dest: "{{ item.dest }}"

16 owner: root

17 group: root

18 mode: 0644

19 with_items:

20 - src: httpd.conf

21 dest: /etc/httpd/conf/httpd.conf

22 - src: httpd-vhosts.conf

23 dest: /etc/httpd/conf/httpd-vhosts.conf

24 - name: Make sure Apache is started now and at boot.

25 service: name=httpd state=started enabled=yes

Now we’re getting somewhere. Let me walk you through this simple playbook:

1. The first line, ---, is how we mark this document as using YAML syntax (like
using <html> at the top of an HTML document, or <?php at the top of a block
of PHP code).

2. The second line, - hosts: all defines the first (and in this case, only) play, and
tells Ansible to run the play on all hosts that it knows about.

3. The third line, become: yes tells Ansible to run all the commands through sudo,
so the commands will be run as the root user.

Chapter 4 - Ansible Playbooks 49

4. The fifth line, tasks:, tells Ansible that what follows is a list of tasks to run as
part of this playbook.

5. The first task begins with name: Install Apache.. name is not a module that
does something to your server; rather, it’s a way of giving a human-readable
description to the task that follows. Seeing “Install Apache” is more relevant
than seeing “yum name=httpd state=present”… but if you drop the name line
completely, that won’t cause any problem.

• We use the yum module to install Apache. Instead of the command yum -y

install httpd httpd-devel, we can describe to Ansible exactly what we
want. Ansible will take the list of packages we provide. We tell yum to
make sure the packages are installed with state: present, but we could
also use state: latest to ensure the latest version is installed, or state:
absent to make sure the packages are not installed.

6. The second task again starts with a human-readable name (which could be left
out if you’d like).

• We use the copy module to copy files from a source (on our local work-
station) to a destination (the server being managed). We could also pass
in more variables, like file metadata including ownership and permissions
(owner, group, and mode).

• Ansible allows lists of variables to be passed into tasks using with_items:
Define a list of items and each one will be passed into the play, referenced
using the item variable (e.g. {{ item }}).

• In this case, we are using a list of items containing dicts (dictionaries) used
for variable substitution; to define each element in a list of dicts with each
list item in the format:

- var1: value

var2: value

The list can have as many variables as you want, even deeply-nested dicts.
When you reference the variables in the play, you use a dot to access
the variable within the item, so {{ item.var1 }} would access the first
variable. In our example, item.src accesses the src in each item.

7. The third task also uses a name to describe it in a human-readable format.
• We use the service module to describe the desired state of a particular
service, in this case httpd, Apache’s http daemon.Wewant it to be running,
so we set state=started, and we want it to run at system startup, so we
say enabled=yes (the equivalent of running chkconfig httpd on).

Chapter 4 - Ansible Playbooks 50

With this playbook format, Ansible can keep track of the state of everything on all
our servers. If you run the playbook the first time, it will provision the server by
ensuring Apache is installed and running, and your custom configuration is in place.

Even better, the second time you run it (if the server is in the correct state), it won’t
actually do anything besides tell you nothing has changed. So, with this one short
playbook, you’re able to provision and ensure the proper configuration for an Apache
web server. Additionally, running the playbook with the --check option (see the next
section below) verifies the configuration matches what’s defined in the playbook,
without actually running the tasks on the server.

If you ever want to update your configuration, or install another httpd package, either
update the configuration file locally or add a package to the name list for yum and
run the playbook again. Whether you have one or a thousand servers, all of their
configurations will be updated to match your playbook—and Ansible will tell you if
anything ever changes (you’re not making ad-hoc changes on individual production
servers, are you?).

Running Playbooks with ansible-playbook

If we run the playbooks in the examples above (which are set to run on all hosts),
then the playbook would be run against every host defined in your Ansible inventory
file (see Chapter 1’s basic inventory file example).

Limiting playbooks to particular hosts and groups

You can limit a playbook to specific groups or individual hosts by changing the
hosts: definition. The value can be set to all hosts, a group of hosts defined in your
inventory, multiple groups of hosts (e.g. webservers,dbservers), individual hosts
(e.g. atl.example.com), or a mixture of hosts. You can even do wild card matches,
like *.example.com, to match all subdomains of a top-level domain.

You can also limit the hosts on which the playbook is run via the ansible-playbook
command:

Chapter 4 - Ansible Playbooks 51

$ ansible-playbook playbook.yml --limit webservers

In this case (assuming your inventory file contains a webservers group), even if the
playbook is set to hosts: all, or includes hosts in addition to what’s defined in the
webservers group, it will only be run on the hosts defined in webservers.

You could also limit the playbook to one particular host:

$ ansible-playbook playbook.yml --limit xyz.example.com

If you want to see a list of hosts that would be affected by your playbook before you
actually run it, use --list-hosts:

$ ansible-playbook playbook.yml --list-hosts

Running this should give output like:

playbook: playbook.yml

play #1 (all): host count=4

127.0.0.1

192.168.24.2

foo.example.com

bar.example.com

(Where count is the count of servers defined in your inventory, and following is a
list of all the hosts defined in your inventory).

Setting user and sudo options with ansible-playbook

If no remote_user is defined alongside the hosts in a playbook, Ansible assumes
you’ll connect as the user defined in your inventory file for a particular host, and
then will fall back to your local user account name. You can explicitly define a remote
user to use for remote plays using the --user (-u) option:

Chapter 4 - Ansible Playbooks 52

$ ansible-playbook playbook.yml --user=johndoe

In some situations, you will need to pass along your sudo password to the remote
server to perform commands via sudo. In these situations, you’ll need use the
--ask-become-pass (-K) option. You can also explicitly force all tasks in a playbook
to use sudo with --become (-b). Finally, you can define the sudo user for tasks run
via sudo (the default is root) with the --become-user (-U) option.

For example, the following command will run our example playbook with sudo,
performing the tasks as the sudo user janedoe, and Ansible will prompt you for the
sudo password:

$ ansible-playbook playbook.yml --become --become-user=janedoe \

--ask-become-pass

If you’re not using key-based authentication to connect to your servers (read my
warning about the security implications of doing so in Chapter 1), you can use
--ask-pass.

Other options for ansible-playbook

The ansible-playbook command also allows for some other common options:

• --inventory=PATH (-i PATH): Define a custom inventory file (default is the
default Ansible inventory file, usually located at /etc/ansible/hosts).

• --verbose (-v): Verbose mode (show all output, including output from success-
ful options). You can pass in -vvvv to give every minute detail.

• --extra-vars=VARS (-e VARS): Define variables to be used in the playbook, in
"key=value,key=value" format.

• --forks=NUM (-f NUM): Number for forks (integer). Set this to a number higher
than 5 to increase the number of servers on which Ansible will run tasks
concurrently.

• --connection=TYPE (-c TYPE): The type of connection which will be used (this
defaults to ssh; you might sometimes want to use local to run a playbook on
your local machine, or on a remote server via cron).

Chapter 4 - Ansible Playbooks 53

• --check: Run the playbook in Check Mode (‘Dry Run’); all tasks defined in the
playbook will be checked against all hosts, but none will actually be run.

There are some other options and configuration variables that are important to get
the most out of ansible-playbook, but this should be enough to get you started
running the playbooks in this chapter on your own servers or virtual machines.

The rest of this chapter uses more realistic Ansible playbooks. All the
examples in this chapter are in the Ansible for DevOps GitHub repository⁵¹,
and you can clone that repository to your computer (or browse the
code online) to follow along more easily. The GitHub repository includes
Vagrantfiles with each example, so you can build the servers on your local
host using Vagrant.

Real-world playbook: CentOS Node.js app
server

The first example, while being helpful for someone who might want to post a simple
static web page to a clunky old Apache server, is not a good representation of a
real-world scenario. I’m going to run through more complex playbooks that do
many different things, most of which are actually being used to manage production
infrastructure today.

The first playbook will configure a CentOS server with Node.js, and install and start
a simple Node.js application. The server will have a very simple architecture:

⁵¹https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 4 - Ansible Playbooks 54

Node.js app on CentOS.

To start things off, we need to create a YAML file (playbook.yml in this example) to
contain our playbook. Let’s keep things simple:

1 ---

2 - hosts: all

3 become: yes

4

5 vars:

6 node_apps_location: /usr/local/opt/node

7

8 tasks:

First, define a set of hosts (all) on which this playbook will be run (see the section
above about limiting the playbook to particular groups and hosts), then tell Ansible to
run the playbook with root privileges (since we need to install and configure system
packages).

Next, we can define vars (playbook variables) directly in the playbook; in this case,
we are adding the node_apps_location variable so we can use that to identify where
our Node.js apps will be located.

Finally, the playbook will need to do something on the hosts, so we add a tasks

section which we’ll fill in soon.

Chapter 4 - Ansible Playbooks 55

Add extra repositories

Adding extra package repositories (yum or apt) is one thing many admins will do
before any other work on a server to ensure that certain packages are available, or
are at a later version than the ones in the base installation.

In the shell script below, we want to add both the EPEL and Remi repositories, so
we can get some packages like Node.js or later versions of other necessary software
(these examples presume you’re running RHEL/CentOS 7.x as the root user):

1 # Install EPEL repo.

2 yum install -y epel-release

3

4 # Import Remi GPG key.

5 wget https://rpms.remirepo.net/RPM-GPG-KEY-remi \

6 -O /etc/pki/rpm-gpg/RPM-GPG-KEY-remi

7 rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-remi

8

9 # Install Remi repo.

10 rpm -Uvh --quiet \

11 https://rpms.remirepo.net/enterprise/remi-release-7.rpm

12

13 # Install Node.js (npm plus all its dependencies).

14 yum --enablerepo=epel -y install npm

This shell script uses the rpm command to install the EPEL repository, import the
Remi repository GPG keys, add the Remi repository, and finally install Node.js. It
works okay for a simple deployment (or by hand), but it’s silly to run all these
commands (some of which could take time or stop your script entirely if your
connection is flaky or bad) if the result has already been achieved (namely, two
repositories and their GPG keys have been added).

Chapter 4 - Ansible Playbooks 56

If you wanted to skip a couple steps, you could skip adding the GPG keys,
and just run your commands with --nogpgcheck (or, in Ansible, set the
disable_gpg_check parameter of the yum module to yes), but it’s a good
idea to leave this enabled. GPG stands for GNU Privacy Guard, and it’s
a way that developers and package distributors can sign their packages
(so you know it’s from the original author, and hasn’t been modified
or corrupted). Unless you really know what you’re doing, don’t disable
security settings like GPG key checks.

Ansible makes things a little more robust. Even though the following is slightly more
verbose, it performs the same actions in a more structured way, which is simpler to
understand, and works with variables and other nifty Ansible features we’ll discuss
later:

9 - name: Install EPEL repo.

10 yum: name=epel-release state=present

11

12 - name: Import Remi GPG key.

13 rpm_key:

14 key: "https://rpms.remirepo.net/RPM-GPG-KEY-remi"

15 state: present

16

17 - name: Install Remi repo.

18 yum:

19 name: "https://rpms.remirepo.net/enterprise/remi-release-7.rpm"

20 state: present

21

22 - name: Ensure firewalld is stopped (since this is for testing).

23 service: name=firewalld state=stopped

24

25 - name: Install Node.js and npm.

26 yum: name=npm state=present enablerepo=epel

27

28 - name: Install Forever (to run our Node.js app).

29 npm: name=forever global=yes state=present

Let’s walk through this playbook step-by-step:

Chapter 4 - Ansible Playbooks 57

1. yum installs the EPEL repository (and automatically imports its GPG key).
2. rpm_key is a very simple Ansible module that takes and imports an RPM key

from a URL or file, or the key id of a key that is already present, and ensures
the key is either present or absent (the state parameter). We’re importing one
key, for Remi’s repository.

3. We can install extra yum repositories using the yum module. Just pass in the
URL to the repo .rpm file, and Ansible will take care of the rest.

4. Since this server is being used only for test purposes, we disable the system
firewall so it won’t interfere with testing (using the service module).

5. yum installs Node.js (along with all the required packages for npm, Node’s
package manager) if it’s not present, and allows the EPEL repo to be searched
via the enablerepo parameter (you could also explicitly disable a repository
using disablerepo).

6. Since NPM is now installed, we use Ansible’s npm module to install a Node.js
utility, forever, to launch our app and keep it running. Setting global to yes

tells NPM to install the forever node module in /usr/lib/node_modules/ so it
will be available to all users and Node.js apps on the system.

We’re beginning to have a nice little Node.js app server set up. Let’s set up a little
Node.js app that responds to HTTP requests on port 80.

You may be wondering why sometimes quotes are used in these YAML
playbooks, and sometimes not. I typically use quotes aroundmy parameters
in the following scenarios:

1. If I have a Jinja variable (e.g. {{ variable_here }}) at the beginning
or end of the line; otherwise YAML will parse the line as nested
objects due to the braces.

2. If there are any colons (:) in the string (e.g. for URLs).

The easiest way to make sure you’re quoting things correctly is to use
YAML syntax highlighting in your code editor.

Chapter 4 - Ansible Playbooks 58

Deploy a Node.js app

The next step is to install a simple Node.js app on our server. First, we’ll create a
really simple Node.js app by creating a new folder, app, in the same folder as your
playbook.yml. Create a new file, app.js, in this folder, with the following contents:

1 // Load the express module.

2 var express = require('express');

3 var app = express();

4

5 // Respond to requests for / with 'Hello World'.

6 app.get('/', function(req, res){

7 res.send('Hello World!');

8 });

9

10 // Listen on port 80 (like a true web server).

11 app.listen(80);

12 console.log('Express server started successfully.');

Don’t worry about the syntax or the fact that this is Node.js. We just need a quick
example to deploy. This example could’ve been written in Python, Perl, Java, PHP,
or another language, but since Node is a simple language (JavaScript) that runs
in a lightweight environment, it’s an easy language to use when testing things or
prodding your server.

Since this little app is dependent on Express (an http framework for Node), we also
need to tell NPM about this dependency via a package.json file in the same folder
as app.js:

Chapter 4 - Ansible Playbooks 59

1 {

2 "name": "examplenodeapp",

3 "description": "Example Express Node.js app.",

4 "author": "Jeff Geerling <geerlingguy@mac.com>",

5 "dependencies": {

6 "express": "4.x"

7 },

8 "engine": "node >= 0.10.6"

9 }

We need to copy the entire app to the server, and then have NPM download the
required dependencies (in this case, express), so add these tasks to your playbook:

31 - name: Ensure Node.js app folder exists.

32 file: "path={{ node_apps_location }} state=directory"

33

34 - name: Copy example Node.js app to server.

35 copy: "src=app dest={{ node_apps_location }}"

36

37 - name: Install app dependencies defined in package.json.

38 npm: path={{ node_apps_location }}/app

First, we ensure the directory where our app will be installed exists, using the file
module.

The {{ node_apps_location }} variable used in these tasks was defined
under a vars section at the top of our playbook, but it could also be
overridden in your inventory, or on the command line when calling
ansible-playbook using the --extra-vars option.

Second, we copy the entire app folder up to the server, using Ansible’s copy

command, which intelligently distinguishes between a single file or a directory of
files, and recurses through the directory, similar to recursive scp or rsync.

Chapter 4 - Ansible Playbooks 60

Ansible’s copy module works very well for single or small groups of
files, and recurses through directories automatically. If you are copying
hundreds of files, or deeply-nested directory structures, copy will get
bogged down. In these situations, consider either using the synchronize

or rsync module to copy a full directory, or unarchive to copy an archive
and have it expanded in place on the server.

Third, we use npm again, this time, with no extra arguments besides the path to the
app. This tells NPM to parse the package.json file and ensure all the dependencies
are present.

We’re almost finished! The last step is to start the app.

Launch a Node.js app

We’ll now use forever (which we installed earlier) to start the app.

41 - name: Check list of running Node.js apps.

42 command: forever list

43 register: forever_list

44 changed_when: false

45

46 - name: Start example Node.js app.

47 command: "forever start {{ node_apps_location }}/app/app.js"

48 when: "forever_list.stdout.find(node_apps_location + \

49 '/app/app.js') == -1"

In the first play, we’re doing two new things:

1. register creates a new variable, forever_list, to be used in the next play to
determine when to run the play. register stashes the output (stdout, stderr) of
the defined command in the variable name passed to it.

2. changed_when tells Ansible explicitly when this play results in a change to the
server. In this case, we know the forever list command will never change
the server, so we just say false—the server will never be changed when the
command is run.

Chapter 4 - Ansible Playbooks 61

The second play actually starts the app, using Forever. We could also start the app
by calling node {{ node_apps_location }}/app/app.js, but we would not be able
to control the process easily, and we would also need to use nohup and & to avoid
Ansible hanging on this play.

Forever tracks the Node apps it manages, and we use Forever’s list option to print
a list of running apps. The first time we run this playbook, the list will obviously
be empty—but on future runs, if the app is running, we don’t want to start another
instance of it. To avoid that situation, we tell Ansible when we want to start the app
with when. Specifically, we tell Ansible to start the app only when the app’s path is
not in the forever list output.

Node.js app server summary

At this point, you have a complete playbook that will install a simple Node.js app
which responds to HTTP requests on port 80 with “Hello World!”.

To run the playbook on a server (in our case, we could just set up a new VirtualBox
VM for testing, either via Vagrant or manually), use the following command (pass in
the node_apps_location variable via the command):

$ ansible-playbook playbook.yml \

--extra-vars="node_apps_location=/usr/local/opt/node"

Once the playbook has finished configuring the server and deploying your app, visit
http://hostname/ in a browser (or use curl or wget to request the site), and you
should see the following:

Node.js Application home page.

Simple, but very powerful. We’ve configured an entire Node.js application server In
fewer than fifty lines of YAML!

Chapter 4 - Ansible Playbooks 62

The entire example Node.js app server playbook is in this book’s code
repository at https://github.com/geerlingguy/ansible-for-devops⁵², in the
nodejs directory.

Real-world playbook: Ubuntu LAMP server
with Drupal

At this point, you should be getting comfortable with Ansible playbooks and the
YAML syntax used to define them. Up to this point, most examples have assumed
you’re working with a CentOS, RHEL, or Fedora server. Ansible plays nicely with
other flavors of Linux and BSD-like systems as well. In the following example, we’re
going to set up a traditional LAMP (Linux, Apache, MySQL, and PHP) server using
Ubuntu 16.04 to run a Drupal website.

Drupal LAMP server.

Include a variables file, and discover pre_tasks and
handlers

To make our playbook more efficient and readable, let’s begin the playbook (named
playbook.yml) by instructing Ansible to load in variables from a separate vars.yml
file:

⁵²https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 4 - Ansible Playbooks 63

1 ---

2 - hosts: all

3 become: yes

4

5 vars_files:

6 - vars.yml

Using one or more included variable files cleans up your main playbook file, and lets
you organize all your configurable variables in one place. At the moment, we don’t
have any variables to add; we’ll define the contents of vars.yml later. For now, create
the empty file, and continue on to the next section of the playbook, pre_tasks:

8 pre_tasks:

9 - name: Update apt cache if needed.

10 apt: update_cache=yes cache_valid_time=3600

Ansible lets you run tasks before or after the main tasks (defined in tasks:) or
roles (defined in roles:—we’ll get to roles later) using pre_tasks and post_tasks,
respectively. In this case, we need to ensure that our apt cache is updated before
running the rest of the playbook, so we have the latest package versions on our server.
We use Ansible’s apt module and tell it to update the cache if it’s been more than
3600 seconds (1 hour) since the last update.

With that out of the way, we’ll add another new section to our playbook, handlers:

12 handlers:

13 - name: restart apache

14 service: name=apache2 state=restarted

handlers are special kinds of tasks you run at the end of a play by adding the notify
option to any of the tasks in that group. The handler will only be called if one of the
tasks notifying the handler makes a change to the server (and doesn’t fail), and it will
only be notified at the end of the play.

To call this handler, add the option notify: restart apache after defining the rest
of a play. We’ve defined this handler so we can restart the apache2 service after a
configuration change, which will be explained below.

Chapter 4 - Ansible Playbooks 64

Just like variables, handlers and tasks may be placed in separate files and
included in your playbook to keep things tidy (we’ll discuss this in chapter
6). For simplicity’s sake, though, the examples in this chapter are shown
as in a single playbook file. We’ll discuss different playbook organization
methods later.

By default, Ansible will stop all playbook execution when a task fails, and
won’t notify any handlers that may need to be triggered. In some cases, this
leads to unintended side effects. If you want to make sure handlers always
run after a task uses notify to call the handler, even in case of playbook
failure, add --force-handlers to your ansible-playbook command.

Basic LAMP server setup

The first step towards building an application server that depends on the LAMP stack
is to build the actual LAMP part of it. This is the simplest process, but still requires
a little extra work for our particular server. We want to install Apache, MySQL and
PHP, but we’ll also need a couple other dependencies.

16 tasks:

17 - name: Get software for apt repository management.

18 apt:

19 name:

20 - python-apt

21 - python-pycurl

22 state: present

23

24 - name: Add ondrej repository for later versions of PHP.

25 apt_repository: repo='ppa:ondrej/php' update_cache=yes

26

27 - name: "Install Apache, MySQL, PHP, and other dependencies."

28 apt:

29 name:

30 - git

Chapter 4 - Ansible Playbooks 65

31 - curl

32 - unzip

33 - sendmail

34 - apache2

35 - php7.1-common

36 - php7.1-cli

37 - php7.1-dev

38 - php7.1-gd

39 - php7.1-curl

40 - php7.1-json

41 - php7.1-opcache

42 - php7.1-xml

43 - php7.1-mbstring

44 - php7.1-pdo

45 - php7.1-mysql

46 - php-apcu

47 - libpcre3-dev

48 - libapache2-mod-php7.1

49 - python-mysqldb

50 - mysql-server

51 state: present

52

53 - name: Disable the firewall (since this is for local dev only).

54 service: name=ufw state=stopped

55

56 - name: "Start Apache, MySQL, and PHP."

57 service: "name={{ item }} state=started enabled=yes"

58 with_items:

59 - apache2

60 - mysql

In this playbook, we begin with a common LAMP setup:

1. Install a couple helper libraries which allow Python to manage apt more
precisely (python-apt and python-pycurl are required for the apt_repository
module to do its work).

Chapter 4 - Ansible Playbooks 66

2. Install an extra apt PPA that will allow installation of a later version of PHP
than is available in the default system repositories.

3. Install all the required packages for our LAMP server (including all the PHP
extensions Drupal requires).

4. Disable the firewall entirely, for testing purposes. If on a production server or
any server exposed to the Internet, you should instead have a restrictive firewall
only allowing access on ports 22, 80, 443, and other necessary ports.

5. Start up all the required services, and make sure they’re enabled to start on
system boot.

Configure Apache

The next step is configuring Apache so it will work correctly with Drupal. Out of
the box, Apache doesn’t have mod_rewrite enabled on Ubuntu’s current release.
To remedy that situation, you could use the command sudo a2enmod rewrite,
but Ansible has a handy apache2_module module that will do the same thing with
idempotence.

We also need to add a VirtualHost entry to give Apache the site’s document root and
provide other options for the site.

62 - name: Enable Apache rewrite module (required for Drupal).

63 apache2_module: name=rewrite state=present

64 notify: restart apache

65

66 - name: Add Apache virtualhost for Drupal 8 development.

67 template:

68 src: "templates/drupal.test.conf.j2"

69 dest: "/etc/apache2/sites-available/{{ domain }}.test.conf"

70 owner: root

71 group: root

72 mode: 0644

73 notify: restart apache

74

75 - name: Symlink Drupal virtualhost to sites-enabled.

76 file:

Chapter 4 - Ansible Playbooks 67

77 src: "/etc/apache2/sites-available/{{ domain }}.test.conf"

78 dest: "/etc/apache2/sites-enabled/{{ domain }}.test.conf"

79 state: link

80 notify: restart apache

81

82 - name: Remove default virtualhost file.

83 file:

84 path: "/etc/apache2/sites-enabled/000-default.conf"

85 state: absent

86 notify: restart apache

The first command enables all the required Apache modules by symlinking them
from /etc/apache2/mods-available to /etc/apache2/mods-enabled.

The second command copies a Jinja template we define inside a templates folder
to Apache’s sites-available folder, with the correct owner and permissions.
Additionally, we notify the restart apache handler, because copying in a new
VirtualHost means Apache needs to be restarted to pick up the change.

Let’s look at our Jinja template (denoted by the extra .j2 on the end of the filename),
drupal.test.conf.j2:

1 <VirtualHost *:80>

2 ServerAdmin webmaster@localhost

3 ServerName {{ domain }}.test

4 ServerAlias www.{{ domain }}.test

5 DocumentRoot {{ drupal_core_path }}

6 <Directory "{{ drupal_core_path }}">

7 Options FollowSymLinks Indexes

8 AllowOverride All

9 </Directory>

10 </VirtualHost>

This is a fairly standard Apache VirtualHost definition, but we have a few Jinja
template variables mixed in. The syntax for printing a variable in a Jinja template is
the same syntax we use in our Ansible playbooks—two brackets around the variable’s
name (like so: {{ variable }}).

Chapter 4 - Ansible Playbooks 68

There are three variables we will need (drupal_core_version, drupal_core_path,
and domain), so add them to the empty vars.yml file we created earlier:

1 ---

2 # The core version you want to use (e.g. 8.8.x, 8.9.x).

3 drupal_core_version: "8.8.x"

4

5 # The path where Drupal will be downloaded and installed.

6 drupal_core_path: "/var/www/drupal-{{ drupal_core_version }}-dev"

7

8 # The resulting domain will be [domain].test (with .test appended).

9 domain: "drupal"

Now, when Ansible reaches the play that copies this template into place, the Jinja
templatewill have the variable names replacedwith the values /var/www/drupal-8.8.x-dev
and drupal (or whatever values you’d like!).

The last two tasks (lines 75-86) enable the VirtualHost we just added, and remove the
default VirtualHost definition, which we no longer need.

At this point, you could start the server, but Apache will likely throw an error since
the VirtualHost you’ve defined doesn’t exist (there’s no directory at {{ drupal_-

core_path }} yet!). This is why using notify is important—instead of adding a task
after these three steps to restart Apache (which will fail the first time you run the
playbook), notify will wait until after we’ve finished all the other steps in our main
group of tasks (giving us time to finish setting up the server), then restart Apache.

Configure PHP with lineinfile

We briefly mentioned lineinfile earlier in the book, when discussing file manage-
ment and ad-hoc task execution. Modifying PHP’s configuration is a perfect way to
demonstrate lineinfile’s simplicity and usefulness:

Chapter 4 - Ansible Playbooks 69

88 - name: Adjust OpCache memory setting.

89 lineinfile:

90 dest: "/etc/php/7.1/apache2/conf.d/10-opcache.ini"

91 regexp: "^opcache.memory_consumption"

92 line: "opcache.memory_consumption = 96"

93 state: present

94 notify: restart apache

Ansible’s lineinfilemodule does a simple task: ensures that a particular line of text
exists (or doesn’t exist) in a file.

In this example, we need to adjust PHP’s default opcache.memory_consumption

option so the Drupal codebase can be compiled into PHP’s system memory for much
faster page load times.

First, we tell lineinfile the location of the file, in the dest parameter. Then, we
give a regular expression (Python-style) to define what the line looks like (in this
case, the line starts with the exact phrase “opcache.memory_consumption”). Next,
we tell lineinfile exactly how the resulting line should look. Finally, we explicitly
state that we want this line to be present (with the state parameter).

Ansible will take the regular expression, and see if there’s a matching line. If there
is, Ansible will make sure the line matches the line parameter. If not, Ansible will
add the line as defined in the line parameter. Ansible will only report a change if it
had to add or change the line to match line.

Configure MySQL

The next step is to create a database and user (named for the domain we specified
earlier) for our Drupal installation to use.

Chapter 4 - Ansible Playbooks 70

96 - name: Create a MySQL database for Drupal.

97 mysql_db: "db={{ domain }} state=present"

98

99 - name: Create a MySQL user for Drupal.

100 mysql_user:

101 name: "{{ domain }}"

102 password: "1234"

103 priv: "{{ domain }}.*:ALL"

104 host: localhost

105 state: present

Ansible works with many databases out of the box (MongoDB, MySQL/-
MariaDB, PostgreSQL, Redis and Riak as of this writing). In MySQL’s case,
Ansible uses the MySQLdb Python package (python-mysqldb) to manage
a connection to the database server, and assumes the default root account
credentials (‘root’ as the username with no password). Obviously, leaving
this default would be a bad idea! On a production server, one of the first
steps should be to change the root account password, limit the root account
to localhost, and delete any nonessential database users.

If you use different credentials, you can add a .my.cnf file to your remote
user’s home directory containing the database credentials to allow Ansible
to connect to the MySQL database without leaving passwords in your
Ansible playbooks or variable files. Otherwise, you can prompt the user
running the Ansible playbook for a MySQL username and password. This
option, using prompts, will be discussed later in the book.

Install Composer and Drush

Drupal has a command-line companion in the form of Drush. Drush is developed
independently of Drupal, and provides a full suite of CLI commands to manage
Drupal. Drush, like most modern PHP tools, integrates with external dependencies
defined in a composer.json file which describes the dependencies to Composer.

We could just download Drupal and perform some setup in the browser by hand at
this point, but the goal of this playbook is to have a fully-automated and idempotent

Chapter 4 - Ansible Playbooks 71

Drupal installation. So, we need to install Composer, then Drush, and use both to
install Drupal:

107 - name: Download Composer installer.

108 get_url:

109 url: https://getcomposer.org/installer

110 dest: /tmp/composer-installer.php

111 mode: 0755

112

113 - name: Run Composer installer.

114 command: >

115 php composer-installer.php

116 chdir=/tmp

117 creates=/usr/local/bin/composer

118

119 - name: Move Composer into globally-accessible location.

120 command: >

121 mv /tmp/composer.phar /usr/local/bin/composer

122 creates=/usr/local/bin/composer

The first two commands download and run Composer’s php-based installer, which
generates a ‘composer.phar’ PHP application archive in /tmp. This archive is then
copied (using the mv shell command) to the location /usr/local/bin/composer so we
can use the composer command to install all of Drush’s dependencies. The latter two
commands are set to run only if the /usr/local/bin/composer file doesn’t already
exist (using the creates parameter).

Chapter 4 - Ansible Playbooks 72

Why use shell instead of command? Ansible’s command module is the
preferred option for running commands on a host (when anAnsiblemodule
won’t suffice), and it works in most scenarios. However, command doesn’t
run the command via the remote shell /bin/sh, so options like <, >, |, and &,
and local environment variables like $HOME won’t work. shell allows you
to pipe command output to other commands, access the local environment,
etc.

There are two other modules which assist in executing shell commands
remotely: script executes shell scripts (though it’s almost always a better
idea to convert shell scripts into idempotent Ansible playbooks!), and raw

executes raw commands via SSH (it should only be used in circumstances
where you can’t use one of the other options).

It’s best to use an Ansible module for every task. If you have to resort to
a regular command-line command, try the command module first. If you
require the options mentioned above, use shell. Use of script or raw

should be exceedingly rare, and won’t be covered in this book.

Now, we’ll install Drush using the latest version from GitHub:

124 - name: Check out drush 8.x branch.

125 git:

126 repo: https://github.com/drush-ops/drush.git

127 version: 8.x

128 dest: /opt/drush

129

130 - name: Install Drush dependencies with Composer.

131 command: >

132 /usr/local/bin/composer install

133 chdir=/opt/drush

134 creates=/opt/drush/vendor/autoload.php

135

136 - name: Create drush bin symlink.

137 file:

138 src: /opt/drush/drush

139 dest: /usr/local/bin/drush

140 state: link

Chapter 4 - Ansible Playbooks 73

Earlier in the book, we cloned a git repository using an ad-hoc command. In this case,
we’re defining a play that uses the git module to clone Drush from its repository
URL on GitHub. Since we want the 8.x branch, pass in the repo (repository URL),
version (the branch, tag, or commit ref), and dest (destination path) parameters (the
git module will check out master if you don’t provide a version).

After Drush is downloaded to /opt/drush, we use Composer to install all the required
dependencies. In this case, we want Ansible to run composer install in the directory
/opt/drush (this is so Composer finds Drush’s composer.json file automatically), so
we pass along the parameter chdir=/opt/drush. Once Composer is finished, the file
/opt/drush/vendor/autoload.php will be created, so we use the creates parameter
to tell Ansible to skip this step if the file already exists (for idempotency).

Finally, we create a symlink from /usr/local/bin/drush to the executable at
/opt/drush/drush, so we can call the drush command anywhere on the system.

Install Drupal with Git and Drush

We’ll use git again to clone Drupal to the Apache document root we defined earlier
in our virtual host configuration, install Drupal’s dependencies with Composer, run
Drupal’s installation via Drush, and fix a couple other file permissions issues so
Drupal loads correctly within our VM.

142 - name: Check out Drupal Core to the Apache docroot.

143 git:

144 repo: https://git.drupal.org/project/drupal.git

145 version: "{{ drupal_core_version }}"

146 dest: "{{ drupal_core_path }}"

147 register: git_checkout

148

149 - name: Ensure Drupal codebase is owned by www-data.

150 file:

151 path: "{{ drupal_core_path }}"

152 owner: www-data

153 group: www-data

154 recurse: true

155 when: git_checkout.changed | bool

Chapter 4 - Ansible Playbooks 74

156

157 - name: Install Drupal dependencies with Composer.

158 command: >

159 /usr/local/bin/composer install

160 chdir={{ drupal_core_path }}

161 creates={{ drupal_core_path }}/vendor/autoload.php

162 become_user: www-data

163

164 - name: Install Drupal.

165 command: >

166 drush si -y --site-name="{{ drupal_site_name }}"

167 --account-name=admin

168 --account-pass=admin

169 --db-url=mysql://{{ domain }}:1234@localhost/{{ domain }}

170 --root={{ drupal_core_path }}

171 creates={{ drupal_core_path }}/sites/default/settings.php

172 notify: restart apache

173 become_user: www-data

First, we clone Drupal’s git repository, using the version defined in our vars.yml file
as drupal_core_version. The git module’s version parameter defines the branch
(master, 8.2.x, etc.), tag (1.0.1, 8.2.5, etc.), or individual commit hash (50a1877,
etc.) to clone.

Before installing Drupal, we must install Drupal’s dependencies using Composer
(just like with Drush). For both this and the next task, we only want to run them
the first time we install Drupal, so we use the creates parameter again to let Ansible
know if the dependencies have been installed (just like with Drush earlier).

To install Drupal, we use Drush’s si command (short for site-install) to run Dru-
pal’s installation (which configures the database (and creates a sites/default/settings.php
file we can use for idempotence), runs some maintenance, and sets some default
configuration settings for the site). We passed in a few variables, like the drupal_-

core_version and domain; we also added a drupal_site_name, so add that variable
to your vars.yml file:

Chapter 4 - Ansible Playbooks 75

10 # Your Drupal site name.

11 drupal_site_name: "Drupal Test"

Once the site is installed, we also restart Apache for good measure (using notify

again, like we did when updating Apache’s configuration).

Drupal LAMP server summary

To run the playbook on a server (either via a local VM for testing or on another
server), use the following command:

$ ansible-playbook playbook.yml

After the playbook completes, if you access the server at http://drupal.test/ (assuming
you’ve pointed drupal.test to your server or VM’s IP address), you’ll see Drupal’s
default home page, and you could login with ‘admin’/’admin’. (Obviously, you’d set
a secure password on a production server!).

Drupal 8 default home page.

A similar server configuration, running Apache, MySQL, and PHP, can be used to
run many popular web frameworks and CMSes besides Drupal, including Symfony,
Wordpress, Joomla, Laravel, etc.

Chapter 4 - Ansible Playbooks 76

The entire example Drupal LAMP server playbook is in this book’s code
repository at https://github.com/geerlingguy/ansible-for-devops⁵³, in the
drupal directory.

Real-world playbook: Ubuntu server with Solr

Apache Solr is a fast and scalable search server optimized for full-text search, word
highlighting, faceted search, fast indexing, and more. It’s a very popular search
server, and it’s pretty easy to install and configure using Ansible. In the following
example, we’re going to set up Apache Solr using Ubuntu 16.04 and Java, on a server
or VM with at least 512 MB of RAM.

Apache Solr Server.

Include a variables file, and more pre_tasks

Just like the previous LAMP server example, we’ll begin this playbook (again named
playbook.yml) by telling Ansible our variables will be in a separate vars.yml file:

⁵³https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 4 - Ansible Playbooks 77

1 ---

2 - hosts: all

3 become: true

4

5 vars_files:

6 - vars.yml

Let’s quickly create the vars.yml file, while we’re thinking about it. Create the file
in the same folder as your Solr playbook, and add the following contents:

1 download_dir: /tmp

2 solr_dir: /opt/solr

3 solr_version: 8.2.0

4 solr_checksum: sha512:beb4e37fc21bf483e3b6bae43cb06a49bc420a0f2b920c979\

5 09a69a5efeacba1e7d2ff09ae8018446c87bf007f88f06a59de73cd1923f0967e820662\

6 9b0509b6

These variables define two paths we’ll use while downloading and installing Apache
Solr, and the version and file download checksum for downloading Apache Solr’s
source.

Back in our playbook, after the vars_files, we also need to make sure the apt cache
is up to date, using pre_tasks like the previous example:

8 pre_tasks:

9 - name: Update apt cache if needed.

10 apt: update_cache=true cache_valid_time=3600

Install Java 8

It’s easy enough to install Java 8 on Ubuntu, as it’s in the default apt repositories. We
just need to make sure the right package is installed:

Chapter 4 - Ansible Playbooks 78

16 tasks:

17 - name: Install Java.

18 apt: name=openjdk-8-jdk state=present

That was easy enough! We used the apt module to install openjdk-8-jdk.

Install Apache Solr

Ubuntu’s LTS release includes a package for Apache Solr, but it installs an older
version, so we’ll install the latest version of Solr from source. The first step is
downloading the source:

20 - name: Download Solr.

21 get_url:

22 url: "https://archive.apache.org/dist/lucene/solr/\

23 {{ solr_version }}/solr-{{ solr_version }}.tgz"

24 dest: "{{ download_dir }}/solr-{{ solr_version }}.tgz"

25 checksum: "{{ solr_checksum }}"

When downloading files from remote servers, the get_url module provides more
flexibility and convenience than raw wget or curl commands.

You have to pass get_url a url (the source of the file to be downloaded), and a dest
(the location where the file will be downloaded). If you pass a directory to the dest
parameter, Ansible will place the file inside, but will always re-download the file
on subsequent runs of the playbook (and overwrite the existing download if it has
changed). To avoid this extra overhead, we give the full path to the downloaded file.

We also use checksum, an optional parameter, for peace of mind; if you are download-
ing a file or archive that’s critical to the functionality and security of your application,
it’s a good idea to check the file to make sure it is exactly what you’re expecting.
checksum compares a hash of the data in the downloaded file to a hash that you
specify (and which is provided alongside the downloads on the Apache Solr website).
If the checksum doesn’t match the supplied hash, Ansible will fail and discard the
freshly-downloaded (and invalid) file.

We need to expand the Solr archive so we can run the installer inside, and we can
use the creates option to make this operation idempotent:

Chapter 4 - Ansible Playbooks 79

26 - name: Expand Solr.

27 unarchive:

28 src: "{{ download_dir }}/solr-{{ solr_version }}.tgz"

29 dest: "{{ download_dir }}"

30 remote_src: true

31 creates: "{{ download_dir }}/solr-{{ solr_version }}/\

32 README.txt"

If you read the unarchive module’s documentation, you might notice you
could consolidate both the get_url and unarchive tasks into one task by
setting src to the file URL. Doing this saves a step in the playbook and
is generally preferred, but in Apache Solr’s case, the original .tgz archive
must be present to complete installation, so we still need both tasks.

Now that the source is present, run the Apache Solr installation script (provided
inside the Solr archive’s bin directory) to complete Solr installation:

33 - name: Run Solr installation script.

34 command: >

35 {{ download_dir }}/solr-{{ solr_version }}/bin/install_solr_ser\

36 vice.sh

37 {{ download_dir }}/solr-{{ solr_version }}.tgz

38 -i /opt

39 -d /var/solr

40 -u solr

41 -s solr

42 -p 8983

43 creates={{ solr_dir }}/bin/solr

In this example, the options passed to the installer are hardcoded (e.g. the -p 8983

tells Apache Solr to run on port 8983), and this works fine, but if you’re going to
reuse this playbook for many different types of Solr servers, you should probably
configure many of these options with variables defined in vars.yml. This exercise is
left to the reader.

Finally, we need a task that runs at the end of the playbook to make sure Apache Solr
is started, and will start at system boot:

Chapter 4 - Ansible Playbooks 80

44 - name: Ensure solr is started and enabled on boot.

45 service: name=solr state=started enabled=yes

Run the playbook with $ ansible-playbook playbook.yml, and after a few minutes
(depending on your server’s Internet connection speed), you should be able to access
the Solr admin interface at http://solr.test:8983/solr (where ‘solr.test’ is your server’s
hostname or IP address):

Solr Admin page.

Apache Solr server summary

The configuration we used when deploying Apache Solr allows for a multi core
setup, so you could add more ‘search cores’ via the admin interface (as long as the
directories and core schema configuration is in place in the filesystem), and have
multiple indexes for multiple websites and applications.

A playbook similar to the one above is used as part of the infrastructure for Hosted
Apache Solr⁵⁴, a service I run which hosts Apache Solr search cores for Drupal
websites.

The entire example Apache Solr server playbook is in this book’s code
repository at https://github.com/geerlingguy/ansible-for-devops⁵⁵, in the
solr directory.

⁵⁴https://hostedapachesolr.com/
⁵⁵https://github.com/geerlingguy/ansible-for-devops

https://hostedapachesolr.com/
https://hostedapachesolr.com/
https://github.com/geerlingguy/ansible-for-devops
https://hostedapachesolr.com/
https://github.com/geerlingguy/ansible-for-devops

Chapter 4 - Ansible Playbooks 81

Summary

At this point, you should be getting comfortable with Ansible’s modus operandi.
Playbooks are the heart of Ansible’s configuration management and provisioning
functionality, and the same modules and similar syntax can be used with ad-hoc
commands for deployments and general server management.

Now that you’re familiar with playbooks, we’ll explore more advanced concepts
in building playbooks, like organization of tasks, conditionals, variables, and more.
Later, we’ll explore the use of playbooks with roles to make them infinitely more
flexible and to save time setting up and configuring your infrastructure.

/ If everything is under control, you are \

\ going too slow. (Mario Andretti) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 5 - Ansible Playbooks -
Beyond the Basics
The playbooks and simple playbook organization we used in the previous chapter
cover many common use cases. When discussing the breadth of system administra-
tion needs, there are thousands more features of Ansible you need to know.

We’ll cover how to run plays with more granularity, how to organize your tasks and
playbooks for simplicity and usability, and other advanced playbook topics that will
help you manage your infrastructure with even more confidence.

Handlers

In chapter 4, the Ubuntu LAMP server example used a simple handler to restart
Apache, and certain tasks that affected Apache’s configuration notified the handler
with the option notify: restart apache:

handlers:

- name: restart apache

service: name=apache2 state=restarted

tasks:

- name: Enable Apache rewrite module.

apache2_module: name=rewrite state=present

notify: restart apache

In some circumstances you may want to notify multiple handlers, or even have
handlers notify additional handlers. Both are easy to do with Ansible. To notify
multiple handlers from one task, use a list for the notify option:

Chapter 5 - Ansible Playbooks - Beyond the Basics 83

- name: Rebuild application configuration.

command: /opt/app/rebuild.sh

notify:

- restart apache

- restart memcached

To have one handler notify another, add a notify option onto the handler—handlers
are basically glorified tasks that can be called by the notify option, but since they
act as tasks themselves, they can chain themselves to other handlers:

handlers:

- name: restart apache

service: name=apache2 state=restarted

notify: restart memcached

- name: restart memcached

service: name=memcached state=restarted

There are a few other considerations when dealing with handlers:

• Handlers will only be run if a task notifies the handler; if a task that would’ve
notified the handlers is skipped due to a when condition or something of the like,
the handler will not be run.

• Handlers will run once, and only once, at the end of a play. If you absolutely
need to override this behavior and run handlers in the middle of a playbook,
you can use the meta module to do so (e.g. - meta: flush_handlers).

• If the play fails on a particular host (or all hosts) before handlers are notified,
the handlers will never be run. If it’s desirable to always run handlers, even
after the playbook has failed, you can use the meta module as described
above as a separate task in the playbook, or you use the command line flag
--force-handlers when running your playbook. Handlers won’t run on any
hosts that became unreachable during the playbook’s run.

Chapter 5 - Ansible Playbooks - Beyond the Basics 84

Environment variables

Ansible allows you to work with environment variables in a variety of ways. First of
all, if you need to set some environment variables for your remote user account, you
can do that by adding lines to the remote user’s .bash_profile, like so:

- name: Add an environment variable to the remote user's shell.

lineinfile: "dest=~/.bash_profile regexp=^ENV_VAR= \

line=ENV_VAR=value"

All subsequent tasks will then have access to this environment variable (remember, of
course, only the shellmodule will understand shell commands that use environment
variables!). To use an environment variable in further tasks, it’s recommended you
use a task’s register option to store the environment variable in a variable Ansible
can use later, for example:

1 - name: Add an environment variable to the remote user's shell.

2 lineinfile: "dest=~/.bash_profile regexp=^ENV_VAR= \

3 line=ENV_VAR=value"

4

5 - name: Get the value of the environment variable we just added.

6 shell: 'source ~/.bash_profile && echo $ENV_VAR'

7 register: foo

8

9 - name: Print the value of the environment variable.

10 debug: msg="The variable is {{ foo.stdout }}"

We use source ∼/.bash_profile in line 4 because Ansible needs to make sure it’s
using the latest environment configuration for the remote user. In some situations,
the tasks all run over a persistent or quasi-cached SSH session, over which $ENV_VAR

wouldn’t yet be defined.

(This is also the first time the debug module has made an appearance. It will be
explored more in-depth along with other debugging techniques later.).

Chapter 5 - Ansible Playbooks - Beyond the Basics 85

Why ∼/.bash_profile? There are many different places you can store
environment variables, including .bashrc, .profile, and .bash_login in a
user’s home folder. In our case, since we want the environment variable to
be available to Ansible, which runs a pseudo-TTY shell session, in which
case .bash_profile is used to configure the environment. You can read
more about shell session configuration and these dotfiles in Configuring
your login sessions with dotfiles⁵⁶.

Linux will also read global environment variables added to /etc/environment, so
you can add your variable there:

- name: Add a global environment variable.

lineinfile: "dest=/etc/environment regexp=^ENV_VAR= \

line=ENV_VAR=value"

become: yes

In any case, it’s pretty simple to manage environment variables on the server with
lineinfile. If your application requires many environment variables (as is the case
in many Java applications), you might consider using copy or template with a local
file instead of using lineinfile with a large list of items.

Per-play environment variables

You can also set the environment for just one play, using the environment option for
that play. As an example, let’s say you need to set an http proxy for a certain file
download. This can be done with:

- name: Download a file, using example-proxy as a proxy.

get_url: url=http://www.example.com/file.tar.gz dest=~/Downloads/

environment:

http_proxy: http://example-proxy:80/

That could be rather cumbersome, though, especially if you have many tasks that
require a proxy or some other environment variable. In this case, you can pass an
environment in via a variable in your playbook’s vars section (or via an included
variables file), like so:

⁵⁶http://mywiki.wooledge.org/DotFiles

http://mywiki.wooledge.org/DotFiles
http://mywiki.wooledge.org/DotFiles
http://mywiki.wooledge.org/DotFiles

Chapter 5 - Ansible Playbooks - Beyond the Basics 86

vars:

proxy_vars:

http_proxy: http://example-proxy:80/

https_proxy: https://example-proxy:443/

[etc...]

tasks:

- name: Download a file, using example-proxy as a proxy.

get_url: url=http://www.example.com/file.tar.gz dest=~/Downloads/

environment: proxy_vars

If a proxy needs to be set system-wide (as is the case behind many corporate
firewalls), I like to do so using the global /etc/environment file:

1 # In the 'vars' section of the playbook (set to 'absent' to disable pro\

2 xy):

3 proxy_state: present

4

5 # In the 'tasks' section of the playbook:

6 - name: Configure the proxy.

7 lineinfile:

8 dest: /etc/environment

9 regexp: "{{ item.regexp }}"

10 line: "{{ item.line }}"

11 state: "{{ proxy_state }}"

12 with_items:

13 - regexp: "^http_proxy="

14 line: "http_proxy=http://example-proxy:80/"

15 - regexp: "^https_proxy="

16 line: "https_proxy=https://example-proxy:443/"

17 - regexp: "^ftp_proxy="

18 line: "ftp_proxy=http://example-proxy:80/"

Doing it this way allows me to configure whether the proxy is enabled per-server
(using the proxy_state variable), and with one play, set the http, https, and ftp

Chapter 5 - Ansible Playbooks - Beyond the Basics 87

proxies. You can use a similar kind of play for any other types of environment
variables you need to set system-wide.

You can test remote environment variables using the ansible command:
ansible test -m shell -a 'echo $TEST'. When doing so, be careful with
your use of quotes and escaping—you might end up using double quotes
where you meant to use single quotes, or vice-versa, and end up printing a
local environment variable instead of one from the remote server!

Variables

Variables in Ansible work just like variables in most other systems. Variables always
begin with a letter ([A-Za-z]), and can include any number of underscores (_) or
numbers ([0-9]).

Valid variable names include foo, foo_bar, foo_bar_5, and fooBar, though the
standard is to use all lowercase letters, and typically avoid numbers in variable names
(no camelCase or UpperCamelCase).

Invalid variable names include _foo, foo-bar, 5_foo_bar, foo.bar and foo bar.

In an inventory file, a variable’s value is assigned using an equals sign, like so:

foo=bar

In a playbook or variables include file, a variable’s value is assigned using a colon,
like so:

foo: bar

Playbook Variables

There are many different ways you can define variables to use in tasks.

Variables can be passed in via the command line, when calling ansible-playbook,
with the --extra-vars option:

Chapter 5 - Ansible Playbooks - Beyond the Basics 88

ansible-playbook example.yml --extra-vars "foo=bar"

You can also pass in extra variables using quoted JSON, YAML, or even by passing
a JSON or YAML file directly, like --extra-vars "@even_more_vars.json" or
--extra-vars "@even_more_vars.yml, but at this point, youmight be better off using
one of the other methods below.

Variables may be included inline with the rest of a playbook, in a vars section:

1 ---

2 - hosts: example

3 vars:

4 foo: bar

5 tasks:

6 # Prints "Variable 'foo' is set to bar".

7 - debug: msg="Variable 'foo' is set to {{ foo }}"

Variables may also be included in a separate file, using the vars_files section:

1 ---

2 # Main playbook file.

3 - hosts: example

4 vars_files:

5 - vars.yml

6 tasks:

7 - debug: msg="Variable 'foo' is set to {{ foo }}"

1 ---

2 # Variables file 'vars.yml' in the same folder as the playbook.

3 foo: bar

Notice how the variables are all at the root level of the YAML file. They don’t need
to be under any kind of vars heading when they are included as a standalone file.

Variable files can also be imported conditionally. Say, for instance, you have one set
of variables for your CentOS servers (where the Apache service is named httpd),
and another for your Debian servers (where the Apache service is named apache2).
In this case, you could use a conditional vars_files include:

Chapter 5 - Ansible Playbooks - Beyond the Basics 89

1 ---

2 - hosts: example

3 vars_files:

4 - "apache_default.yml"

5 - "apache_{{ ansible_os_family }}.yml"

6 tasks:

7 - service: name={{ apache }} state=running

Then, add two files in the same folder as your example playbook, apache_CentOS.yml,
and apache_default.yml. Define the variable apache: httpd in the CentOS file, and
apache: apache2 in the default file.

As long as you don’t disable gather_facts (or if you run a setup task at some point to
gather facts manually), Ansible stores the OS of the server in the variable ansible_-
os_family, and will include the vars file with the resulting name. If ansible can’t
find a file with that name, it will use the variables loaded from the first loaded file
(apache_default.yml). So, on aDebian or Ubuntu server, Ansible would correctly use
apache2 as the service name, even though there is no apache_Debian.yml or apache_-
Ubuntu.yml file available.

Inventory variables

Variables may also be added via Ansible inventory files, either inline with a host
definition, or after a group:

1 # Host-specific variables (defined inline).

2 [washington]

3 app1.example.com proxy_state=present

4 app2.example.com proxy_state=absent

5

6 # Variables defined for the entire group.

7 [washington:vars]

8 cdn_host=washington.static.example.com

9 api_version=3.0.1

If you need to define more than a few variables, especially variables that apply to
more than one or two hosts, inventory files can be cumbersome. In fact, Ansible’s

Chapter 5 - Ansible Playbooks - Beyond the Basics 90

documentation recommends not storing variables within the inventory. Instead, you
can use group_vars and host_vars YAML variable files within a specific path, and
Ansible will assign them to individual hosts and groups defined in your inventory.

For example, to apply a set of variables to the host app1.example.com, create a blank
file named app1.example.com at the location /etc/ansible/host_vars/app1.example.com,
and add variables as you would in an included vars_files YAML file:

foo: bar

baz: qux

To apply a set of variables to the entire washington group, create a similar file in the
location /etc/ansible/group_vars/washington (substitute washington for whatever
group name’s variables you’re defining).

You can also put these files (named the same way) in host_vars or group_vars

directories in your playbook’s directory. Ansible will use the variables defined in
the inventory /etc/ansible/[host|group]_vars directory first (if the appropriate
files exist), then it will use variables defined in the playbook directories.

Another alternative to using host_vars and group_vars is to use conditional variable
file imports, as was mentioned above.

Registered Variables

There are many times that you will want to run a command, then use its return code,
stderr, or stdout to determine whether to run a later task. For these situations, Ansible
allows you to use register to store the output of a particular command in a variable
at runtime.

In the previous chapter, we used register to get the output of the forever list

command, then used the output to determine whether we needed to start our Node.js
app:

Chapter 5 - Ansible Playbooks - Beyond the Basics 91

39 - name: "Node: Check list of Node.js apps running."

40 command: forever list

41 register: forever_list

42 changed_when: false

43

44 - name: "Node: Start example Node.js app."

45 command: forever start {{ node_apps_location }}/app/app.js

46 when: "forever_list.stdout.find(node_apps_location + \

47 '/app/app.js') == -1"

In that example, we used a string function built into Python (find) to search for the
path to our app, and if it was not present, the Node.js app was started.

We will explore the use of register further later in this chapter.

Accessing Variables

Simple variables (gathered by Ansible, defined in inventory files, or defined in
playbook or variable files) can be used as part of a task using syntax like {{ variable

}}. For example:

- command: /opt/my-app/rebuild {{ my_environment }}

When the command is run, Ansible will substitute the contents of my_environment
for {{ my_environment }}. So the resulting command would be something like
/opt/my-app/rebuild dev.

Many variables you will use are structured as arrays (or ‘lists’), and accessing the
array foo would not give you enough information to be useful (except when passing
in the array in a context where Ansible will use the entire array, like when using
with_items).

If you define a list variable like so:

Chapter 5 - Ansible Playbooks - Beyond the Basics 92

foo_list:

- one

- two

- three

You could access the first item in that array with either of the following syntax:

foo[0]

foo|first

Note that the first line uses standard Python array access syntax (‘retrieve the first
(0-indexed) element of the array’), whereas the second line uses a convenient filter
provided by Jinja. Either way is equally valid and useful, and it’s really up to you
whether you like the first or second technique.

For larger and more structured arrays (for example, when retrieving the IP address
of the server using the facts Ansible gathers from your server), you can access any
part of the array by drilling through the array keys, either using bracket ([]) or dot
(.) syntax. For example, if you would like to retrieve the information about the eth0
network interface, you could first take a look at the entire array using debug in your
playbook:

In your playbook.

tasks:

- debug: var=ansible_eth0

TASK: [debug var=ansible_eth0] **************************************

ok: [webserver] => {

"ansible_eth0": {

"active": true,

"device": "eth0",

"ipv4": {

"address": "10.0.2.15",

"netmask": "255.255.255.0",

"network": "10.0.2.0"

Chapter 5 - Ansible Playbooks - Beyond the Basics 93

},

"ipv6": [

{

"address": "fe80::a00:27ff:feb1:589a",

"prefix": "64",

"scope": "link"

}

],

"macaddress": "08:00:27:b1:58:9a",

"module": "e1000",

"mtu": 1500,

"promisc": false,

"type": "ether"

}

}

Now that you know the overall structure of the variable, you can use either of the
following techniques to retrieve only the IPv4 address of the server:

{{ ansible_eth0.ipv4.address }}

{{ ansible_eth0['ipv4']['address'] }}

Host and Group variables

Ansible conveniently lets you define or override variables on a per-host or per-group
basis. As we learned earlier, your inventory file can define groups and hosts like so:

1 [group]

2 host1

3 host2

The simplest way to define variables on a per-host or per-group basis is to do so
directly within the inventory file:

Chapter 5 - Ansible Playbooks - Beyond the Basics 94

1 [group]

2 host1 admin_user=jane

3 host2 admin_user=jack

4 host3

5

6 [group:vars]

7 admin_user=john

In this case, Ansible will use the group default variable ‘john’ for {{ admin_user }},
but for host1 and host2, the admin users defined alongside the hostname will be
used.

This is convenient andworks well when you need to define a variable or two per-host
or per-group, but once you start getting into more involved playbooks, you might
need to add a few (3+) host-specific variables. In these situations, you can define the
variables in a different place to make maintenance and readability much easier.

Automatically-loaded group_vars and host_vars

Ansible will search within the same directory as your inventory file (or inside
/etc/ansible if you’re using the default inventory file at /etc/ansible/hosts) for
two specific directories: group_vars and host_vars.

You can place YAML files inside these directories named after the group name or
hostname defined in your inventory file. Continuing our example above, let’s move
the specific variables into place:

1 ---

2 # File: /etc/ansible/group_vars/group

3 admin_user: john

1 ---

2 # File: /etc/ansible/host_vars/host1

3 admin_user: jane

Chapter 5 - Ansible Playbooks - Beyond the Basics 95

Even if you’re using the default inventory file (or an inventory file outside of
your playbook’s root directory), Ansible will also use host and group variables
files located within your playbook’s own group_vars and host_vars directories.
This is convenient when you want to package together your entire playbook and
infrastructure configuration (including all host/group-specific configuration) into a
source-control repository.

You can also define a group_vars/all file that would apply to all groups. Usually,
though, it’s best to provide defaults in your playbooks and roles (which will be
discussed later).

Magic variables with host and group variables and information

If you ever need to retrieve a specific host’s variables from another host, Ansible
provides a magic hostvars variable containing all the defined host variables (from
inventory files and any discovered YAML files inside host_vars directories).

From any host, returns "jane".

{{ hostvars['host1']['admin_user'] }}

There are a variety of other variables Ansible provides that you may need to use
from time to time:

• groups: A list of all group names in the inventory.
• group_names: A list of all the groups of which the current host is a part.
• inventory_hostname: The hostname of the current host, according to the inven-
tory (this can differ from ansible_hostname, which is the hostname reported by
the system).

• inventory_hostname_short: The first part of inventory_hostname, up to the
first period.

• play_hosts: All hosts on which the current play will be run.

Please see Magic Variables, and How To Access Information About Other Hosts⁵⁷
in Ansible’s official documentation for the latest information and further usage
examples.

⁵⁷http://docs.ansible.com/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-
hosts

http://docs.ansible.com/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts
http://docs.ansible.com/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts
http://docs.ansible.com/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts

Chapter 5 - Ansible Playbooks - Beyond the Basics 96

Facts (Variables derived from system information)

By default, whenever you run an Ansible playbook, Ansible first gathers information
(“facts”) about each host in the play. You may have noticed this whenever we ran
playbooks in earlier chapters:

$ ansible-playbook playbook.yml

PLAY [group] **

GATHERING FACTS ***

ok: [host1]

ok: [host2]

ok: [host3]

Facts can be extremely helpful when you’re running playbooks; you can use
gathered information like host IP addresses, CPU type, disk space, operating system
information, and network interface information to change when certain tasks are
run, or to change certain information used in configuration files.

To get a list of every gathered fact available, you can use the ansible command with
the setup module:

$ ansible munin -m setup

munin.midwesternmac.com | success >> {

"ansible_facts": {

"ansible_all_ipv4_addresses": [

"167.88.120.81"

],

"ansible_all_ipv6_addresses": [

"2604:180::a302:9076",

[...]

If you don’t need to use facts, and would like to save a few seconds per-host when
running playbooks (this can be especially helpful when running an Ansible playbook
against dozens or hundreds of servers), you can set gather_facts: no in your
playbook:

Chapter 5 - Ansible Playbooks - Beyond the Basics 97

- hosts: db

gather_facts: no

Many of my own playbooks and roles use facts like ansible_os_family, ansible_-
hostname, and ansible_memtotal_mb to register new variables or in tandem with
when, to determine whether to run certain tasks.

If you have Facter⁵⁸ or Ohai⁵⁹ installed on a remote host, Ansible will
also include their gathered facts as well, prefixed by facter_ and ohai_ ,
respectively. If you’re using Ansible in tandem with Puppet or Chef, and
are already familiar with those system-information-gathering tools, you
can conveniently use them within Ansible as well. If not, Ansible’s Facts
are usually sufficient for whatever you need to do, and can be made even
more flexible through the use of Local Facts.

If you run a playbook against similar servers or virtual machines (e.g. all
your servers are running the same OS, same hosting provider, etc.), facts
are almost always consistent in their behavior. When running playbooks
against a diverse set of hosts (for example, hosts with different OSes, virtu-
alization stacks, or hosting providers), know that some facts may contain
different information than you were expecting. For Server Check.in⁶⁰, I
have servers from no less than five different hosting providers, running
on vastly different hardware, so I am sure to monitor the output of my
ansible-playbook runs for abnormalities, especially when adding new
servers to the mix.

Local Facts (Facts.d)

Another way of defining host-specific facts is to place .fact file in a special directory
on remote hosts, /etc/ansible/facts.d/. These files can be either JSON or INI
files, or you could use executables that return JSON. As an example, create the
file /etc/ansible/facts.d/settings.fact on a remote host, with the following
contents:

⁵⁸https://puppet.com/docs/puppet/latest/facter.html
⁵⁹https://docs.chef.io/ohai/
⁶⁰https://servercheck.in/

https://puppet.com/docs/puppet/latest/facter.html
https://docs.chef.io/ohai/
https://servercheck.in/
https://puppet.com/docs/puppet/latest/facter.html
https://docs.chef.io/ohai/
https://servercheck.in/

Chapter 5 - Ansible Playbooks - Beyond the Basics 98

1 [users]

2 admin=jane,john

3 normal=jim

Next, use Ansible’s setup module to display the new facts on the remote host:

$ ansible hostname -m setup -a "filter=ansible_local"

munin.midwesternmac.com | success >> {

"ansible_facts": {

"ansible_local": {

"settings": {

"users": {

"admin": "jane,john",

"normal": "jim"

}

}

}

},

"changed": false

}

If you are using a playbook to provision a new server, and part of that playbook adds
a local .fact file which generates local facts that are used later, you can explicitly
tell Ansible to reload the local facts using a task like the following:

1 - name: Reload local facts.

2 setup: filter=ansible_local

While it may be tempting to use local facts rather than host_vars or other
variable definition methods, remember that it’s often better to build your
playbooks in a way that doesn’t rely (or care about) specific details of
individual hosts. Sometimes it is necessary to use local facts (especially
if you are using executables in facts.d to define the facts based on changing
local environments), but it’s almost always better to keep configuration in
a central repository, and move away from host-specific facts.

Chapter 5 - Ansible Playbooks - Beyond the Basics 99

Note that setup module options (like filter) won’t work on remote
Windows hosts, as of this writing.

Ansible Vault - Keeping secrets secret

If you use Ansible to fully automate the provisioning and configuration of your
servers, chances are you will need to use passwords or other sensitive data for some
tasks, whether it’s setting a default admin password, synchronizing a private key, or
authenticating to a remote service.

Some projects store such data in a normal variables file, in version control with the
rest of the playbook, but in this case, the data is easily accessed by anyone with a
copy of the project. It’s better to treat passwords and sensitive data specially, and
there are two primary ways to do this:

1. Use a separate secret management service, such as Vault⁶¹ by HashiCorp,
Keywhiz⁶² by Square, or a hosted service like AWS’s KeyManagement Service⁶³
or Microsoft Azure’s Key Vault⁶⁴.

2. Use Ansible Vault, which is built into Ansible and stores encrypted passwords
and other sensitive data alongside the rest of your playbook.

For most projects, Ansible’s built-in Vault is adequate, but if you need some of the
more advanced features found in the other projects listed in option #1 above, Ansible
Vault might be too limiting.

Ansible Vault works much like a real-world vault:

1. You take any YAML file you would normally have in your playbook (e.g. a
variables file, host vars, group vars, role default vars, or even task includes!),
and store it in the vault.

2. Ansible encrypts the vault (‘closes the door’), using a key (a password you set).

⁶¹https://vaultproject.io/
⁶²http://square.github.io/keywhiz/
⁶³https://aws.amazon.com/kms/
⁶⁴http://azure.microsoft.com/en-us/services/key-vault/

https://vaultproject.io/
http://square.github.io/keywhiz/
https://aws.amazon.com/kms/
http://azure.microsoft.com/en-us/services/key-vault/
https://vaultproject.io/
http://square.github.io/keywhiz/
https://aws.amazon.com/kms/
http://azure.microsoft.com/en-us/services/key-vault/

Chapter 5 - Ansible Playbooks - Beyond the Basics 100

3. You store the key (your vault’s password) separately from the playbook in a
location only you control or can access.

4. You use the key to let Ansible decrypt the encrypted vault whenever you run
your playbook.

Let’s see how it works in practice. Here’s a playbook that connects to a service’s API,
and requires a secure API key to do so:

1 ---

2 - hosts: appserver

3

4 vars_files:

5 - vars/api_key.yml

6

7 tasks:

8 - name: Connect to service with our API key.

9 command: connect_to_service

10 environment:

11 SERVICE_API_KEY: "{{ myapp_service_api_key }}"

The vars_file, which is stored alongside the playbook, in plain text, looks like:

1 ---

2 myapp_service_api_key: "yJJvPqhqgxyPZMispRycaVMBmBWPqYDf3DFanPxAMAm4UZc\

3 w"

This is convenient, but it’s not safe to store the API key in plain text. Even when
running the playbook locally on an access-restricted computer, secrets should be
encrypted. If you’re running the playbook via a central server (e.g. using Ansible
Tower or Jenkins), or if you have this playbook in a shared repository, it’s even more
important. You may follow best practices for physical and OS security, but can you
guarantee every developer and sysadmin who has access to this file does the same?

For the best security, use Ansible Vault to encrypt the file. If you ever checked the
original file into version control, it’s also a good time to expire the old key and
generate a new one, since the old key is part of the plaintext history of your project!

To encrypt the file with Vault, run:

Chapter 5 - Ansible Playbooks - Beyond the Basics 101

$ ansible-vault encrypt api_key.yml

Enter a secure password for the file, and Ansible will encrypt it. If you open the file
now, you should see something like:

1 $ANSIBLE_VAULT;1.1;AES256

2 653635363963663439383865313262396665353063663839616266613737616539303

3 530313663316264336133626266336537616463366465653862366231310a30633064

4 633234306335333739623661633132376235666563653161353239383664613433663

5 1303132303566316232373865356237383539613437653563300a3263386336393866

6 376535646562336664303137346432313563373534373264363835303739366362393

7 639646137656633656630313933323464333563376662643336616534353234663332

8 656138326530366434313161363562333639383864333635333766316161383832383

9 831626166623762643230313436386339373437333830306438653833666364653164

10 6633613132323738633266363437

Next time you run the playbook, you will need to provide the password you used
for the vault so Ansible can decrypt the playbook in memory for the brief period in
which it will be used. If you don’t specify the password, you’ll receive an error:

$ ansible-playbook test.yml

ERROR: A vault password must be specified to decrypt vars/api_key.yml

There are a number of ways you can provide the password, depending on how
you run playbooks. Providing the password at playbook runtime works well when
running a playbook interactively:

Use --ask-vault-pass to supply the vault password at runtime.

$ ansible-playbook test.yml --ask-vault-pass

Vault password:

After supplying the password, Ansible decrypts the vault (in memory) and runs the
playbook with the decrypted data.

You can edit the encrypted file with ansible-vault edit. You can also rekey a file
(change its password), create a new file, view an existing file, or decrypt a file. All

Chapter 5 - Ansible Playbooks - Beyond the Basics 102

these commands work with one or multiple files (e.g. ansible-vault create x.yml

y.yml z.yml).

For convenience, or for automated playbook runs (e.g. on a continuous integration
server), you can supply vault passwords via a password file. Just like secure keys
in your ∼/.ssh folder, you should treat these files carefully: never check them
into source control, and set strict permissions (e.g. 600) so only you can read or
write this file. Create the file ∼/.ansible/vault_pass.txt with your password in
it, set permissions to 600, and tell Ansible the location of the file when you run the
playbook:

Use --vault-password-file to supply the password via file/script.

$ ansible-playbook test.yml --vault-password-file ~/.ansible/\

vault_pass.txt

You could also use an executable script (e.g.∼/.ansible/vault_pass.pywith execute
permissions, 700), as long as the script outputs a single line of text, the vault password.

You can make Ansible’s Vault operations slightly faster by installing
Python’s cryptography library, with pip install cryptography.

Are you worried about the security of Vault-encrypted files? AES-256
encryption is extremely secure; it would take billions of billions of years to
decrypt this single file, even if all of today’s fastest supercomputer clusters
were all put to the task 24x7. Of course, every vault is only as secure as its
password, so make sure you use a secure password and store it securely!

More options and examples are available in the official documentation for Ansible
Vault⁶⁵.

⁶⁵http://docs.ansible.com/ansible/playbooks_vault.html

http://docs.ansible.com/ansible/playbooks_vault.html
http://docs.ansible.com/ansible/playbooks_vault.html
http://docs.ansible.com/ansible/playbooks_vault.html

Chapter 5 - Ansible Playbooks - Beyond the Basics 103

Variable Precedence

It should be rare that you would need to dig into the details of which variable is
used when you define the same variable in five different places, but since there are
odd occasions where this is the case, Ansible’s documentation provides the following
ranking:

1. --extra-vars passed in via the command line (these always win, no matter
what).

2. Task-level vars (in a task block).
3. Block-level vars (for all tasks in a block).
4. Role vars (e.g. [role]/vars/main.yml) and vars from include_vars module.
5. Vars set via set_facts modules.
6. Vars set via register in a task.
7. Individual play-level vars: 1. vars_files 2. vars_prompt 3. vars
8. Host facts.
9. Playbook host_vars.
10. Playbook group_vars.
11. Inventory: 1. host_vars 2. group_vars 3. vars
12. Role default vars (e.g. [role]/defaults/main.yml).

After lots of experience building playbooks, roles, and managing inventories, you’ll
likely find the right mix of variable definition for your needs, but there are a few
general things that will mitigate any pain in setting and overriding variables on a
per-play, per-host, or per-run basis:

• Roles (to be discussed in the next chapter) should provide sane default values
via the role’s ‘defaults’ variables. These variables will be the fallback in case the
variable is not defined anywhere else in the chain.

• Playbooks should rarely define variables (e.g. via set_fact), but rather, vari-
ables should be defined either in included vars_files or, less often, via
inventory.

• Only truly host- or group-specific variables should be defined in host or group
inventories.

Chapter 5 - Ansible Playbooks - Beyond the Basics 104

• Dynamic and static inventory sources should contain a minimum of variables,
especially as these variables are often less visible to those maintaining a
particular playbook.

• Command line variables (-e) should be avoided when possible. One of the main
use cases is when doing local testing or running one-off playbooks where you
aren’t worried about the maintainability or idempotence of the tasks you’re
running.

See Ansible’s Variable Precedence⁶⁶ documentation for more detail and examples,
especially if you use older versions of Ansible (since older versions were not as strict
about the precedence).

If/then/when - Conditionals

Many tasks need only be run in certain circumstances. Some tasks use modules with
built-in idempotence (as is the case when ensuring a yum or apt package is installed),
and you usually don’t need to define further conditional behaviors for these tasks.

However, there are many tasks—especially those using Ansible’s command or shell
modules—which require further input as to when they’re supposed to run, whether
they’ve changed anything after they’ve been run, or when they’ve failed to run.

We’ll cover all the main conditionals behaviors you can apply to Ansible tasks, as
well as how you can tell Ansible when a play has done something to a server or
failed.

Jinja Expressions, Python built-ins, and Logic

Before discussing all the different uses of conditionals in Ansible, it’s worthwhile
to cover a small part of Jinja (the syntax Ansible uses both for templates and for
conditionals), and available Python functions (often referred to as ‘built-ins’). Ansible
uses expressions and built-ins with when, changed_when, and failed_when so you can
describe these things to Ansible with as much precision as possible.

⁶⁶http://docs.ansible.com/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

http://docs.ansible.com/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
http://docs.ansible.com/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

Chapter 5 - Ansible Playbooks - Beyond the Basics 105

Jinja allows the definition of literals like strings ("string"), integers (42), floats
(42.33), lists ([1, 2, 3]), tuples (like lists, but can’t be modified) dictionaries ({key:
value, key2: value2}), and booleans (true or false).

Jinja also allows basic math operations, like addition, subtraction, multiplication and
division, and comparisons (== for equality, != for inequality, >= for greater than or
equal to, etc.). Logical operators are and, or, and not, and you can group expressions
by placing them within parenthesis.

If you’re familiar with almost any programming language, you will probably pick up
basic usage of Jinja expressions in Ansible very quickly.

For example:

The following expressions evaluate to 'true':

1 in [1, 2, 3]

'see' in 'Can you see me?'

foo != bar

(1 < 2) and ('a' not in 'best')

The following expressions evaluate to 'false':

4 in [1, 2, 3]

foo == bar

(foo != foo) or (a in [1, 2, 3])

Jinja also offers a helpful set of ‘tests’ you can use to test a given object. For example,
if you define the variable foo for only a certain group of servers, but not others, you
can use the expression foo is defined with a conditional to evaluate to ‘true’ if the
variable is defined, or false if not.

There are many other checks you can perform as well, like undefined (the opposite
of defined), equalto (works like ==), even (returns true if the variable is an even
number), and iterable (if you can iterate over the object). We’ll cover the full gamut
later in the book, but for now, know that you can use Ansible conditionals with Jinja
expressions to do some powerful things!

For the few cases where Jinja doesn’t provide enough power and flexibility, you
can invoke Python’s built-in library functions (like string.split, [number].is_-

Chapter 5 - Ansible Playbooks - Beyond the Basics 106

signed()) to manipulate variables and determine whether a given task should be
run, resulted in a change, failed, etc.

As an example, I need to parse version strings from time to time, to find the major
version of a particular project. Assuming the variable software_version is set to
4.6.1, I can get the major version by splitting the string on the . character, then
using the first element of the array. I can check if the major version is 4 using when,
and choose to run (or not run) a certain task:

1 - name: Do something only for version 4 of the software.

2 [task here]

3 when: software_version.split('.')[0] == '4'

It’s generally best to stick with simpler Jinja filters and variables, but it’s nice to be
able to use Python when you’re doing more advanced variable manipulation.

register

In Ansible, any play can ‘register’ a variable, and once registered, that variable will be
available to all subsequent tasks. Registered variables work just like normal variables
or host facts.

Many times, you may need the output (stdout or stderr) of a shell command, and you
can get that in a variable using the following syntax:

- shell: my_command_here

register: my_command_result

Later, you can access stdout (as a string) with my_command_result.stdout, and stderr
with my_command_result.stderr.

Registered facts are very helpful for many types of tasks, and can be used both with
conditionals (defining when and how a play runs), and in any part of the play. As an
example, if you have a command that outputs a version number string like “10.0.4”,
and you register the output as version, you can use the string later when doing a
code checkout by printing the variable {{ version.stdout }}.

Chapter 5 - Ansible Playbooks - Beyond the Basics 107

If youwant to see the different properties of a particular registered variable,
you can run a playbook with -v to inspect play output. Usually, you’ll get
access to values like changed (whether the play resulted in a change), delta
(the time it took to run the play), stderr and stdout, etc. Some Ansible
modules (like stat) add much more data to the registered variable, so
always inspect the output with -v if you need to see what’s inside.

when

One of the most helpful extra keys you can add to a play is a when statement. Let’s
take a look at a simple use of when:

- yum: name=mysql-server state=present

when: is_db_server

The above statement assumes you’ve defined the is_db_server variable as a boolean
(true or false) earlier, and will run the play if the value is true, or skip the play when
the value is false.

If you only define the is_db_server variable on database servers (meaning there are
times when the variable may not be defined at all), you could run tasks conditionally
like so:

- yum: name=mysql-server state=present

when: (is_db_server is defined) and is_db_server

when is even more powerful if used in conjunction with variables registered by
previous tasks. As an example, we want to check the status of a running application,
and run a play only when that application reports it is ‘ready’ in its output:

Chapter 5 - Ansible Playbooks - Beyond the Basics 108

- command: my-app --status

register: myapp_result

- command: do-something-to-my-app

when: "'ready' in myapp_result.stdout"

These examples are a little contrived, but they illustrate basic uses of when in your
tasks. Here are some examples of uses of when in real-world playbooks:

From our Node.js playbook - register a command's output, then see

if the path to our app is in the output. Start the app if it's

not present.

- command: forever list

register: forever_list

- command: forever start /path/to/app/app.js

when: "forever_list.stdout.find('/path/to/app/app.js') == -1"

Run 'ping-hosts.sh' script if 'ping_hosts' variable is true.

- command: /usr/local/bin/ping-hosts.sh

when: ping_hosts

Run 'git-cleanup.sh' script if a branch we're interested in is

missing from git's list of branches in our project.

- command: chdir=/path/to/project git branch

register: git_branches

- command: /path/to/project/scripts/git-cleanup.sh

when: "(is_app_server == true) and ('interesting-branch' not in \

git_branches.stdout)"

Downgrade PHP version if the current version contains '7.0'.

- shell: php --version

register: php_version

- shell: yum -y downgrade php*

when: "'7.0' in php_version.stdout"

Copy a file to the remote server if the hosts file doesn't exist.

Chapter 5 - Ansible Playbooks - Beyond the Basics 109

- stat: path=/etc/hosts

register: hosts_file

- copy: src=path/to/local/file dest=/path/to/remote/file

when: hosts_file.stat.exists == false

changed_when and failed_when

Just like when, you can use changed_when and failed_when to influence Ansible’s
reporting of when a certain task results in changes or failures.

It is difficult for Ansible to determine if a given command results in changes, so
if you use the command or shell module without also using changed_when, Ansible
will always report a change. Most Ansible modules report whether they resulted in
changes correctly, but you can also override this behavior by invoking changed_when
yourself.

When using PHP Composer as a command to install project dependencies, it’s useful
to know when Composer installed something, or when nothing changed. Here’s an
example:

1 - name: Install dependencies via Composer.

2 command: "/usr/local/bin/composer global require phpunit/phpunit \

3 --prefer-dist"

4 register: composer

5 changed_when: "'Nothing to install' not in composer.stdout"

You can see we used register to store the results of the command, then we checked
whether a certain string was in the registered variable’s stdout. Only when Composer
doesn’t do anything will it print “Nothing to install or update”, so we use that string
to tell Ansible if the task resulted in a change.

Many command-line utilities print results to stderr instead of stdout, so failed_when
can be used to tell Ansible when a task has actually failed and is not just reporting
its results in the wrong way. Here’s an example where we need to parse the stderr
of a Jenkins CLI command to see if Jenkins did, in fact, fail to perform the command
we requested:

Chapter 5 - Ansible Playbooks - Beyond the Basics 110

1 - name: Import a Jenkins job via CLI.

2 shell: >

3 java -jar /opt/jenkins-cli.jar -s http://localhost:8080/

4 create-job "My Job" < /usr/local/my-job.xml

5 register: import

6 failed_when: "import.stderr and 'exists' not in import.stderr"

In this case, we only want Ansible to report a failure when the command returns
an error, and that error doesn’t contain ‘exists’. It’s debatable whether the command
should report a job already exists via stderr, or just print the result to stdout… but
it’s easy to account for whatever the command does with Ansible!

ignore_errors

Sometimes there are commands that should be run always, and they often report
errors. Or there are scripts you might run that output errors left and right, and the
errors don’t actually indicate a problem, but they’re just annoying (and they cause
your playbooks to stop executing).

For these situations, you can add ignore_errors: true to the task, and Ansible will
remain blissfully unaware of any problems running a particular task. Be careful using
this, though; it’s usually best if you can find away toworkwith and around the errors
generated by tasks so playbooks do fail if there are actual problems.

Delegation, Local Actions, and Pauses

Some tasks, like sending a notification, communicating with load balancers, or
making changes to DNS, networking, or monitoring servers, require Ansible to run
the task on the host machine (running the playbook) or another host besides the
one(s) being managed by the playbook. Ansible allows any task to be delegated to a
particular host using delegate_to:

Chapter 5 - Ansible Playbooks - Beyond the Basics 111

1 - name: Add server to Munin monitoring configuration.

2 command: monitor-server webservers {{ inventory_hostname }}

3 delegate_to: "{{ monitoring_master }}"

Delegation is often used to manage a server’s participation in a load balancer or
replication pool; you might either run a particular command locally (as in the
example below), or you could use one of Ansible’s built-in load balancer modules
and delegate_to a specific load balancer host directly:

1 - name: Remove server from load balancer.

2 command: remove-from-lb {{ inventory_hostname }}

3 delegate_to: 127.0.0.1

If you’re delegating a task to localhost, Ansible has a convenient shorthand you can
use, local_action, instead of adding the entire delegate_to line:

1 - name: Remove server from load balancer.

2 local_action: command remove-from-lb {{ inventory_hostname }}

Pausing playbook execution with wait_for

You might also use local_action in the middle of a playbook to wait for a freshly-
booted server or application to start listening on a particular port:

1 - name: Wait for web server to start.

2 local_action:

3 module: wait_for

4 host: "{{ inventory_hostname }}"

5 port: "{{ webserver_port }}"

6 delay: 10

7 timeout: 300

8 state: started

Chapter 5 - Ansible Playbooks - Beyond the Basics 112

The above task waits until webserver_port is open on inventory_hostname, as
checked from the host running the Ansible playbook, with a 5-minute timeout (and
10 seconds before the first check, and between checks).

wait_for can be used to pause your playbook execution to wait for many different
things:

• Using host and port, wait a maximum of timeout seconds for the port to be
available (or not).

• Using path (and search_regex if desired), wait a maximum of timeout seconds
for the file to be present (or absent).

• Using host and port and drained for the state parameter, check if a given port
has drained all it’s active connections.

• Using delay, you can simply pause playbook execution for a given amount of
time (in seconds).

Running an entire playbook locally

When running playbooks on the server or workstation where the tasks need to be
run (e.g. self-provisioning), or when a playbook should be otherwise run on the same
host as the ansible-playbook command is run, you can use --connection=local to
speed up playbook execution by avoiding the SSH connection overhead.

As a quick example, here’s a short playbook that you can run with the command
ansible-playbook test.yml --connection=local:

1 ---

2 - hosts: 127.0.0.1

3 gather_facts: no

4

5 tasks:

6 - name: Check the current system date.

7 command: date

8 register: date

9

10 - name: Print the current system date.

11 debug: var=date.stdout

Chapter 5 - Ansible Playbooks - Beyond the Basics 113

This playbookwill run on localhost and output the current date in a debugmessage. It
should run very fast (it took about .2 seconds on my Mac!) since it’s running entirely
over a local connection.

Running a playbook with --connection=local is also useful when you’re either
running a playbook with --check mode to verify configuration (e.g. on a cron job
that emails you when changes are reported), or when testing playbooks on testing
infrastructure (e.g. via Travis, Jenkins, or some other CI tool).

Prompts

Under rare circumstances, you may require the user to enter the value of a variable
that will be used in the playbook. If the playbook requires a user’s personal login
information, or if you prompt for a version or other values that may change
depending on who is running the playbook, or where it’s being run, and if there’s
no other way this information can be configured (e.g. using environment variables,
inventory variables, etc.), use vars_prompt.

As a simple example, you can request a user to enter a username and password that
could be used to login to a network share:

1 ---

2 - hosts: all

3

4 vars_prompt:

5 - name: share_user

6 prompt: "What is your network username?"

7

8 - name: share_pass

9 prompt: "What is your network password?"

10 private: yes

Before Ansible runs the play, Ansible prompts the user for a username and password,
the latter’s input being hidden on the command line for security purposes.

There are a few special options you can add to prompts:

Chapter 5 - Ansible Playbooks - Beyond the Basics 114

• private: If set to yes, the user’s input will be hidden on the command line.
• default: You can set a default value for the prompt, to save time for the end
user.

• encrypt / confirm / salt_size: These values can be set for passwords so you
can verify the entry (the user will have to enter the password twice if confirm is
set to yes), and encrypt it using a salt (with the specified size and crypt scheme).
See Ansible’s Prompts⁶⁷ documentation for detailed information on prompted
variable encryption.

Prompts are a simple way to gather user-specific information, but in most cases,
you should avoid them unless absolutely necessary. It’s preferable to use role or
playbook variables, inventory variables, or even local environment variables, to
maintain complete automation of the playbook run.

Tags

Tags allow you to run (or exclude) subsets of a playbook’s tasks.

You can tag roles, included files, individual tasks, and even entire plays. The syntax
is simple, and below are examples of the different ways you can add tags:

1 ---

2 # You can apply tags to an entire play.

3 - hosts: webservers

4 tags: deploy

5

6 roles:

7 # Tags applied to a role will be applied to tasks in the role.

8 - { role: tomcat, tags: ['tomcat', 'app'] }

9

10 tasks:

11 - name: Notify on completion.

12 local_action:

13 module: osx_say

⁶⁷http://docs.ansible.com/playbooks_prompts.html#prompts

http://docs.ansible.com/playbooks_prompts.html#prompts
http://docs.ansible.com/playbooks_prompts.html#prompts

Chapter 5 - Ansible Playbooks - Beyond the Basics 115

14 msg: "{{inventory_hostname}} is finished!"

15 voice: Zarvox

16 tags:

17 - notifications

18 - say

19

20 - import_tasks: foo.yml

21 tags: foo

Assuming we save the above playbook as tags.yml, you could run the command
below to only run the tomcat role and the Notify on completion task:

1 $ ansible-playbook tags.yml --tags "tomcat,say"

If youwant to exclude anything taggedwith notifications, you can use --skip-tags.

1 $ ansible-playbook tags.yml --skip-tags "notifications"

This is incredibly handy if you have a decent tagging structure; when you want to
only run a particular portion of a playbook, or one play in a series (or, alternatively,
if you want to exclude a play or included tasks), then it’s easy to do using --tags or
--skip-tags.

There is one caveat when adding one or multiple tags using the tags option in a
playbook: you can use the shorthand tags: tagname when adding just one tag, but
if adding more than one tag, you have to use YAML’s list syntax, for example:

Chapter 5 - Ansible Playbooks - Beyond the Basics 116

Shorthand list syntax.

tags: ['one', 'two', 'three']

Explicit list syntax.

tags:

- one

- two

- three

Non-working example.

tags: one, two, three

In general, I tend to use tags for larger playbooks, especially with individual roles
and plays, but unless I’m debugging a set of tasks, I generally avoid adding tags to
individual tasks or includes (not adding tags everywhere reduces visual clutter). You
will need to find a tagging style that suits your needs and lets you run (or not run)
the specific parts of your playbooks you desire.

Blocks

Introduced in Ansible 2.0.0, Blocks allow you to group related tasks together and
apply particular task parameters on the block level. They also allow you to handle
errors inside the blocks in a way similar to most programming languages’ exception
handling.

Here’s an example playbook that uses blocks with when to run group of tasks specific
to one platform without when parameters on each task:

Chapter 5 - Ansible Playbooks - Beyond the Basics 117

1 ---

2 - hosts: web

3 tasks:

4 # Install and configure Apache on RHEL/CentOS hosts.

5 - block:

6 - yum: name=httpd state=present

7 - template: src=httpd.conf.j2 dest=/etc/httpd/conf/httpd.conf

8 - service: name=httpd state=started enabled=yes

9 when: ansible_os_family == 'RedHat'

10 become: yes

11

12 # Install and configure Apache on Debian/Ubuntu hosts.

13 - block:

14 - apt: name=apache2 state=present

15 - template: src=httpd.conf.j2 dest=/etc/apache2/apache2.conf

16 - service: name=apache2 state=started enabled=yes

17 when: ansible_os_family == 'Debian'

18 become: yes

If you want to perform a series of tasks with one set of task parameters (e.g. with_-
items, when, or become) applied, blocks are quite handy.

Blocks are also useful if you want to be able to gracefully handle failures in certain
tasks. There might be a task that connects your app to a monitoring service that’s
not essential for a deployment to succeed, so it would be better to gracefully handle
a failure than to bail out of the entire deployment!

Here’s how to use a block to gracefully handle task failures:

Chapter 5 - Ansible Playbooks - Beyond the Basics 118

1 tasks:

2 - block:

3 - name: Script to connect the app to a monitoring service.

4 script: monitoring-connect.sh

5 rescue:

6 - name: This will only run in case of an error in the block.

7 debug: msg="There was an error in the block."

8 always:

9 - name: This will always run, no matter what.

10 debug: msg="This always executes."

Tasks inside the block will be run first. If there is a failure in any task in block, tasks
inside rescuewill be run. The tasks inside alwayswill always be run, whether or not
there were failures in either block or rescue.

Blocks can be very helpful for building reliable playbooks, but just like exceptions in
programming languages, block/rescue/always failure handling can over-complicate
things. If it’s easier to maintain idempotence using failed_when per-task to define
acceptable failure conditions, or to structure your playbook in a different way, it may
not be necessary to use block/rescue/always.

Summary

Playbooks are Ansible’s primary means of automating infrastructure management.
After reading this chapter, you should know how to use (and hopefully not abuse!)
variables, inventories, handlers, conditionals, tags, and more.

The more you understand the fundamental components of a playbook, the more
efficient you will be at building and expanding your infrastructure with Ansible.

Chapter 5 - Ansible Playbooks - Beyond the Basics 119

/ Men have become the tools of their \

\ tools. (Henry David Thoreau) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 6 - Playbook
Organization - Roles, Includes,
and Imports
So far, we’ve used fairly straightforward examples in this book. Most examples are
created for a particular server, and are in one long playbook.

Ansible is flexible when it comes to organizing tasks in more efficient ways so
you can make playbooks more maintainable, reusable, and powerful. We’ll look
at two ways to split up tasks more efficiently using includes and roles, and we’ll
explore Ansible Galaxy, a repository of some community-maintained roles that help
configure common packages and applications.

Imports

We’ve already seen one of the most basic ways of including other files in Chapter 4,
when vars_files was used to place variables into a separate vars.yml file instead
of inline with the playbook:

- hosts: all

vars_files:

- vars.yml

Tasks can easily be included in a similar way. In the tasks: section of your playbook,
you can add import_tasks directives like so:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 121

tasks:

- import_tasks: imported-tasks.yml

Just like with variable include files, tasks are formatted in a flat list in the included
file. As an example, the imported-tasks.yml could look like this:

- name: Add profile info for user.

copy:

src: example_profile

dest: "/home/{{ username }}/.profile"

owner: "{{ username }}"

group: "{{ username }}"

mode: 0744

- name: Add private keys for user.

copy:

src: "{{ item.src }}"

dest: "/home/{{ username }}/.ssh/{{ item.dest }}"

owner: "{{ username }}"

group: "{{ username }}"

mode: 0600

with_items: "{{ ssh_private_keys }}"

- name: Restart example service.

service: name=example state=restarted

In this case, you’d probably want to name the file user.yml, since it’s used to
configure a user account and restart some service. Now, in this and any other
playbook that provisions or configures a server, if you want to configure a particular
user’s account, add the following in your playbook’s tasks section:

tasks:

- import_tasks: user.yml

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 122

We used {{ username }} and {{ ssh_private_keys }} variables in this include file
instead of hard-coded values so we could make this include file reusable. You could
define the variables in your playbook’s inline variables or an included variables file,
but Ansible also lets you pass variables directly into includes using normal YAML
syntax. For example:

tasks:

- import_tasks: user.yml

vars:

username: johndoe

ssh_private_keys:

- { src: /path/to/johndoe/key1, dest: id_rsa }

- { src: /path/to/johndoe/key2, dest: id_rsa_2 }

- import_tasks: user.yml

vars:

username: janedoe

ssh_private_keys:

- { src: /path/to/janedoe/key1, dest: id_rsa }

- { src: /path/to/janedoe/key2, dest: id_rsa_2 }

Imported files can even import other files, so you could have something like the
following:

tasks:

- import_tasks: user-config.yml

inside user-config.yml

- import_tasks: ssh-setup.yml

Includes

If you use import_tasks, Ansible statically imports the task file as if it were part of
the main playbook, once, before the Ansible play is executed.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 123

If you need to have included tasks that are dynamic—that is, they need to do different
things depending on how the rest of the playbook runs—then you can use include_-
tasks rather than import_tasks.

As an example, in one of my Ansible projects, I have a task file log_paths.yml with
the following:

- name: Check for existing log files in dynamic log_file_paths variable.

find:

paths: "{{ item }}"

patterns: '*.log'

register: found_log_file_paths

with_items: "{{ log_file_paths }}"

In this case, the log_file_paths variable is set by a task earlier in my playbook—so
this include file wouldn’t be able to know the value of that variable until the playbook
has already partly completed.

So when I include this task file, I have to do so dynamically, for example:

- include_tasks: log_paths.yml

Early on, Ansible only had static include available for task inclusion, but
as playbooks became more complex, people need to be able to include
tasks that were processed when run (instead of added to the list of tasks
before the play started running). So Ansible 2.1 introduced the static

flag for include:. This worked, but overloaded the use of one keyword,
so in Ansible 2.4, the use of include: was deprecated and you should use
import_tasks if your tasks can basically be inlined before the playbook
runs, or include_tasks if the tasks might need to be more dynamic (e.g.
registering and reacting to a new registered variable).

Dynamic includes

Until Ansible 2.0, includes were always processed when your playbook run started
(just like import_tasks behaves now), so you couldn’t do things like load a particular

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 124

include when some condition was met. Ansible 2.0 and later evaluates includes
during playbook execution, so you can do something like the following:

Include extra tasks file, only if it's present at runtime.

- name: Check if extra_tasks.yml is present.

stat: path=tasks/extra-tasks.yml

register: extra_tasks_file

connection: local

- include_tasks: tasks/extra-tasks.yml

when: extra_tasks_file.stat.exists

If the file tasks/extra-tasks.yml is not present, Ansible skips the include_tasks.
You can even use a with_items loop (or any other with_* loop) with includes.
Includes evaluated during playback execution can make your playbooks much more
flexible!

Handler imports and includes

Handlers can be imported or included just like tasks, within a playbook’s handlers
section. For example:

handlers:

- import_tasks: handlers.yml

This can be helpful in limiting the noise in your main playbook, since handlers are
usually used for things like restarting services or loading a configuration, and can
distract from the playbook’s primary purpose.

Playbook imports

Playbooks can even be included in other playbooks, using the same import syntax
in the top level of your playbook (though for playbooks, you only have import_-

playbook available, as they cannot be dynamic like task includes). For example, if
you have two playbooks—one to set up your webservers (web.yml), and one to set up
your database servers (db.yml), you could use the following playbook to run both at
the same time:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 125

- hosts: all

remote_user: root

tasks:

[...]

- import_playbook: web.yml

- import_playbook: db.yml

This way, you can create playbooks to configure all the servers in your infrastructure,
then create a master playbook that includes each of the individual playbooks. When
you want to initialize your infrastructure, make changes across your entire fleet of
servers, or check tomake sure their configurationmatches your playbook definitions,
you can run one ansible-playbook command!

Complete includes example

What if I told you we could remake the 137-line Drupal LAMP server playbook from
Chapter 4 in just 21 lines? With includes, it’s easy; just break out each of the sets of
tasks into their own include files, and you’ll end up with a main playbook like this:

1 ---

2 - hosts: all

3

4 vars_files:

5 - vars.yml

6

7 pre_tasks:

8 - name: Update apt cache if needed.

9 apt: update_cache=yes cache_valid_time=3600

10

11 handlers:

12 - import_tasks: handlers/handlers.yml

13

14 tasks:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 126

15 - import_tasks: tasks/common.yml

16 - import_tasks: tasks/apache.yml

17 - import_tasks: tasks/php.yml

18 - import_tasks: tasks/mysql.yml

19 - import_tasks: tasks/composer.yml

20 - import_tasks: tasks/drush.yml

21 - import_tasks: tasks/drupal.yml

All you need to do is create two new folders in the same folder where you saved
the Drupal playbook.yml file, handlers and tasks, then create files inside for each
section of the playbook.

For example, inside handlers/handlers.yml, you’d have:

1 ---

2 - name: restart apache

3 service: name=apache2 state=restarted

And inside tasks/drush.yml:

1 ---

2 - name: Check out drush 8.x branch.

3 git:

4 repo: https://github.com/drush-ops/drush.git

5 version: 8.x

6 dest: /opt/drush

7

8 - name: Install Drush dependencies with Composer."

9 shell: >

10 /usr/local/bin/composer install

11 chdir=/opt/drush

12 creates=/opt/drush/vendor/autoload.php

13

14 - name: Create drush bin symlink.

15 file:

16 src: /opt/drush/drush

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 127

17 dest: /usr/local/bin/drush

18 state: link

Separating all the tasks into separate task files means you’ll have more files to
manage for your playbook, but it helps keep the main playbook more compact. It’s
easier to see all the installation and configuration steps the playbook contains, and it
separates tasks into individual, maintainable groupings. Instead of having to browse
one playbook with twenty-three separate tasks, you now maintain eight included
files with two to five tasks, each.

It’s much easier to maintain small groupings of related tasks than one long playbook.
However, there’s no reason to try to start writing a playbook with lots of individual
includes. Most of the time, it’s best to start with a monolithic playbook while you’re
working on the setup and configuration details, then move sets of tasks out to
included files after you start seeing logical groupings.

You can also use tags (demonstrated in the previous chapter) to limit the playbook
run to a certain task file. Using the above example, if you wanted to add a ‘drush’
tag to the included drush file (so you could run ansible-playbook playbook.yml

--tags=drush and only run the drush tasks), you can change line 20 to the following:

20 - import_tasks: tasks/drush.yml tags=drush

You can find the entire example Drupal LAMP server
playbook using include files in this book’s code repository at
https://github.com/geerlingguy/ansible-for-devops⁶⁸, in the includes

directory.

You can’t use variables for task include file names when using import_-

tasks (like you could with include_vars directives, e.g. include_vars:
"{{ ansible_os_family }}.yml" as a task, or with vars_files), but you
can when using include_tasks (dynamically). In either case, it might be
easier to accomplish conditional task inclusion using a different playbook
structure, or roles, which we will discuss next.

⁶⁸https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 128

Roles

Including playbooks inside other playbooks makes your playbook organization
a little more sane, but once you start wrapping up your entire infrastructure’s
configuration in playbooks, you might end up with something resembling Russian
nesting dolls.

Wouldn’t it be nice if there were a way to take bits of related configuration, and
package them together nicely? Additionally, what if we could take these packages
(often configuring the same thing on many different servers) and make them flexible
so that we can use the same package throughout our infrastructure, with slightly
different settings on individual servers or groups of servers?

Ansible Roles can do all that and more!

Let’s dive into what makes an Ansible role by taking one of the playbook examples
from Chapter 4 and splitting it into a more flexible structure using roles.

Role scaffolding

Instead of requiring you to explicitly include certain files and playbooks in a role,
Ansible automatically includes any main.yml files inside specific directories that
make up the role.

There are only two directories required to make a working Ansible role:

role_name/

meta/

tasks/

If you create a directory structure like the one shown above, with a main.yml file in
each directory, Ansible will run all the tasks defined in tasks/main.yml if you call
the role from your playbook using the following syntax:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 129

1 ---

2 - hosts: all

3 roles:

4 - role_name

Your roles can live in a couple different places: the default global Ansible role path
(configurable in /etc/ansible/ansible.cfg), or a roles folder in the same directory
as your main playbook file.

Another simple way to build the scaffolding for a role is to use the
command: ansible-galaxy init role_name. Running this command
creates an example role in the current working directory, which you can
modify to suit your needs. Using the init command also ensures the role
is structured correctly in case you want to someday contribute the role to
Ansible Galaxy.

Building your first role

Let’s clean up the Node.js server example from Chapter four, and break out one of the
main parts of the configuration—installing Node.js and any required npm modules.

Create a roles folder in the same directory as the main playbook.yml file like we
created in Chapter 4’s first example. Inside the roles folder, create a new folder:
nodejs (which will be our role’s name). Create two folders inside the nodejs role
directory: meta and tasks.

Inside the meta folder, add a simple main.yml file with the following contents:

1 ---

2 dependencies: []

The meta information for your role is defined in this file. In basic examples and
simple roles, you just need to list any role dependencies (other roles that are required
to be run before the current role can do its work). You can add more to this file to
describe your role to Ansible and to Ansible Galaxy, but we’ll dive deeper into meta
information later. For now, save the file and head over to the tasks folder.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 130

Create a main.yml file in this folder, and add the following contents (basically copying
and pasting the configuration from the Chapter 4 example):

1 ---

2 - name: Install Node.js (npm plus all its dependencies).

3 yum: name=npm state=present enablerepo=epel

4

5 - name: Install forever module (to run our Node.js app).

6 npm: name=forever global=yes state=present

The Node.js directory structure should now look like the following:

1 nodejs-app/

2 app/

3 app.js

4 package.json

5 playbook.yml

6 roles/

7 nodejs/

8 meta/

9 main.yml

10 tasks/

11 main.yml

You now have a complete Ansible role that you can use in your node.js server
configuration playbook. Delete the Node.js app installation lines from playbook.yml,
and reformat the playbook so the other tasks run first (in a pre_tasks: section instead
of tasks:), then the role, then the rest of the tasks (in the main tasks: section).
Something like:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 131

pre_tasks:

EPEL/GPG setup, firewall configuration...

roles:

- nodejs

tasks:

Node.js app deployment tasks...

You can view the full example of this playbook in the ansible-for-devops
code repository⁶⁹.

Once you finish reformatting the main playbook, everything will run exactly the
same during an ansible-playbook run, with the exception of the tasks inside the
nodejs role being prefixed with nodejs | [Task name here].

This little bit of extra data shown during playbook runs is useful because it
automatically prefixes tasks with the role that provides them, without you having
to add in descriptions as part of the name values of the tasks.

Our role isn’t all that helpful at this point, though, because it still does only one
thing, and it’s not really flexible enough to be used on other servers that might need
different Node.js modules to be installed.

More flexibility with role vars and defaults

To make our role more flexible, we can make it use a list of npm modules instead of
a hardcoded value, then allow playbooks using the role to provide their own module
list variable to override our role’s default list.

When running a role’s tasks, Ansible picks up variables defined in a role’s vars/main.yml
file and defaults/main.yml (I’ll get to the differences between the two later), but will
allow your playbooks to override the defaults or other role-provided variables if you
want.

Modify the tasks/main.yml file to use a list variable and iterate through the list to
install as many packages as your playbook wants:

⁶⁹https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/

https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/
https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/
https://github.com/geerlingguy/ansible-for-devops/blob/master/nodejs-role/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 132

1 ---

2 - name: Install Node.js (npm plus all its dependencies).

3 yum: name=npm state=present enablerepo=epel

4

5 - name: Install npm modules required by our app.

6 npm: name={{ item }} global=yes state=present

7 with_items: "{{ node_npm_modules }}"

Let’s provide a sane default for the new node_npm_modules variable in defaults/main.yml:

1 ---

2 node_npm_modules:

3 - forever

Now, if you run the playbook as-is, it will still do the exact same thing—install the
forevermodule. But since the role is more flexible, we could create a new playbook
like our first, but add a variable (either in a vars section or in an included file via
vars_files) to override the default, like so:

1 node_npm_modules:

2 - forever

3 - async

4 - request

When you run the playbook with this custom variable (we didn’t change anything
with our nodejs role), all three of the above npm modules will be installed.

Hopefully you’re beginning to see how this can be powerful!

Imagine if you had a playbook structure like:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 133

1 ---

2 - hosts: appservers

3 roles:

4 - yum-repo-setup

5 - firewall

6 - nodejs

7 - app-deploy

Each one of the roles lives in its own isolated world, and can be shared with other
servers and groups of servers in your infrastructure.

• A yum-repo-setup role could enable certain repositories and import their GPG
keys.

• A firewall role could have per-server or per-inventory-group options for ports
and services to allow or deny.

• An app-deploy role could deploy your app to a directory (configurable per-
server) and set certain app options per-server or per-group.

These things are easy to manage when you have small bits of functionality separated
into different roles. Instead of managing 100+ lines of playbook tasks, and manually
prefixing every name: with something like “Common |” or “App Deploy |”, you now
manage a few roles with 10-20 lines of YAML each.

On top of that, when you’re building your main playbooks, they can be extremely
simple (like the above example), enabling you to see everything being configured
and deployed on a particular server without scrolling through dozens of included
playbook files and hundreds of tasks.

Variable precedence: Note that Ansible handles variables placed in in-
cluded files in defaults with less precedence than those placed in vars.
If you have certain variables you need to allow hosts/playbooks to easily
override, you should probably put them into defaults. If they are common
variables that should almost always be the values defined in your role,
put them into vars. For more on variable precedence, see the aptly-named
“Variable Precedence” section in the previous chapter.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 134

Other role parts: handlers, files, and templates

Handlers

In one of the prior examples, we introduced handlers—tasks that could be called via
the notify option after any playbook task resulted in a change—and an example
handler for restarting Apache was given:

1 handlers:

2 - name: restart apache

3 service: name=apache2 state=restarted

In Ansible roles, handlers are first-class citizens, alongside tasks, variables, and
other configuration. You can store handlers directly inside a main.yml file inside
a role’s handlers directory. So if we had a role for Apache configuration, our
handlers/main.yml file could look like this:

1 ---

2 - name: restart apache

3 service: name=apache2 state=restarted

You can call handlers defined in a role’s handlers folder just like those included
directly in your playbooks (e.g. notify: restart apache).

Files and Templates

For the following examples, let’s assume our role is structured with files and
templates inside files and templates directories, respectively:

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 135

1 roles/

2 example/

3 files/

4 example.conf

5 meta/

6 main.yml

7 templates/

8 example.xml.j2

9 tasks/

10 main.yml

when copying a file directly to the server, add the filename or the full path from
within a role’s files directory, like so:

- name: Copy configuration file to server directly.

copy:

src: example.conf

dest: /etc/myapp/example.conf

mode: 0644

Similarly, when specifying a template, add the filename or the full path from within
a role’s templates directory, like so:

- name: Copy configuration file to server using a template.

template:

src: example.xml.j2

dest: /etc/myapp/example.xml

mode: 0644

The copymodule copies files fromwithin themodule’s files folder, and the template
module runs given template files through the Jinja templating engine, merging in any
variables available during your playbook run before copying the file to the server.

Organizing more complex and cross-platform roles

For simple package installation and configuration roles, you can get by with placing
all tasks, variables, and handlers directly in the respective main.yml file Ansible

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 136

automatically loads. But you can also include other files from within a role’s
main.yml files if needed.

As a rule of thumb, I keep my playbook and role task files under 100 lines of YAML
if at all possible. It’s easier to keep the entire set of tasks in my head while making
changes or fixing bugs. If I start nearing that limit, I usually split the tasks into logical
groupings, and include files from the main.yml file.

Let’s take a look at the way my geerlingguy.apache role is set up (it’s available on
Ansible Galaxy⁷⁰ and can be downloaded to your roles directory with the command
ansible-galaxy install geerlingguy.apache; we’ll discuss Ansible Galaxy itself
later).

Initially, the role’s main tasks/main.yml file looked something like the following
(generally speaking):

1 - name: Ensure Apache is installed (via apt).

2

3 - name: Configure Apache with lineinfile.

4

5 - name: Enable Apache modules.

Soon after creating the role, though, I wanted tomake the role workwith both Debian
and RHEL hosts. I could’ve added two sets of tasks in the main.yml file, resulting in
twice the number of tasks and a bunch of extra when statements:

1 - name: Ensure Apache is installed (via apt).

2 when: ansible_os_family == 'Debian'

3

4 - name: Ensure Apache is installed (via yum).

5 when: ansible_os_family == 'RedHat'

6

7 - name: Configure Apache with lineinfile (Debian).

8 when: ansible_os_family == 'Debian'

9

10 - name: Configure Apache with lineinfile (RHEL).

⁷⁰https://galaxy.ansible.com/geerlingguy/apache/

https://galaxy.ansible.com/geerlingguy/apache/
https://galaxy.ansible.com/geerlingguy/apache/
https://galaxy.ansible.com/geerlingguy/apache/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 137

11 when: ansible_os_family == 'RedHat'

12

13 - name: Enable Apache modules (Debian).

14 when: ansible_os_family == 'Debian'

15

16 - name: Other OS-agnostic tasks...

If I had gone this route, and continued with the rest of the playbook tasks in one file,
I would’ve quickly surpassed my informal 100-line limit. So I chose to use includes
in my main tasks file:

1 - name: Include OS-specific variables.

2 include_vars: "{{ ansible_os_family }}.yml"

3

4 - name: Include OS-specific setup tasks.

5 include_tasks: setup-{{ ansible_os_family }}.yml

6

7 - name: Other OS-agnostic tasks...

Two important things to notice about this style of distribution-specific inclusion:

1. When including vars and tasks files (with include_vars or include_tasks), you
can actually use variables in the name of the file. This is handy in many situ-
ations; here we’re including a vars file in the format distribution_name.yml.
For our purposes, since the role will be used on Debian and RHEL-based hosts,
we can create Debian.yml and RedHat.yml files in our role’s defaults and vars

folders, and put distribution-specific variables there.
2. For the tasks, we include tasks files in the role’s tasks directory, for example

setup-Debian.yml or setup-RedHat.yml.

After setting things up this way, I put RHEL and CentOS-specific tasks (like yum tasks)
into tasks/setup-RedHat.yml, and Debian and Ubuntu-specific tasks (like apt tasks)
into tasks/setup-Debian.yml. There are other ways of making roles work cross-
platform, but using distribution-specific variables files and included task files is one
of the simplest.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 138

Now this Apache role can be used across different distributions, and with clever
usage of variables in tasks and in configuration templates, it can be used in a wide
variety of infrastructure that needs Apache installed.

Ansible Galaxy

Ansible roles are powerful and flexible; they allow you to encapsulate sets of
configuration and deployable units of playbooks, variables, templates, and other files,
so you can easily reuse them across different servers.

It’s annoying to have to start from scratch every time, though; wouldn’t it be better
if people could share roles for commonly-installed applications and services?

Enter Ansible Galaxy⁷¹.

Ansible Galaxy, or just ‘Galaxy’, is a repository of community-contributed roles for
common Ansible content. There are already hundreds of roles available which can
configure and deploy common applications, and they’re all available through the
ansible-galaxy command, introduced in Ansible 1.4.2.

Galaxy offers the ability to add, download, and rate roles. With an account, you can
contribute your own roles or rate others’ roles (though you don’t need an account to
use roles).

Getting roles from Galaxy

One of the primary functions of the ansible-galaxy command is retrieving roles
from Galaxy. Roles must be downloaded before they can be used in playbooks.

Remember the basic LAMP (Linux, Apache, MySQL and PHP) server we installed
earlier in the book? Let’s create it again, but this time, using a few roles from Galaxy:

$ ansible-galaxy install geerlingguy.apache geerlingguy.mysql geerlingg\

uy.php

⁷¹https://galaxy.ansible.com/

https://galaxy.ansible.com/
https://galaxy.ansible.com/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 139

The latest version of a role will be downloaded if no version is specified.
To specify a version, add the version after the role name, for example: $
ansible-galaxy install geerlingguy.apache,1.0.0.

Ansible Galaxy is still evolving rapidly, and has seen many improvements.
There are a few areas where Galaxy could use some improvement (like
browsing for roles by Operating System in the online interface, or auto-
matically downloading roles that are included in playbooks), but most of
these little bugs or rough spots will be fixed in time. Please check Ansible
Galaxy’s About⁷² page and stay tuned to Ansible’s blog for the latest
updates.

Using role requirements files to manage dependencies

If your infrastructure configuration requires five, ten, fifteen or more Ansible roles,
installing them all via ansible-galaxy install commands can be exhausting.
Additionally, if you host roles internally (e.g. via an internal Git or Mercurial
repository), you can’t install the roles through Ansible Galaxy. You can, however,
pass the ansible-galaxy command a “requirements” file with the -r option to
automatically download all dependencies.

Ansible allows a simple .txt format that is very basic (though this format is
deprecated and may be removed), but you should use the more standard and
expressive YAML format, which allows you to install roles from Ansible Galaxy,
GitHub, an HTTP download, BitBucket, or your own repository. It also allows
you to specify the path into which the roles should be downloaded. An example
requirements.yml file looks like this:

⁷²https://galaxy.ansible.com/intro

https://galaxy.ansible.com/intro
https://galaxy.ansible.com/intro

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 140

1 ---

2 # From Ansible Galaxy, latest version.

3 - src: geerlingguy.firewall

4

5 # From Ansible Galaxy, specifying the version.

6 - src: geerlingguy.php

7 version: 3.5.1

8

9 # From GitHub, with a custom name and version.

10 - src: https://github.com/geerlingguy/ansible-role-passenger

11 name: passenger

12 version: 1.2.0

13

14 # From a web server, with a custom name.

15 - src: https://www.example.com/ansible/roles/my-role-name.tar.gz

16 name: my-role

To install the roles defined in a requirements file, use the command ansible-galaxy

install -r requirements.yml. For more documentation on Ansible requirements
files, see the official documentation: Installing Multiple Roles From a File⁷³.

A LAMP server in nine lines of YAML

With the Apache, MySQL, and PHP roles installed, we can quickly create a LAMP
server. This example assumes you already have an Ubuntu-based linux VM or server
booted and can connect to it or runAnsible as a provisioner via Vagrant on it, and that
you’ve run the ansible-galaxy install command above to download the required
roles.

First, create an Ansible playbook named lamp.yml with the following contents:

⁷³https://galaxy.ansible.com/docs/using/installing.html#installing-multiple-roles-from-a-file

https://galaxy.ansible.com/docs/using/installing.html#installing-multiple-roles-from-a-file
https://galaxy.ansible.com/docs/using/installing.html#installing-multiple-roles-from-a-file

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 141

1 ---

2 - hosts: all

3 become: yes

4

5 roles:

6 - geerlingguy.mysql

7 - geerlingguy.apache

8 - geerlingguy.php

9 - geerlingguy.php-mysql

Now, run the playbook against a host:

$ ansible-playbook -i path/to/custom-inventory lamp.yml

After a few minutes, an entire LAMP server should be set up and running. If you
add in a few variables, you can configure virtualhosts, PHP configuration options,
MySQL server settings, etc.

On RHEL servers, you should add the role geerlingguy.repo-epel to
the roles list after installing it via ansible-galaxy, because some of the
required PHP packages are only available in EPEL⁷⁴.

We’ve effectively reduced about thirty lines of YAML (from previous examples
dealing with LAMP or LAMP-like servers) down to four. Obviously, the roles have
extra code in them, but the power here is in abstraction. Since most companies
have many servers using similar software, but with slightly different configurations,
having centralized, flexible roles saves a lot of repetition.

You could think of Galaxy roles as glorified packages; they not only install software,
but they configure it exactly how you want it, every time, with minimal adjustment.
Additionally, many of these roles work across different flavors of Linux and UNIX,
so you have better configuration portability!

⁷⁴https://fedoraproject.org/wiki/EPEL

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 142

A Solr server in seven lines of YAML

Let’s grab a couple more roles and build an Apache Solr search server, which requires
Java to be installed and configured.

$ ansible-galaxy install geerlingguy.java geerlingguy.solr

Then create a playbook named solr.yml with the following contents:

1 ---

2 - hosts: all

3 become: yes

4

5 roles:

6 - geerlingguy.java

7 - geerlingguy.solr

Now we have a fully-functional Solr server, and we could add some variables to
configure it exactly how we want, by using a non-default port, or changing the
memory allocation for Solr.

A role’s page on the Ansible Galaxy website highlights available variables for setting
things like what version of Solr to install, where to install it, etc. For an example, view
the geerlingguy.solr Galaxy page⁷⁵.

You can build a wide variety of servers with minimal effort with existing contributed
roles on Galaxy. Instead of having to maintain lengthy playbooks and roles unique to
each server, Galaxy lets you build a list of the required roles, and a few variables that
set up the servers with the proper versions and paths. Configuration management
with Ansible Galaxy becomes true configuration management—you get to spend
more time managing your server’s configuration, and less time on packaging and
building individual services!

⁷⁵https://galaxy.ansible.com/geerlingguy/solr/

https://galaxy.ansible.com/geerlingguy/solr/
https://galaxy.ansible.com/geerlingguy/solr/

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 143

Helpful Galaxy commands

Some other helpful ansible-galaxy commands you might use from time to time:

• ansible-galaxy list displays a list of installed roles, with version numbers
• ansible-galaxy remove [role] removes an installed role
• ansible-galaxy init can be used to create a role template suitable for
submission to Ansible Galaxy

You can configure the default pathwhere Ansible roles will be downloaded by editing
your ansible.cfg configuration file (normally located in /etc/ansible/ansible.cfg),
and setting a roles_path in the [defaults] section.

Contributing to Ansible Galaxy

If you’ve been working on some useful Ansible roles, and you’d like to share them
with others, all you need to do is make sure they follow Ansible Galaxy’s basic
template (especially within the meta/main.yml and README.md files). To get started,
use ansible-galaxy init to generate a basic Galaxy template, and make your own
role match the Galaxy template’s structure.

Then push your role up to a new project on GitHub (I usually name my Galaxy roles
like ansible-role-[rolename], so I can easily see them when browsing my repos on
GitHub), and add a new role while logged into galaxy.ansible.com, under the ‘My
Content’ tab.

Summary

Using includes and Ansible roles organizes Playbooks and makes themmaintainable.
This chapter introduced different ways of including tasks, playbooks, and handlers,
the power and flexible structure of roles, and how you can utilize Ansible Galaxy,
the community repository of configurable Ansible roles that do just about anything.

Chapter 6 - Playbook Organization - Roles, Includes, and Imports 144

/ When the only tool you own is a hammer, \

| every problem begins to resemble a |

\ nail. (Abraham Maslow) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 7 - Inventories
Earlier in the book, a basic inventory file example was given (see Chapter 1’s basic
inventory file example). For the simplest of purposes, an inventory file at the default
location (/etc/ansible/hosts) will suffice to describe to Ansible how to reach the
servers you want to manage.

Later, a slightly more involved inventory file was introduced (see Chapter 3’s
inventory file for multiple servers), which allowed us to tell Ansible about multiple
servers, and even group them into role-related groups, so we could run certain
playbooks against certain groups.

Let’s jump back to a basic inventory file example and build from there:

1 # Inventory file at /etc/ansible/hosts

2

3 # Groups are defined using square brackets (e.g. [groupname]).

4 # Each server in the group is defined on its own line.

5 [myapp]

6 www.myapp.com

If you want to run an ansible playbook on all the myapp servers in this inventory (so
far, just one, www.myapp.com), you can set up the playbook like so:

- hosts: myapp

tasks:

[...]

If you want to run an ad-hoc command against all the myapp servers in the inventory,
you can run a command like so:

Chapter 7 - Inventories 146

Use ansible to check memory usage on all the myapp servers.

$ ansible myapp -a "free -m"

A real-world web application server inventory

The example above might be adequate for single-server services and tiny apps or
websites, but most real-world applications require many more servers, and usually
separate servers per application concern (database, caching, application, queuing,
etc.). Let’s take a look at a real-world inventory file for a small web application that
monitors server uptime, Server Check.in⁷⁶.

1 # Individual Server Check.in servers.

2 [servercheck-web]

3 www1.servercheck.in

4 www2.servercheck.in

5

6 [servercheck-web:vars]

7 ansible_ssh_user=servercheck_svc

8

9 [servercheck-db]

10 db1.servercheck.in

11

12 [servercheck-log]

13 log.servercheck.in

14

15 [servercheck-backup]

16 backup.servercheck.in

17

18 [servercheck-nodejs]

19 atl1.servercheck.in

20 atl2.servercheck.in

21 nyc1.servercheck.in

22 nyc2.servercheck.in

⁷⁶https://servercheck.in/

https://servercheck.in/
https://servercheck.in/

Chapter 7 - Inventories 147

23 nyc3.servercheck.in

24 ned1.servercheck.in

25 ned2.servercheck.in

26

27 [servercheck-nodejs:vars]

28 ansible_ssh_user=servercheck_svc

29 foo=bar

30

31 # Server Check.in distribution-based groups.

32 [centos:children]

33 servercheck-web

34 servercheck-db

35 servercheck-nodejs

36 servercheck-backup

37

38 [ubuntu:children]

39 servercheck-log

This inventory may look a little overwhelming at first, but if you break it apart into
simple groupings (web app servers, database servers, logging server, and node.js app
servers), it describes a straightforward architecture.

Chapter 7 - Inventories 148

Server Check.in Infrastructure.

Lines 1-29 describe a few groups of servers (some with only one server), so
playbooks and ansible commands can refer to the group by name. Lines 6-7
and 27-29 set variables that will apply only to the servers in the group (e.g.
variables below [servercheck-nodejs:vars] will only apply to the servers in the
servercheck-nodejs group).

Lines 31-39 describe groups of groups (using groupname:children to describe ‘child’
groups) that allow for some helpful abstractions.

Describing infrastructure in such a way affords a lot of flexibility when using
Ansible. Consider the task of patching a vulnerability on all your CentOS servers;
instead of having to log into each of the servers, or even having to run an ansible

command against all the groups, using the above structure allows you to easily run

Chapter 7 - Inventories 149

an ansible command or playbook against all centos servers.

As an example, when the Shellshock⁷⁷ vulnerability was disclosed in 2014, patched
bash packages were released for all the major distributions within hours. To update
all the Server Check.in servers, all that was needed was:

$ ansible centos -m yum -a "name=bash state=latest"

You could even go further and create a small playbook that would patch the
vulnerability, then run tests to make sure the vulnerability was no longer present,
as illustrated in this playbook⁷⁸. This would also allow you to run the playbook in
check mode or run it through a continuous integration system to verify the fix works
in a non-prod environment.

This infrastructure inventory is also nice in that you could create a top-level playbook
that runs certain roles or tasks against all your infrastructure, others against all
servers of a certain Linux flavor, and another against all servers in your entire
infrastructure.

Consider, for example, this example master playbook to completely configure all the
servers:

1 ---

2 # Set up basic, standardized components across all servers.

3 - hosts: all

4 become: yes

5 roles:

6 - security

7 - logging

8 - firewall

9

10 # Configure web application servers.

11 - hosts: servercheck-web

12 roles:

13 - nginx

⁷⁷https://en.wikipedia.org/wiki/Shellshock_(software_bug)
⁷⁸https://raymii.org/s/articles/Patch_CVE-2014-6271_Shellshock_with_Ansible.html

https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://raymii.org/s/articles/Patch_CVE-2014-6271_Shellshock_with_Ansible.html
https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://raymii.org/s/articles/Patch_CVE-2014-6271_Shellshock_with_Ansible.html

Chapter 7 - Inventories 150

14 - php

15 - servercheck-web

16

17 # Configure database servers.

18 - hosts: servercheck-db

19 roles:

20 - pgsql

21 - db-tuning

22

23 # Configure logging server.

24 - hosts: servercheck-log

25 roles:

26 - java

27 - elasticsearch

28 - logstash

29 - kibana

30

31 # Configure backup server.

32 - hosts: servercheck-backup

33 roles:

34 - backup

35

36 # Configure Node.js application servers.

37 - hosts: servercheck-nodejs

38 roles:

39 - servercheck-node

There are a number of different ways you can structure your infrastructure-manage-
ment playbooks and roles, and we’ll explore some in later chapters, but for a simple
infrastructure, something like this is adequate and maintainable.

Non-prod environments, separate inventory files

Using the above playbook and the globally-configured Ansible inventory file is great
for your production infrastructure, but what happens when you want to configure

Chapter 7 - Inventories 151

a separate but similar infrastructure for, say a development or user certification
environment?

In this case, it’s easiest to use individual inventory files, rather than the central
Ansible inventory file. For typical team-managed infrastructure, I would recommend
including an inventory file for each environment in the same version-controlled
repository as your Ansible playbooks, perhaps within an ‘inventories’ directory.

For example, I could take the entire contents of /etc/ansible/hosts above, and
stash that inside an inventory file named inventory-prod, then duplicate it, changing
server names where appropriate (e.g. the [servercheck-web] group would only have
www-dev1.servercheck.in for the development environment), and naming the files
for the environments:

servercheck/

inventories/

inventory-prod

inventory-cert

inventory-dev

playbook.yml

Now, when running playbook.yml to configure the development infrastructure, I
would pass in the path to the dev inventory (assuming my current working directory
is servercheck/):

$ ansible-playbook playbook.yml -i inventories/inventory-dev

Using inventory variables (which will be explored further), and well-constructed
roles and/or tasks that use the variables effectively, you could architect your entire
infrastructure, with environment-specific configurations, by changing some things
in your inventory files.

Inventory variables

Chapter 5 introduced basic methods of managing variables for individual hosts or
groups of hosts through your inventory in the inventory variables section, but it’s

Chapter 7 - Inventories 152

worth exploring the different ways of defining and overriding variables through
inventory here.

For extremely simple use cases—usually when you need to define one or two
connection-related variables (like ansible_ssh_user or ansible_ssh_port)—you can
place variables directly inside an inventory file.

Assuming we have a standalone inventory file for a basic web application, here are
some examples of variable definition inside the file:

1 [www]

2 # You can define host-specific variables inline with the host.

3 www1.example.com ansible_ssh_user=johndoe

4 www2.example.com

5

6 [db]

7 db1.example.com

8 db2.example.com

9

10 # You can add a '[group:vars]' heading to create variables that will ap\

11 ply

12 # to an entire inventory group.

13 [db:vars]

14 ansible_ssh_port=5222

15 database_performance_mode=true

It’s usually better to avoid throwing too many variables inside static inventory files,
because not only are these variables typically less visible, they are also mixed in with
your architecture definition. Especially for host-specific vars (which appear on one
long line per host), this is an unmaintainable, low-visibility approach to host and
group-specific variables.

Fortunately, Ansible provides a more flexible way of declaring host and group
variables.

Chapter 7 - Inventories 153

host_vars

For Hosted Apache Solr⁷⁹, different servers in a solr group have different memory
requirements. The simplest way to tell Ansible to override a default variable in
our Ansible playbook (in this case, the tomcat_xmx variable) is to use a host_vars

directory (which can be placed either in the same location as your inventory file, or
in a playbook’s root directory), and place a YAML file named after the host which
needs the overridden variable.

As an illustration of the use of host_vars, we’ll assume we have the following
directory layout:

hostedapachesolr/

host_vars/

nyc1.hostedapachesolr.com

inventory/

hosts

main.yml

The inventory/hosts file contains a simple definition of all the servers by group:

1 [solr]

2 nyc1.hostedapachesolr.com

3 nyc2.hostedapachesolr.com

4 jap1.hostedapachesolr.com

5 ...

6

7 [log]

8 log.hostedapachesolr.com

Ansible will search for a file at either:

hostedapachesolr/host_vars/nyc1.hostedapachesolr.com

Or:
⁷⁹https://hostedapachesolr.com/

https://hostedapachesolr.com/
https://hostedapachesolr.com/

Chapter 7 - Inventories 154

hostedapachesolr/inventory/host_vars/nyc1.hostedapachesolr.com

If there are any variables defined in the file (in YAML format), those variables will
override all other playbook and role variables and gathered facts, only for the single
host.

The nyc1.hostedapachesolr.com host_vars file looks like:

1 ---

2 tomcat_xmx: "1024m"

The default for tomcat_xmxmay normally be 640m, but when Ansible runs a playbook
against nyc1.hostedapachesolr.com, the value of tomcat_xmx will be 1024m instead.

Overriding host variables with host_vars is much more maintainable than doing so
directly in static inventory files, and also provides greater visibility into what hosts
are getting what overrides.

group_vars

Much like host_vars, Ansible will automatically load any files named after inventory
groups in a group_vars directory placed inside the playbook or inventory file’s
location.

Using the same example as above, we’ll override one particular variable for an entire
group of servers. First, we add a group_vars directory with a file named after the
group needing the overridden variable:

Chapter 7 - Inventories 155

hostedapachesolr/

group_vars/

solr

host_vars/

nyc1.hostedapachesolr.com

inventory/

hosts

main.yml

Then, inside group_vars/solr, use YAML to define a list of variables that will be
applied to servers in the solr group:

1 ---

2 do_something_amazing=true

3 foo=bar

Typically, if your playbook is only being run on one group of hosts, it’s easier to
define the variables in the playbook via an included vars file. However, in many
cases you will be running a playbook or applying a set of roles to multiple inventory
groups. In these situations, you may need to use group_vars to override specific
variables for one or more groups of servers.

Ephemeral infrastructure: Dynamic inventory

In many circumstances, static inventories are adequate for describing your infras-
tructure. When working on small applications, low-traffic web applications, and
individual workstations, it’s simple enough to manage an inventory file by hand.

However, in the age of cloud computing and highly scalable application architecture,
it’s often necessary to add dozens or hundreds of servers to an infrastructure in a
short period of time—or to add and remove servers continuously, to scale as traffic
grows and subsides. In this circumstance, it would be tedious (if not impossible)
to manage a single inventory file by hand, especially if you’re using auto-scaling
infrastructure new instances are provisioned and need to be configured in minutes
or seconds.

Chapter 7 - Inventories 156

Even in the case of container-based infrastructure, new instances need to be config-
ured correctly, with the proper port mappings, application settings, and filesystem
configuration.

For these situations, Ansible allows you to define inventory dynamically. If you’re
using one of the larger cloud-based hosting providers, chances are there is already
a dynamic inventory script (which Ansible uses to build an inventory) for you
to use. Ansible core already includes scripts for Amazon Web Services, Cobbler,
DigitalOcean, Linode, OpenStack, and other large providers, and later we’ll explore
creating our own dynamic inventory script (if you aren’t using one of the major
hosting providers or cloud management platforms).

Dynamic inventory with DigitalOcean

DigitalOcean is one of the world’s top five hosting companies, and has grown rapidly
since its founding in 2011. One of the reasons for the extremely rapid growth is the
ease of provisioning new ‘droplets’ (cloud VPS servers), and the value provided; as
of this writing, you could get a fairly speedy VPS with 1GB of RAM and a generous
portion of fast SSD storage for $5 USD per month.

DigitalOcean’s API and developer-friendly philosophy has made it easy for Ansible
to interact with DigitalOcean droplets; you can create, manage, and delete droplets
with Ansible, as well as use droplets with your playbooks using dynamic inventory.

DigitalOcean account prerequisites

Before you can follow the rest of the examples in this section, you will need:

1. A DigitalOcean account (sign up at www.digitalocean.com).
2. dopy, a Pythonwrapper for DigitalOcean API interaction (you can install it with

pip: sudo pip install dopy).
3. A DigitalOcean API Personal Access Token. Follow this guide⁸⁰ to generate a

Personal Access Token for use with Ansible (grant Read andWrite access when
you create the token).

⁸⁰https://www.digitalocean.com/community/tutorials/how-to-use-the-digitalocean-api-v2

https://www.digitalocean.com/community/tutorials/how-to-use-the-digitalocean-api-v2
https://www.digitalocean.com/community/tutorials/how-to-use-the-digitalocean-api-v2

Chapter 7 - Inventories 157

4. An SSH key pair, which will be used to connect to your DigitalOcean servers.
Follow this guide⁸¹ to create a key pair and add the public key to your
DigitalOcean account.

Once you have these four things set up and ready to go, you should be able to
communicate with your DigitalOcean account through Ansible.

Connecting to your DigitalOcean account

There are a few different ways you can specify your DigitalOcean Personal Access
Token (including passing it via api_token to each DigitalOcean-related task, or
exporting it in your local environment as DO_API_TOKEN or DO_API_KEY). For our
example, we’ll use environment variables (since these are easy to configure, and
work both with Ansible’s digital_oceanmodule and the dynamic inventory script).
Open up a terminal session, and enter the following command:

$ export DO_API_TOKEN=YOUR_API_TOKEN_HERE

Before we can use a dynamic inventory script to discover our DigitalOcean droplets,
let’s use Ansible to provision a new droplet.

Creating cloud instances (‘Droplets’, in DigitalOcean parlance) will incur
minimal charges for the time you use them (currently less than $0.01/hour
for the size in this example). For the purposes of this tutorial (and in general,
for any testing), make sure you shut down and destroy your instances when
you’re finished using them, or you will be charged through the next billing
cycle! Even so, using low-priced instances (like a $5/month DigitalOcean
droplet with hourly billing) means that, even in the worst case, you won’t
have to pay much. If you create and destroy an instance in a few hours,
you’ll be charged a few pennies.

Creating a droplet with Ansible

Create a new playbook named provision.yml, with the following contents:

⁸¹https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets

https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets
https://www.digitalocean.com/community/tutorials/how-to-use-ssh-keys-with-digitalocean-droplets

Chapter 7 - Inventories 158

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: False

5

6 tasks:

7 - name: Create new Droplet.

8 digital_ocean:

9 state: present

10 command: droplet

11 name: ansible-test

12 private_networking: yes

13 size_id: s-1vcpu-1gb

14 image_id: centos-7-x64

15 region_id: nyc3

16 # Customize this for your account.

17 ssh_key_ids: 138954

18 # Required for idempotence/only one droplet creation.

19 unique_name: yes

20 register: do

The digital_ocean module lets you create, manage, and delete droplets with ease.
You can read the documentation for all the options, but the above is an overview of
the main options. name sets the hostname for the droplet, state can also be set to
deleted if you want the droplet to be destroyed, and other options tell DigitalOcean
where to set up the droplet, and with what OS and configuration.

Chapter 7 - Inventories 159

You can use DigitalOcean’s API, along with your Personal Access Token,
to get the IDs for size_id (the size of the Droplet), image_id (the system
or distro image to use), region_id (the data center in which your droplet
will be created), and ssh_key_ids (a comma separate list of SSH keys to be
included in the root account’s authorized_keys file).

As an example, to get all the available images, use curl --silent

"https://api.digitalocean.com/v2/images?per_page=999" -H

"Authorization: Bearer $DO_API_TOKEN" | python -m json.tool,
and you’ll receive a JSON listing of all available values. Browse the
DigitalOcean API⁸² for information on how to query SSH key information,
size information, etc.

We used register as part of the digital_ocean task so we could immediately start
using and configuring the new host if needed. Running the above playbook returns
the following output (using debug: var=do in an additional task to dump the contents
of our registered variable, do):

$ ansible-playbook provision.yml

PLAY [localhost] **\

TASK [Create new Droplet.] **\

changed: [localhost]

TASK [debug] **\

ok: [localhost] => {

"do": {

"changed": true,

"droplet": {

"backup_ids": [],

"created_at": "2017-07-22T00:58:51Z",

⁸²https://developers.digitalocean.com/

https://developers.digitalocean.com/
https://developers.digitalocean.com/

Chapter 7 - Inventories 160

"disk": 20,

"features": [

"private_networking",

"virtio"

],

"id": 20203631,

"image": {

...

},

"ip_address": "162.243.20.29",

"kernel": null,

"locked": false,

"memory": 512,

"name": "ansible-test",

"networks": {

...

},

"next_backup_window": null,

"private_ip_address": "10.1.1.2",

"region": {

...

},

"size": {

...

},

"size_slug": "512mb",

"snapshot_ids": [],

"status": "active",

"tags": [],

"vcpus": 1,

"volume_ids": []

}

}

}

PLAY RECAP **

Chapter 7 - Inventories 161

localhost : ok=2 changed=1 unreachable=0 failed=0

Since do contains the new droplet’s IP address (alongside other relevant information),
you can place your freshly-created droplet in an existing inventory group using
Ansible’s add_host module. Adding to the playbook we started above, you could
set up your playbook to provision an instance and immediately configure it (after
waiting for port 22 to become available) with something like:

21 - name: Add new host to our inventory.

22 add_host:

23 name: "{{ do.droplet.ip_address }}"

24 groups: do

25 when: do.droplet is defined

26 changed_when: False

27

28 - hosts: do

29 remote_user: root

30 gather_facts: False

31

32 tasks:

33 - name: Wait for port 22 to become available.

34 local_action: "wait_for port=22 host={{ inventory_hostname }}"

35

36 - name: Install tcpdump.

37 yum: name=tcpdump state=present

At this point, if you run the playbook ($ ansible-playbook provision.yml), it should
create a new droplet (if it has not already been created), then add that droplet to the
do inventory group, and finally, run a new play on all the do hosts (including the new
droplet). Here are the results:

Chapter 7 - Inventories 162

$ ansible-playbook provision.yml

PLAY [localhost] **

TASK: [Create new Droplet.] ***

changed: [localhost]

TASK: [Add new host to our inventory.] ******************************

ok: [localhost]

PLAY [do] ***

TASK [Wait for port 22 to become available.] **************************\

ok: [162.243.20.29 -> localhost]

TASK: [Install tcpdump.] **

changed: [162.243.20.29]

PLAY RECAP **

162.243.20.29 : ok=2 changed=1 unreachable=0 failed=0

localhost : ok=2 changed=1 unreachable=0 failed=0

If you run the same playbook again, it should report no changes—the entire playbook
is idempotent! You might be starting to see just how powerful it is to have a tool as
flexible as Ansible at your disposal; not only can you configure servers, you can
create them (singly, or dozens at a time), and configure them at once. And even if a
ham-fisted sysadmin jumps in and deletes an entire server, you can run the playbook
again, and rest assured your server will be recreated and reconfigured exactly as it
was when it was first set up.

Chapter 7 - Inventories 163

If you get an error like “Failed to connect to the host via ssh: Host key
verification failed.”, then you can temporarily disable host key checking.
Run the command export ANSIBLE_HOST_KEY_CHECKING=False and then
run the provision.yml playbook again.

You should normally leave host_key_checking enabled, but when rapidly
building and destroying VMs for testing purposes, it is simplest to disable
it temporarily.

DigitalOcean dynamic inventory with digital_ocean.py

Once you have some DigitalOcean droplets, you need a way for Ansible to dynam-
ically build an inventory of your servers so you can build playbooks and use the
servers in logical groupings (or run playbooks and ansible commands directly on
all droplets).

There are a few steps to getting DigitalOcean’s official dynamic inventory script
working:

1. Install dopy via pip (the DigitalOcean Python library):

$ pip install dopy

2. Download theDigitalOcean dynamic inventory script⁸³ fromAnsible onGitHub:

$ curl -O https://raw.githubusercontent.com/ansible/ansible/devel/\

contrib/inventory/digital_ocean.py

3. Make the inventory script executable:

$ chmod +x digital_ocean.py

4. Make sure you have DO_API_TOKEN set in your environment.
5. Make sure the script is working by running the script directly (with the

command below). After a second or two, you should see all your droplets (likely
just the one you created earlier) listed by IP address and dynamic group as
JSON.

⁸³https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/digital_ocean.py

https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/digital_ocean.py
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/digital_ocean.py

Chapter 7 - Inventories 164

$./digital_ocean.py --pretty

6. Ping all your DigitalOcean droplets:

$ ansible all -m ping -i digital_ocean.py -u root

Now that you have all your hosts being loaded through the dynamic inventory script,
you can use add_hosts to build groups of the Droplets for use in your playbooks.
Alternatively, if you want to fork the digital_ocean.py inventory script, you can
modify it to suit your needs; exclude certain servers, build groups based on certain
criteria, etc.

Ansible < 1.9.5 only supported DigitalOcean’s legacy v1 API, which is no
longer supported. If you need to use Ansible with DigitalOcean, you should
use the latest version of Ansible.

Dynamic inventory with AWS

Many of this book’s readers are familiar with AmazonWeb Services (especially EC2,
S3, ElastiCache, and Route53), and likely have managed or currently manage an
infrastructure within Amazon’s cloud. Ansible has very strong support for managing
AWS-based infrastructure, and includes a dynamic inventory script⁸⁴ to help you run
playbooks on your hosts in a variety of ways.

There are a few excellent guides to using Ansible with AWS, for example:

• Ansible - Amazon Web Services Guide⁸⁵
• Ansible for AWS⁸⁶

I won’t be covering dynamic inventory in this chapter, but will mention that the
ec2.py dynamic inventory script, along with Ansible’s extensive support for AWS
infrastructure through ec2_* modules, makes Ansible the best and most simple tool
for managing a broad AWS infrastructure.

In the next chapter, one of the examples will include a guide for provisioning
infrastructure on AWS, along with a quick overview of dynamic inventory on AWS.

⁸⁴https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/ec2.py
⁸⁵http://docs.ansible.com/guide_aws.html
⁸⁶https://leanpub.com/ansible-for-aws

https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/ec2.py
http://docs.ansible.com/guide_aws.html
https://leanpub.com/ansible-for-aws
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/ec2.py
http://docs.ansible.com/guide_aws.html
https://leanpub.com/ansible-for-aws

Chapter 7 - Inventories 165

Inventory on-the-fly: add_host and group_by

Sometimes, especially when provisioning new servers, you will need to modify the
in-memory inventory during the course of a playbook run. Ansible offers the add_-
host and group_by modules to help you manage inventory for these scenarios.

In the DigitalOcean example above, add_hostwas used to add the new droplet to the
do group:

[...]

- name: Add new host to our inventory.

add_host:

name: "{{ do.droplet.ip_address }}"

groups: do

when: do.droplet is defined

- hosts: do

remote_user: root

tasks:

[...]

You could add multiple groups with add_host, and you can also add other variables
for the host inline with add_host. As an example, let’s say you created a VM using
an image that exposes SSH on port 2288 and requires an application-specific memory
limit specific to this VM:

- name: Add new host to our inventory.

add_host:

name: "{{ do.droplet.ip_address }}"

ansible_ssh_port: 2288

myapp_memory_maximum: "1G"

when: do.droplet is defined

The custom port will be used when Ansible connects to this host, and the myapp_-

memory_maximum will be passed into the playbooks just as any other inventory
variable.

Chapter 7 - Inventories 166

The group_by module is even simpler, and allows you to create dynamic groups
during the course of a playbook run. Usage is extremely simple:

- hosts: all

gather_facts: yes

tasks:

- name: Create an inventory group for each architecture.

group_by: "key=architecture-{{ ansible_machine }}"

- debug: var=groups

After running the above playbook, you’d see all your normal inventory groups,
plus groups for architecture-x86_64, i386, etc. (depending on what kind of server
architectures you use).

Multiple inventory sources - mixing static and dynamic
inventories

If you need to combine static and dynamic inventory, or even if you wish to use mul-
tiple dynamic inventories (for example, if you are managing servers hosted by two
different cloud providers), you can pass a directory to ansible or ansible-playbook,
and Ansible will combine the output of all the inventories (both static and dynamic)
inside the directory:

`ansible-playbook -i path/to/inventories main.yml`

One caveat: Ansible ignores .ini and backup files in the directory, but will attempt
to parse every text file and execute every executable file in the directory—don’t leave
random files in mixed inventory folders!

Creating custom dynamic inventories

Most infrastructure can be managed with a custom inventory file or an off-the-shelf
cloud inventory script, but there are many situations where more control is needed.

Chapter 7 - Inventories 167

Ansible will accept any kind of executable file as an inventory file, so you can build
your own dynamic inventory however you like, as long as you can pass it to Ansible
as JSON.

You could create an executable binary, a script, or anything else that can be run and
will output JSON to stdout, and Ansible will call it with the argument --list when
you run, as an example, ansible all -i my-inventory-script -m ping.

Let’s start working our own custom dynamic inventory script by outlining the basic
JSON format Ansible expects:

1 {

2 "group": {

3 "hosts": [

4 "192.168.28.71",

5 "192.168.28.72"

6],

7 "vars": {

8 "ansible_ssh_user": "johndoe",

9 "ansible_ssh_private_key_file": "~/.ssh/mykey",

10 "example_variable": "value"

11 }

12 },

13 "_meta": {

14 "hostvars": {

15 "192.168.28.71": {

16 "host_specific_var": "bar"

17 },

18 "192.168.28.72": {

19 "host_specific_var": "foo"

20 }

21 }

22 }

23 }

Ansible expects a dictionary of groups (with each group having a list of hosts, and
group variables in the group’s vars dictionary), and a _meta dictionary that stores

Chapter 7 - Inventories 168

host variables for all hosts individually inside a hostvars dictionary.

When you return a _meta dictionary in your inventory script, Ansible stores
that data in its cache and doesn’t call your inventory script N times for all
the hosts in the inventory. You can leave out the _meta variables if you’d
rather structure your inventory file to return host variables one host at a
time (Ansible will call your script with the arguments --host [hostname]

for each host), but it’s often faster and easier to simply return all variables
in the first call. In this book, all the examples will use the _meta dictionary.

The dynamic inventory script can do anything to get the data (call an external API,
pull information from a database or file, etc.), and Ansible will use it as an inventory
source, so long as it returns a JSON structure like the one above when the script is
called with the --list.

Building a Custom Dynamic Inventory in Python

To create a test dynamic inventory script for demonstration purposes, let’s set up
a quick set of two VMs using Vagrant. Create the following Vagrantfile in a new
directory:

1 VAGRANTFILE_API_VERSION = "2"

2

3 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

4 config.ssh.insert_key = false

5 config.vm.provider :virtualbox do |v|

6 v.memory = 256

7 v.linked_clone = true

8 end

9

10 # Application server 1.

11 config.vm.define "inventory1" do |inventory|

12 inventory.vm.hostname = "inventory1.test"

13 inventory.vm.box = "geerlingguy/ubuntu1804"

14 inventory.vm.network :private_network, ip: "192.168.28.71"

15 end

Chapter 7 - Inventories 169

16

17 # Application server 2.

18 config.vm.define "inventory2" do |inventory|

19 inventory.vm.hostname = "inventory2.test"

20 inventory.vm.box = "geerlingguy/ubuntu1804"

21 inventory.vm.network :private_network, ip: "192.168.28.72"

22 end

23 end

Run vagrant up to boot twoVMs runningUbuntu, with the IP addresses 192.168.28.71,
and 192.168.28.72. A simple inventory file could be used to control the VMs with
Ansible:

1 [group]

2 192.168.28.71 host_specific_var=foo

3 192.168.28.72 host_specific_var=bar

4

5 [group:vars]

6 ansible_ssh_user=vagrant

7 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

8 example_variable=value

However, let’s assume the VMs were provisioned by another system, and you
need to get the information through a dynamic inventory script. Here’s a simple
implementation of a dynamic inventory script in Python:

1 #!/usr/bin/env python

2

3 '''

4 Example custom dynamic inventory script for Ansible, in Python.

5 '''

6

7 import os

8 import sys

9 import argparse

Chapter 7 - Inventories 170

10

11 try:

12 import json

13 except ImportError:

14 import simplejson as json

15

16 class ExampleInventory(object):

17

18 def __init__(self):

19 self.inventory = {}

20 self.read_cli_args()

21

22 # Called with `--list`.

23 if self.args.list:

24 self.inventory = self.example_inventory()

25 # Called with `--host [hostname]`.

26 elif self.args.host:

27 # Not implemented, since we return _meta info `--list`.

28 self.inventory = self.empty_inventory()

29 # If no groups or vars are present, return empty inventory.

30 else:

31 self.inventory = self.empty_inventory()

32

33 print json.dumps(self.inventory);

34

35 # Example inventory for testing.

36 def example_inventory(self):

37 return {

38 'group': {

39 'hosts': ['192.168.28.71', '192.168.28.72'],

40 'vars': {

41 'ansible_ssh_user': 'vagrant',

42 'ansible_ssh_private_key_file':

43 '~/.vagrant.d/insecure_private_key',

44 'ansible_python_interpreter':

45 '/usr/bin/python3',

Chapter 7 - Inventories 171

46 'example_variable': 'value'

47 }

48 },

49 '_meta': {

50 'hostvars': {

51 '192.168.28.71': {

52 'host_specific_var': 'foo'

53 },

54 '192.168.28.72': {

55 'host_specific_var': 'bar'

56 }

57 }

58 }

59 }

60

61 # Empty inventory for testing.

62 def empty_inventory(self):

63 return {'_meta': {'hostvars': {}}}

64

65 # Read the command line args passed to the script.

66 def read_cli_args(self):

67 parser = argparse.ArgumentParser()

68 parser.add_argument('--list', action = 'store_true')

69 parser.add_argument('--host', action = 'store')

70 self.args = parser.parse_args()

71

72 # Get the inventory.

73 ExampleInventory()

Save the above as inventory.py in the same folder as the Vagrantfile you created
earlier (make sure you booted the two VMs with vagrant up), and make the file
executable chmod +x inventory.py.

Run the inventory script manually to verify it returns the proper JSON responsewhen
run with --list:

Chapter 7 - Inventories 172

$./inventory.py --list

{"group": {"hosts": ["192.168.28.71", "192.168.28.72"], "vars":

{"ansible_ssh_user": "vagrant", "ansible_ssh_private_key_file":

"~/.vagrant.d/insecure_private_key", "example_variable": "value

"}}, "_meta": {"hostvars": {"192.168.28.72": {"host_specific_va

r": "bar"}, "192.168.28.71": {"host_specific_var": "foo"}}}}

Test Ansible’s ability to use the inventory script to contact the two VMs:

$ ansible all -i inventory.py -m ping

192.168.28.71 | success >> {

"changed": false,

"ping": "pong"

}

192.168.28.72 | success >> {

"changed": false,

"ping": "pong"

}

Since Ansible can connect, verify the configured host variables (foo and bar) are set
correctly on their respective hosts:

$ ansible all -i inventory.py -m debug -a "var=host_specific_var"

192.168.28.71 | success >> {

"var": {

"host_specific_var": "foo"

}

}

192.168.28.72 | success >> {

"var": {

"host_specific_var": "bar"

}

}

Chapter 7 - Inventories 173

The only alteration for real-world usage you’d need tomake to the above inventory.py
script would be changing the example_inventory() method to something that
incorporates the business logic you would need for your own inventory, whether it
would be calling an external API with all the server data or pulling in the information
from a database or other data store.

Building a Custom Dynamic Inventory in PHP

You can build an inventory script in whatever language you’d like. For example, the
Python script from above can be ported to functional PHP as follows:

1 #!/usr/bin/php

2 <?php

3

4 /**

5 * @file

6 * Example custom dynamic inventory script for Ansible, in PHP.

7 */

8

9 /**

10 * Example inventory for testing.

11 *

12 * @return array

13 * An example inventory with two hosts.

14 */

15 function example_inventory() {

16 return [

17 'group' => [

18 'hosts' => ['192.168.28.71', '192.168.28.72'],

19 'vars' => [

20 'ansible_ssh_user' => 'vagrant',

21 'ansible_ssh_private_key_file' => '~/.vagrant.d/\

22 insecure_private_key',

23 'ansible_python_interpreter' => '/usr/bin/python3',

24 'example_variable' => 'value',

25],

Chapter 7 - Inventories 174

26],

27 '_meta' => [

28 'hostvars' => [

29 '192.168.28.71' => [

30 'host_specific_var' => 'foo',

31],

32 '192.168.28.72' => [

33 'host_specific_var' => 'bar',

34],

35],

36],

37];

38 }

39

40 /**

41 * Empty inventory for testing.

42 *

43 * @return array

44 * An empty inventory.

45 */

46 function empty_inventory() {

47 return ['_meta' => ['hostvars' => new stdClass()]];

48 }

49

50 /**

51 * Get inventory.

52 *

53 * @param array $argv

54 * Array of command line arguments (as in $_SERVER['argv']).

55 *

56 * @return array

57 * Inventory of groups or vars, depending on arguments.

58 */

59 function get_inventory($argv = []) {

60 $inventory = new stdClass();

61

Chapter 7 - Inventories 175

62 // Called with `--list`.

63 if (!empty($argv[1]) && $argv[1] == '--list') {

64 $inventory = example_inventory();

65 }

66 // Called with `--host [hostname]`.

67 elseif ((!empty($argv[1]) && $argv[1] == '--host') && \

68 !empty($argv[2])) {

69 // Not implemented, since we return _meta info `--list`.

70 $inventory = empty_inventory();

71 }

72 // If no groups or vars are present, return an empty inventory.

73 else {

74 $inventory = empty_inventory();

75 }

76

77 print json_encode($inventory);

78 }

79

80 // Get the inventory.

81 get_inventory($_SERVER['argv']);

82

83 ?>

If you were to save the code above into the file inventory.php, mark it executable
(chmod +x inventory.php), and run the same Ansible command as earlier (referenc-
ing inventory.php instead of inventory.py), the command should succeed, just as
with the previous Python example.

All the files mentioned in these dynamic inventory examples are available
in the Ansible for DevOps GitHub repository⁸⁷, in the dynamic-inventory
folder.

⁸⁷https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 7 - Inventories 176

Managing a PaaS with a Custom Dynamic Inventory

Hosted Apache Solr⁸⁸’s infrastructure is built using a custom dynamic inventory to
allow for centrally-controlled server provisioning and configuration. Here’s how the
server provisioning process works on Hosted Apache Solr:

1. A Drupal website holds a ‘Server’ content type that stores metadata about each
server (e.g. chosen hostname, data center location, choice of OS image, and
memory settings).

2. When a new server is added, a remote Jenkins job is triggered, which: 1. Builds
a new cloud server on DigitalOcean using an Ansible playbook. 2. Runs a
provisioning playbook on the server to initialize the configuration. 3. Adds a
new DNS entry for the server. 4. Posts additional server metadata (like the IP
address) back to the Drupal website via a private API.

3. When a server is updated, or there is new configuration to be deployed to
the server(s), a different Jenkins job is triggered, which: 1. Runs the same
provisioning playbook on all the DigitalOcean servers. This playbook uses an
inventory script which calls back to an inventory API endpoint that returns
all the server information as JSON (the inventory script on the Jenkins server
passes the JSON through to stdout). 2. Reports back success or failure of the
ansible playbook to the REST API.

The above process transformed the management of the entire Hosted Apache Solr
platform. Instead of taking twenty to thirty minutes to build a new server (even when
using an Ansible playbook with a few manual steps), the process can be completed
in just a few minutes, with no manual intervention.

The security of your server inventory and infrastructure management
should be a top priority; Hosted Apache Solr uses HTTPS everywhere, and
has a hardened private API for inventory access and server metadata. If
you have any automated processes that run over a network, you should take
extra care to audit these processes and all the involved systems thoroughly!

⁸⁸https://hostedapachesolr.com/

https://hostedapachesolr.com/
https://hostedapachesolr.com/

Chapter 7 - Inventories 177

Summary

From the most basic infrastructure consisting of one server to a multi-tenant,
dynamic infrastructure with thousands of them, Ansible offers many options for
describing your servers and overriding playbook and role variables for specific hosts
or groups. With Ansible’s flexible inventory system, you should be able to describe
all your servers, however they’re managed and wherever they’re hosted.

/ A pint of sweat saves a gallon of \

\ blood. (General Patton) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 8 - Ansible Cookbooks
Until now, most of this book has demonstrated individual aspects of Ansible—
inventory, playbooks, ad-hoc tasks, etc. But this chapter synthesizes everything
we’ve gone over in the previous chapters and shows how Ansible is applied to real-
world infrastructure management scenarios.

Highly-Available Infrastructure with Ansible

Real-world web applications require redundancy and horizontal scalability with
multi-server infrastructure. In the following example, we’ll use Ansible to configure
a complex infrastructure on servers provisioned either locally (via Vagrant and
VirtualBox) or on a set of automatically-provisioned instances (running on either
DigitalOcean or Amazon Web Services):

Chapter 8 - Ansible Cookbooks 179

Highly-Available Infrastructure.

Varnish acts as a load balancer and reverse proxy, fronting web requests and routing
them to the application servers. We could just as easily use something like Nginx or
HAProxy, or even a proprietary cloud-based solution like an Amazon’s Elastic Load
Balancer or Linode’s NodeBalancer, but for simplicity’s sake and for flexibility in
deployment, we’ll use Varnish.

Apache and mod_php run a PHP-based application that displays the entire stack’s
current status and outputs the current server’s IP address for load balancing verifi-
cation.

AMemcached server provides a caching layer that can be used to store and retrieve
frequently-accessed objects in lieu of slower database storage.

Two MySQL servers, configured as a master and slave, offer redundant and perfor-
mant database access; all data will be replicated from the master to the slave, and in

Chapter 8 - Ansible Cookbooks 180

addition, the slave can be used as a secondary server for read-only queries to take
some load off the master.

Directory Structure

In order to keep our configuration organized, we’ll use the following structure for
our playbooks and configuration:

lamp-infrastructure/

inventories/

playbooks/

db/

memcached/

varnish/

www/

provisioners/

configure.yml

provision.yml

requirements.yml

Vagrantfile

Organizing things this way allows us to focus on each server configuration individ-
ually, then build playbooks for provisioning and configuring instances on different
hosting providers later. This organization also keeps server playbooks completely
independent, so we can modularize and reuse individual server configurations.

Individual Server Playbooks

Let’s start building our individual server playbooks (in the playbooks directory).
To make our playbooks more efficient, we’ll use some contributed Ansible roles
on Ansible Galaxy rather than install and configure everything step-by-step. We’re
going to target CentOS 7.x servers in these playbooks, but only minimal changes
would be required to use the playbooks with Ubuntu, Debian, or later versions of
CentOS.

Varnish

Chapter 8 - Ansible Cookbooks 181

Create a main.yml file within the playbooks/varnish directory, with the following
contents:

1 ---

2 - hosts: lamp-varnish

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.firewall

10 - geerlingguy.repo-epel

11 - geerlingguy.varnish

12

13 tasks:

14 - name: Copy Varnish default.vcl.

15 template:

16 src: "templates/default.vcl.j2"

17 dest: "/etc/varnish/default.vcl"

18 notify: restart varnish

We’re going to run this playbook on all hosts in the lamp-varnish inventory group
(we’ll create this later), and we’ll run a few simple roles to configure the server:

• geerlingguy.firewall configures a simple iptables-based firewall using a
couple variables defined in vars.yml.

• geerlingguy.repo-epel adds the EPEL repository (a prerequisite for varnish).
• geerlingguy.varnish installs and configures Varnish.

Finally, a task copies over a custom default.vcl that configures Varnish, telling it
where to find our web servers and how to load balance requests between the servers.

Let’s create the two files referenced in the above playbook. First, vars.yml, in the
same directory as main.yml:

Chapter 8 - Ansible Cookbooks 182

1 ---

2 firewall_allowed_tcp_ports:

3 - "22"

4 - "80"

5

6 varnish_use_default_vcl: false

The first variable tells the geerlingguy.firewall role to open TCP ports 22 and 80 for
incoming traffic. The second variable tells the geerlingguy.varnish we will supply
a custom default.vcl for Varnish configuration.

Create a templates directory inside the playbooks/varnish directory, and inside,
create a default.vcl.j2 file. This file will use Jinja syntax to build Varnish’s custom
default.vcl file:

1 vcl 4.0;

2

3 import directors;

4

5 {% for host in groups['lamp-www'] %}

6 backend www{{ loop.index }} {

7 .host = "{{ host }}";

8 .port = "80";

9 }

10 {% endfor %}

11

12 sub vcl_init {

13 new vdir = directors.random();

14 {% for host in groups['lamp-www'] %}

15 vdir.add_backend(www{{ loop.index }}, 1);

16 {% endfor %}

17 }

18

19 sub vcl_recv {

20 set req.backend_hint = vdir.backend();

21

Chapter 8 - Ansible Cookbooks 183

22 # For testing ONLY; makes sure load balancing is working correctly.

23 return (pass);

24 }

We won’t study Varnish’s VCL syntax in depth but we’ll run through default.vcl

and highlight what is being configured:

1. (1-3) Indicate that we’re using the 4.0 version of the VCL syntax and import the
directors varnish module (which is used to configure load balancing).

2. (5-10) Define each web server as a new backend; give a host and a port through
which varnish can contact each host.

3. (12-17) vcl_init is called when Varnish boots and initializes any required
varnish modules. In this case, we’re configuring a load balancer vdir, and
adding each of the www[#] backends we defined earlier as backends to which
the load balancer will distribute requests. We use a random director so we can
easily demonstrate Varnish’s ability to distribute requests to both app backends,
but other load balancing strategies are also available.

4. (19-24) vcl_recv is called for each request, and routes the request through
Varnish. In this case, we route the request to the vdir backend defined in
vcl_init, and indicate that Varnish should not cache the result.

According to #4, we’re actually bypassing Varnish’s caching layer, which is not
helpful in a typical production environment. If you only need a load balancer without
any reverse proxy or caching capabilities, there are better options. However, we need
to verify our infrastructure is working as it should. If we used Varnish’s caching,
Varnish would only ever hit one of our two web servers during normal testing.

In terms of our caching/load balancing layer, this should suffice. For a true pro-
duction environment, you should remove the final return (pass) and customize
default.vcl according to your application’s needs.

Apache / PHP

Create a main.yml file within the playbooks/www directory, with the following
contents:

Chapter 8 - Ansible Cookbooks 184

1 ---

2 - hosts: lamp-www

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.firewall

10 - geerlingguy.repo-epel

11 - geerlingguy.apache

12 - geerlingguy.php

13 - geerlingguy.php-mysql

14 - geerlingguy.php-memcached

15

16 tasks:

17 - name: Remove the Apache test page.

18 file:

19 path: /var/www/html/index.html

20 state: absent

21

22 - name: Copy our fancy server-specific home page.

23 template:

24 src: templates/index.php.j2

25 dest: /var/www/html/index.php

As with Varnish’s configuration, we’ll configure a firewall and add the EPEL
repository (required for PHP’s memcached integration), and we’ll also add the
following roles:

• geerlingguy.apache installs and configures the latest available version of the
Apache web server.

• geerlingguy.php installs and configures PHP to run through Apache.
• geerlingguy.php-mysql adds MySQL support to PHP.
• geerlingguy.php-memcached adds Memcached support to PHP.

Chapter 8 - Ansible Cookbooks 185

Two final tasks remove the default index.html home page included with Apache,
and replace it with our PHP app.

As in the Varnish example, create the two files referenced in the above playbook.
First, vars.yml, alongside main.yml:

1 ---

2 firewall_allowed_tcp_ports:

3 - "22"

4 - "80"

Create a templates directory inside the playbooks/www directory, and inside, create
an index.php.j2 file. This file will use Jinja syntax to build a (relatively) simple PHP
script to display the health and status of all the servers in our infrastructure:

1 <?php

2 /**

3 * @file

4 * Infrastructure test page.

5 *

6 * DO NOT use this in production. It is simply a PoC.

7 */

8

9 $mysql_servers = array(

10 {% for host in groups['lamp-db'] %}

11 '{{ host }}',

12 {% endfor %}

13);

14 $mysql_results = array();

15 foreach ($mysql_servers as $host) {

16 if ($result = mysql_test_connection($host)) {

17 $mysql_results[$host] = 'PASS\

18 ';

19 $mysql_results[$host] .= ' (' . $result['status'] . ')';

20 }

21 else {

Chapter 8 - Ansible Cookbooks 186

22 $mysql_results[$host] = 'FAIL';

23 }

24 }

25

26 // Connect to Memcached.

27 $memcached_result = 'FAIL';

28 if (class_exists('Memcached')) {

29 $memcached = new Memcached;

30 $memcached->addServer('{{ groups['lamp-memcached'][0] }}', 11211);

31

32 // Test adding a value to memcached.

33 if ($memcached->add('test', 'success', 1)) {

34 $result = $memcached->get('test');

35 if ($result == 'success') {

36 $memcached_result = 'PASS';

37 $memcached->delete('test');

38 }

39 }

40 }

41

42 /**

43 * Connect to a MySQL server and test the connection.

44 *

45 * @param string $host

46 * IP Address or hostname of the server.

47 *

48 * @return array

49 * Array with 'success' (bool) and 'status' ('slave' or 'master').

50 * Empty if connection failure.

51 */

52 function mysql_test_connection($host) {

53 $username = 'mycompany_user';

54 $password = 'secret';

55 try {

56 $db = new PDO(

57 'mysql:host=' . $host . ';dbname=mycompany_database',

Chapter 8 - Ansible Cookbooks 187

58 $username,

59 $password,

60 array(PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION));

61

62 // Query to see if the server is configured as a master or slave.

63 $statement = $db->prepare("SELECT variable_value

64 FROM information_schema.global_variables

65 WHERE variable_name = 'LOG_BIN';");

66 $statement->execute();

67 $result = $statement->fetch();

68

69 return array(

70 'success' => TRUE,

71 'status' => ($result[0] == 'ON') ? 'master' : 'slave',

72);

73 }

74 catch (PDOException $e) {

75 return array();

76 }

77 }

78 ?>

79 <!DOCTYPE html>

80 <html>

81 <head>

82 <title>Host {{ inventory_hostname }}</title>

83 <style>* { font-family: Helvetica, Arial, sans-serif }</style>

84 </head>

85 <body>

86 <h1>Host {{ inventory_hostname }}</h1>

87 <?php foreach ($mysql_results as $host => $result): ?>

88 <p>MySQL Connection (<?php print $host; ?>):

89 <?php print $result; ?></p>

90 <?php endforeach; ?>

91 <p>Memcached Connection: <?php print $memcached_result; ?></p>

92 </body>

93 </html>

Chapter 8 - Ansible Cookbooks 188

Don’t try transcribing this example manually; you can get the code from
this book’s repository on GitHub. Visit the ansible-for-devops⁸⁹ repository
and download the source for index.php.j2⁹⁰

As this is the heart of the example application we’re deploying to the infrastructure,
it’s necessarily a bit more complex than most examples in the book, but a quick run
through follows:

• (9-23) Iterate through all the lamp-db MySQL hosts defined in the playbook
inventory and test the ability to connect to them—as well as whether they are
configured as master or slave, using the mysql_test_connection() function
defined later (40-73).

• (25-39) Check the first defined lamp-memcachedMemcached host defined in the
playbook inventory, confirming the ability to connect with the cache and to
create, retrieve, or delete a cached value.

• (41-76) Define the mysql_test_connection() function, which tests the ability
to connect to a MySQL server and also returns its replication status.

• (78-91) Print the results of all the MySQL and Memcached tests, along with {{

inventory_hostname }} as the page title, so we can easily see which web server
is serving the viewed page.

At this point, the heart of our infrastructure—the application that will test and display
the status of all our servers—is ready to go.

Memcached

Compared to the earlier playbooks, the Memcached playbook is quite simple. Create
playbooks/memcached/main.yml with the following contents:

⁸⁹https://github.com/geerlingguy/ansible-for-devops
⁹⁰https://github.com/geerlingguy/ansible-for-devops/blob/master/lamp-infrastructure/playbooks/www/templates/

index.php.j2

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops/blob/master/lamp-infrastructure/playbooks/www/templates/index.php.j2
https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops/blob/master/lamp-infrastructure/playbooks/www/templates/index.php.j2
https://github.com/geerlingguy/ansible-for-devops/blob/master/lamp-infrastructure/playbooks/www/templates/index.php.j2

Chapter 8 - Ansible Cookbooks 189

1 ---

2 - hosts: lamp-memcached

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.firewall

10 - geerlingguy.memcached

As with the other servers, we need to ensure only the required TCP ports are open
using the simple geerlingguy.firewall role. Next we install Memcached using the
geerlingguy.memcached role.

In our vars.yml file (again, alongside main.yml), add the following:

1 ---

2 firewall_allowed_tcp_ports:

3 - "22"

4 firewall_additional_rules:

5 - "iptables -A INPUT -p tcp --dport 11211 -s \

6 {{ groups['lamp-www'][0] }} -j ACCEPT"

7 - "iptables -A INPUT -p tcp --dport 11211 -s \

8 {{ groups['lamp-www'][1] }} -j ACCEPT"

9

10 memcached_listen_ip: "0.0.0.0"

We need port 22 open for remote access, and for Memcached, we’re adding manual
iptables rules to allow access on port 11211 for the web servers only. We add one
rule per lamp-www server by drilling down into each item in the generated groups

variable that Ansible uses to track all inventory groups currently available. We also
bind Memcached to all interfaces so it will accept connections through the server’s
network interface.

Chapter 8 - Ansible Cookbooks 190

The principle of least privilege “requires that in a particular abstraction
layer of a computing environment, every module … must be able to access
only the information and resources that are necessary for its legitimate
purpose” (Source: Wikipedia⁹¹). Always restrict services and ports to only
those servers or users that need access!

MySQL

The MySQL configuration is more complex than the other servers because we need
to configure MySQL users per-host and configure replication. Because we want
to maintain an independent and flexible playbook, we also need to dynamically
create some variables so MySQL will get the right server addresses in any potential
environment.

Let’s first create the main playbook, playbooks/db/main.yml:

1 ---

2 - hosts: lamp-db

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 pre_tasks:

9 - name: Create dynamic MySQL variables.

10 set_fact:

11 mysql_users:

12 - name: mycompany_user

13 host: "{{ groups['lamp-www'][0] }}"

14 password: secret

15 priv: "*.*:SELECT"

16 - name: mycompany_user

17 host: "{{ groups['lamp-www'][1] }}"

18 password: secret

19 priv: "*.*:SELECT"

20 mysql_replication_master: "{{ groups['a4d.lamp.db.1'][0] }}"

⁹¹http://en.wikipedia.org/wiki/Principle_of_least_privilege

http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege

Chapter 8 - Ansible Cookbooks 191

21

22 roles:

23 - geerlingguy.firewall

24 - geerlingguy.mysql

Most of the playbook is straightforward, but in this instance, we’re using set_fact

as a pre_task (to be run before the geerlingguy.firewall and geerlingguy.mysql

roles) to dynamically create variables for MySQL configuration.

set_fact allows us to define variables at runtime, so we can have all server IP
addresses available, even if the servers were freshly provisioned at the beginning
of the playbook’s run. We’ll create two variables:

• mysql_users is a list of users the geerlingguy.mysql role will create when it
runs. This variable will be used on all database servers so both of the two
lamp-www servers get SELECT privileges on all databases.

• mysql_replication_master is used to indicate to the geerlingguy.mysql role
which database server is the master; it will perform certain steps differently
depending on whether the server being configured is a master or slave, and
ensure that all the slaves are configured to replicate data from the master.

We’ll need a few other normal variables to configure MySQL, so we’ll add them
alongside the firewall variable in playbooks/db/vars.yml:

1 ---

2 firewall_allowed_tcp_ports:

3 - "22"

4 - "3306"

5

6 mysql_replication_user: {name: 'replication', password: 'secret'}

7 mysql_databases:

8 - name: mycompany_database

9 collation: utf8_general_ci

10 encoding: utf8

We’re opening port 3306 to anyone, but according to the principle of least privilege
discussed earlier, youwould be justified in restricting this port to only the servers and

Chapter 8 - Ansible Cookbooks 192

users that need access to MySQL (similar to the memcached server configuration). In
this case, the attack vector is mitigated because MySQL’s own authentication layer
is used through the mysql_user variable generated in main.yml.

We are defining two MySQL variables: mysql_replication_user to be used for
master and slave replication, and mysql_databases to define a list of databases that
will be created (if they don’t already exist) on the database servers.

With the configuration of the database servers complete, the server-specific play-
books are ready to go.

Main Playbook for Configuring All Servers

A simple playbook including each of the group-specific playbooks is all we need for
the overall configuration to take place. Create configure.yml in the project’s root
directory, with the following contents:

1 ---

2 - import_playbook: playbooks/varnish/main.yml

3 - import_playbook: playbooks/www/main.yml

4 - import_playbook: playbooks/db/main.yml

5 - import_playbook: playbooks/memcached/main.yml

At this point, if you had some already-booted servers and statically defined inventory
groups like lamp-www, lamp-db, etc., you could run ansible-playbook configure.yml

and have a full HA infrastructure at the ready!

But we’re going to continue to make our playbooks more flexible and useful.

Getting the required roles

As mentioned in the Chapter 6, Ansible allows you to define all the required Ansible
Galaxy roles for a given project in a requirements.yml file. Instead of having to
remember to run ansible-galaxy install -y [role1] [role2] [role3] for each
of the roles we’re using, we can create requirements.yml in the root of our project,
with the following contents:

Chapter 8 - Ansible Cookbooks 193

1 ---

2 - src: geerlingguy.firewall

3 - src: geerlingguy.repo-epel

4 - src: geerlingguy.varnish

5 - src: geerlingguy.apache

6 - src: geerlingguy.php

7 - src: geerlingguy.php-mysql

8 - src: geerlingguy.php-memcached

9 - src: geerlingguy.mysql

10 - src: geerlingguy.memcached

To make sure all the required dependencies are installed, run ansible-galaxy

install -r requirements.yml from within the project’s root.

Vagrantfile for Local Infrastructure via VirtualBox

As with many other examples in this book, we can use Vagrant and VirtualBox to
build and configure the infrastructure locally. This lets us test things as much as we
want with zero cost, and usually results in faster testing cycles, since everything is
orchestrated over a local private network on a (hopefully) beefy workstation.

Our basic Vagrantfile layout will be something like the following:

1. Define a base box (in this case, CentOS 7.x) and VM hardware defaults.
2. Define all the VMs to be built, with VM-specific IP addresses and hostname

configurations.
3. Define the Ansible provisioner along with the last VM, so Ansible can run once

at the end of Vagrant’s build cycle.

Here’s the Vagrantfile in all its glory:

Chapter 8 - Ansible Cookbooks 194

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 Vagrant.configure("2") do |config|

5 # Base VM OS configuration.

6 config.vm.box = "geerlingguy/centos7"

7 config.ssh.insert_key = false

8 config.vm.synced_folder '.', '/vagrant', disabled: true

9

10 # General VirtualBox VM configuration.

11 config.vm.provider :virtualbox do |v|

12 v.memory = 512

13 v.cpus = 1

14 v.linked_clone = true

15 v.customize ["modifyvm", :id, "--natdnshostresolver1", "on"]

16 v.customize ["modifyvm", :id, "--ioapic", "on"]

17 end

18

19 # Varnish.

20 config.vm.define "varnish" do |varnish|

21 varnish.vm.hostname = "varnish.test"

22 varnish.vm.network :private_network, ip: "192.168.2.2"

23 end

24

25 # Apache.

26 config.vm.define "www1" do |www1|

27 www1.vm.hostname = "www1.test"

28 www1.vm.network :private_network, ip: "192.168.2.3"

29

30 www1.vm.provision "shell",

31 inline: "sudo yum update -y"

32

33 www1.vm.provider :virtualbox do |v|

34 v.customize ["modifyvm", :id, "--memory", 256]

35 end

36 end

Chapter 8 - Ansible Cookbooks 195

37

38 # Apache.

39 config.vm.define "www2" do |www2|

40 www2.vm.hostname = "www2.test"

41 www2.vm.network :private_network, ip: "192.168.2.4"

42

43 www2.vm.provision "shell",

44 inline: "sudo yum update -y"

45

46 www2.vm.provider :virtualbox do |v|

47 v.customize ["modifyvm", :id, "--memory", 256]

48 end

49 end

50

51 # MySQL.

52 config.vm.define "db1" do |db1|

53 db1.vm.hostname = "db1.test"

54 db1.vm.network :private_network, ip: "192.168.2.5"

55 end

56

57 # MySQL.

58 config.vm.define "db2" do |db2|

59 db2.vm.hostname = "db2.test"

60 db2.vm.network :private_network, ip: "192.168.2.6"

61 end

62

63 # Memcached.

64 config.vm.define "memcached" do |memcached|

65 memcached.vm.hostname = "memcached.test"

66 memcached.vm.network :private_network, ip: "192.168.2.7"

67

68 # Run Ansible provisioner once for all VMs at the end.

69 memcached.vm.provision "ansible" do |ansible|

70 ansible.playbook = "configure.yml"

71 ansible.inventory_path = "inventories/vagrant/inventory"

72 ansible.limit = "all"

Chapter 8 - Ansible Cookbooks 196

73 ansible.extra_vars = {

74 ansible_ssh_user: 'vagrant',

75 ansible_ssh_private_key_file: \

76 "~/.vagrant.d/insecure_private_key"

77 }

78 end

79 end

80 end

Most of the Vagrantfile is straightforward, and similar to other examples used in this
book. The last block of code, which defines the ansible provisioner configuration,
contains three extra values that are important for our purposes:

1 ansible.inventory_path = "inventories/vagrant/inventory"

2 ansible.limit = "all"

3 ansible.extra_vars = {

4 ansible_ssh_user: 'vagrant',

5 ansible_ssh_private_key_file: \

6 "~/.vagrant.d/insecure_private_key"

7 }

1. ansible.inventory_path defines the inventory file for the ansible.playbook.
You could certainly create a dynamic inventory script for use with Vagrant,
but because we know the IP addresses ahead of time, and are expecting a few
specially-crafted inventory group names, it’s simpler to build the inventory file
for Vagrant provisioning by hand (we’ll do this next).

2. ansible.limit is set to all so Vagrant knows it should run the Ansible
playbook connected to all VMs, and not just the current VM. You could
technically use ansible.limit with a provisioner configuration for each of the
individual VMs, and just run the VM-specific playbook through Vagrant, but
our live production infrastructure will be using one playbook to configure all
the servers, so we’ll do the same locally.

3. ansible.extra_vars contains the vagrant SSH user configuration for Ansible.
It’s more standard to include these settings in a static inventory file or use
Vagrant’s automatically-generated inventory file, but it’s easiest to set them
once for all servers here.

Chapter 8 - Ansible Cookbooks 197

Before running vagrant up to see the fruits of our labor, we need to create an
inventory file for Vagrant at inventories/vagrant/inventory:

1 [lamp-varnish]

2 192.168.2.2

3

4 [lamp-www]

5 192.168.2.3

6 192.168.2.4

7

8 [a4d.lamp.db.1]

9 192.168.2.5

10

11 [lamp-db]

12 192.168.2.5

13 192.168.2.6

14

15 [lamp-memcached]

16 192.168.2.7

Now cd into the project’s root directory, run vagrant up, and after ten or fifteen
minutes, load http://192.168.2.2/ in your browser. Voila!

Highly Available Infrastructure - Success!

You should see something like the above screenshot. The PHP app displays the
current app server’s IP address, the individual MySQL servers’ status, and the Mem-
cached server status. Refresh the page a few times to verify Varnish is distributing
requests randomly between the two app servers.

Chapter 8 - Ansible Cookbooks 198

We now have local infrastructure development covered, and Ansible makes it easy
to use the exact same configuration to build our infrastructure in the cloud.

Provisioner Configuration: DigitalOcean

In Chapter 7, we learned provisioning and configuring DigitalOcean droplets in an
Ansible playbook is fairly simple. But we need to take provisioning a step further
by provisioning multiple droplets (one for each server in our infrastructure) and
dynamically grouping them so we can configure them after they are booted and
online.

For the sake of flexibility, let’s create a playbook for our DigitalOcean droplets
in provisioners/digitalocean.yml. This will allow us to add other provisioner
configurations later, alongside the digitalocean.yml playbook. As with our example
in Chapter 7, we will use a local connection to provision cloud instances. Begin the
playbook with:

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: false

Next we need to define some metadata to describe each of our droplets. For
simplicity’s sake, we’ll inline the droplets variable in this playbook:

6 vars:

7 droplets:

8 - { name: a4d.lamp.varnish, group: "lamp-varnish" }

9 - { name: a4d.lamp.www.1, group: "lamp-www" }

10 - { name: a4d.lamp.www.2, group: "lamp-www" }

11 - { name: a4d.lamp.db.1, group: "lamp-db" }

12 - { name: a4d.lamp.db.2, group: "lamp-db" }

13 - { name: a4d.lamp.memcached, group: "lamp-memcached" }

Each droplet is an object with two keys:

Chapter 8 - Ansible Cookbooks 199

• name: The name of the Droplet for DigitalOcean’s listings and Ansible’s host
inventory.

• group: The Ansible inventory group for the droplet.

Next we need to add a task to create the droplets, using the droplets list as a
guide, and as part of the same task, register each droplet’s information in a separate
dictionary, created_droplets:

15 tasks:

16 - name: Provision DigitalOcean droplets.

17 digital_ocean:

18 state: "{{ item.state | default('present') }}"

19 command: droplet

20 name: "{{ item.name }}"

21 private_networking: yes

22 size_id: "{{ item.size | default('s-1vcpu-1gb') }}"

23 image_id: "{{ item.image | default('centos-7-x64') }}"

24 region_id: "{{ item.region | default('nyc3') }}"

25 # Customize this default for your account.

26 ssh_key_ids: "{{ item.ssh_key | default('138954') }}"

27 unique_name: yes

28 register: created_droplets

29 with_items: "{{ droplets }}"

Many of the options (e.g. size_id) are defined as {{ item.property | default('default_-

value') }}, which allows us to use optional variables per droplet. For any of the
defined droplets, we could add size_id: 72 (or another valid value), and it would
override the default value set in the task.

You could specify an SSH public key per droplet, or use the same key for
all hosts by providing a default (as I did above). In this example, I added an
SSH key to my DigitalOcean account, then used the DigitalOcean API to
retrieve the key’s numeric ID (as described in the previous chapter).

It’s best to use key-based authentication and add at least one SSH key
to your DigitalOcean account so Ansible can connect using secure keys
instead of insecure passwords—especially since these instances will be
created with only a root account.

Chapter 8 - Ansible Cookbooks 200

We loop through all the defined droplets using with_items: droplets, and after
each droplet is created, we add the droplet’s metadata (name, IP address, etc.) to
the created_droplets variable. Next, we’ll loop through that variable to build our
inventory on-the-fly so our configuration applies to the correct servers:

31 - name: Add DigitalOcean hosts to inventory groups.

32 add_host:

33 name: "{{ item.1.droplet.ip_address }}"

34 groups: "do,{{ droplets[item.0].group }},\

35 {{ item.1.droplet.name }}"

36 # You can dynamically add inventory variables per-host.

37 ansible_ssh_user: root

38 mysql_replication_role: >

39 "{{ 'master' if (item.1.droplet.name == 'a4d.lamp.db.1')

40 else 'slave' }}"

41 mysql_server_id: "{{ item.0 }}"

42 when: item.1.droplet is defined

43 with_indexed_items: "{{ created_droplets.results }}"

You’ll notice a few interesting things happening in this task:

• This is the first time we’ve used with_indexed_items. Though less common,
this is a valuable loop feature because it adds a sequential and unique mysql_-
server_id. Though only the MySQL servers need a server ID set, it’s more
simple to dynamically create the variable for every server so each is available
when needed. with_indexed_items sets item.0 to the key of the item and
item.1 to the value of the item.

• In addition to helping us create server IDs, with_indexed_items also helps us
to reliably set each droplet’s group. Because the v1 DigitalOcean API doesn’t
support features like tags for Droplets, we have to set up the groups on our
own. By using the droplets variable we manually created earlier, we can set
the proper group for a particular droplet.

• Finally, we add inventory variables per-host in add_host. To do this, we add the
variable name as a key and the variable value as that key’s value. Simple, but
powerful!

Chapter 8 - Ansible Cookbooks 201

There are a few different ways you can approach dynamic provisioning and
inventory management for your infrastructure. There are ways to avoid
using more exotic features of Ansible (e.g. with_indexed_items) and com-
plex if/else conditions, especially if you only use one cloud infrastructure
provider. This example is slightly more complex because the playbook is
being created to be interchangeable with similar provisioning playbooks.

The final step in our provisioning is to make sure all the droplets are booted and can
be reached via SSH. So at the end of the digitalocean.yml playbook, add another
play to be run on hosts in the do group we just defined:

44 - hosts: do

45 remote_user: root

46 gather_facts: no

47

48 tasks:

49 - name: Wait for port 22 to become available.

50 local_action: "wait_for port=22 host={{ inventory_hostname }}"

Once we know port 22 is reachable, we know the droplet is up and ready for
configuration.

We’re now almost ready to provision and configure our entire infrastructure on
DigitalOcean, but first we need to create one last playbook to tie everything together.
Create provision.yml in the project root with the following contents:

1 ---

2 - import_playbook: provisioners/digitalocean.yml

3 - import_playbook: configure.yml

That’s it! Now, assuming you set the environment variable DO_API_TOKEN, you can
run $ ansible-playbook provision.yml to provision and configure the infrastruc-
ture on DigitalOcean.

The entire process should take about 15 minutes; once it’s complete, you should see
something like this:

Chapter 8 - Ansible Cookbooks 202

PLAY RECAP **

107.170.27.137 : ok=19 changed=13 unreachable=0 failed=0

107.170.3.23 : ok=13 changed=8 unreachable=0 failed=0

107.170.51.216 : ok=40 changed=18 unreachable=0 failed=0

107.170.54.218 : ok=27 changed=16 unreachable=0 failed=0

162.243.20.29 : ok=24 changed=15 unreachable=0 failed=0

192.241.181.197 : ok=40 changed=18 unreachable=0 failed=0

localhost : ok=2 changed=1 unreachable=0 failed=0

Visit the IP address of the varnish server, and you will be greeted with a status page
similar to the one generated by the Vagrant-based infrastructure:

Highly Available Infrastructure on DigitalOcean.

Because everything in this playbook is idempotent, running $ ansible-playbook

provision.yml again should report no changes, and this will help you verify that
everything is running correctly.

Ansible will also rebuild and reconfigure any droplets that might be missing from
your infrastructure. If you’re daring and would like to test this feature, just log into
your DigitalOcean account, delete one of the droplets just created by this playbook
(perhaps one of the two app servers), and then run the playbook again.

Now that we’ve tested our infrastructure on DigitalOcean, we can destroy the
droplets just as easily as we can create them. To do this, change the state parameter
in provisioners/digitalocean.yml to default to 'absent' and run $ ansible-playbook

provision.yml once more.

Next up, we’ll build the infrastructure a third time—on Amazon’s infrastructure.

Chapter 8 - Ansible Cookbooks 203

Provisioner Configuration: Amazon Web Services (EC2)

For Amazon Web Services, provisioning is slightly different. Amazon has a broader
ecosystem of services surrounding EC2 instances, so for our particular example we
will need to configure security groups prior to provisioning instances.

To begin, create aws.yml inside the provisioners directory and begin the playbook
the same way as for DigitalOcean:

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: false

EC2 instances use security groups as an AWS-level firewall (which operates outside
the individual instance’s OS). We will need to define a list of security_groups

alongside our EC2 instances. First, the instances:

6 vars:

7 instances:

8 - name: a4d.lamp.varnish

9 group: "lamp-varnish"

10 security_group: ["default", "a4d_lamp_http"]

11 - name: a4d.lamp.www.1

12 group: "lamp-www"

13 security_group: ["default", "a4d_lamp_http"]

14 - name: a4d.lamp.www.2

15 group: "lamp-www"

16 security_group: ["default", "a4d_lamp_http"]

17 - name: a4d.lamp.db.1

18 group: "lamp-db"

19 security_group: ["default", "a4d_lamp_db"]

20 - name: a4d.lamp.db.2

21 group: "lamp-db"

22 security_group: ["default", "a4d_lamp_db"]

23 - name: a4d.lamp.memcached

Chapter 8 - Ansible Cookbooks 204

24 group: "lamp-memcached"

25 security_group: ["default", "a4d_lamp_memcached"]

Inside the instances variable, each instance is an object with three keys:

• name: The name of the instance, which we’ll use to tag the instance and ensure
only one instance is created per name.

• group: The Ansible inventory group in which the instance should belong.
• security_group: A list of security groups into which the instance will be placed.
The default security group is added to your AWS account upon creation, and
has one rule to allow outgoing traffic on any port to any IP address.

If you use AWS exclusively, it would be best to autoscaling groups and
change the design of this infrastructure a bit. For this example, we just need
to ensure that the six instances we explicitly define are created, so we’re
using particular names and an exact_count to enforce the 1:1 relationship.

With our instances defined, we’ll next define a security_groups variable containing
all the required security group configuration for each server:

27 security_groups:

28 - name: a4d_lamp_http

29 rules:

30 - proto: tcp

31 from_port: 80

32 to_port: 80

33 cidr_ip: 0.0.0.0/0

34 - proto: tcp

35 from_port: 22

36 to_port: 22

37 cidr_ip: 0.0.0.0/0

38 rules_egress: []

39

40 - name: a4d_lamp_db

Chapter 8 - Ansible Cookbooks 205

41 rules:

42 - proto: tcp

43 from_port: 3306

44 to_port: 3306

45 cidr_ip: 0.0.0.0/0

46 - proto: tcp

47 from_port: 22

48 to_port: 22

49 cidr_ip: 0.0.0.0/0

50 rules_egress: []

51

52 - name: a4d_lamp_memcached

53 rules:

54 - proto: tcp

55 from_port: 11211

56 to_port: 11211

57 cidr_ip: 0.0.0.0/0

58 - proto: tcp

59 from_port: 22

60 to_port: 22

61 cidr_ip: 0.0.0.0/0

62 rules_egress: []

Each security group has a name (which was used to identify the security group in the
instances list), rules (a list of firewall rules—like protocol, ports, and IP ranges—to
limit incoming traffic), and rules_egress (a list of firewall rules to limit outgoing
traffic).

We need three security groups: a4d_lamp_http to open port 80, a4d_lamp_db to open
port 3306, and a4d_lamp_memcached to open port 11211.

Now that we have all the data we need to set up security groups and instances, our
first task is to create or verify the existence of the security groups:

Chapter 8 - Ansible Cookbooks 206

64 tasks:

65 - name: Configure EC2 Security Groups.

66 ec2_group:

67 name: "{{ item.name }}"

68 description: Example EC2 security group for A4D.

69 region: "{{ item.region | default('us-west-2') }}" # Oregon

70 state: present

71 rules: "{{ item.rules }}"

72 rules_egress: "{{ item.rules_egress }}"

73 with_items: "{{ security_groups }}"

The ec2_group requires a name, region, and rules for each security group. Security
groups will be created if they don’t exist, modified to match the supplied values if
they do exist, or verified if they both exist and match the given values.

With the security groups configured, we can provision the defined EC2 instances by
looping through instances with the ec2 module:

75 - name: Provision EC2 instances.

76 ec2:

77 key_name: "{{ item.ssh_key | default('lamp_aws') }}"

78 instance_tags:

79 inventory_group: "{{ item.group | default('') }}"

80 inventory_host: "{{ item.name | default('') }}"

81 group: "{{ item.security_group | default('') }}"

82 instance_type: "{{ item.type | default('t2.micro')}}" # Free

83 image: "{{ item.image | default('ami-3ecc8f46') }}" # CentOS 7

84 region: "{{ item.region | default('us-west-2') }}" # Oregon

85 wait: yes

86 wait_timeout: 500

87 exact_count: 1

88 count_tag:

89 inventory_group: "{{ item.group | default('') }}"

90 inventory_host: "{{ item.name | default('') }}"

91 register: created_instances

92 with_items: "{{ instances }}"

Chapter 8 - Ansible Cookbooks 207

This example is slightly more complex than the DigitalOcean example, and a few
parts warrant a deeper look:

• EC2 allows SSH keys to be defined by name—in my case, I have a key lamp_aws

in my AWS account. You should set the key_name default to a key that you have
in your account.

• Instance tags are tags that AWS will attach to your instance, for categorization
purposes. By giving a list of keys and values, I can then use that list later in the
count_tag parameter.

• t2.micro was used as the default instance type, since it falls within EC2’s free
tier usage. If you just set up an account and keep all AWS resource usage within
free tier limits, you won’t be billed anything.

• exact_count and count_tag work together to ensure AWS provisions only one
of each of the instances we defined. The count_tag tells the ec2 module to
match the given group + host and then exact_count tells the module to only
provision 1 instance. If you wanted to remove all your instances, you could set
exact_count to 0 and run the playbook again.

Each provisioned instance will have its metadata added to the registered created_-

instances variable, which we will use to build Ansible inventory groups for the
server configuration playbooks.

94 - name: Add EC2 instances to inventory groups.

95 add_host:

96 name: "{{ item.1.tagged_instances.0.public_ip }}"

97 groups: "aws,{{ item.1.item.group }},{{ item.1.item.name }}"

98 # You can dynamically add inventory variables per-host.

99 ansible_ssh_user: ec2-user

100 mysql_replication_role: >

101 {{ 'master' if (item.1.item.name == 'a4d.lamp.db.1')

102 else 'slave' }}

103 mysql_server_id: "{{ item.0 }}"

104 when: item.1.instances is defined

105 with_indexed_items: "{{ created_instances.results }}"

Chapter 8 - Ansible Cookbooks 208

This add_host example is slightly simpler than the one for DigitalOcean, because
AWS attaches metadata to EC2 instances which we can re-use when building groups
or hostnames (e.g. item.1.item.group). We don’t have to use list indexes to fetch
group names from the original instances variable.

We still use with_indexed_items so we can use the index to generate a unique ID
per server for use in building the MySQL master-slave replication.

The final steps in provisioning the EC2 instances are to ensure we can connect to
them, and to set selinux into permissive mode so the configuration we supply will
work correctly.

107 # Run some general configuration on all AWS hosts.

108 - hosts: aws

109 gather_facts: false

110

111 tasks:

112 - name: Wait for port 22 to become available.

113 local_action: "wait_for port=22 host={{ inventory_hostname }}"

114

115 - name: Set selinux into 'permissive' mode.

116 selinux: policy=targeted state=permissive

117 become: yes

Since we defined ansible_ssh_user as ec2-user in the dynamically-generated
inventory above, we need to ensure the selinux task runs explicitly with sudo by
adding become: yes.

Now, modify the provision.yml file in the root of the project folder and change the
provisioners import to look like the following:

1 ---

2 - import_playbook: provisioners/aws.yml

3 - import_playbook: configure.yml

Assuming the environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_-

KEY are set in your current terminal session, you can run $ ansible-playbook

provision.yml to provision and configure the infrastructure on AWS.

Chapter 8 - Ansible Cookbooks 209

The entire process should take about 15 minutes, and once it’s complete, you should
see something like this:

PLAY RECAP **

54.148.100.44 : ok=24 changed=16 unreachable=0 failed=0

54.148.120.23 : ok=40 changed=19 unreachable=0 failed=0

54.148.41.134 : ok=40 changed=19 unreachable=0 failed=0

54.148.56.137 : ok=13 changed=9 unreachable=0 failed=0

54.69.160.32 : ok=27 changed=17 unreachable=0 failed=0

54.69.86.187 : ok=19 changed=14 unreachable=0 failed=0

localhost : ok=3 changed=1 unreachable=0 failed=0

Visit the IP address of the Varnish server, and you will be greeted with a status page
similar to the one generated by the Vagrant and DigitalOcean-based infrastructure:

Highly Available Infrastructure on AWS EC2.

As with the earlier examples, running ansible-playbook provision.yml again
should produce no changes, because everything in this playbook is idempotent. If
one of your instances was somehow terminated, running the playbook again would
recreate and reconfigure the instance in a few minutes.

To terminate all the provisioned instances, you can change the exact_count in the
ec2 task to 0, and run $ ansible-playbook provision.yml again.

Summary

In the above example, an entire highly-available PHP application infrastructure was
defined in a series of short Ansible playbooks, and then provisioning configuration

Chapter 8 - Ansible Cookbooks 210

was created to build the infrastructure on either local VMs, DigitalOcean droplets,
or AWS EC2 instances.

Once you start working on building infrastructure this way—by abstracting individ-
ual servers, then abstracting cloud provisioning—you’ll start to see some of Ansible’s
true power of being more than just a configuration management tool. Imagine being
able to create your own multi-datacenter, multi-provider infrastructure with Ansible
and some basic configuration.

Amazon, DigitalOcean, Rackspace and other hosting providers have their own
tooling and unique infrastructure merits. However, building infrastructure in a
provider-agnostic fashion provides the agility and flexibility that allow you to treat
hosting providers as commodities, and gives you the freedom to build more reliable
and more performant application infrastructure.

Even if you plan on running everything within one hosting provider’s network (or
in a private cloud, or even on a few bare metal servers), Ansible provides deep stack-
specific integration so you can dowhatever you need to do andmanage the provider’s
services within your playbooks.

You can find the entire contents of this example in the Ansible for DevOps
GitHub repository⁹², in the lamp-infrastructure directory.

ELK Logging with Ansible

Though application, database, and backup servers may be some of the most mission-
critical components of a well-rounded infrastructure, one area that is equally
important is a decent logging system.

In the old days when one or two servers could handle an entire website or
application, you could work with built-in logfiles and rsyslog to troubleshoot issues
or check trends in performance, errors, or overall traffic. With a typical modern
infrastructure—like the example above, with six separate servers—it pays dividends
to find a better solution for application, server, and firewall/authentication logging.
Plain text files, logrotate, and grep don’t cut it anymore.

⁹²https://github.com/geerlingguy/ansible-for-devops

https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops
https://github.com/geerlingguy/ansible-for-devops

Chapter 8 - Ansible Cookbooks 211

Among various modern logging and reporting toolsets, the ‘ELK’ stack (Elastic-
search, Logstash, and Kibana) has come to the fore as one of the best-performing
and easiest-to-configure open source centralized logging solutions.

An example Kibana logging dashboard.

In our example, we’ll configure a single ELK server to handle aggregation, searching,
and graphical display of logged data from a variety of other servers, and give a
configuration example to aggregate common system and web server logs.

ELK Playbook

Just like our previous example, we’re going to let a few roles from Ansible Galaxy
do the heavy lifting of actually installing and configuring Elasticsearch, Logstash,
Filebeat, and Kibana. If you’re interested in reading through the roles that do this
work, feel free to peruse them after they’ve been downloaded.

In this example, I’m going to highlight the important parts rather than walk through
each role and variable in detail. Then I’ll show how you can use this base server to
aggregate logs, then how to point other servers’ log files to the central server using
Filebeat.

Chapter 8 - Ansible Cookbooks 212

Here’s our main playbook, saved as provisioning/elk/playbook.yml:

1 ---

2 - hosts: logs

3 gather_facts: yes

4

5 vars_files:

6 - vars/main.yml

7

8 pre_tasks:

9 - name: Update apt cache if needed.

10 apt: update_cache=yes cache_valid_time=86400

11

12 roles:

13 - geerlingguy.java

14 - geerlingguy.nginx

15 - geerlingguy.elasticsearch

16 - geerlingguy.elasticsearch-curator

17 - geerlingguy.kibana

18 - geerlingguy.logstash

19 - geerlingguy.filebeat

This assumes you have a logs group in your inventory with at least one server listed.
The playbook includes a vars file located in provisioning/elk/vars/main.yml, so
create that file and put the following inside:

1 ---

2 java_packages:

3 - openjdk-8-jdk

4

5 nginx_user: www-data

6 nginx_remove_default_vhost: true

7 nginx_vhosts:

8 # Kibana proxy.

9 - listen: "80 default_server"

10 filename: kibana.conf

Chapter 8 - Ansible Cookbooks 213

11 server_name: logs.test

12 extra_parameters: |

13 location / {

14 include /etc/nginx/proxy_params;

15 proxy_pass http://localhost:5601;

16 proxy_set_header Authorization "";

17 proxy_read_timeout 90s;

18 }

19

20 elasticsearch_curator_pip_package: python3-pip

21

22 logstash_ssl_key_file: elk-example.p8

23 logstash_ssl_certificate_file: elk-example.crt

24

25 filebeat_output_logstash_enabled: true

26 filebeat_output_logstash_hosts:

27 - "logs.test:5044"

28

29 filebeat_ssl_key_file: elk-example.p8

30 filebeat_ssl_certificate_file: elk-example.crt

31 filebeat_ssl_insecure: "true"

32

33 filebeat_inputs:

34 - type: log

35 paths:

36 - /var/log/auth.log

The Nginx variables define one server directive, which proxies requests on port 80
to the Kibana instance running on port 5601 (Kibana’s default port).

The Logstash SSL variables give the name of a local file which will be copied into
place and used by Logstash to encrypt log traffic to and from Logstash. You can
generate the certificate using the command:

Chapter 8 - Ansible Cookbooks 214

openssl req -x509 -batch -nodes -days 3650 -newkey rsa:2048 -keyout elk\

-example.key -out elk-example.crt -subj '/CN=logs.test'

Set the CN value to the hostname of your ELK server (in our example, logs.test.
Then convert the key format to pkcs8 (the format required by Logstash) using the
command:

openssl pkcs8 -in elk-example.key -topk8 -nocrypt -out elk-example.p8

The Filebeat variables tell Filebeat to connect to the Logstash server (in this case, the
hostname logs.test on the default Logstash port 5044), and supply the certificate
and key Filebeat should use to encrypt log traffic. The filebeat_ssl_insecure

variable tells Logstash to accept a self-signed certificate like the one we generated
with openssl.

The last variable, filebeat_inputs, supplies a list of inputs Filebeat will pick up and
stream to Logstash. In this case, it’s just one input, the auth.log file which logs all
authentication-related events on a Debian-based server.

If you want to get this ELK server up and running quickly, you can create a local
VM using Vagrant like you have in most other examples in the book. Create a
Vagrantfile in the same directory as the provisioning folder, with the following
contents:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 VAGRANTFILE_API_VERSION = "2"

5

6 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

7 config.vm.box = "geerlingguy/ubuntu1804"

8 config.ssh.insert_key = false

9

10 config.vm.provider :virtualbox do |v|

11 v.memory = 2048

12 v.cpus = 2

13 v.customize ["modifyvm", :id, "--natdnshostresolver1", "on"]

Chapter 8 - Ansible Cookbooks 215

14 v.customize ["modifyvm", :id, "--ioapic", "on"]

15 end

16

17 # ELK server.

18 config.vm.define "logs" do |logs|

19 logs.vm.hostname = "logs.test"

20 logs.vm.network :private_network, ip: "192.168.9.90"

21

22 logs.vm.provision :ansible do |ansible|

23 ansible.compatibility_mode = "2.0"

24 ansible.playbook = "provisioning/elk/main.yml"

25 ansible.inventory_path = "provisioning/elk/inventory"

26 ansible.become = true

27 end

28 end

29

30 end

This Vagrant configuration expects an inventory file at provisioning/elk/inventory,
so create one with the following contents:

1 [logs]

2 logs.test ansible_ssh_host=192.168.9.90 ansible_ssh_port=22

Now, run vagrant up. The build should take about five minutes, and upon comple-
tion, if you add a line like logs.test 192.168.9.90 to your /etc/hosts file, you can
visit http://logs.test/ in your browser and see Kibana’s default homepage:

Chapter 8 - Ansible Cookbooks 216

Kibana’s default homepage.

You can start exploring log data after configuring Kibana to search filebeat indices:

1. Click on the home page link to ‘Connect to your Elasticsearch index’
2. Enter an index pattern like filebeat-* (which will match all Filebeat indices),

and click ‘Next step’
3. Choose @timestamp for the Time Filter field name, and click ‘Create index

pattern’

Now that Kibana knows how to read the filebeat index, you can discover and search
through log data in the ‘Discover’ UI, which is the top link in the sidebar:

Chapter 8 - Ansible Cookbooks 217

Exploring log data from filebeat.

We won’t dive too deep into customizing Kibana’s interface with saved searches, vi-
sualizations, and dashboards, since there are many guides to using Kibana, including
Kibana’s official guide⁹³.

The screenshots in this example are from Kibana 7.x; other versions may
have a slightly different interface.

Forwarding Logs from Other Servers

It’s great that we have the ELK stack running. Elasticsearch will store and make
available log data with one search index per day, Logstash will listen for log
entries, Filebeat will send entries in /var/log/auth.log to Logstash, and Kibana will
organize the logged data in useful visualizations.

Configuring additional servers to direct their logs to our new Logstash server is fairly
simple using Filebeat. The basic steps we’ll follow are:

⁹³https://www.elastic.co/guide/en/kibana/current/tutorial-build-dashboard.html

https://www.elastic.co/guide/en/kibana/current/tutorial-build-dashboard.html
https://www.elastic.co/guide/en/kibana/current/tutorial-build-dashboard.html

Chapter 8 - Ansible Cookbooks 218

1. Set up another server in the Vagrantfile.
2. Set up an Ansible playbook to install and configure Filebeat alongside the

application running on the server.
3. Boot the server and watch as the logs are forwarded to the main ELK server.

Let’s begin by creating a new Nginx web server. It’s useful to monitor web server
access logs for a variety of reasons, especially to watch for traffic spikes and increases
in non-200 responses for certain resources. Add the following server definition inside
the Vagrantfile, just after the end of the ELK server definition:

30 # Web server.

31 config.vm.define "web" do |web|

32 web.vm.hostname = "web.test"

33 web.vm.network :private_network, ip: "192.168.9.91"

34

35 web.vm.provision :ansible do |ansible|

36 ansible.compatibility_mode = "2.0"

37 ansible.playbook = "provisioning/web/main.yml"

38 ansible.inventory_path = "provisioning/web/inventory"

39 ansible.become = true

40 end

41 end

We’ll next set up the playbook to install and configure both Nginx and Filebeat, at
provisioning/web/main.yml:

1 ---

2 - hosts: web

3 gather_facts: yes

4

5 vars_files:

6 - vars/main.yml

7

8 pre_tasks:

9 - name: Update apt cache if needed.

Chapter 8 - Ansible Cookbooks 219

10 apt: update_cache=yes cache_valid_time=86400

11

12 roles:

13 - geerlingguy.nginx

14 - geerlingguy.filebeat

15

16 tasks:

17 - name: Set up virtual host for testing.

18 copy:

19 src: files/example.conf

20 dest: /etc/nginx/sites-enabled/example.conf

21 owner: root

22 group: root

23 mode: 0644

24 notify: restart nginx

25

26 - name: Ensure logs server is in hosts file.

27 lineinfile:

28 dest: /etc/hosts

29 regexp: '.*logs\.test$'

30 line: "192.168.9.90 logs.test"

31 state: present

This playbook runs the geerlingguy.nginx and geerlingguy.filebeat roles, and
in the tasks, there are two additional tasks: one to configure a server in Nginx’s
configuration (example.conf), and one to ensure the webserver knows the correct IP
address for the logs.test server.

Create theNginx configuration file at the path provisioning/web/files/example.conf,
and define one Nginx virtualhost for our testing:

Chapter 8 - Ansible Cookbooks 220

1 server {

2 listen 80 default_server;

3

4 root /usr/share/nginx/www;

5 index index.html index.htm;

6

7 access_log /var/log/nginx/access.log combined;

8 error_log /var/log/nginx/error.log debug;

9 }

Since this is the only server definition, and it’s set as the default_server on port 80,
all requests will be directed to it.We routed the access_log to /var/log/nginx/access.log,
and told Nginx to write log entries using the combined format, which is how our
Logstash server expects nginx access logs to be formatted.

Next, set up the required variables to tell the nginx and logstash-forwarder roles
how to configure their respective services. Inside provisioning/web/vars/main.yml:

1 ---

2 nginx_user: www-data

3 nginx_remove_default_vhost: true

4

5 filebeat_output_logstash_enabled: true

6 filebeat_output_logstash_hosts:

7 - "logs.test:5044"

8

9 filebeat_ssl_key_file: elk-example.p8

10 filebeat_ssl_certificate_file: elk-example.crt

11 filebeat_ssl_insecure: "true"

12

13 filebeat_inputs:

14 - type: log

15 paths:

16 - /var/log/auth.log

17 - type: log

18 paths:

19 - /var/log/nginx/access.log

Chapter 8 - Ansible Cookbooks 221

The nginx variables remove the default virtualhost entry and ensure Nginx will run
optimally on our Ubuntu server. The filebeat variables tell the filebeat role how to
connect to the central ELK server, and which logs to deliver to Logstash:

• filebeat_output_logstash_enabled and _hosts: Tells the role to configure
Filebeat to connect to Logstash, and the host and port to use.

• logstash_ssl_*: Provide a key and certificate to use for encrypted log transport
(note that these files should be in the same directory as the playbook, copied
over from the elk playbook).

• filebeat_inputs: Defines a list of inputs, which identify log files or other
types of log inputs. In this case, we’re configuring the authentication log
(/var/log/auth.log), which is a syslog-formatted log file, and the combined-
format access log from Nginx (/var/log/nginx/access.log).

To allow Vagrant to pass the proper connection details to Ansible, create a file named
provisioning/web/inventory with the web.test host details:

1 [web]

2 web.test ansible_ssh_host=192.168.9.91 ansible_ssh_port=22

Run vagrant up again. Vagrant should verify that the first server (logs) is running,
then create and run the Ansible provisioner on the newly-defined web Nginx server.

You can load http://192.168.9.91/ or http://web.test/ in your browser, and you
should see a Welcome to nginx!message on the page. You can refresh the page a few
times, then switch back over to http://logs.test/ to view some new log entries on
the ELK server:

Chapter 8 - Ansible Cookbooks 222

Entries populating the Logstash Search Kibana dashboard.

If you refresh the page a few times, and no entries show up in the Kibana
search, Nginx may be buffering the log entries. In this case, keep refreshing
a while (so you generate a few dozen or hundred entries), and Nginx will
eventually write the entries to disk (thus allowing Filebeat to convey the
logs to the Logstash server). Read more about Nginx log buffering in the
Nginx’s ngx_http_log_module documentation⁹⁴.

A few requests being logged through logstash forwarder isn’t all that exciting. Let’s
use the popular ab tool available most anywhere to put some load on the web server.
On a modest laptop, running the command below resulted in Nginx serving around
1,200 requests per second.

ab -n 20000 -c 50 http://web.test/

During the course of the load test, I set Kibana to show only the past 5 minutes of
log data (automatically refreshed every 5 seconds) and I could monitor the requests
on the ELK server just a few seconds after they were served by Nginx:

⁹⁴http://nginx.org/en/docs/http/ngx_http_log_module.html

http://nginx.org/en/docs/http/ngx_http_log_module.html
http://nginx.org/en/docs/http/ngx_http_log_module.html

Chapter 8 - Ansible Cookbooks 223

Monitoring a deluge of Nginx requests in near-realtime.

Filebeat uses a highly-efficient TCP-like protocol, Lumberjack, to transmit log entries
securely between servers. With the right tuning and scaling, you can efficiently
process and display thousands of requests per second across your infrastructure! For
most, even the simple example demonstrated abovewould adequately cover an entire
infrastructure’s logging and log analysis needs.

Summary

Log aggregation and analysis are two fields that see constant improvements and
innovation. There are many SaaS products and proprietary solutions that can assist
with logging, but few match the flexibility, security, and TCO of Elasticsearch,
Logstash and Kibana.

Ansible is the simplest way to configure an ELK server and direct all your infras-
tructure’s pertinent log data to the server.

Chapter 8 - Ansible Cookbooks 224

GlusterFS Distributed File System
Configuration with Ansible

Modern infrastructure often involves some amount of horizontal scaling; instead
of having one giant server with one storage volume, one database, one application
instance, etc., most apps use two, four, ten, or dozens of servers.

GlusterFS is a distributed filesystem for servers.

Many applications can be scaled horizontally with ease. But what happens when you
need shared resources, like files, application code, or other transient data, to be shared
on all the servers? And how do you have this data scale out with your infrastructure,
in a fast but reliable way? There are many different approaches to synchronizing or
distributing files across servers:

• Set up rsync either on cron or via inotify to synchronize smaller sets of files on
a regular basis.

• Store everything in a code repository (e.g. Git, SVN, etc.) and deploy files to
each server using Ansible.

• Have one large volume on a file server and mount it via NFS or some other file
sharing protocol.

• Have one master SAN that’s mounted on each of the servers.

Chapter 8 - Ansible Cookbooks 225

• Use a distributed file system, like Gluster, Lustre, Fraunhofer, or Ceph.

Some options are easier to set up than others, and all have benefits—and draw-
backs. Rsync, git, or NFS offer simple initial setup, and low impact on filesystem
performance (in many scenarios). But if you need more flexibility and scalability,
less network overhead, and greater fault tolerance, you will have to consider
something that requires more configuration (e.g. a distributed file system) and/or
more hardware (e.g. a SAN).

GlusterFS is licensed under the AGPL license, has good documentation, and a fairly
active support community (especially in the #gluster IRC channel). But to someone
new to distributed file systems, it can be daunting to get set it up the first time.

Configuring Gluster - Basic Overview

To get Gluster working on a basic two-server setup (so you can have one folder
synchronized and replicated across the two servers—allowing one server to go down
completely, and the other to still have access to the files), you need to do the
following:

1. Install Gluster server and client on each server, and start the server daemon.
2. (On both servers) Create a ‘brick’ directory (where Gluster will store files for a

given volume).
3. (On both servers) Create a directory to be used as a mount point (a directory

where you’ll have Gluster mount the shared volume).
4. (On both servers) Use gluster peer probe to have Gluster connect to the other

server.
5. (On one server) Use gluster volume create to create a new Gluster volume.
6. (On one server) Use gluster volume start to start the new Gluster volume.
7. (On both servers) Mount the gluster volume (adding a record to /etc/fstab to

make the mount permanent).

Additionally, you need to make sure you have the following ports open on both
servers (so Gluster can communicate): TCP ports 111, 24007-24011, 49152-49153, and
UDP port 111. For each extra server in your Gluster cluster, you need to add an
additional TCP port in the 49xxx range.

Chapter 8 - Ansible Cookbooks 226

Configuring Gluster with Ansible

For demonstration purposes, we’ll set up a simple two-server infrastructure using
Vagrant, and create a shared volume between the two, with two replicas (meaning
all files will be replicated on each server). As your infrastructure grows, you can set
other options for data consistency and transport according to your needs.

To build the two-server infrastructure locally, create a folder gluster containing the
following Vagrantfile:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 Vagrant.configure("2") do |config|

5 # Base VM OS configuration.

6 config.vm.box = "geerlingguy/ubuntu1804"

7 config.vm.synced_folder '.', '/vagrant', disabled: true

8 config.ssh.insert_key = false

9

10 config.vm.provider :virtualbox do |v|

11 v.memory = 256

12 v.cpus = 1

13 end

14

15 # Define two VMs with static private IP addresses.

16 boxes = [

17 { :name => "gluster1", :ip => "192.168.29.2" },

18 { :name => "gluster2", :ip => "192.168.29.3" }

19]

20

21 # Provision each of the VMs.

22 boxes.each do |opts|

23 config.vm.define opts[:name] do |config|

24 config.vm.hostname = opts[:name]

25 config.vm.network :private_network, ip: opts[:ip]

26

Chapter 8 - Ansible Cookbooks 227

27 # Provision both VMs using Ansible after the last VM is booted.

28 if opts[:name] == "gluster2"

29 config.vm.provision "ansible" do |ansible|

30 ansible.playbook = "playbooks/provision.yml"

31 ansible.inventory_path = "inventory"

32 ansible.limit = "all"

33 end

34 end

35 end

36 end

37

38 end

This configuration creates two servers, gluster1 and gluster2, and will run a
playbook at playbooks/provision.yml on the servers defined in an inventory file
in the same directory as the Vagrantfile.

Create the inventory file to help Ansible connect to the two servers:

1 [gluster]

2 192.168.29.2

3 192.168.29.3

4

5 [gluster:vars]

6 ansible_ssh_user=vagrant

7 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

Now, create a playbook named provision.yml inside a playbooks directory:

Chapter 8 - Ansible Cookbooks 228

1 ---

2 - hosts: gluster

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.firewall

10 - geerlingguy.glusterfs

11

12 tasks:

13 - name: Ensure Gluster brick and mount directories exist.

14 file: "path={{ item }} state=directory mode=0775"

15 with_items:

16 - "{{ gluster_brick_dir }}"

17 - "{{ gluster_mount_dir }}"

18

19 - name: Configure Gluster volume.

20 gluster_volume:

21 state: present

22 name: "{{ gluster_brick_name }}"

23 brick: "{{ gluster_brick_dir }}"

24 replicas: 2

25 cluster: "{{ groups.gluster | join(',') }}"

26 host: "{{ inventory_hostname }}"

27 force: yes

28 run_once: true

29

30 - name: Ensure Gluster volume is mounted.

31 mount:

32 name: "{{ gluster_mount_dir }}"

33 src: "{{ inventory_hostname }}:/{{ gluster_brick_name }}"

34 fstype: glusterfs

35 opts: "defaults,_netdev"

36 state: mounted

Chapter 8 - Ansible Cookbooks 229

This playbook uses two roles to set up a firewall and install the required packages for
GlusterFS to work. You can manually install both of the required roles with the com-
mand ansible-galaxy install geerlingguy.firewall geerlingguy.glusterfs, or
add them to a requirements.yml file and install with ansible-galaxy install -r

requirements.yml.

Gluster requires a ‘brick’ directory to use as a virtual filesystem, and our servers also
need a directory where the filesystem can be mounted, so the first file task ensures
both directories exist (gluster_brick_dir and gluster_mount_dir). Since we need
to use these directory paths more than once, we use variables which will be defined
later, in vars.yml.

Ansible’s gluster_volume module (added in Ansible 1.9) does all the hard work of
probing peer servers, setting up the brick as a Gluster filesystem, and configuring the
brick for replication. Some of the most important configuration parameters for the
gluster_volume module include:

• state: Setting this to present makes sure the brick is present. It will also start
the volume when it is first created by default, though this behavior can be
overridden by the start_on_create option.

• name and brick give the Gluster brick a name and location on the server,
respectively. In this example, the brick will be located on the boot volume, so
we also have to add force: yes, or Gluster will complain about not having the
brick on a separate volume.

• replicas tells Gluster how many replicas should exist; this number can vary
depending on how many servers you have in the brick’s cluster, and how
much tolerance you have for server outages. We won’t get much into tuning
GlusterFS for performance and resiliency, but most situations warrant a value
of 2 or 3.

• cluster defines all the hosts which will contain the distributed filesystem. In
this case, all the gluster servers in our Ansible inventory should be included,
so we use a Jinja join filter to join all the addresses into a list.

• host sets the host for peer probing explicitly. If you don’t set this, you can some-
times get errors on brick creation, depending on your network configuration.

We only need to run the gluster_volume module once for all the servers, so we add
run_once: true.

Chapter 8 - Ansible Cookbooks 230

The last task in the playbook uses Ansible’s mount module to ensure the Gluster
volume is mounted on each of the servers, in the gluster_mount_dir.

After the playbook is created, we need to define all the variables used in the playbook.
Create a vars.yml file inside the playbooks directory, with the following variables:

1 ---

2 # Firewall configuration.

3 firewall_allowed_tcp_ports:

4 - 22

5 # For Gluster.

6 - 111

7 # Port-mapper for Gluster 3.4+.

8 # - 2049

9 # Gluster Daemon.

10 - 24007

11 # 24009+ for Gluster <= 3.3; 49152+ for Gluster 3.4+.

12 - 24009

13 - 24010

14 - 49152

15 - 49153

16 # Gluster inline NFS server.

17 - 38465

18 - 38466

19 firewall_allowed_udp_ports:

20 - 111

21

22 # Gluster configuration.

23 gluster_mount_dir: /mnt/gluster

24 gluster_brick_dir: /srv/gluster/brick

25 gluster_brick_name: gluster

This variables file should be pretty self-explanatory; all the ports required for Gluster
are opened in the firewall, and the three Gluster-related variables we use in the
playbook are defined.

Now that we have everything set up, the folder structure should look like this:

Chapter 8 - Ansible Cookbooks 231

gluster/

playbooks/

provision.yml

main.yml

inventory

Vagrantfile

Change directory into the gluster directory, and run vagrant up. After a few
minutes, provisioning should have completed successfully. To ensure Gluster is
working properly, you can run the following two commands, which should give
information about Gluster’s peer connections and the configured gluster volume:

$ ansible gluster -i inventory -a "gluster peer status" -b

192.168.29.2 | success | rc=0 >>

Number of Peers: 1

Hostname: 192.168.29.3

Port: 24007

Uuid: 1340bcf1-1ae6-4e55-9716-2642268792a4

State: Peer in Cluster (Connected)

192.168.29.3 | success | rc=0 >>

Number of Peers: 1

Hostname: 192.168.29.2

Port: 24007

Uuid: 63d4a5c8-6b27-4747-8cc1-16af466e4e10

State: Peer in Cluster (Connected)

Chapter 8 - Ansible Cookbooks 232

$ ansible gluster -i inventory -a "gluster volume info" -b

192.168.29.3 | success | rc=0 >>

Volume Name: gluster

Type: Replicate

Volume ID: b75e9e45-d39b-478b-a642-ccd16b7d89d8

Status: Started

Number of Bricks: 1 x 2 = 2

Transport-type: tcp

Bricks:

Brick1: 192.168.29.2:/srv/gluster/brick

Brick2: 192.168.29.3:/srv/gluster/brick

192.168.29.2 | success | rc=0 >>

Volume Name: gluster

Type: Replicate

Volume ID: b75e9e45-d39b-478b-a642-ccd16b7d89d8

Status: Started

Number of Bricks: 1 x 2 = 2

Transport-type: tcp

Bricks:

Brick1: 192.168.29.2:/srv/gluster/brick

Brick2: 192.168.29.3:/srv/gluster/brick

You can also do the following to confirm that files are being replicated/distributed
correctly:

1. Log into the first server: vagrant ssh gluster1

2. Create a file in the mounted gluster volume: sudo touch /mnt/gluster/test

3. Log out of the first server: exit
4. Log into the second server: vagrant ssh gluster2

5. List the contents of the gluster directory: ls /mnt/gluster

You should see the test file you created in step 2; this means Gluster is working
correctly!

Chapter 8 - Ansible Cookbooks 233

Summary

Deploying distributed file systems like Gluster can seem challenging, but Ansible
simplifies the process, and more importantly, does so idempotently; each time you
run the playbook again, it will ensure everything stays configured as you’ve set it.

This example Gluster configuration can be found in its entirety on GitHub, in the
Gluster example⁹⁵ in the Ansible Vagrant Examples project.

Mac Provisioning with Ansible and Homebrew

The next example will be specific to the Mac, but the principle behind it applies
universally. How many times have you wanted to hit the ‘reset’ button on your day-
to-day workstation or personal computer? How much time to you spend automating
configuration and testing of applications and infrastructure at your day job, and how
little do you spend automating your own local environment?

Over the past few years, as I’ve gone through four Macs (one personal, three
employer-provided), I decided to start fresh on each new Mac (rather than transfer
all my cruft from my old Mac to my new Mac through Apple’s Migration Assistant).
I had a problem, though; I had to spend at least 4-6 hours on each Mac, downloading,
installing, and configuring everything. And I had another problem—since I actively
used at least two separateMacs, I had to manually install and configure new software
on both Macs whenever I wanted to try a new tool.

To restore order to this madness, I wrapped up all the configuration I could into a set
of dotfiles⁹⁶ and used git to synchronize the dotfiles to all my workstations.

However, even with the assistance of Homebrew⁹⁷, an excellent package manager for
OS X, there was still a lot of manual labor involved in installing and configuring my
favorite apps and command line tools.

⁹⁵https://github.com/geerlingguy/ansible-vagrant-examples/tree/master/gluster
⁹⁶https://github.com/geerlingguy/dotfiles
⁹⁷http://brew.sh/

https://github.com/geerlingguy/ansible-vagrant-examples/tree/master/gluster
https://github.com/geerlingguy/dotfiles
http://brew.sh/
https://github.com/geerlingguy/ansible-vagrant-examples/tree/master/gluster
https://github.com/geerlingguy/dotfiles
http://brew.sh/

Chapter 8 - Ansible Cookbooks 234

Running Ansible playbooks locally

We saw examples of running playbooks with connection: local earlier while
provisioning virtual machines in the cloud through our local workstation. But in
fact, you can perform any Ansible task using a local connection. This is how we will
configure our local workstation, using Ansible.

I usually begin building a playbook by adding the basic scaffolding first, then filling
in details as I go. You can follow along by creating the playbook main.yml with:

1 ---

2 - hosts: localhost

3 user: jgeerling

4 connection: local

5

6 vars_files:

7 - vars/main.yml

8

9 roles: []

10

11 tasks: []

We’ll store any variables we need in the included vars/main.yml file. The user is set
to my local user account (in this case, jgeerling), so file permissions are set for my
account, and tasks are run under my own account in order to minimize surprises.

If certain tasks need to be run with sudo privileges, you can add become:

yes to the task, and either run the playbook with --ask-sudo-pass (in
which case, Ansible will prompt you for your sudo password before
running the playbook) or run the playbook normally, and wait for Ansible
to prompt you for your sudo password.

Automating Homebrew package and app management

Since I use Homebrew (billed as “the missing package manager for OS X”) for most of
my application installation and configuration, I created the role geerlingguy.homebrew,

Chapter 8 - Ansible Cookbooks 235

which first installs Homebrew and then installs all the applications and packages I
configure in a few simple variables.

The next step, then, is to add the Homebrew role and configure the required variables.
Inside main.yml, update the roles section:

9 roles:

10 - geerlingguy.homebrew

Then add the following into vars/main.yml:

1 ---

2 homebrew_installed_packages:

3 - ansible

4 - sqlite

5 - mysql

6 - php56

7 - python

8 - ssh-copy-id

9 - cowsay

10 - pv

11 - drush

12 - wget

13 - brew-cask

14

15 homebrew_taps:

16 - caskroom/cask

17 - homebrew/binary

18 - homebrew/dupes

19 - homebrew/php

20 - homebrew/versions

21

22 homebrew_cask_appdir: /Applications

23 homebrew_cask_apps:

24 - google-chrome

25 - firefox

Chapter 8 - Ansible Cookbooks 236

26 - sequel-pro

27 - sublime-text

28 - vagrant

29 - vagrant-manager

30 - virtualbox

Homebrew has a few tricks up its sleeve, like being able to manage general packages
like PHP, MySQL, Python, Pipe Viewer, etc. natively (using commands like brew

install [package] and brew uninstall package), and can also install and manage
general application installation for many Mac apps, like Chrome, Firefox, VLC, etc.
using brew cask.

To anyone who’s set up a new Mac the old-fashioned way—download 15 .dmg files,
mount them, drag the applications to the Applications folder, eject them, delete
the .dmg files—Homebrew’s simplicity and speed are a true godsend. This Ansible
playbook has so far automated that process completely, so you don’t even have to run
the Homebrew commands manually! The geerlingguy.homebrew role uses Ansible’s
built-in homebrew module to manage package installation, along with some custom
tasks to manage cask applications.

Configuring Mac OS X through dotfiles

Just like there’s a homebrew role on Ansible Galaxy, made for configuring and
installing packages via Homebrew, there’s a dotfiles role you can use to download
and configure your local dotfiles.

Dotfiles are named as such because they are files in your home directory
that begin with a .. Many programs and shell environments read local
configuration from dotfiles, so dotfiles are a simple, efficient, and easily-
synchronized method of customizing your development environment for
maximum efficiency.

In this example, we’ll use the author’s dotfiles, but you can tell the role to use
whatever set of dotfiles you want.

Add another role to the roles list:

Chapter 8 - Ansible Cookbooks 237

9 roles:

10 - geerlingguy.homebrew

11 - geerlingguy.dotfiles

Then, add the following three variables to your vars/main.yml file:

2 dotfiles_repo: https://github.com/geerlingguy/dotfiles.git

3 dotfiles_repo_local_destination: ~/repositories/dotfiles

4 dotfiles_files:

5 - .bash_profile

6 - .gitignore

7 - .inputrc

8 - .osx

9 - .vimrc

The first variable gives the git repository URL for the dotfiles to be cloned. The second
gives a local path for the repository to be stored, and the final variable tells the role
which dotfiles it should use from the specified repository.

The dotfiles role clones the specified dotfiles repository locally, then symlinks every
one of the dotfiles specified in dotfiles_files into your home folder (removing any
existing dotfiles of the same name).

If you want to run the .osx dotfile, which adjusts many system and application
settings, add in a new task under the tasks section in the main playbook:

1 tasks:

2 - name: Run .osx dotfiles.

3 shell: ~/.osx --no-restart

4 changed_when: false

In this case, the .osx dotfile allows a --no-restart flag to be passed to prevent the
script from restarting certain apps and services including Terminal—which is good,
since you’d likely be running the playbook from within Terminal.

At this point, you already have the majority of your local environment set up.
Copying additional settings and tweaking things further is an exercise in adjusting

Chapter 8 - Ansible Cookbooks 238

your dotfiles or including another playbook that copies or links preference files into
the right places.

I’m constantly tweaking my own development workstation, and for the most part,
all my configuration is wrapped up in my Mac Development Ansible Playbook⁹⁸,
available on GitHub. I’d encourage you to fork that project, as well as my dotfiles, if
you’d like to get started automating the build of your own development workstation.
Even if you don’t use aMac, most of the structure is similar; just substitute a different
package manager, and start automating!

Summary

Ansible is the best way to automate infrastructure provisioning and configuration.
Ansible can also be used to configure your own workstation, saving you the time and
frustration it takes to do so yourself. Unfortunately, you can’t yet provision yourself
a new top-of-the-line workstation with Ansible!

You can find the full playbook I’m currently using to configure my Macs on GitHub:
Mac Development Ansible Playbook⁹⁹.

/ Do or do not. There is no try. \

\ (Yoda) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

⁹⁸https://github.com/geerlingguy/mac-dev-playbook
⁹⁹https://github.com/geerlingguy/mac-dev-playbook

https://github.com/geerlingguy/mac-dev-playbook
https://github.com/geerlingguy/mac-dev-playbook
https://github.com/geerlingguy/mac-dev-playbook
https://github.com/geerlingguy/mac-dev-playbook

Chapter 9 - Deployments with
Ansible
Deploying application code to servers is one of the hardest, but most rewarding,
tasks of any development team. Most shops using traditional deployment techniques
(manual steps, shell scripts, and prayers) dread deployments, especially for complex,
monolithic apps.

Deployments are less daunting when you adopt modern deployment processes and
use the right amount of automation. In the best case, deployments become so boring
and routine they barely register as a blip on your team’s radar.

Consider Etsy, a company whose engineers are deploying code to production up to
40 times per day¹⁰⁰, with no manual intervention from the operations team. The
operations team is free to work on more creative endeavors, and the developers see
their code go live in near-real-time!

Etsy’s production deployment schedule is enabled by a strong DevOps-oriented
culture (with robust code repository management, continuous integration, well-
tested code, feature flags, etc.). While it may not be immediately possible to start
deploying your application to production 20 times a day, you can move a long way
towards effortless deployments by automating deployments with Ansible.

Deployment strategies

There are dozens of ways to deploy code to servers. For the most basic applications,
you may only need to switch to a new tag in a code repository on the server and
restarting a service.

For more complex applications, you might do a full Blue-Green deployment, where
you build an entire new infrastructure alongside your current production infrastruc-
ture, run tests on the new infrastructure, then automatically cut over to the new

¹⁰⁰http://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy

http://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy
http://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy
http://www.slideshare.net/mikebrittain/principles-and-practices-in-continuous-deployment-at-etsy

Chapter 9 - Deployments with Ansible 240

instances. This may be overkill for many applications (especially if <100% uptime is
acceptable), but it is becoming more and more common—and Ansible automates the
entire process.

In this chapter, we will be covering the following deployment strategies:

1. Single-server deployments.
2. Zero-downtime multi-server deployments.
3. Capistrano-style and blue-green deployments.

These are three of the most common deployment techniques, and they cover many
common use cases. There are other ways to strengthen your deployment processes,
often involving application-level and organizational change, but those deployment
aspects are out of the scope of this book.

Simple single-server deployments

The vast majority of small applications and websites are easily run on a single
virtual machine or dedicated server. Using Ansible to provision and manage the
configuration on the server is a no-brainer. Even though you only have to manage
one server, it’s better to encapsulate all the setup so you don’t end upwith a snowflake
server.

In this instance, we are managing a Ruby on Rails site that allows users to perform
CRUD operations on articles (database records with a title and body).

The code repository for this app is located on GitHub in the demo-rails-app
repository¹⁰¹.

Begin by creating a new Vagrant VM for local testing using the following Vagrantfile:

¹⁰¹https://github.com/geerlingguy/demo-rails-app

https://github.com/geerlingguy/demo-rails-app
https://github.com/geerlingguy/demo-rails-app
https://github.com/geerlingguy/demo-rails-app

Chapter 9 - Deployments with Ansible 241

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 Vagrant.configure(2) do |config|

5 config.vm.box = "geerlingguy/ubuntu1804"

6

7 config.vm.provider "virtualbox" do |v|

8 v.name = "rails-demo"

9 v.memory = 1024

10 v.cpus = 2

11 end

12

13 config.vm.hostname = "rails-demo"

14 config.vm.network :private_network, ip: "192.168.33.7"

15

16 config.vm.provision "ansible" do |ansible|

17 ansible.playbook = "playbooks/main.yml"

18 ansible.become = true

19 end

20

21 end

In this case, we have a VM at the IP address 192.168.33.7. When provisioned, it will
run the Ansible playbook defined in playbooks/main.yml on the VM.

Provisioning a Ruby on Rails server

To prepare for our application deployment, we need to do the following:

1. Install git (our application is version controlled in a git repository).
2. Install Node.js (asset compilation requires its Javascript runtime).
3. Install Ruby (our application requires version 2.6.0 or later).
4. Install Passenger with Nginx (we need a fast web server to run our rails

application).
5. Install any other dependencies, and prepare the server for deployment.

Chapter 9 - Deployments with Ansible 242

Let’s create a new playbook just for the provisioning tasks (we’ll worry about
deployment later), in a new file, playbooks/provision.yml:

1 ---

2 - hosts: all

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.git

10 - geerlingguy.nodejs

11 - geerlingguy.ruby

12 - geerlingguy.passenger

13

14 tasks:

15 - name: Install app dependencies.

16 apt:

17 name:

18 - libsqlite3-dev

19 - libreadline-dev

20 - tzdata

21 state: present

22

23 - name: Ensure app directory exists and is writeable.

24 file:

25 path: "{{ app_directory }}"

26 state: directory

27 owner: "{{ app_user }}"

28 group: "{{ app_user }}"

29 mode: 0755

This is a straightforward playbook. We’ll need to define a few variables to make sure
the geerlingguy.ruby role installs the correct version of Ruby (at least 2.6.0), and the
geerlingguy.passenger role is configured to serve our app correctly.

Chapter 9 - Deployments with Ansible 243

There are also a few other variables we will need, like app_directory and app_user,
so let’s create the variables file now, at playbooks/vars.yml:

1 # Variables for our app.

2 app_directory: /opt/demo-rails-app

3 app_user: www-data

4

5 # Variables for Passenger and Nginx.

6 passenger_server_name: 0.0.0.0

7 passenger_app_root: /opt/demo-rails-app/public

8 passenger_app_env: production

9 passenger_ruby: /usr/local/bin/ruby

10

11 # Variables for Ruby installation.

12 ruby_install_from_source: true

13 ruby_download_url: https://cache.ruby-lang.org/pub/ruby/2.6/\

14 ruby-2.6.0.tar.gz

15 ruby_version: 2.6.0

The passenger variables tell Passenger to run a server available on every network in-
terface, and to launch our app (whichwill be located in /opt/demo-rails-app/public)
with production settings (the app’s environment), using the ruby binary we have
installed in /usr/local/bin/ruby.

The Ruby variables tell the ruby role to install Ruby 2.6.0 from source, since the
packages available through Ubuntu’s standard apt repositories only contain older
versions.

The playbook specified in our Vagrantfile, playbooks/main.yml, doesn’t yet exist.
Let’s create the playbook and include the above provisioning.yml playbook so our
server will be provisioned successfully. We’ll separate out the deployment steps into
another playbook and include that separately. Inside playbooks/main.yml:

1 ---

2 - import_playbook: provision.yml

Chapter 9 - Deployments with Ansible 244

Deploying a Rails app to the server

All the dependencies for our app’s deployment were configured in provision.yml,
so we’re ready to build a playbook to perform all the deployment tasks.

Add a line to the main.yml file to include a new deploy.yml playbook:

1 ---

2 - import_playbook: provision.yml

3 - import_playbook: deploy.yml

Now we’re ready to create the deploy.yml playbook, which will do the following:

1. Use git to check out the latest production release of the Rails app.
2. Copy over a secrets.yml template with secure app data required for running

the app.
3. Make sure all the gems required for the app are installed (via Bundler).
4. Create the database (if it doesn’t already exist).
5. Run rake tasks to make sure the database schema is up-to-date and all assets

(like JS and CSS) are compiled.
6. Make sure the app files’ ownership is set correctly so Passenger and Nginx serve

them without error.
7. If any changes or updates were made, restart Passenger and Nginx.

Most of these tasks will use Ansible’s modules, but for a few, we’ll just wrap the
normal deployment-related commands in command since there aren’t pre-existing
modules to take care of them for us:

Chapter 9 - Deployments with Ansible 245

1 ---

2 - hosts: all

3 become: yes

4

5 vars_files:

6 - vars.yml

7

8 roles:

9 - geerlingguy.passenger

10

11 tasks:

12 - name: Ensure demo application is at correct release.

13 git:

14 repo: https://github.com/geerlingguy/demo-rails-app.git

15 version: "{{ app_version }}"

16 dest: "{{ app_directory }}"

17 accept_hostkey: true

18 force: yes

19 register: app_updated

20 notify: restart nginx

21

22 - name: Ensure secrets file is present.

23 template:

24 src: templates/secrets.yml.j2

25 dest: "{{ app_directory }}/config/secrets.yml"

26 owner: "{{ app_user }}"

27 group: "{{ app_user }}"

28 mode: 0664

29 notify: restart nginx

30

31 - name: Install required dependencies with bundler.

32 command: "bundle install --path vendor/bundle \

33 chdir={{ app_directory }}"

34 when: app_updated.changed == true

35 notify: restart nginx

36

Chapter 9 - Deployments with Ansible 246

37 - name: Check if database exists.

38 stat: "path={{ app_directory }}/db/{{ app_environment.\

39 RAILS_ENV }}.sqlite3"

40 register: app_db_exists

41

42 - name: Create database.

43 command: "bundle exec rake db:create chdir={{ app_directory }}"

44 when: app_db_exists.stat.exists == false

45 notify: restart nginx

46

47 - name: Perform deployment-related rake tasks.

48 command: "{{ item }} chdir={{ app_directory }}"

49 with_items:

50 - bundle exec rake db:migrate

51 - bundle exec rake assets:precompile

52 environment: "{{ app_environment }}"

53 when: app_updated.changed == true

54 notify: restart nginx

55

56 - name: Ensure demo application has correct user for files.

57 file:

58 path: "{{ app_directory }}"

59 state: directory

60 owner: "{{ app_user }}"

61 group: "{{ app_user }}"

62 recurse: yes

63 notify: restart nginx

The first thing you’ll notice (besides the fact we’ve included the vars.yml file
again, since we need those variables in this playbook as well) is we’ve added
the geerlingguy.passenger role in this playbook. Since we’ll be using one of the
handlers defined in that role (restart nginx), we need to include the role explicitly.
We could’ve added a separate handler specific to this playbook, but using a role’s
handlers usually makes maintenance easier.

Let’s walk through the tasks, one-by-one:

Chapter 9 - Deployments with Ansible 247

1. (Lines 12-20) We put all the application files in place by checking out the git
repository at the version app_version into the directory app_directory. We set
accept_hostkey to true so this task doesn’t hang the first time we deploy the
app (since we haven’t yet accepted the Git server’s hostkey).

2. (Lines 22-29) We copy a secrets.yml file to the application’s configuration
directory. There are different ways to deploy app secrets, but this is the easiest,
and allows us to store the app secrets in an Ansible Vault-protected vars file if
we so desire.

3. (Lines 31-34) If the app_updated variable shows a change occurred as part of
the first git task, we’ll run a bundler command to ensure all the latest bundled
dependencies are installed in the vendor/bundle directory.

4. (Lines 36-43) Create the application database with rake db:create if it doesn’t
already exist. Since this application uses a SQLite database, it’s a matter of
checking if the .sqlite3 file exists, and if not, running the db:create task.

5. (Lines 45-52) If the app_updated variable shows a change occurred as part of
the first git task, we’ll also run a couple rake tasks to make sure the database
schema is up to date, and all assets (like scripts and stylesheets) are compiled.

6. (Lines 54-61) Make sure all app files have the correct permissions for Passen-
ger/Nginx to serve them correctly.

Becausemany of the tasks result in filesystem changes that could change the behavior
of the application, they all notify the restart nginx handler provided by the
geerlingguy.passenger role, so Passenger reloads the configuration and restarts the
app.

There are a few new variables we need to add to vars.yml, and we also need to add
the secrets.yml.j2 template mentioned in the task that copies it into place.

First, we’ll create the secrets file, inside playbooks/templates/secrets.yml.j2:

Chapter 9 - Deployments with Ansible 248

1 development:

2 secret_key_base: {{ app_secrets.dev }}

3

4 test:

5 secret_key_base: {{ app_secrets.test }}

6

7 production:

8 secret_key_base: {{ app_secrets.prod }}

We’ll be using a dictionary variable for app_secrets, so let’s add it and all the other
new variables to playbooks/vars.yml:

1 ---

2 # Variables for our app.

3 app_version: 2.0.1

4 app_directory: /opt/demo-rails-app

5 app_user: www-data

6 app_secrets:

7 dev: fe562ec1e21eecc5af4d83f6a157a7

8 test: 4408f36dd290766d2f368fdfcedf4d

9 prod: 9bf801da1a24c9a103ea86a1438caa

10 app_environment:

11 RAILS_ENV: production

12

13 # Variables for Passenger and Nginx.

14 passenger_server_name: 0.0.0.0

15 passenger_app_root: /opt/demo-rails-app/public

16 passenger_app_env: production

17 passenger_ruby: /usr/local/bin/ruby

18

19 # Variables for Ruby installation.

20 ruby_install_from_source: true

21 ruby_download_url: http://cache.ruby-lang.org/pub/ruby/2.2/\

22 ruby-2.2.0.tar.gz

23 ruby_version: 2.2.0

Chapter 9 - Deployments with Ansible 249

Note the addition of the following variables to support our deploy.yml playbook:

• app_version: This is the git tag, branch, or commit hash to be deployed to the
server.

• app_secrets: A dictionary of Rails app secrets, which are used to verify the
integrity of signed app cookies. You can generate new, unique strings for these
variables using rake secret.

• app_environment: Environment settings required for certain commands (like
bundle exec and rake) to run with the correct Rails application environment.

Provisioning and Deploying the Rails App

Since we now have our provision.yml and deploy.yml playbooks completed, and
both are included in the main.yml playbook Vagrant will run, it’s time to bring up
the new VM using Vagrant, and see if our application works!

The structure of your project folder should look like this:

deployments/

playbooks/

templates/

secrets.yml.j2

deploy.yml

main.yml

provision.yml

vars.yml

Vagrantfile

Before running the playbook, we need to make sure all the role dependencies are
present. If you were building everything from scratch, you might have a roles

directory with all the roles inside, but in this case, since we’re using roles from
Ansible Galaxy, it’s best to not include the role files directly with our playbook, but
instead, add a requirements.yml file to the project and install the roles automatically
with Galaxy.

Inside requirements.yml:

Chapter 9 - Deployments with Ansible 250

1 ---

2 - src: geerlingguy.git

3 - src: geerlingguy.ruby

4 - src: geerlingguy.nodejs

5 - src: geerlingguy.passenger

In the same directory as the requirements file, run the command $ ansible-galaxy

install -r requirements.yml, and after a minute, all the required roles will be
downloaded to your default Ansible roles directory, if they’re not already present.

Change directory back to the main directory containing the Vagrantfile, and run
vagrant up. Assuming everything runs correctly, you should see the playbook
complete successfully after a few minutes:

TASK [Ensure demo application has correct user for files.] **********

changed: [default]

RUNNING HANDLER [geerlingguy.passenger : restart nginx] *************

changed: [default]

PLAY RECAP **

default : ok=55 changed=31 unreachable=0 failed=0

Now, jump over to a web browser and load http://192.168.33.7/. You should see
something like the following:

Demonstration Rails app running successfully.

Try creating, updating, and deleting a few articles to make sure the database and all
app functionality is working correctly:

Chapter 9 - Deployments with Ansible 251

A Rails app to perform CRUD operations on Articles.

The app seems to function perfectly, but it could use some improvements. After
more development work, we have a new version of to deploy. We could update
the app_version variable in vars.yml and run vagrant provision to run the entire
provisioning and deployment playbook again, but to save time using our flexible
playbook layout (with separate provisioning and deployment playbooks), we can
run the deploy.yml playbook separately.

Deploying application updates

First, to test deployment without provisioning, we need to create an inventory file to
tell Ansible how to connect directly to the Vagrant-managed VM.

Create the file playbooks/inventory-ansible with the following contents:

Chapter 9 - Deployments with Ansible 252

1 [rails]

2 192.168.33.7

3

4 [rails:vars]

5 ansible_ssh_user=vagrant

6 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

If you were creating this playbook for a server or VM running outside of
Vagrant’s control, you’d probably have already created an inventory file
or added the server to your global inventory, but when we’re working
with Vagrant, it’s often convenient to use Vagrant’s own dynamically-
managed inventory. Running playbooks outside of Vagrant’s up/provision
functionality requires us to create a separate inventory file.

Test the ability to run the deploy.yml playbook by running the following command
inside the playbooks directory:

$ ansible-playbook deploy.yml -i inventory-ansible

Hopefully the playbook completed its run successfully. It may have reported a change
in the “Ensure demo application has correct user for files” task, and if so, it will have
restarted Passenger. Run it again, and ansible should report no changes:

PLAY RECAP **

192.168.33.7 : ok=18 changed=0 unreachable=0 failed=0

Hopefully you’ve noticed running the deploy.yml playbook standalone is much
faster than running the provision and deploy playbooks together (deployment only
takes 18 tasks, while both playbooks add up to 80+ tasks!). In the future, we can
deploy application updates using only the deploy.yml playbook and changing the
app_version either in vars.yml or by specifying the version on the command line in
the ansible-playbook command.

Chapter 9 - Deployments with Ansible 253

It’s generally preferred to change variables in vars files that are versioned
with your playbooks, rather than specify them through inventory files,
environment variables, or on the command line. This way the entire state
of your infrastructure is encapsulated in your playbook files, which ideally
should be version controlled and managed similarly to the application they
deploy. Plus, who wants to enter any more information on the command
line than is absolutely required?

Our application is a fairly generic web application with updates to application
code (which require a web server reload), styles (which need recompiling), and
possibly the database schema (which needs rake migrate tasks to be run). Any
time app_version is changed inside playbooks/vars.yml, the deploy playbook will
automatically run all the required tasks to get our app running with the latest code.

Update app_version to 2.1.0, and then run the following command again:

$ ansible-playbook deploy.yml -i inventory-ansible

After a minute or so, the deployment should complete. Once complete, you’ll see the
new-and-improved version of the Demonstration Ruby on Rails Application:

Rails app - version 2.1.0 with a fancy header.

Chapter 9 - Deployments with Ansible 254

Application update deployments involve incrementing the app_version to the latest
git tag, then running the deploy.yml playbook again. The main.yml playbook can
be run to ensure the entire server stack is in the correct state, but it’s faster to just
deploy the app updates.

Code for this entire example is available on GitHub in the Ansible for
DevOps deployments example¹⁰².

Zero-downtime multi-server deployments

If you need to run an application on multiple servers for horizontal scalability or re-
dundancy, deployments can be cumbersome, resulting in downtime and complicated
deployment processes—but not when you use Ansible!

Server Check.in¹⁰³ is a server and website monitoring service with a microservices-
based architecture; there is a website, an API application, and a server checking
application.

The server checking application needs to run on a variety of servers hosted around
the world by different providers to provide redundancy and reliability. Server
Check.in uses Ansible to manage rolling deployments for this application, so new
code is deployed across all the servers in minutes while maintaining 100% uptime!

We’ll emulate part of Server Check.in’s infrastructure (the check server application)
by deploying and updating a small Node.js application to a set of virtual machines.
The code repository for this app is located on GitHub in the demo-nodejs-api
repository¹⁰⁴. Here’s a diagram of the infrastructure we’ll be building:

¹⁰²https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments
¹⁰³https://servercheck.in/
¹⁰⁴https://github.com/geerlingguy/demo-nodejs-api

https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments
https://servercheck.in/
https://github.com/geerlingguy/demo-nodejs-api
https://github.com/geerlingguy/demo-nodejs-api
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments
https://servercheck.in/
https://github.com/geerlingguy/demo-nodejs-api

Chapter 9 - Deployments with Ansible 255

Four servers connected to the Internet.

To begin, create four lightweight Vagrant VMs using the following Vagrantfile:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 Vagrant.configure("2") do |config|

5 # Base VM OS configuration.

6 config.vm.box = "geerlingguy/ubuntu1804"

7 config.vm.synced_folder '.', '/vagrant', disabled: true

8 config.ssh.insert_key = false

9

10 config.vm.provider :virtualbox do |v|

11 v.memory = 256

12 v.cpus = 1

13 v.linked_clone = true

14 end

15

16 # Define four VMs with static private IP addresses.

17 boxes = [

18 { :name => "nodejs1", :ip => "192.168.3.2" },

19 { :name => "nodejs2", :ip => "192.168.3.3" },

20 { :name => "nodejs3", :ip => "192.168.3.4" },

21 { :name => "nodejs4", :ip => "192.168.3.5" }

Chapter 9 - Deployments with Ansible 256

22]

23

24 # Provision each of the VMs.

25 boxes.each do |opts|

26 config.vm.define opts[:name] do |config|

27 config.vm.hostname = opts[:name]

28 config.vm.network :private_network, ip: opts[:ip]

29

30 # Provision all the VMs using Ansible after last VM is up.

31 if opts[:name] == "nodejs4"

32 config.vm.provision "ansible" do |ansible|

33 ansible.playbook = "playbooks/main.yml"

34 ansible.inventory_path = "inventory"

35 ansible.limit = "all"

36 end

37 end

38 end

39 end

40

41 end

The above Vagrantfile defines four VMs with 256MB of RAM and a unique
hostname and IP address (defined by the boxes variable). Our Node.js app doesn’t
require much in the way of processing power or memory.

In the provision section of the playbook, we told Vagrant to provision the all the VMs
withAnsible, using the inventory file inventory, and the playbook playbooks/main.yml.
Create these two files in the same folder as your Vagrantfile:

deployments-rolling/

playbooks/

main.yml

inventory

Vagrantfile

Inside the inventory file, we just need to define a list of all the Node.js API app VMs
by IP address:

Chapter 9 - Deployments with Ansible 257

1 [nodejs-api]

2 192.168.3.2

3 192.168.3.3

4 192.168.3.4

5 192.168.3.5

6

7 [nodejs-api:vars]

8 ansible_ssh_user=vagrant

9 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

Inside the main.yml playbook, we’ll call out two separate playbooks—one for the
initial provisioning (installing Node.js and making sure the server is configured
correctly), and another for deployment (ensuring our Node.js API app is present and
running):

1 ---

2 - import_playbook: provision.yml

3 - import_playbook: deploy.yml

Go ahead and create the provision.yml and deploy.yml playbooks, starting with
provision.yml:

1 ---

2 - hosts: nodejs-api

3 become: yes

4

5 vars:

6 nodejs_install_npm_user: root

7 npm_config_prefix: "/usr"

8 nodejs_npm_global_packages:

9 - forever

10 firewall_allowed_tcp_ports:

11 - "22"

12 - "8080"

13

Chapter 9 - Deployments with Ansible 258

14 pre_tasks:

15 - name: Update apt cache if needed.

16 apt: update_cache=yes cache_valid_time=3600

17

18 roles:

19 - geerlingguy.firewall

20 - geerlingguy.nodejs

21 - geerlingguy.git

This playbook runs on all the servers defined in our inventory file, and runs three
roles on the servers: geerlingguy.firewall (which installs and configures a firewall,
in this case opening ports 22 for SSH and 8080 for our app), geerlingguy.nodejs
(which installs Node.js, NPM, and the forever package (installed globally), which
we’ll use to run our app as a daemon), and geerlingguy.git (which installs git,
used for app deployment).

Since we’re using two roles from Ansible Galaxy, it’s best practice to also include
those roles in a requirements file so CI tools and others using this playbook can
install all the required roles.

Create a requirements.yml file in the root folder and add the following:

1 ---

2 - src: geerlingguy.firewall

3 - src: geerlingguy.nodejs

4 - src: geerlingguy.git

Whenever someone wants to run the playbook, the command ansible-galaxy

install -r requirements.yml will install all the required roles.

At this point, your project directory should be structured like the following:

Chapter 9 - Deployments with Ansible 259

deployments-rolling/

playbooks/

deploy.yml

main.yml

provision.yml

inventory

requirements.yml

Vagrantfile

Before we run vagrant up and see our infrastructure in action, we need to build out
the deploy.yml playbook, which will ensure our app is present and running correctly
on all the servers.

Inside deploy.yml, add the following:

1 ---

2 - hosts: nodejs-api

3 gather_facts: no

4 become: yes

5

6 vars_files:

7 - vars.yml

Use become, and set gather_facts to no to save a little time during deployments,
since our app doesn’t require any of the gathered system facts to run.

Since we have a few variables to define, and we’d like to track them separately for
easier file revision history, we’ll define the variables in a vars.yml file in the same
directory as the deploy.yml playbook:

1 ---

2 app_repository: https://github.com/geerlingguy/demo-nodejs-api.git

3 app_version: "2.0.0"

4 app_directory: /opt/demo-nodejs-api

Once you’ve saved the vars.yml file, continue building out deploy.yml, starting with
a task to clone the app’s repository (which we just defined in vars.yml):

Chapter 9 - Deployments with Ansible 260

9 tasks:

10 - name: Ensure Node.js API app is present.

11 git:

12 repo: "{{ app_repository }}"

13 version: "{{ app_version }}"

14 dest: "{{ app_directory }}"

15 accept_hostkey: true

16 register: app_updated

17 notify: restart forever apps

Using variables for the gitmodule’s repo and version affords flexibility; app version
changes might happen frequently, and it’s easier to manage them in a separate
vars.yml file.

We also want to notify a restart forever apps handler whenever the codebase is
changed. We’ll define the restart forever apps handler later in the playbook.

18 - name: Stop all running instances of the app.

19 command: "forever stopall"

20 when: app_updated.changed

21

22 - name: Ensure Node.js API app dependencies are present.

23 npm: "path={{ app_directory }}"

24 when: app_updated.changed

25

26 - name: Run Node.js API app tests.

27 command: "npm test chdir={{ app_directory }}"

28 when: app_updated.changed

Once the app is present on the server, we need to use npm to install dependencies
(using Ansible’s npm module), then run the app’s test suite using npm test. To
save time, we only stop the application, update dependencies, and run tests if
the application has changed (using the app_updated variable we registered when
checking out the application code).

Running the tests for the app during every deployment ensures the app is present
and in a functioning state. Having a thorough unit and integration test suite running

Chapter 9 - Deployments with Ansible 261

on every deployment is prerequisite to a frequent or continuously-integrated project!
Running the tests during deployments also enables zero-downtime deployments, as
we’ll see later.

25 - name: Get list of all running Node.js apps.

26 command: forever list

27 register: forever_list

28 changed_when: false

29

30 - name: Ensure Node.js API app is started.

31 command: "forever start {{ app_directory }}/app.js"

32 when: "forever_list.stdout.find('app.js') == -1"

Once the app is present and running correctly, we need to make sure it’s started.
There’s a command to get the list of all running apps (using forever), then a
command to start the app if it’s not already running.

34 - name: Add cron entry to start Node.js API app on reboot.

35 cron:

36 name: "Start Node.js API app"

37 special_time: reboot

38 job: "forever start {{ app_directory }}/app.js"

The final task adds a cron job to make sure the app is started after the server reboots.
Since we’re managing the deamonization of our app using forever instead of the
OS’s init system, it’s best to make sure the app starts on system boot using a reboot
cron job.

Remember when we added the line notify: restart forever apps to the task that
ensured the app was present on the server? It’s time to define this handler, which
runs the command forever restartall (which does exactly what it says):

Chapter 9 - Deployments with Ansible 262

40 handlers:

41 - name: restart forever apps

42 command: "forever restartall"

At this point, the Ansible playbooks and Vagrant configuration should be complete.
The playbook will clone the demo-nodejs-api project, run its tests to make sure
everything’s working correctly, then start the app using forever and make sure it’s
started whenever the server reboots.

Run the command below to test all the new servers and make sure the app is running
correctly:

$ for i in {2..5}; \

do curl -w "\n" "http://192.168.3.$i:8080/hello/john"; \

done

If all the servers are online, you should see the text "hello john" repeated four times
(once for each server):

"hello john"

"hello john"

"hello john"

"hello john"

Run vagrant provision to run the entire provisioning and deployment process again,
or just run ansible-playbook -i inventory playbooks/deploy.yml to run the
deployment playbook again. In either case, you should see no changes, and Ansible
should verify everything is ok.

You now have a fleet of Node.js API servers similar to Server Check.in’s server
checking infrastructure—except it doesn’t do much yet! Luckily, the project has seen
some new feature development since the initial 2.0.0 version you just deployed. We
now need a way to get the new version deployed to and running on all the servers
while maintaining 100% uptime for the API as a whole.

Chapter 9 - Deployments with Ansible 263

Ensuring zero downtime with serial and integration
tests

Now, after a little extra time in development, we have new features to deploy in a
2.0.1 version. You could run the exact same ansible-playbook command as above,
adding in --extra-vars "app_version=2.0.1", but best practice is to update the
variable in your included variables file, since that change is tracked in version control
and used for automated deployments.

Change the app_version in playbooks/vars.yml to 2.0.1, and run the deployment
playbook again:

ansible-playbook -i inventory playbooks/deploy.yml

Uh oh—after we deployed the new version, our tests started failing! Since we
deployed to all four servers asynchronously, all four application servers are offline,
and our boss and customers are going to be very angry.

In this case, rolling back is simple: revert to 2.0.0 and redeploy. Doing this now
fixes the problem this time, but if part of the application update changed a database
schema you could be in a world of hurt!

Ansible has two particular settings to protect you when you deploy to many servers
while maintaining your infrastructure’s overall integrity during a failed deployment.

Open the deployment playbook (playbooks/deploy.yml) and modify the initial
settings to match the following:

1 ---

2 - hosts: nodejs-api

3 gather_facts: no

4 become: yes

5 serial: 2

Note the addition of serial: 2. This tells Ansible to run the entire playbook on two
servers at a time. If you update app_version to 2.0.1 again, and run the playbook,
you should see it run on two of the four servers, and once it hits the test failure, the

Chapter 9 - Deployments with Ansible 264

playbook execution will stop—leaving your other two servers up (and saving you a
few hours on a conference bridge explaining the outage).

You could again revert back to 2.0.0, but in the time you were deploying the failed
version, developers finished a new version that got all tests passing again, 2.0.2. Go
ahead and update app_version and run the playbook again.

PLAY RECAP **

192.168.3.2 : ok=8 changed=5 unreachable=0 failed=0

192.168.3.3 : ok=8 changed=5 unreachable=0 failed=0

192.168.3.4 : ok=8 changed=5 unreachable=0 failed=0

192.168.3.5 : ok=8 changed=5 unreachable=0 failed=0

Whew! Everything is back online and operational, and all tests are passing with the
latest version of the application.

Tests should rarely fail only on production. But there are many times where
networking issues or even latency in third party services causes a random
failure or two. Whenever you move beyond one server (usually to provide
both redundancy and capacity), you will run into these transient issues. It’s
best to account for them in your automated deployment process by tuning
serial and similar settings well.

Ansible exposes two different settings for controlling rolling deployment failure
scenarios:

1. serial: Can be an integer (e.g. 3) or a percentage (e.g. 30%). Used to control how
many hosts Ansible will manage at once.

2. max_fail_percentage: An integer between 1-100. Used to tell Ansible what
percentage of hosts can fail a task before the play will be aborted.

If you have some headroom in your infrastructure, set these values higher. If you
have only as much infrastructure running as your application needs, and having
more than one or two servers offline would put your infrastructure into a bad state,
you should be more conservative with these settings—and maybe provision a little
more capacity!

Chapter 9 - Deployments with Ansible 265

Code for this entire example is available on GitHub in the Ansible for
DevOps deployments-rolling example¹⁰⁵.

Deploying to app servers behind a load balancer

In the case of Server Check.in, there are two separate API layers that manage
the complexity of ensuring all server checks happen, regardless of whether certain
servers are up or down. The ‘load balancing’ occurs on the application layer instead
of as a separate infrastructure layer (this is extremely helpful when dealing with
global latency and network reliability variation).

For many applications, especially those with app servers close together (e.g. in the
same data center) the infrastructure layer follows a more traditional layout, with a
load balancer to handle the API request distribution:

Four servers behind a load balancer.

For a demonstration of zero-downtime deployment with a load balancer, let’s build
a local infrastructure with one HAProxy load balancer and two Apache webservers.

First, create a new project folder deployments-balancer, and within it, create the
following Vagrantfile:

¹⁰⁵https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-rolling

https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-rolling
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-rolling
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-rolling

Chapter 9 - Deployments with Ansible 266

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 Vagrant.configure("2") do |config|

5 # Base VM OS configuration.

6 config.vm.box = "geerlingguy/ubuntu1804"

7 config.vm.synced_folder '.', '/vagrant', disabled: true

8 config.ssh.insert_key = false

9

10 config.vm.provider :virtualbox do |v|

11 v.memory = 256

12 v.cpus = 1

13 v.linked_clone = true

14 end

15

16 # Define four VMs with static private IP addresses.

17 boxes = [

18 { :name => "bal1", :ip => "192.168.4.2" },

19 { :name => "app1", :ip => "192.168.4.3" },

20 { :name => "app2", :ip => "192.168.4.4" }

21]

22

23 # Provision each of the VMs.

24 boxes.each do |opts|

25 config.vm.define opts[:name] do |config|

26 config.vm.hostname = opts[:name]

27 config.vm.network :private_network, ip: opts[:ip]

28

29 # Provision all the VMs using Ansible after last VM is up.

30 if opts[:name] == "app2"

31 config.vm.provision "ansible" do |ansible|

32 ansible.playbook = "playbooks/provision.yml"

33 ansible.inventory_path = "inventory"

34 ansible.limit = "all"

35 end

36 end

Chapter 9 - Deployments with Ansible 267

37 end

38 end

39

40 end

This Vagrantfile will create three servers running Ubuntu: bal1 (the balancer), and
app1 and app2 (the application servers). We referenced an Ansible playbook at
playbooks/provision.yml (to install the required software on the servers), as well as
a custom inventory file at inventory. First, create the inventory file (inventory, in the
same directory as the Vagrantfile), with the appropriate groupings and connection
variables:

1 [balancer]

2 192.168.4.2

3

4 [app]

5 192.168.4.3

6 192.168.4.4

7

8 [deployments:children]

9 balancer

10 app

11

12 [deployments:vars]

13 ansible_ssh_user=vagrant

14 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

With this inventory, we can operate on just the balancer, just the app servers,
or all the servers together (in the deployments group). Next, create a playbook (at
playbooks/provision.yml) to provision the servers:

Chapter 9 - Deployments with Ansible 268

1 ---

2 - hosts: balancer

3 become: yes

4

5 vars:

6 firewall_allowed_tcp_ports:

7 - "22"

8 - "80"

9 haproxy_backend_servers:

10 - name: 192.168.4.3

11 address: 192.168.4.3:80

12 - name: 192.168.4.4

13 address: 192.168.4.4:80

14

15 roles:

16 - geerlingguy.firewall

17 - geerlingguy.haproxy

18

19 - hosts: app

20 become: yes

21

22 vars:

23 firewall_allowed_tcp_ports:

24 - "22"

25 - "80"

26

27 roles:

28 - geerlingguy.firewall

29 - geerlingguy.apache

These two plays set up a firewall on both servers, and configure HAProxy on the load
balancer, and Apache (with its default configuration) on the app servers. The only re-
quired configuration to get this infrastructure working is haproxy_backend_servers.
We let the geerlingguy.firewall, geerlingguy.haproxy, and geerlingguy.apache

roles do all the hard work for us.

Now, to make sure we have all these roles installed, create a requirements file to

Chapter 9 - Deployments with Ansible 269

install the roles fromAnsible Galaxy. Create requirements.yml in the same directory
as the Vagrantfile, with the following contents:

1 ---

2 - src: geerlingguy.firewall

3 - src: geerlingguy.haproxy

4 - src: geerlingguy.apache

To install the required roles, run ansible-galaxy install -r requirements.yml.

At this point, if you want to bring up your local load-balanced infrastructure, run
vagrant up in the deployments-balancer directory, and wait a few minutes. Once
everything is up and running, visit http://192.168.4.2/, and you should see the
default Ubuntu Apache2 landing page:

HAProxy is serving requests through the Apache backend servers.

Verify round-robin load balancing is working by running the following command:

Chapter 9 - Deployments with Ansible 270

1 $ for i in {1..5}; do curl -Is http://192.168.4.2/ | grep Cookie; \

2 done

3 Set-Cookie: SERVERID=192.168.4.4; path=/

4 Set-Cookie: SERVERID=192.168.4.3; path=/

5 Set-Cookie: SERVERID=192.168.4.4; path=/

6 Set-Cookie: SERVERID=192.168.4.3; path=/

7 Set-Cookie: SERVERID=192.168.4.4; path=/

You should see the load balancer distributing requests between the two backend app
servers.

When you deploy new code to the application servers, you need to guarantee the load
balancer always has an app server fromwhich requests can be served, so you want to
use serial to do the deployment on each server (or groups of servers) in sequence.
To make sure the servers are properly removed from HAProxy, then added again
post-deploy, use pre_tasks and post_tasks.

Create another playbook alongside provision.yml called deploy.yml, with the
following contents:

1 ---

2 - hosts: app

3 become: yes

4 serial: 1

5

6 pre_tasks:

7 - name: Disable the backend server in HAProxy.

8 haproxy:

9 state: disabled

10 host: '{{ inventory_hostname }}'

11 socket: /var/lib/haproxy/stats

12 backend: habackend

13 delegate_to: "{{ item }}"

14 with_items: "{{ groups.balancer }}"

15

16 tasks:

17 - debug: msg="Deployment would be done here."

Chapter 9 - Deployments with Ansible 271

18

19 post_tasks:

20 - name: Wait for backend to come back up.

21 wait_for:

22 host: '{{ inventory_hostname }}'

23 port: 80

24 state: started

25 timeout: 60

26

27 - name: Enable the backend server in HAProxy.

28 haproxy:

29 state: enabled

30 host: '{{ inventory_hostname }}'

31 socket: /var/lib/haproxy/stats

32 backend: habackend

33 delegate_to: "{{ item }}"

34 with_items: "{{ groups.balancer }}"

This playbook doesn’t do much in terms of actual deployment, but it does illustrate
how to do a zero-downtime rolling update over two or more application servers:

1. In pre_tasks, the haproxy module disables the current app server (using the
inventory_hostname variable) on all the load balancers in the balancer group,
using with_items. The HAProxy task is delegated to each of the balancer

servers (in our case, only one), since the task affects the load balancer, not the
current app host.

2. In the post_tasks, we first wait_for port 80 to be available, and once it is, the
haproxy module re-enables the current app server on all the load balancers.

Run the playbook on the local infrastructure with the following command:

1 $ ansible-playbook -i inventory playbooks/deploy.yml

It should only take a few seconds to run, and once it’s finished, all the servers
should be back in the mix for the load balancer. If you want to quickly confirm
the deployment playbook is working as it should, add a task which always fails,
immediately following the debug task:

Chapter 9 - Deployments with Ansible 272

15 [...]

16 tasks:

17 - debug: msg="Deployment would be done here."

18 - command: /bin/false

19

20 post_tasks:

21 [...]

If you run the deployment playbook again, wait for it to fail, then run the curl

command again, you’ll notice all the requests are being directed to the second app
server:

1 $ for i in {1..5}; do curl -Is http://192.168.4.2/ | grep Cookie; done

2 Set-Cookie: SERVERID=192.168.4.4; path=/

3 Set-Cookie: SERVERID=192.168.4.4; path=/

4 Set-Cookie: SERVERID=192.168.4.4; path=/

5 Set-Cookie: SERVERID=192.168.4.4; path=/

6 Set-Cookie: SERVERID=192.168.4.4; path=/

Fix the deployment by removing the /bin/false command. Run the playbook one
more time to restore the infrastructure to a fully functional state.

This demonstration may seem basic, but the pre_tasks and post_tasks in the play-
book are identical to what many large-scale production infrastructure deployments
use!

Code for this entire example is available on GitHub in the Ansible for
DevOps deployments-balancer example¹⁰⁶.

Capistrano-style and blue-green deployments

Many developers who deal with Ruby applications are familiar with Capistrano¹⁰⁷,
a task automation and application deployment application built with Ruby. Capis-
trano’s basic style of deployment is to create dated release directories, then symlink
¹⁰⁶https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-balancer
¹⁰⁷http://capistranorb.com/

https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-balancer
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-balancer
http://capistranorb.com/
https://github.com/geerlingguy/ansible-for-devops/tree/master/deployments-balancer
http://capistranorb.com/

Chapter 9 - Deployments with Ansible 273

the current release into a stable application directory, along with resources that are
continuous among releases (like logs and uploaded files).

Capistrano does a lot more than that basic deployment model, but many people want
to replicate a simple application deployment workflow (which also makes rollbacks
easy, since you just revert the symlink to the previous release directory!). This is easy
to do with Ansible, and rather than walk you through the entire process in this book,
I’ll point you to a few great resources and an Ansible Galaxy role that coordinates
Capistrano-style deployments with ease:

• Rebuilding Capistrano-like deployment with Ansible¹⁰⁸
• project_deploy role on Ansible Galaxy¹⁰⁹
• Thoughts on deploying with Ansible¹¹⁰ (background for the above role)
• Ansible project-deploy¹¹¹ (presentation about the above role)

Extending things a little further, many organizations use blue-green deployments.
The basic concept involves bringing up a parallel production infrastructure, then
switching over to it. The cutover may take only a few milliseconds and no active
production infrastructure is ever offline during the deployment process.

A few different technologies and concepts, like container-based infrastructure and
microservices (which are faster to deploy), and better cloud autoscaling and load
balancing options, have made blue-green deployments much easier than in the past.

This book won’t go through a detailed example of this style of deployment, as the
process is similar to other examples provided, the only difference being an additional
task of switching a load balancer from the old to the new infrastructure once it’s
up and running. Ansible’s blog has an excellent overview of AWS-based blue-green
deployments: Immutable Systems and Ansible¹¹², and there are built-in modules to
manage almost any type of load balancer you could use, including F5’s BIG-IP¹¹³,
HAProxy¹¹⁴, Citrix NetScaler¹¹⁵, and Amazon ELB¹¹⁶.

¹⁰⁸http://blog.versioneye.com/2014/09/24/rebuilding-capistrano-like-deployment-with-ansible/
¹⁰⁹https://github.com/f500/ansible-project_deploy
¹¹⁰http://www.future500.nl/articles/2014/07/thoughts-on-deploying-with-ansible/
¹¹¹http://www.slideshare.net/ramondelafuente/ansible-projectdeploy
¹¹²http://www.ansible.com/blog/immutable-systems
¹¹³http://docs.ansible.com/list_of_network_modules.html#f5
¹¹⁴http://docs.ansible.com/haproxy_module.html
¹¹⁵http://docs.ansible.com/netscaler_module.html
¹¹⁶http://docs.ansible.com/ec2_elb_module.html

http://blog.versioneye.com/2014/09/24/rebuilding-capistrano-like-deployment-with-ansible/
https://github.com/f500/ansible-project_deploy
http://www.future500.nl/articles/2014/07/thoughts-on-deploying-with-ansible/
http://www.slideshare.net/ramondelafuente/ansible-projectdeploy
http://www.ansible.com/blog/immutable-systems
http://docs.ansible.com/list_of_network_modules.html#f5
http://docs.ansible.com/haproxy_module.html
http://docs.ansible.com/netscaler_module.html
http://docs.ansible.com/ec2_elb_module.html
http://blog.versioneye.com/2014/09/24/rebuilding-capistrano-like-deployment-with-ansible/
https://github.com/f500/ansible-project_deploy
http://www.future500.nl/articles/2014/07/thoughts-on-deploying-with-ansible/
http://www.slideshare.net/ramondelafuente/ansible-projectdeploy
http://www.ansible.com/blog/immutable-systems
http://docs.ansible.com/list_of_network_modules.html#f5
http://docs.ansible.com/haproxy_module.html
http://docs.ansible.com/netscaler_module.html
http://docs.ansible.com/ec2_elb_module.html

Chapter 9 - Deployments with Ansible 274

Additional Deployment Features

There are a few other Ansible modules and options which are helpful in the context
of deployments:

run_once¹¹⁷ and delegate_to are extremely helpful in scenarios like updating a
database schema or clearing an application’s cache, where you need a particular
task to only run one time, on a particular server:

- command: /opt/app/upgrade-database-schema

run_once: true

delegate_to: app1.example.com

Using run_oncewith delegate_to is similar to the pattern of using when: inventory_-

hostname == groups.groupname[0], but is a little more precise in describing what
you’re trying to achieve—running a command once on a specific host.

Another important aspect of a successful deployment is communication. If you’re
running playbooks as part of a CI/CD process, or in some other automated fashion,
use one of the many built-in Ansible notification modules to share the deployment’s
progress via chat, email, or even text-to-speech on your Mac with the osx_say

module! Ansible includes easy-to-use notification modules for:

• Campfire
• HipChat
• IRC
• Jabber
• Email
• Slack
• Twilio
• Amazon SNS
• etc.

Many playbooks include notifications in both the pre_tasks and post_tasks sec-
tions, notifying admins in a chat channel when a deployment begins or ends. For
example:

¹¹⁷http://docs.ansible.com/playbooks_delegation.html#run-once

http://docs.ansible.com/playbooks_delegation.html#run-once
http://docs.ansible.com/playbooks_delegation.html#run-once

Chapter 9 - Deployments with Ansible 275

post_tasks:

- name: Tell everyone on IRC the deployment is complete.

irc:

channel: my-org

server: irc.example.com

msg: "Deployment complete!"

delegate_to: 127.0.0.1

For a great primer on Ansible notifications, see Ansible Inc’s blog post: Listen to your
Servers Talk¹¹⁸.

Summary

Automating deployments with Ansible enables your development team to have
their code on production servers more reliably and quickly, and it enables your
operations team to spend less time on repetitive tasks, and more time improving
your infrastructure.

This chapter outlined only a few of the most popular deployment techniques, but
Ansible is flexible enough to handle almost any situation out of the box.

/ One machine can do the work of fifty \

| ordinary men. No machine can do the |

| work of one extraordinary man. |

\ (Elbert Hubbard) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

¹¹⁸http://www.ansible.com/blog/listen-to-your-servers-talk

http://www.ansible.com/blog/listen-to-your-servers-talk
http://www.ansible.com/blog/listen-to-your-servers-talk
http://www.ansible.com/blog/listen-to-your-servers-talk

Chapter 10 - Server Security and
Ansible
The first configuration to be performed on any new server—especially any server
with any exposure (direct or indirect) to the public Internet)—is security configura-
tion.

There are nine basic measures to ensure servers are secure from unauthorized access
or intercepted communications:

1. Use secure and encrypted communication.
2. Disable root login and use sudo.
3. Remove unused software, open only required ports.
4. Use the principle of least privilege.
5. Update the OS and installed software.
6. Use a properly-configured firewall.
7. Make sure log files are populated and rotated.
8. Monitor logins and block suspect IP addresses.
9. Use SELinux (Security-Enhanced Linux).

Your infrastructure is as weak as the weakest server; in many high-profile security
breaches, one poorly-secured server acts as a gateway into the rest of the network.
Don’t let your servers be those servers! Good security also helps you achieve the holy
grail of system administration—100% uptime.

In this chapter, you’ll learn about Linux security and how Ansible helps secure your
servers, following the basic topics above.

A brief history of SSH and remote access

In the beginning, computers were the size of large conference rooms. A punch
card reader would merrily accept pieces of paper with instructions the computer

Chapter 10 - Server Security and Ansible 277

would run, and then a printer would etch the results into another piece of paper.
Thousands of mechanical parts worked harmoniously (when they did work) to
compute relatively simple commands.

As time progressed, computers became somewhat smaller, and interactive terminals
became more user-friendly, but they were still wired directly into the computer
being used. Mainframes came to the fore in the 1960s, originally used via typewriter
and teletype interfaces, then via keyboards and small text displays. As networked
computing became more mainstream in the 1970s and 1980s, remote terminal access
was used to interact with the large central computers.

The first remote terminal interfaces assumed a high level of trust between the central
computer and all those on the network, because the small, centralized networks used
were physically isolated from one another.

Telnet

In the late 1960s, the Telnet protocol was defined and started being used over TCP
networks (normally on port 23) for remote control over larger private networks, and
eventually the public Internet.

Telnet’s underlying technology (a text-based protocol to transfer data between
different systems) was the basis for many foundational communications protocols
in use today, including HTTP, FTP, and POP3. However, plain text streams are not
secure, and even with the addition of TLS and SASL, Telnet was never very secure
by default. With the advent of SSH (which we’ll get to in a bit), the protocol has
declined in popularity for most remote administration purposes.

Telnet still has uses like configuring devices over local serial connections, or checking
if a particular service is operating correctly on a remote server (like an HTTP server
on port 80, mysql on port 3306, or munin on port 4949), but it is not installed by
default on modern Linux distributions.

Chapter 10 - Server Security and Ansible 278

Plain text communications over a network are only as secure as the net-
work’s weakest link. In the early days of computer networking, networks
were usually isolated to a specific company or educational institution,
so transmitting things like passwords or secrets in plain text using the
TCP protocol wasn’t such a bad idea. Every part of the network (cabling,
switches, and routers) was contained inside a secured physical perimeter.
When connections started moving to the public Internet, this changed.

TCP packets can be intercepted over the Internet, at any point between the
client and server, and these packets can easily be read if not encrypted.
Therefore, plain text protocols are highly insecure, and should never be
used to transmit sensitive information or system control data. Even on
highly secure networks with properly-configured firewalls, it’s a bad idea
to use insecure communication methods like plain text rlogin and telnet
connections for authentication and remote control.

Try running traceroute google.com in your terminal. Look at each of the
hops between you and Google’s CDN. Do you know who controls each
of the devices between your computer and Google? Do you trust these
operators with all of your personal or corporate secrets? Probably not. Each
of these connection points—and each network device and cable connecting
them—is a weak point exposing you to a man-in-the-middle attack. Strong
encryption is needed between your computer and the destination if you
want to ensure data security.

rlogin, rsh and rcp

rloginwas introduced in BSD 4.2 in 1983, and has been distributedwithmanyUNIX-
like systems alongside Telnet until recently. rlogin was used widely during the 80s
and much of the 90s.

Just like Telnet, a user could log into the remote system with a password, but rlogin
additionally allowed automatic (passwordless) logins for users on trusted remote
computers. rlogin also worked better than telnet for remote administration, as it
worked correctly with certain characters and commands where telnet required extra
translation.

However, like Telnet, rlogin still used plain text communications over TCP port 513
by default. rlogin also didn’t have many safeguards against clients spoofing their

Chapter 10 - Server Security and Ansible 279

true identities. Some of rlogin’s intrinsic flaws were highlighted in a 1998 report by
Carnegie Mellon, rlogin: The Untold Story¹¹⁹.

rsh (“remote shell”) is a command line program used alongside rlogin to execute
individual shell commands remotely, and rcp (“remote copy”) is used for remote file
copies. rsh and rcp inherited the same security problems as rlogin, since they use the
same connection method (over different ports).

SSH

Secure Shell was created in 1995 by Finland native Tatu Ylönen, in response
to a password-sniffing attack¹²⁰ at his university. Seeing the flaws in plain text
communication for secure information, Tatu created Secure Shell/SSH with a strong
emphasis on encryption and security.

His version of SSH was developed for a few years as freeware with liberal licensing,
but as his SSH Communications Security Corporation¹²¹ began limiting the license
and commercializing SSH, alternative forks began to gain in popularity. The most
popular fork, OSSH, by Swedish programmer Bjoern Groenvall, was chosen as a
starting point by some developers from the OpenBSD project.

OpenBSD was (and still is!) a highly secure, free version of BSD UNIX, and the
project’s developers needed a secure remote communication protocol, so a few
project members worked to clean up and improve OSSH¹²² so it could be included
in OpenBSD’s 2.6 release in December 1999. From there, it was quickly ported and
adopted for all major versions of Linux, and is now ubiquitous in the world of POSIX-
compliant operating systems.

How does SSH work, and what makes it better than telnet or rlogin? It starts with
the basic connection. SSH connection encryption works similarly to SSL for secure
HTTP connections, but its authentication layer adds more security:

1. When you enter ssh user@example.host to connect to the example.host server
as user, your client and the host exchange keys.

¹¹⁹http://resources.sei.cmu.edu/asset_files/TechnicalReport/1998_005_001_16670.pdf
¹²⁰http://en.wikipedia.org/wiki/Secure_Shell#Version_1.x
¹²¹http://www.ssh.com/
¹²²http://www.openbsd.org/openssh/history.html

http://resources.sei.cmu.edu/asset_files/TechnicalReport/1998_005_001_16670.pdf
http://en.wikipedia.org/wiki/Secure_Shell#Version_1.x
http://www.ssh.com/
http://www.openbsd.org/openssh/history.html
http://resources.sei.cmu.edu/asset_files/TechnicalReport/1998_005_001_16670.pdf
http://en.wikipedia.org/wiki/Secure_Shell#Version_1.x
http://www.ssh.com/
http://www.openbsd.org/openssh/history.html

Chapter 10 - Server Security and Ansible 280

2. If you’re connecting to a host the first time, or if the host’s key has changed
since last time you connected (this happens often when connecting via DNS
rather than directly by IP), SSH will prompt you for your approval of the host
key.

3. If you have a private key in your ∼/.ssh folder matching one of the keys in
∼/.ssh/authorized_keys on the remote system, the connection continues to
step 4. Otherwise, if password authentication is allowed, SSH prompts you
for your password. There are other authentication methods as well, such as
Kerberos, but they are less common and not covered in this book.

4. The transferred key is used to create a session key used for the remainder of the
connection, encrypting all communication with a cipher such as AES, 3DES,
Blowfish or RC4 (‘arcfour’).

5. The connection remains encrypted and persists until you exit out of the remote
connection (in the case of an interactive session), or until the operation being
performed (an scp or sftp file transfer, for example) is complete.

SSH uses encrypted keys to identify the client and host (which adds a layer of security
over telnet and rlogin’s defaults), and then sets up a per-session encrypted channel
for further communication. This same connection method is used for interactive ssh
sessions, as well as for services like:

• scp (secure copy), SSH’s counterpart to rlogin’s rcp.
• sftp (secure FTP), SSH’s client/server file transfer protocol.
• SSH port forwarding (so you can run services securely over remote servers).
• SSH X11 forwarding (so you can use X windows securely).

(A full list of features is available on OpenBSD’s site: OpenSSH Features¹²³).

The full suite of SSH packages also includes helpful utilities like ssh-keygen, which
generates public/private key pairs suitable for use when connecting via SSH. You can
also install the utility ssh-copy-id, which speeds up the process of manually adding
your identity file to a remote server.

SSH is fairly secure by default—certainly more so than telnet or rlogin’s default
configuration—but for even greater security, there are a few extra settings you should

¹²³http://www.openbsd.org/openssh/features.html

http://www.openbsd.org/openssh/features.html
http://www.openbsd.org/openssh/features.html

Chapter 10 - Server Security and Ansible 281

use (all of these settings are configured in /etc/ssh/sshd_config, and require a
restart of the sshd service to take effect):

1. Disable password-based SSH authentication. Even though passwords are not
sent in the clear, disabling password-based authentication makes it impossible
for brute-force password attacks to even be attempted, even if you have the
additional (and recommended) layer of something like Fail2Ban running. Set
PasswordAuthentication no in the configuration.

2. Disable root account remote login. You shouldn’t log in as the root user
regardless (use sudo instead), but to reinforce this good habit, disable remote
root user account login by setting PermitRootLogin no in the configuration.
If you need to perform actions as root, either use sudo (preferred), or if it’s
absolutely necessary to work interactively as root, login with a normal account,
then su to the root account.

3. Explicitly allow/deny SSH for users. Enable or disable SSH access for particu-
lar users on your system with AllowUsers and DenyUsers. To allow only ‘John’
to log in, the rule would be AllowUsers John. To allow any user except John to
log in, the rule would be DenyUsers John.

4. Use a non-standard port. Change the default SSH port from 22 to something
more obscure, like 2849, and prevent thousands of ‘script kiddie’ attacks that
look for servers responding on port 22. While security through obscurity
is no substitute for actually securing SSH overall, it provides a slight extra
layer of protection. To change the port, set Port [new-port-number] in the
configuration.

We’ll cover how to configure some of these particular options in SSH in the next
section.

The evolution of SSH and the future of remote access

It has been over a decade since OpenSSH became the de facto standard of remote
access protocols, and since then Internet connectivity has changed dramatically.
For reliable, low-latency LAN and Internet connections, SSH is still the king due
to its simplicity, speed, and security. But in high-latency environments (think 3G or
4G mobile network connections, or satellite uplinks), using SSH is often a painful
experience.

Chapter 10 - Server Security and Ansible 282

In some circumstances, just establishing a connection takes time. Additionally, once
connected, the delay inherent in SSH’s TCP interface (where every packet must reach
its destination and be acknowledged before further input will be accepted) means
entering commands or viewing progress over a high-latency connection is an exercise
in frustration.

Mosh¹²⁴, “the mobile shell”, a new alternative to SSH, uses SSH to establish an initial
connection, then synchronizes the following local session with a remote session on
the server via UDP.

Using UDP instead of TCP requires Mosh to do a little extra behind-the-scenes work
to synchronize the local and remote sessions (instead of sending all local keystrokes
over the wire serially via TCP, then waiting for stdout and stderr to be returned, like
SSH).

Mosh also promises better UTF-8 support than SSH, and is well supported by all the
major POSIX-like operating systems (it even runs inside Google Chrome!).

It will be interesting to see where the future leads with regard to remote terminal
access, but one thing is for sure: Ansible will continue to support themost secure, fast,
and reliable connection methods to help you build and manage your infrastructure!

Use secure and encrypted communication

We spent a lot of time discussing SSH’s heritage and the way it works because it is, in
many ways, the foundation of a secure infrastructure—in almost every circumstance,
you will allow SSH remote access for your servers, so it’s important you know how it
works, and how to configure it to ensure you always administer the server securely,
over an encrypted connection.

Let’s look at the security settings configured in /etc/ssh/sshd_config (mentioned
earlier), and how to control them with Ansible.

For our secure server, we want to disable password-based SSH authentication (make
sure you can already log in via your SSH key before you do this!), disable remote
root login, and change the port over which SSH operates. Let’s do it!

¹²⁴https://www.usenix.org/system/files/conference/atc12/atc12-final32.pdf

https://www.usenix.org/system/files/conference/atc12/atc12-final32.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final32.pdf

Chapter 10 - Server Security and Ansible 283

1 - hosts: example

2 tasks:

3 - name: Update SSH configuration to be more secure.

4 lineinfile:

5 dest: /etc/ssh/sshd_config

6 regexp: "{{ item.regexp }}"

7 line: "{{ item.line }}"

8 state: present

9 with_items:

10 - regexp: "^PasswordAuthentication"

11 line: "PasswordAuthentication no"

12 - regexp: "^PermitRootLogin"

13 line: "PermitRootLogin no"

14 - regexp: "^Port"

15 line: "Port 2849"

16 notify: restart ssh

17

18 handlers:

19 # Note: Use 'sshd' for Red Hat and its derivatives.

20 - name: restart ssh

21 service: name=ssh state=restarted

In this extremely simple playbook, we set three options in SSH configuration
(PasswordAuthentication no, PermitRootLogin no, and Port 2849) using Ansible’s
lineinfile module, then use a handler we define in the handlers section to restart
the ssh service.

If you change certain SSH settings, like the port for SSH, you need to
make sure Ansible’s inventory is updated. You can explicitly define the SSH
port for a host with the option ansible_ssh_port, and the local path to a
private key file (identity file) with ansible_ssh_private_key_file, though
Ansible uses keys defined by your ssh-agent setup, so typically a manual
definition of the key file is not required.

Chapter 10 - Server Security and Ansible 284

Disable root login and use sudo

We’ve already disabled root login with Ansible’s lineinfilemodule in the previous
section, but we’ll cover a general Linux best practice here: don’t use the root account
if you don’t absolutely need to use it.

Linux’s sudo allows you (or other users) to run certain commandswith root privileges
(by default—you can also run commands as another user), ensuring you can perform
actions needing elevated privileges without requiring you to be logged in as root (or
another user).

Using sudo also forces you to be more explicit when performing certain actions with
security implications, which is always a good thing. You don’t want to accidentally
delete a necessary file, or turn off a required service, which is easy to do if you’re
root.

In Ansible, it’s preferred you log into the remote server with a normal or admin-
level system account, and use the sudo parameter with a value of yes with any play
or playbook include requiring elevated privileges. For example, if restarting Apache
requires elevated privileges, you would write the play like so:

- name: Restart Apache.

service: name=httpd state=restarted

become: yes

Add become_user: [username] to a task to specify a specific user account to use with
sudo (this will only apply if become is already set on the task or in the playbook).

You can also use Ansible to control sudo’s configuration, defining who should have
access to what commands and whether the user should be required to enter a
password, among other things.

As an example, set up the user johndoewith permission to use any command as root
via sudo by adding a line in the /etc/sudoers file with Ansible’s lineinfilemodule:

Chapter 10 - Server Security and Ansible 285

- name: Add sudo rights for deployment user.

lineinfile:

dest: /etc/sudoers

regexp: '^johndoe'

line: 'johndoe ALL=(ALL) NOPASSWD: ALL'

state: present

If you’re ever editing the sudoers file by hand, you should use visudo, which validates
your changes andmakes sure you don’t break sudowhen you save the changes.When
using Ansible with lineinfile, you have to use caution when making changes, and
make sure your syntax is correct.

Another way of changing the sudoers file, and ensuring the integrity of the file,
is to create a sudoers file locally, and copy it using Ansible’s copy module, with a
validation command, like so:

- name: Copy validated sudoers file into place.

copy:

src: sudoers

dest: /etc/sudoers

validate: 'visudo -cf %s'

The %s is a placeholder for the file’s path, and will be filled in by Ansible before the
sudoers file is copied into its final destination. The same parameter can be passed
into Ansible’s templatemodule, if you need to copy a filled-in template to the server
instead of a static file.

The sudoers file syntax is very powerful and flexible, but also a bit obtuse.
Read the entire Sudoers Manual¹²⁵ for all the details, or check out the
sample sudoers file¹²⁶ for some practical examples.

¹²⁵http://www.sudo.ws/sudoers.man.html
¹²⁶http://www.sudo.ws/sudo/sample.sudoers

http://www.sudo.ws/sudoers.man.html
http://www.sudo.ws/sudo/sample.sudoers
http://www.sudo.ws/sudoers.man.html
http://www.sudo.ws/sudo/sample.sudoers

Chapter 10 - Server Security and Ansible 286

Remove unused software, open only required
ports

Before the widespread use of configuration management tools for servers, when
snowflake servers were the norm, servers would become bloated with extra software
no longer in active use, open ports for old and unnecessary services, and old
configuration settings opening up potential attack vectors.

If you’re not actively using a piece of software, or there’s an obsolete cron task, get rid
of it. If you’re using Ansible for your entire infrastructure, this shouldn’t be an issue,
since you could just bring up new servers to replace old ones when you have major
configuration and/or package changes. But if not, consider adding in a ‘cleanup’ role
or at least a task to remove packages that shouldn’t be installed, like:

1 - name: Remove unused packages.

2 apt: name={{ item }} state=absent purge=yes

3 with_items:

4 - apache2

5 - nano

6 - mailutils

With modules like yum, apt, file, and mysql_db, a state=absent parameter means
Ansible will remove whatever packages, files or databases you want, and will check
to make sure this is still the case during future runs of your playbook.

Opening only required ports helps reduce the surface area for attack, requiring only
a few firewall rules. This will be covered fully in the “Use a properly-configured
firewall” section, but as an example, don’t leave port 25 open on your server unless
your server will be used as an SMTP relay server. Further, make sure the services you
have listening on your open ports are configured to only allow access from trusted
clients.

Use the principle of least privilege

Users, applications, and processes should only be able to access information (files)
and resources (memory, network ports, etc) necessary for their operation.

Chapter 10 - Server Security and Ansible 287

Many of the other basic security measures in this chapter are tangentially related to
the principle of least privilege, but user account configuration and file permissions
are two main areas directly related to the principle.

User account configuration

New user accounts, by default, have fairly limited permissions on a Linux server.
They usually have a home folder, over which they have complete control, but any
other folder or file on the system is only available for reading, writing, or execution
if the folder has group permissions set.

Usually, users gain access to other files and services through two methods:

1. Adding the user to another group with wider access privileges.
2. Allowing the user to use the sudo command to execute commands and access

files as root or another user.

For the former method, please read the next section on file permissions to learn how
to limit access. For the latter, please make sure you understand the use of sudoers as
explained earlier in this chapter.

File permissions

Every Ansible module that deals with files has file ownership and permission
parameters available, including owner, group, and mode. Almost every time you
handle files (using copy, template, file, etc.), you should explicitly define the correct
permissions and ownership. For example, for a configuration file (in our example, the
GitLab configuration file) that should only be readable or writeable by the root user,
set the following:

Chapter 10 - Server Security and Ansible 288

1 - name: Configure the GitLab global configuration file.

2 file:

3 path: /etc/gitlab/gitlab.rb

4 owner: root

5 group: root

6 mode: 0600

File permissions may seem a bit obtuse, and sometimes, they may cause
headaches. But in reality, using octal numbers to represent file permissions
is a helpful way to encapsulate a lot of configuration in three numbers.
The main thing to remember is the following: for each of the file’s user,
group, and for everyone (each of the three digits), use the following digits
to represent permission levels:

7: rwx (read/write/execute)

6: rw- (read/write)

5: r-x (read/execute)

4: r-- (read)

3: -wx (write/execute)

2: -w- (write)

1: --x (execute)

0: --- (no permissions)

Basically, 4 = read, 2 = write and 1 = execute. Therefore read (4) and write
(2) is 6 in the octal representation, and read (4) and execute (1) is 5.

Less experienced admins are overly permissive, setting files and directories to 777 to
fix issues they have with their applications. To allow one user (for example, your web
server user, httpd or nginx) access to a directory or some files, you should consider
setting the directory’s or files’ group to the user’s group instead of giving permissions
to every user on the system!

For example, if you have a directory of web application files, the user (or in Ansible’s
terminology, “owner”) might be your personal user account, or a deployment or
service account on the server. Set the group for the files to a group the web server
user is in, and the web server should now be able to access the files (assuming you
have the same permissions set for the user and group, like 664).

Chapter 10 - Server Security and Ansible 289

Update the OS and installed software

Every year, hundreds of security updates are released for the packages running on
your servers, some of them fixing critical bugs. If you don’t keep your server software
up to date, you will be extremely vulnerable, especially when large exposures like
Heartbleed¹²⁷ are uncovered.

At aminimum, you should schedule regular patchmaintenance and package upgrade
windows, and make sure you test the upgrades and patches on non-critical servers
to make sure your applications work before applying the same on your production
infrastructure.

With Ansible, since you already have your entire infrastructure described via Ansible
inventories, you should be able to use a command like the following to upgrade all
installed packages on a RHEL system:

$ ansible webservers -m yum -a "name=* state=latest"

On a Debian-based system, the syntax is similar:

$ ansible webservers -m apt -a "upgrade=dist update_cache=yes"

The above commands will upgrade everything installed on your server. Some-
times, you only want to install security-related updates, or exclude certain pack-
ages. In those cases, you need to configure yum or apt to tell them what to
do (edit /etc/yum.conf for yum on RHEL-based systems, or use apt-mark hold

[package-name] to keep a certain package at its current version on Debian-based
systems).

Automating updates

Fully automated daily or weekly package and system upgrades provide even greater
security. Not every environment or corporation can accommodate frequent auto-
mated upgrades (especially if your application has been known to break due to past

¹²⁷http://heartbleed.com/

http://heartbleed.com/
http://heartbleed.com/

Chapter 10 - Server Security and Ansible 290

package updates, or relies on custom builds or specific package versions), but if you
do it for your servers, it will increase the depth of your infrastructure’s security.

As mentioned in an earlier sidebar, GPG package signature checking is
enabled by default for all package-related functionality. It’s best to leave
GPG checks in place, and import keys from trusted sources when necessary,
especiallywhen using automatic updates, if youwant to prevent potentially
insecure packages from being installed on your servers!

Automating updates for RHEL systems

RHEL and CentOS 6 and 7 (and older versions of Fedora) uses a cron-based package,
yum-cron, for automatic updates. For basic, set-and-forget usage, install yum-cron and
make sure it’s started and set to run on system boot:

1 - name: Install yum-cron.

2 yum: name=yum-cron state=present

3

4 - name: Ensure yum-cron is running and enabled on boot.

5 service: name=yum-cron state=started enabled=yes

Further configuration (such as packages to exclude from automatic updates) is done
in the yum.conf file, at /etc/yum.conf.

For RHEL and CentOS 8 and later (and the latest versions of Fedora), you would need
to install dnf-automatic instead of yum-cron, and the service name that you need to
make sure to start is dnf-automatic-install.timer (instead of yum-cron).

Automating updates for Debian-based systems

Debian and its derivatives typically use the unattended-upgrades package to con-
figure automatic updates. Like yum-cron, it is easy to install, and its configuration is
placed in a variety of files within /etc/apt/apt.conf.d/:

Chapter 10 - Server Security and Ansible 291

1 - name: Install unattended upgrades package.

2 apt: name=unattended-upgrades state=present

3

4 - name: Copy unattended-upgrades configuration files in place.

5 template:

6 src: "../templates/{{ item }}.j2"

7 dest: "/etc/apt/apt.conf.d/{{ item }}"

8 owner: root

9 group: root

10 mode: 0644

11 with_items:

12 - 10periodic

13 - 50unattended-upgrades

The template files copied in the second task should look something like the following:

1 # File: /etc/apt/apt.conf.d/20auto-upgrades

2 APT::Periodic::Update-Package-Lists "1";

3 APT::Periodic::Unattended-Upgrade "1";

This file provides configuration for the apt script that runs as part of the unattended
upgrades package, and tells apt whether to enable unattended upgrades.

1 # File: /etc/apt/apt.conf.d/50unattended-upgrades

2 Unattended-Upgrade::Automatic-Reboot "false";

3

4 Unattended-Upgrade::DevRelease "false";

5

6 Unattended-Upgrade::Allowed-Origins {

7 "${distro_id}:${distro_codename}";

8 "${distro_id}:${distro_codename}-security";

9 "${distro_id}ESM:${distro_codename}";

10 // "${distro_id}:${distro_codename}-updates";

11 // "${distro_id}:${distro_codename}-proposed";

12 // "${distro_id}:${distro_codename}-backports";

13 };

Chapter 10 - Server Security and Ansible 292

This file provides further configuration for unattended upgrades, like whether to
automatically restart the server for package and kernel upgrades requiring a reboot,
or what apt sources should be checked for updated packages.

Make sure you get notifications or check in on your servers period-
ically so you know when they’ll need a manual reboot if you have
Automatic-Reboot set to false!

Use a properly-configured firewall

If you were building a secure bank vault, you wouldn’t want to have many doors
and windows leading into the vault. You’d instead build reinforced concrete walls,
and have one or two strong metal doors.

Similarly, you should close any port not explicitly required to remain open on all your
servers—whether in a DMZ in your network or open to the entire Internet. There are
dozens of different ways to manage firewalls nowadays, from iptables and helpful
tools like ufw and firewalld that help make iptables configuration easier, to AWS
security groups and other external firewall services.

Ansible includes built-in support for configuring server firewalls with ufw (common
on newer Debian and Ubuntu distributions) and firewalld (common on newer
Fedora, RHEL, and CentOS distributions).

Configuring a firewall with ufw on Debian or Ubuntu

Below is an entire firewall configuration to lock down most everything on a Debian
or Ubuntu server, allowing traffic only through ports 22 (SSH), 80 (HTTP), and 123
(NTP):

Chapter 10 - Server Security and Ansible 293

1 - name: Configure open ports with ufw.

2 ufw:

3 rule: "{{ item.rule }}"

4 port: "{{ item.port }}"

5 proto: "{{ item.proto }}"

6 with_items:

7 - { rule: 'allow', port: 22, proto: 'tcp' }

8 - { rule: 'allow', port: 80, proto: 'tcp' }

9 - { rule: 'allow', port: 123, proto: 'udp' }

10

11 - name: Configure default incoming/outgoing rules with ufw.

12 ufw:

13 direction: "{{ item.direction }}"

14 policy: "{{ item.policy }}"

15 state: enabled

16 with_items:

17 - { direction: outgoing, policy: allow }

18 - { direction: incoming, policy: deny }

If you run a playbook with the above rules, the log into the machine (or use
the ansible command) and run sudo ufw status verbose, you should see the
configuration has been updated to the following:

$ sudo ufw status verbose

Status: active

Logging: on (low)

Default: deny (incoming), allow (outgoing), disabled (routed)

New profiles: skip

To Action From

-- ------ ----

22/tcp ALLOW IN Anywhere

80/tcp ALLOW IN Anywhere

123/udp ALLOW IN Anywhere

22/tcp (v6) ALLOW IN Anywhere (v6)

Chapter 10 - Server Security and Ansible 294

80/tcp (v6) ALLOW IN Anywhere (v6)

123/udp (v6) ALLOW IN Anywhere (v6)

Configuring a firewall with firewalld on RHEL, Fedora, or
CentOS

The same firewall configuration can be done via firewalld for RHEL-based systems
with similar ease:

1 - name: Configure open ports with firewalld.

2 firewalld:

3 state: "{{ item.state }}"

4 port: "{{ item.port }}"

5 zone: external

6 immediate: yes

7 permanent: yes

8 with_items:

9 - { state: 'enabled', port: '22/tcp' }

10 - { state: 'enabled', port: '80/tcp' }

11 - { state: 'enabled', port: '123/udp' }

The immediate parameter was added in Ansible 1.9, and is required to make
the rules effective immediately when the permanent parameter is set to yes.
If you are running an older version of Ansible, you will need to restart to
see your changes, or set permanent to no.

firewalld doesn’t have an explicit command to allow setting default
inbound/outbound policies, but you can still use iptables commands or
manage the firewall via XML files inside /etc/firewalld.

If you run sudo firewall-cmd --zone=external --list-all, you should see the
open ports:

Chapter 10 - Server Security and Ansible 295

$ sudo firewall-cmd --zone=external --list-all

external

interfaces:

sources:

services: ssh

ports: 123/udp 80/tcp 22/tcp

masquerade: yes

forward-ports:

icmp-blocks:

rich rules:

Some still prefer configuring firewalls with iptables (which is sometimes obtuse, but
is almost infinitely malleable). This approach is used in the geerlingguy.firewall

role on Ansible Galaxy, which translates variables like firewall_allowed_tcp_ports
and firewall_forwarded_tcp_ports into iptables rules, and provides a firewall

service for loading firewall rules.

It doesn’t really matter what method you use to control access to your server, but
the principle of least privilege applies here, as in most security-related discussions:
only allow access on ports absolutely necessary for the functionality of your server,
and restrict the use of those ports to only the hosts or subnets needing access to the
services listening on the ports.

When you’re building up a firewall, make sure you don’t accidentally lock
down ports or IP addresses that will lock you out of the server entirely,
otherwise you’ll have to connect to the server through a local terminal
connection and start over!

Make sure log files are populated and rotated

Checking server logs is one of the most effective ways to not only see what attacks
have taken place on a server, but also to see trends over time and predict high-traffic
periods, potential attack vectors, and potential catastrophe.

But logs are completely worthless if they aren’t being populated with effective data,
aren’t being monitored in any way, or are the cause of an outage! Many root cause

Chapter 10 - Server Security and Ansible 296

analyses conclude, “the server’s disk was full because log file x took up all the free
space”.

I have my eyes on you, 218.78.214.9…

1 sshd[19731]: input_userauth_request: invalid user db2admin

2 sshd[19731]: Received disconnect from 218.78.214.9: 11: Bye Bye

3 sshd[19732]: Invalid user jenkins from 218.78.214.9

4 sshd[19733]: input_userauth_request: invalid user jenkins

5 sshd[19733]: Received disconnect from 218.78.214.9: 11: Bye Bye

6 sshd[19734]: Invalid user jenkins from 218.78.214.9

7 sshd[19735]: input_userauth_request: invalid user jenkins

8 sshd[19735]: Received disconnect from 218.78.214.9: 11: Bye Bye

9 sshd[19736]: Invalid user minecraft from 218.78.214.9

10 sshd[19737]: input_userauth_request: invalid user minecraft

11 sshd[19737]: Received disconnect from 218.78.214.9: 11: Bye Bye

Only you will know what logs are the most important to monitor on your servers,
but some of the most common ones are database slow query logs, web server
access and error logs, authorization logs, and cron logs. Use tools like the ELK stack
(demonstrated in a cookbook in Chapter 8), Munin, Nagios, or even a hosted service
to make sure logs are populated and monitored.

Additionally, you should always make sure log files are rotated and archived
(according to your infrastructure’s needs) using a tool like logrotate, and you should
have monitoring enabled on log file sizes so you have an early warning when a
particular log file or directory grows a bit too large. There are a number of logrotate
roles on Ansible Galaxy (e.g. Nick Hammond’s logrotate role¹²⁸) that make rotation
configuration easy.

Monitor logins and block suspect IP addresses

If you’ve ever set up a new server on the public internet and enabled SSH on port
22 with password-based login enabled, you know how quickly the deluge of script-
based logins begins. Many honeypot servers detect hundreds or thousands of such
attempts per hour.
¹²⁸https://galaxy.ansible.com/nickhammond/logrotate/

https://galaxy.ansible.com/nickhammond/logrotate/
https://galaxy.ansible.com/nickhammond/logrotate/

Chapter 10 - Server Security and Ansible 297

If you allow password-based login (for SSH, for your web app, or for anything else),
you need to implement some form of monitoring and rate limiting. At a most basic
level, you should install a tool like Fail2Ban¹²⁹, which monitors log files and bans IP
addresses when it detects too many unsuccessful login attempts in a given period of
time.

Here’s a set of tasks you could add to your playbook to install Fail2Ban and make
sure it’s started on either Debian or RHEL-based distributions:

1 - name: Install fail2ban (RedHat).

2 yum: name=fail2ban state=present enablerepo=epel

3 when: ansible_os_family == 'RedHat'

4

5 - name: Install fail2ban (Debian).

6 apt: name=fail2ban state=present

7 when: ansible_os_family == 'Debian'

8

9 - name: Ensure fail2ban is running and enabled on boot.

10 service: name=fail2ban state=started enabled=yes

Fail2Ban configuration is managed in a series of .conf files inside /etc/fail2ban,
and most configuration can be done by overriding defaults in a local override file,
/etc/fail2ban/jail.local. See the Fail2Ban manual¹³⁰ for more information.

Use SELinux (Security-Enhanced Linux) or
AppArmor

SELinux andAppArmor are two different tools which allow you to construct security
sandboxes for memory and filesystem access, so, for example, one application can’t
easily access another application’s resources. It’s a little like user and group file
permissions, but allowing far finer detail—with far more complexity.

You’d be forgiven if you disabled SELinux or AppArmor in the past; both require
extra work to set up and configure for your particular servers, especially if you’re

¹²⁹http://www.fail2ban.org/wiki/index.php/Main_Page
¹³⁰http://www.fail2ban.org/wiki/index.php/MANUAL_0_8

http://www.fail2ban.org/wiki/index.php/Main_Page
http://www.fail2ban.org/wiki/index.php/MANUAL_0_8
http://www.fail2ban.org/wiki/index.php/Main_Page
http://www.fail2ban.org/wiki/index.php/MANUAL_0_8

Chapter 10 - Server Security and Ansible 298

using less popular distribution packages (extremely popular packages like Apache
and MySQL are extremely well supported out-of-the-box on most distributions).

However, both of these tools are excellent ways to add defense in depth to your
infrastructure. You should already have decent configurations for firewalls, file
permissions, users and groups, OS updates, etc. But if you’re running a web-facing
application—especially one running on a server with any other applications—it’s
great to have the extra protection SELinux or AppArmor provides from applications
accessing things they shouldn’t.

SELinux is usually installed and enabled by default on Fedora, RHEL and CentOS
systems, is available and supported on most other Linux platforms, and is widely
supported through Ansible modules, so we’ll cover SELinux in a bit more depth.

To enable SELinux in targetedmode (which is the most secure mode without being
almost impossible to work with), make sure the Python SELinux library is installed,
then use Ansible’s selinux module:

- name: Install Python SELinux library.

yum: name=libselinux-python state=present

- Ensure SELinux is enabled in `targeted` mode.

selinux: policy=targeted state=enforcing

Ansible also has a seboolean module that allows setting SELinux booleans. A very
common setting for web servers involves setting the httpd_can_network_connect

boolean:

- name: Ensure httpd can connect to the network.

seboolean: name=httpd_can_network_connect state=yes persistent=yes

The Ansible file module also integrates well with SELinux, allowing the four
security context fields for a file or directory to be set, one per parameter:

1. selevel
2. serole
3. setype

Chapter 10 - Server Security and Ansible 299

4. seuser

Building custom SELinux policies for more complex scenarios is out of the scope of
this chapter, but you should be able to use tools like setroubleshoot, setroubleshoot-server,
getsebool, and aureport to see what is being blocked, what booleans are available
(and/or enabled currently), and even get helpful notifications when SELinux denies
access to an application. Read Getting started with SELinux¹³¹ for an excellent and
concise introduction.

Next time you’re tempted to disable SELinux instead of fixing the underlying
problem, spend a little time investigating the correct boolean settings to configuring
your system correctly for SELinux.

Summary and further reading

This chapter contains a broad overview of some Linux security best practices, and
how Ansible helps you conform to them. There is a wealth of good information on
the Internet to help you secure your servers, including articles and publications like
the following:

• Linode Library: Linux Security Basics¹³²
• My First Five Minutes on a Server¹³³
• 20 Linux Server Hardening Security Tips¹³⁴
• Unix and Linux System Administration Handbook¹³⁵

Much of the security configuration in this chapter is encapsulated in a role on Ansible
Galaxy, for use on your own servers: security role by geerlingguy¹³⁶.

¹³¹https://major.io/2012/01/25/getting-started-with-selinux/
¹³²https://library.linode.com/security/basics
¹³³http://plusbryan.com/my-first-5-minutes-on-a-server-or-essential-security-for-linux-servers
¹³⁴http://www.cyberciti.biz/tips/linux-security.html
¹³⁵http://www.admin.com/
¹³⁶https://galaxy.ansible.com/geerlingguy/security/

https://major.io/2012/01/25/getting-started-with-selinux/
https://library.linode.com/security/basics
http://plusbryan.com/my-first-5-minutes-on-a-server-or-essential-security-for-linux-servers
http://www.cyberciti.biz/tips/linux-security.html
http://www.admin.com/
https://galaxy.ansible.com/geerlingguy/security/
https://major.io/2012/01/25/getting-started-with-selinux/
https://library.linode.com/security/basics
http://plusbryan.com/my-first-5-minutes-on-a-server-or-essential-security-for-linux-servers
http://www.cyberciti.biz/tips/linux-security.html
http://www.admin.com/
https://galaxy.ansible.com/geerlingguy/security/

Chapter 10 - Server Security and Ansible 300

/ Bad planning on your part does not \

| constitute an emergency on my part. |

\ (Proverb) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 11 - Automating Your
Automation - Ansible Tower
and CI/CD
At this point, you should be able to convert almost any bit of your infrastructure’s
configuration into Ansible playbooks, roles, and inventories. And before deploying
any infrastructure changes, you should test the changes in a non-production environ-
ment (just like you would with application releases). Manually running a playbook
that configures your entire infrastructure, then making sure it does what you expect,
is a good start towards order and stability.

Since all your infrastructure is defined in code, you can start automating all the
aspects of infrastructure deployment, and even run unit, functional, and integration
tests on your infrastructure, just like you do for your applications.

This section will cover different levels of infrastructure automation and testing, and
highlight tools and techniques you can use to automate and streamline infrastructure
operations.

Ansible Tower

All the examples in this book use Ansible’s CLI to run playbooks and report back
the results. For smaller teams, especially when everyone on the team is well-versed
in how to use Ansible, YAML syntax, and security best practices, using the CLI is a
sustainable approach.

But for many organizations, basic CLI use is inadequate:

• The business needs detailed reporting of infrastructure deployments and fail-
ures, especially for audit purposes.

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 302

• Team-based infrastructure management requires varying levels of involvement
in playbook management, inventory management, and key and password
access.

• A thorough visual overview of the current and historical playbook runs and
server health helps identify potential issues before they affect the bottom line.

• Playbook scheduling ensures infrastructure remains in a known state.

Ansible Tower checks off these items—and many more—and provides a great
mechanism for team-based Ansible usage. The product is currently free for teams
managing ten or fewer servers (it’s basically an ‘unlimited trial’ mode), and has
flexible pricing for teams managing dozens to thousands of servers.

While this book includes a brief overview of Tower, it is highly recommended you
read through Ansible, Inc’s extensive Tower User Guide¹³⁷, which includes details
this book won’t be covering such as LDAP integration and multiple-team playbook
management workflows.

Getting and Installing Ansible Tower

Ansible has a very thorough Ansible Tower User Guide¹³⁸, which details the instal-
lation and configuration of Ansible Tower. For the purposes of this chapter, since
we just want to download and try out Tower locally, we are going to use Ansible’s
official Vagrant box to quickly build an Ansible Tower VM.

Make sure you have Vagrant¹³⁹ and VirtualBox¹⁴⁰ installed, then create a directory
(e.g. tower) and do the following within the directory:

¹³⁷http://releases.ansible.com/ansible-tower/docs/tower_user_guide-latest.pdf
¹³⁸http://releases.ansible.com/ansible-tower/docs/tower_user_guide-latest.pdf
¹³⁹https://www.vagrantup.com/downloads.html
¹⁴⁰https://www.virtualbox.org/wiki/Downloads

http://releases.ansible.com/ansible-tower/docs/tower_user_guide-latest.pdf
http://releases.ansible.com/ansible-tower/docs/tower_user_guide-latest.pdf
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
http://releases.ansible.com/ansible-tower/docs/tower_user_guide-latest.pdf
http://releases.ansible.com/ansible-tower/docs/tower_user_guide-latest.pdf
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 303

Create a new Vagrantfile using the Tower base box from Ansible.

$ vagrant init tower http://vms.ansible.com/ansible-tower-2.3.1-\

virtualbox.box

Build the Tower VM.

$ vagrant up

Log into the VM (Tower will display connection information).

$ vagrant ssh

The above installation instructions and Vagrant box come from a blog post
on Ansible’s official blog, Ansible Tower and Vagrant¹⁴¹.

Visit the URL provided by the login welcome message (e.g. https://10.42.0.42/),
and after confirming a security exception for the Ansible Tower certificate, login
with the credentials from step 3.

At this point, you will need to register a free trial license of Ansible Tower following
the instructions on the screen. The free trial allows you to use all of Tower’s features
for up to 10 servers, and is great for experimenting and seeing how Tower fits into
your workflow. After you get the license (it’s a block of JSON which you paste into
the license field), you should get to Tower’s default dashboard page:

¹⁴¹http://www.ansible.com/blog/ansible-vagrant

http://www.ansible.com/blog/ansible-vagrant
http://www.ansible.com/blog/ansible-vagrant

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 304

Ansible Tower’s Dashboard

Using Ansible Tower

Ansible Tower is centered around the idea of organizing Projects (which run your
playbooks via Jobs) and Inventories (which describe the servers on which your
playbooks should be run) inside of Organizations. Organizations are then set up
with different levels of access based on Users and Credentials grouped in different
Teams. It’s a little overwhelming at first, but once the initial structure is configured,
you’ll see the power and flexibility Tower’s Project workflow affords.

Let’s get started with our first project!

The first step is to make sure you have a test playbook you can run using Ansible
Tower. Generally, your playbooks should be stored in a source code repository (e.g.
Git or Subversion), with Tower configured to check out the latest version of the
playbook from the repository and run it. For this example, however, we will create a
playbook in Tower’s default projects directory located in /var/lib/awx/projects:

1. Log into the Tower VM: vagrant ssh

2. Switch to the awx user: sudo su - awx

3. Go to Tower’s default projects directory: cd /var/lib/awx/projects

4. Create a new project directory: mkdir ansible-for-devops && cd ansible-for-devops

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 305

5. Create a new playbook file, main.yml, within the new directory, with the
following contents:

1 ---

2 - hosts: all

3 gather_facts: no

4 connection: local

5

6 tasks:

7 - name: Check the date on the server.

8 command: date

Switch back to your web browser and get everything set up to run the test playbook
inside Ansible Tower’s web UI:

1. Create a new Organization, called ‘Ansible for DevOps’.
2. Add a new User to the Organization, named John Doe, with the username

johndoe and password johndoe1234.
3. Create a new Team, called ‘DevOps Engineers’, in the ‘Ansible for DevOps’

Organization.
4. Under the Team’s Credentials section, add in SSH credentials by selecting

‘Machine’ for the Credential type, and setting ‘Name’ to Vagrant, ‘Type’ to
Machine, ‘SSH Username’ to vagrant, and ‘SSH Password’ to vagrant.

5. Under the Team’s Projects section, add a new Project. Set the ‘Name’ to
Tower Test, ‘Organization’ to Ansible for DevOps, ‘SCM Type’ to Manual,
and ‘Playbook Directory’ to ansible-for-devops (Tower automatically detects
all folders placed inside /var/lib/awx/projects, but you could also use an
alternate Project Base Path if you want to store projects elsewhere).

6. Under the Inventories section, add an Inventory. Set the ‘Name’ to Tower Local,
and ‘Organization’ set to Ansible for DevOps. Once the inventory is saved: 1.
Add a ‘Group’ with the Name localhost. Click on the group once it’s saved. 2.
Add a ‘Host’ with the Host Name 127.0.0.1.

New Credentials have a somewhat dizzying array of options, and offer
login and API key support for a variety of services, like SSH, AWS,
Rackspace, VMWare vCenter, and SCM systems. If you can login to a
system, Tower likely supports the login mechanism!

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 306

Now that we have all the structure for running playbooks configured, we need
only create a Job Template to run the playbook on the localhost and see whether
we’ve succeeded. Click on ‘Job Templates’, and create a new Job Template with the
following configuration:

• Name: Tower Test

• Inventory: Tower Local

• Project: Tower Test

• Playbook: main.yml
• Machine Credential: Vagrant

Save the Job Template, then click the small Rocketship button to start a job using the
template. You’ll be redirected to a Job status page, which provides live updates of the
job status, and then a summary of the playbook run when complete:

Tower Test job completed successfully!

You can view the playbook run’s standard output in real-time (or review it after the
fact) with the ‘View standard out’ button. You can also stop a running job, delete a
job’s record, or relaunch a job with the same parameters using the respective buttons
on the job’s page.

The job’s dashboard page is very useful for giving an overview of how many hosts
were successful, how many tasks resulted in changes, and the timing of the different
parts of the playbook run.

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 307

Other Tower Features of Note

In our walkthrough above, we used Tower to run a playbook on the local server;
setting up Tower to run playbooks on real-world infastructure or other local VMs is
just as easy, and the tools Ansible Tower provides are very handy, especially when
working in larger team environments.

This book won’t walk through the entirety of Ansible Tower’s documentation, but a
few other features you should try out include:

• Setting up scheduled Job runs (especially with the ‘Check’ option instead of
‘Run’) for CI/CD.

• Integrating user accounts and Teamswith LDAP users and groups for automatic
team-based project management.

• Setting different levels of permissions for Users and Teams so certain users can
only edit, run, or view certain jobs within an Organization.

• Configuring Ansible Vault credentials to easily and automatically use Vault-
protected variables in your playbooks.

• Setting up Provisioning Callbacks so newly-provisioned servers can self-provi-
sion via a URL per Job Template.

• Surveys, which allow users to add extra information based on a ‘Survey’ of
questions per job run.

• Inventory Scripts, which allow you to build inventory dynamically.
• Built-in Munin monitoring (to monitor the Tower server), available with the
same admin credentials at https://[tower-hostname]/munin.

Ansible Tower continues to improve rapidly, and is one of the best ways to run
Ansible Playbooks from a central CI/CD-style server with team-based access and
extremely detailed live and historical status reporting.

Tower Alternatives

Ansible Tower is purpose-built for use with Ansible playbooks, but there are many
other ways to run playbooks on your servers with a solid workflow. If price is a major

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 308

concern, and you don’t need all the bells and whistles Tower provides, you can use
other popular tools like Jenkins¹⁴², Rundeck¹⁴³, or Go CI¹⁴⁴.

All these tools provide flexibility and security for running Ansible Playbooks, and
each one requires a different amount of setup and configuration before it will work
well for common usage scenarios. One of the most popular and long-standing CI
tools is Jenkins, so we’ll explore how to configure a similar Playbook run in Jenkins
next.

Jenkins CI

Jenkins is a Java-based open source continuous integration tool. It was forked from
the Hudson project in 2011, but has a long history as a robust build tool for almost
any software project.

Jenkins is easy to install and configure, with the Java SDK as its only requirement.
Jenkins runs on any modern OS, but for the purposes of this demonstration, we’ll
build a local VM using Vagrant, install Jenkins inside the VM using Ansible, then use
Jenkins to run an Ansible playbook.

Build a local Jenkins server with Ansible

Create a new directory for the Jenkins VM named jenkins. Inside the directory,
create a Vagrantfile to describe the machine and the Ansible provisioning to
Vagrant, with the following contents:

¹⁴²http://jenkins-ci.org/
¹⁴³http://rundeck.org/
¹⁴⁴http://www.go.cd/

http://jenkins-ci.org/
http://rundeck.org/
http://www.go.cd/
http://jenkins-ci.org/
http://rundeck.org/
http://www.go.cd/

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 309

1 VAGRANTFILE_API_VERSION = "2"

2

3 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

4 config.vm.box = "geerlingguy/ubuntu1604"

5 config.vm.hostname = "jenkins.test"

6 config.vm.network :private_network, ip: "192.168.76.76"

7 config.ssh.insert_key = false

8

9 config.vm.provider :virtualbox do |v|

10 v.memory = 512

11 end

12

13 # Ansible provisioning.

14 config.vm.provision "ansible" do |ansible|

15 ansible.playbook = "provision.yml"

16 ansible.become = true

17 end

18 end

This Vagrantfile will create a new VM running Ubuntu 16.04, with the IP ad-
dress 192.168.76.76 and the hostname jenkins.test. Go ahead and add an en-
try for 192.168.76.76 jenkins.test to your hosts file, and then create a new
provision.yml playbook so Vagrant can run it with Ansible (as described in the
config.vm.provision block in the Vagrantfile). Put the following in the provision.yml
file:

1 ---

2 - hosts: all

3

4 vars:

5 firewall_allowed_tcp_ports:

6 - "22"

7 - "8080"

8 jenkins_plugins:

9 - ansicolor

10

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 310

11 roles:

12 - geerlingguy.firewall

13 - geerlingguy.ansible

14 - geerlingguy.java

15 - geerlingguy.jenkins

This playbook uses a set of roles from Ansible Galaxy to install all the required
components for our Jenkins CI server. To make sure you have all the required roles
installed on your host machine, add a requirements.yml file in the jenkins folder,
containing all the roles being used in the playbook:

1 ---

2 - src: geerlingguy.firewall

3 - src: geerlingguy.ansible

4 - src: geerlingguy.java

5 - src: geerlingguy.jenkins

The geerlingguy.ansible role installs Ansible on the VM, so Jenkins can runAnsible
playbooks and ad-hoc commands. The geerlingguy.java role is a dependency of
geerlingguy.jenkins, and the geerlingguy.firewall role configures a firewall to
limit access on ports besides 22 (for SSH) and 8080 (Jenkins’ default port).

Finally, we tell the geerlingguy.jenkins role a set of plugins to install through the
jenkins_plugins variable; in this case, we just want the ansicolor plugin, which
gives us full color display in Jenkins’ console logs (so our Ansible playbook output is
easier to read).

There is an official Ansible plugin for Jenkins¹⁴⁵ which can be used to run
Ansible Ad-Hoc tasks and Playbooks, and may help you integrate Ansible
and Jenkins more easily.

To build the VM and run the playbook, do the following (inside the jenkins folder):

1. Run ansible-galaxy install -r requirements.yml to install the required
roles.

¹⁴⁵https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin

https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 311

2. Run vagrant up to build the VM and install and configure Jenkins.

After a few minutes, the provisioning should complete, and you should be able to
access Jenkins at http://jenkins.test:8080/ (if you configured the hostname in
your hosts file).

Create an Ansible playbook on the Jenkins server

It’s preferred to keep your playbooks and server configuration in a code repository
(e.g. Git or SVN), but for simplicity’s sake, this example requires a playbook stored
locally on the Jenkins server, similar to the earlier Ansible Tower example.

1. Log into the Jenkins VM: vagrant ssh

2. Go to the /opt directory: cd /opt

3. Create a new project directory: sudo mkdir ansible-for-devops && cd

ansible-for-devops

4. Create a new playbook file, main.yml, within the new directory, with the
following contents (use sudo to create the file, e.g. sudo vi main.yml):

1 ---

2 - hosts: 127.0.0.1

3 gather_facts: no

4 connection: local

5

6 tasks:

7 - name: Check the date on the server.

8 command: date

If you want, test the playbook while you’re logged in: ansible-playbook main.yml.

Create a Jenkins job to run an Ansible Playbook

With Jenkins running, configure a Jenkins job to run a playbook on the local server
with Ansible. Visit http://jenkins.test:8080/, and once the page loads, click the
‘New Item’ link to create a new ‘Freestyle project’ with a title ‘ansible-local-test’.
Click ‘OK’ and when configuring the job, and set the following configuration:

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 312

• Under ‘Build Environment’, check the ‘Color ANSI Console Output’ option.
This allowsAnsible’s helpful colored output to pass through the Jenkins console,
so it is easier to read during and after the run.

• Under ‘Build’, click ‘Add Build Step’, then choose ‘Execute shell’. In the
‘Command’ field, add the following code, which will run the local Ansible
playbook:

1 # Force Ansible to output jobs with color.

2 export ANSIBLE_FORCE_COLOR=true

3

4 # Run the local test playbook.

5 ansible-playbook /opt/ansible-for-devops/main.yml

Click ‘Save’ to save the ‘Ansible Local Test’ job, and on the project’s page, click the
‘Build Now’ link to start a build. After a few seconds, you should see a new item in
the ‘Build History’ block. Click on the (hopefully) blue circle to the left of ‘#1’, and
it will take you to the console output of the job. It should look something like this:

Jenkins job completed successfully!

This is a basic example, but hopefully it’s enough to show you how easy it is to
get at least some of your baseline CI/CD automation done using a free and open
source tool. Most of the more difficult aspects of managing infrastructure through

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 313

Jenkins surrounds the ability to manage SSH keys, certificates, and other credentials
through Jenkins, but there is already plenty of documentation surrounding these
things elsewhere online and in Jenkins documentation, so this will be left as an
exercise for the reader.

The rest of this chapter focuses on ways to test and debug your playbooks and your
infrastructure as a whole, and while many examples use Travis CI or plain command
line options, anything you see can be automated with Jenkins jobs!

Unit, Integration, and Functional Testing

When determining how you should test your infrastructure, you need to understand
the different kinds of testing, and then determine the kinds of testing on which you
should focus more effort.

Unit testing, when applied to applications, is testing of the smallest units of code
(usually functions or class methods). In Ansible, unit testing would typically apply
to individual playbooks. You could run individual playbooks in an isolated environ-
ment, but it’s often not worth the effort. What isworth your effort is at least checking
the playbook syntax, to make sure you didn’t just commit a YAML file that will break
an entire deployment because of a missing quotation mark, or a whitespace issue!

Integration testing, which is definitely more valuable when it comes to Ansible, is
the testing of small groupings of individual units of code, to make sure they work
correctly together. Breaking your infrastructure definition into many task-specific
roles and playbooks allows you to do this; if you’ve structured your playbooks so
they have no or limited dependencies, you could test each role individually in a fresh
virtual machine, before you use the role as part of a full infrastructure deployment.

Functional testing involves the whole shebang. Basically, you set up a complete
infrastructure environment, and then run tests against it to make sure everything was
successfully installed, deployed, and configured. Ansible’s own reporting is helpful
in this kind of testing, and there are external tools available to test infrastructure
even more deeply.

It is often possible to perform all the testing you need on your own local worksta-
tion, using Virtual Machines (as demonstrated in earlier chapters), using tools like
VirtualBox or VMWare. And with most cloud services providing robust control APIs

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 314

and hourly billing, it’s inexpensive and just as fast to test directly on cloud instances
mirroring your production infrastructure!

We’ll begin with the most basic tests using Ansible, along with common debugging
techniques, then progress to full-fledged functional testing methods with an auto-
mated process.

Debugging and Asserting

For most playbooks, testing configuration changes and the result of commands being
run as you go is all the testing you need. And having tests run during your playbook
runs using some of Ansible’s built-in utility modules means you have immediate
assurance the system is in the state you want.

If at all possible, you should try to bake all simple test cases (e.g. comparison and
state checks) into your playbooks directly. Ansible has three modules that simplify
this process.

The debug module

When actively developing an Ansible playbook, or even for historical logging
purposes (e.g. if you’re running Ansible playbooks using Tower or another CI
system), it’s often handy to print values of variables or output of certain commands
during the playbook run.

For this purpose, Ansible has a debug module, which prints variables or messages
during playbook execution.

As an extremely basic example, here are two of the ways I normally use debug while
building a playbook:

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 315

1 - hosts: 127.0.0.1

2 gather_facts: no

3 connection: local

4

5 tasks:

6 - name: Register the output of the 'uptime' command.

7 command: uptime

8 register: system_uptime

9

10 - name: Print the registered output of the 'uptime' command.

11 debug: var=system_uptime.stdout

12

13 - name: Print a simple message if a command resulted in a change.

14 debug: msg="Command resulted in a change!"

15 when: system_uptime.changed

Running this playbook gives the following output:

$ ansible-playbook debug.yml

PLAY [127.0.0.1] **

TASK: [Register the output of the 'uptime' command.] ****************

changed: [127.0.0.1]

TASK: [Print the registered output of the 'uptime' command.] ********

ok: [127.0.0.1] => {

"var": {

"system_uptime.stdout":

"15:01 up 15:18, 2 users, load averages: 1.23 1.33 1.42"

}

}

TASK: [Print a simple message if a command resulted in a change.] ***

ok: [127.0.0.1] => {

"msg": "Command resulted in a change!"

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 316

}

PLAY RECAP **

127.0.0.1 : ok=3 changed=1 unreachable=0 failed=0

Debug messages are helpful when actively debugging a playbook or when you need
extra verbosity in the playbook’s output, but if you need to perform an explicit test
on some variable, or bail out of a playbook for some reason, Ansible provides the
fail module, and its more terse cousin, assert.

The fail and assert modules

Both fail and assert, when triggered, will abort the playbook run, and the only
difference is in the simplicity of their usage. To illustrate, let’s look at an example:

1 - hosts: 127.0.0.1

2 gather_facts: no

3 connection: local

4

5 vars:

6 should_fail_via_fail: true

7 should_fail_via_assert: false

8 should_fail_via_complex_assert: false

9

10 tasks:

11 - name: Fail if conditions warrant a failure.

12 fail: msg="There was an epic failure."

13 when: should_fail_via_fail

14

15 - name: Stop playbook if an assertion isn't validated.

16 assert: that="should_fail_via_assert != true"

17

18 - name: Assertions can have contain conditions.

19 assert:

20 that:

21 - should_fail_via_fail != true

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 317

22 - should_fail_via_assert != true

23 - should_fail_via_complex_assert != true

Switch the boolean values of should_fail_via_fail, should_fail_via_assert, and
should_fail_via_complex_assert to trigger each of the three fail/assert tasks, to
see how they work.

For most test cases, debug, fail, and assert are all you need to ensure your
infrastructure is in the correct state during a playbook run.

Checking syntax and performing dry runs

Two checks you should include in an automated playbook testing workflow are
--syntax-check (which checks the playbook syntax to find quoting, formatting, or
whitespace errors) and --check (which will run your entire playbook in checkmode.

Syntax checking is extremely straightforward, and only requires a few seconds for
even larger, more complex playbooks with dozens or hundreds of includes. You
should include an ansible-playbook my-playbook.yml --syntax-check in your
basic CI tests, and it’s best practice to run a syntax check in a pre-commit hook
when developing playbooks.

Running a playbook in check mode is more involved, since Ansible runs the entire
playbook on your live infrastructure, but without performing any changes. Instead,
Ansible highlights tasks thatwould’ve resulted in a change to showwhat will happen
when you actually run the playbook later.

This is helpful for two purposes:

1. To prevent ‘configuration drift’, where a server configuration may have drifted
away from your coded configuration. This could happen due to human inter-
vention or other factors. But it’s good to discover configuration drift without
forcefully changing it.

2. To make sure changes you make to a playbook that shouldn’t break idem-
potency don’t, in fact, break idempotency. For example, if you’re changing
a configuration file’s structure, but with the goal of maintaining the same
resulting file, running the playbook with --check alerts you when you might
accidentally change the live file as a result of the playbook changes. Time to fix
your playbook!

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 318

When using --check mode, certain tasks may need to be forced to run to ensure the
playbook completes successfully: (e.g. a command task that registers variables used in
later tasks). You can set check_mode: no to do this:

- name: A task that runs all the time, even in check mode.

command: mytask --option1 --option2

register: my_var

check_mode: no

For even more detailed information about what changes would occur, add the --diff
option, andAnsiblewill output changes thatwould’ve beenmade to your servers line-
by-line. This option produces a lot of output if check mode makes a lot of changes,
so use it conservatively unless you want to scroll through a lot of text!

You can add conditionals with check_mode just like you can with when

clauses, though most of the time you will probably just use yes or no.

In addition to Ansible’s --syntax-check and --checkmodes, you might be interested
in also running Ansible Lint¹⁴⁶ on your playbooks. Ansible Lint allows you to check
for deprecated syntax or inefficient task structures, and is highly configurable so you
can set up the linting to follow the playbook standards you and your team choose.

Automated testing on GitHub using Travis CI

Automated testing using a continuous integration tool like Travis CI (which is free
for public projects and integrated very well with GitHub) allows you to run tests
against Ansible playbooks or roles you have hosted on GitHub with every commit.

There are four main things to test when building and maintaining Ansible playbooks
or roles:

1. The playbook or role’s syntax (are all the .yml files formatted correctly?).

¹⁴⁶https://github.com/willthames/ansible-lint

https://github.com/willthames/ansible-lint
https://github.com/willthames/ansible-lint

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 319

2. Whether the playbook or role will run through all the included tasks without
failing.

3. The playbook or role’s idempotence (if run again, it should not make any
changes!).

4. The playbook or role’s success (does the role do what it should be doing?).

The most important part is #4—the functional test—because what’s the point of a
playbook or role if it doesn’t do what you want it to do (e.g. start a web server,
configure a database, deploy an app, etc.)?

For the purposes of this example, we’re going to make the following assumptions:

• You are testing an Ansible role (though this process applies just as well to testing
an entire playbook).

• Your role’s repository is hosted on GitHub.
• You are using Travis CI and it’s enabled for your role’s repository.

Note that you can apply the test setup detailed here to almost any SCM and CI tool
(e.g. GitLab, Jenkins, Circle, etc.), with minor variations.

Testing on multiple OSes with Docker

Travis CI provides a VM in which you can run your tests. You can choose between
a few flavors of Linux or macOS, but there’s not a lot of flexibility in terms of
infrastructure testing, and Travis bakes in a lot of software by default (e.g. Ruby,
Python, etc.).

Because we want to test our Ansible roles in as clean an environment as possible, we
have two options:

1. Choose from one of the few Travis default OS environments and try to clean
out all the existing software installs before running our tests.

2. Build our own clean test environments inside Travis using Docker containers
and run tests in containers.

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 320

Historically, the first solution was easier to implement, but recent improvements in
Travis’s Docker support makes the second solution a better choice.

Because multi-OS, clean-slate tests are important to us, we will do the following for
each test:

1. Start a fresh, minimal OS container for each OS our role supports.
2. Run our role inside the container (and then test idempotence and functionality).

For many of my roles and playbooks, I support the following OSes, therefore I
maintain images on Docker Hub for the explicit purpose of testing Ansible roles
and playbooks:

• CentOS 6¹⁴⁷
• CentOS 7¹⁴⁸
• Fedora 27¹⁴⁹
• Fedora 29¹⁵⁰
• Debian 8¹⁵¹
• Debian 9¹⁵²
• Ubuntu 14.04¹⁵³
• Ubuntu 16.04¹⁵⁴
• Ubuntu 18.04¹⁵⁵

The rest of this section will demonstrate how to test an example Ansible role against
all these OSes with one simple Travis configuration file.

Setting up the test

Create a new ‘tests’ directory in your role or project directory, and create a test
playbook inside:

¹⁴⁷https://hub.docker.com/r/geerlingguy/docker-centos6-ansible/
¹⁴⁸https://hub.docker.com/r/geerlingguy/docker-centos7-ansible/
¹⁴⁹https://hub.docker.com/r/geerlingguy/docker-fedora27-ansible/
¹⁵⁰https://hub.docker.com/r/geerlingguy/docker-fedora29-ansible/
¹⁵¹https://hub.docker.com/r/geerlingguy/docker-debian8-ansible/
¹⁵²https://hub.docker.com/r/geerlingguy/docker-debian9-ansible/
¹⁵³https://hub.docker.com/r/geerlingguy/docker-ubuntu1404-ansible/
¹⁵⁴https://hub.docker.com/r/geerlingguy/docker-ubuntu1604-ansible/
¹⁵⁵https://hub.docker.com/r/geerlingguy/docker-ubuntu1804-ansible/

https://hub.docker.com/r/geerlingguy/docker-centos6-ansible/
https://hub.docker.com/r/geerlingguy/docker-centos7-ansible/
https://hub.docker.com/r/geerlingguy/docker-fedora27-ansible/
https://hub.docker.com/r/geerlingguy/docker-fedora29-ansible/
https://hub.docker.com/r/geerlingguy/docker-debian8-ansible/
https://hub.docker.com/r/geerlingguy/docker-debian9-ansible/
https://hub.docker.com/r/geerlingguy/docker-ubuntu1404-ansible/
https://hub.docker.com/r/geerlingguy/docker-ubuntu1604-ansible/
https://hub.docker.com/r/geerlingguy/docker-ubuntu1804-ansible/
https://hub.docker.com/r/geerlingguy/docker-centos6-ansible/
https://hub.docker.com/r/geerlingguy/docker-centos7-ansible/
https://hub.docker.com/r/geerlingguy/docker-fedora27-ansible/
https://hub.docker.com/r/geerlingguy/docker-fedora29-ansible/
https://hub.docker.com/r/geerlingguy/docker-debian8-ansible/
https://hub.docker.com/r/geerlingguy/docker-debian9-ansible/
https://hub.docker.com/r/geerlingguy/docker-ubuntu1404-ansible/
https://hub.docker.com/r/geerlingguy/docker-ubuntu1604-ansible/
https://hub.docker.com/r/geerlingguy/docker-ubuntu1804-ansible/

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 321

Directory structure:

my_role/

tests/

test.yml <-- the test playbook

Inside test.yml, add:

1 ---

2 - hosts: all

3

4 roles:

5 - role_under_test

In this playbook we tell Ansible to run our role on all hosts; since the playbook will
run inside a Docker container with the option --connection=local, this basically
means “run it on localhost”. You can add vars, vars_files, pre_tasks, etc. if you
need to adjust anything or prep the environment before your role runs, but I try
to avoid overriding pre-packaged defaults, since they should ideally work across all
environments—including barebones test environments.

The next step is to add a .travis.yml file to your role so Travis CI knows how to
run your tests. Add the file to the root level of your role, and add the following
scaffolding:

We need sudo for some of the Docker commands.

sudo: required

env:

Provide a list of OSes we want to use for testing.

Tell Travis to start Docker when it brings up an environment.

services:

- docker

before_install:

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 322

Pull the image from Docker Hub for the OS under test.

script:

Start the container from the image and perform tests.

notifications:

Notify Ansible Galaxy when a role builds successfully.

This is a fairly standard Travis file layout, and if you want to dive deeper into how
Travis works, read through the guide Customizing the Build¹⁵⁶. Next, we need to fill
in each section of the file, starting with the parts that control the Docker container
lifecycle.

Building Docker containers in Travis

The first thing we need to do is decide on which OSes we’d like to test. For my
geerlingguy.java¹⁵⁷ role, I support CentOS, Fedora, Debian, and Ubuntu, so at a
minimum I want to support the latest LTS release of each, and for CentOS and
Ubuntu, the previous LTS release as well:

env:

- distro: centos7

- distro: centos6

- distro: fedora24

- distro: ubuntu1604

- distro: ubuntu1404

- distro: debian8

One other thing that needs to be configured per-OS is the init system. Because we’re
dealing with OSes that have a mixture of systemd and sysv init systems, we have
to specify in Travis’ environment the path to the init system to use, and any extra
options that we need to pass to the docker run command to get the image in the
right state for Ansible testing. So we’ll add two variables for each distribution, init
and run_opts:
¹⁵⁶https://docs.travis-ci.com/user/customizing-the-build
¹⁵⁷https://galaxy.ansible.com/geerlingguy/java/

https://docs.travis-ci.com/user/customizing-the-build
https://galaxy.ansible.com/geerlingguy/java/
https://docs.travis-ci.com/user/customizing-the-build
https://galaxy.ansible.com/geerlingguy/java/

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 323

env:

- distro: centos7

init: /usr/lib/systemd/systemd

run_opts: "--privileged --volume=/sys/fs/cgroup:/sys/fs/cgroup:ro"

- distro: centos6

init: /sbin/init

run_opts: ""

- distro: fedora24

init: /usr/lib/systemd/systemd

run_opts: "--privileged --volume=/sys/fs/cgroup:/sys/fs/cgroup:ro"

- distro: ubuntu1604

init: /lib/systemd/systemd

run_opts: "--privileged --volume=/sys/fs/cgroup:/sys/fs/cgroup:ro"

- distro: ubuntu1404

init: /sbin/init

run_opts: ""

- distro: debian8

init: /lib/systemd/systemd

run_opts: "--privileged --volume=/sys/fs/cgroup:/sys/fs/cgroup:ro"

Why use an init system in Docker? With Docker, it’s preferable to either
run apps directly (as ‘PID 1’) inside the container, or use a tool like Yelp’s
dumb-init¹⁵⁸ as a wrapper for your app. For our purposes, we’re testing an
Ansible role or playbook that could be run inside a container, but is also
likely used on full VMs or bare-metal servers, where there will be a real init
system controlling multiple internal processes. Wewant to emulate the real
servers as closely as possible, therefore we set up a full init system (systemd
or sysv) according to the OS.

Now that we’ve defined the OS distributions we want to test, and what init system
we want Docker to call, we can manage the Docker container’s lifecycle—we need
to pull the image, run the image with our options, exec some commands to test our
project, then stop the container once finished. Here’s the basic structure, starting
with the before_install step:

¹⁵⁸https://github.com/Yelp/dumb-init

https://github.com/Yelp/dumb-init
https://github.com/Yelp/dumb-init

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 324

before_install:

Pull container from Docker Hub.

- 'docker pull geerlingguy/docker-${distro}-ansible:latest'

script:

Create a random file to store the container ID.

- container_id=$(mktemp)

Run container detached, with our role mounted inside.

- 'docker run --detach --volume="${PWD}":/etc/ansible/roles/role_unde\

r_test:ro ${run_opts} geerlingguy/docker-${distro}-ansible:latest "${in\

it}" > "${container_id}"'

TODO - Test the Ansible role.

Let’s run through these initial commands that set up our OS environment:

• docker pull (in before_install): This pulls down the appropriate OS image
from Docker Hub with Ansible baked in. Note that docker run automatically
pulls any images that don’t already exist, but it’s a best practice to always pull
images prior to running them, in case the image is cached and there’s a newer
version.

• container_id=$(mktemp): We need a file to store the container ID so we can
perform operations on it later; we could also name the container, but we treat
containers (like infrastructure) like cattle, not pets. So no names.

• docker run: This command starts a new container, with the Ansible role
mounted inside (as a --volume), and uses the run_opts and init system
described earlier in the env: section, then saves the container ID (which is
output by Docker) into the temporary file we created in the previous step.

At this point, we have a Docker container running, andwe can perform actions inside
the container using docker exec just like we would if we were logged into a VMwith
the same OS.

For example, if you wanted to check up on disk space inside the container (assuming
the df utility is present), you could run the command:

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 325

script:

...

- 'docker exec "$(cat ${container_id})" df -h'

You can also run the command with --tty, which will allocate a pseudo-TTY,
allowing things like colors to be passed through to Travis for prettier output.

Note: In Docker < 1.13, you have to set the TERM environment variable when
using docker exec with the --tty option, like: docker exec --tty "$(cat

${container_id})" env TERM=xterm df -h (see: exec does not set TERM
env when -t passed¹⁵⁹). Also note that some older sysvinit scripts, when
run through Ansible’s service module, can cause strange issues when run
inside a Docker container (see: service hangs the whole playbook¹⁶⁰).

Now that we have a Docker container running (one for each of the distributions
listed in the env configuration), we can start running some tests on our Ansible role
or playbook.

Testing the role’s syntax

This is the easiest test; ansible-playbook has a built in command to check a
playbook’s syntax (including all the included files and roles), and return 0 if there
are no problems, or an error code and some output if there were any syntax issues.

1 ansible-playbook /etc/ansible/roles/role_under_test/test.yml --syntax-c\

2 heck

Add this as a command in the script section of .travis.yml:

¹⁵⁹https://github.com/docker/docker/issues/9299
¹⁶⁰https://github.com/ansible/ansible-modules-core/issues/2459#issuecomment-246880847

https://github.com/docker/docker/issues/9299
https://github.com/docker/docker/issues/9299
https://github.com/ansible/ansible-modules-core/issues/2459#issuecomment-246880847
https://github.com/docker/docker/issues/9299
https://github.com/ansible/ansible-modules-core/issues/2459#issuecomment-246880847

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 326

1 script:

2 # Check the role/playbook's syntax.

3 - >

4 docker exec --tty "$(cat ${container_id})" env TERM=xterm

5 ansible-playbook /etc/ansible/roles/role_under_test/tests/test.yml

6 --syntax-check

If there are any syntax errors, Travis will fail the build and output the errors in the
log.

Role success - first run

The next aspect to check is whether the role runs correctly or fails on its first run.
Add this after the --syntax-check test:

1 # Run the role/playbook with ansible-playbook.

2 - >

3 docker exec --tty "$(cat ${container_id})" env TERM=xterm

4 ansible-playbook /etc/ansible/roles/role_under_test/tests/test.yml

Ansible returns a non-zero exit code if the playbook run fails, so Travis will know
whether the command succeeded or failed.

Role idempotence

Another important test is the idempotence test—does the role change anything if it
runs a second time? It should not, since all tasks you perform via Ansible should
be idempotent (ensuring a static/unchanging configuration on subsequent runs with
the same settings).

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 327

1 # Run the role/playbook again, checking to make sure it's idempotent.

2 - idempotence=$(mktemp)

3 - >

4 docker exec "$(cat ${container_id})"

5 ansible-playbook /etc/ansible/roles/role_under_test/tests/test.yml

6 | tee -a ${idempotence}

7 - >

8 tail ${idempotence}

9 | grep -q 'changed=0.*failed=0'

10 && (echo 'Idempotence test: pass' && exit 0)

11 || (echo 'Idempotence test: fail' && exit 1)

This command runs the exact same command as before, but pipes the results into
another temporary file (using tee, which pipes the output to the console and the file),
and then the next command reads the output and checks to make sure ‘changed’ and
‘failed’ both report 0. If there were no changes or failures, the idempotence test passes
(and Travis sees the 0 exit and is happy). If there were any changes or failures, the
test fails (and Travis sees the 1 exit and reports a build failure).

Role success - final result

The last thing I check is whether the role actually did what it was supposed to do.
If it configured a web server, is the server responding on port 80 or 443 without any
errors? If it configured a command line application, does the application work when
invoked, and do the things it’s supposed to do?

1 # Ensure Java is installed.

2 - 'docker exec --tty "$(cat ${container_id})" env TERM=xterm which java'

In this example, a simple test of whether or not java is installed is used as
a functional test of the role. In other cases, I might run the command curl

http://localhost:3000/ (to check if an app is responding on a particular port), or
some other command that verifies an application is installed and running correctly.

Here’s what the final test result looks like in Travis CI:

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 328

Travis CI test result for the geerlingguy.java role

Taking this a step further, you could even run a deployed application or service’s
own automated tests after Ansible is finished with the deployment, thus testing your
infrastructure and application in one go—but we’re getting ahead of ourselves here…
that’s a topic for later!

Some notes about Travis CI

There are a few things you need to know about Travis CI, especially if you’re testing
Ansible, which will rely heavily on the VM environment inside which it is running:

• Docker Environment: The default Docker installation runs on a particular
Docker engine version, which may or may not be the latest stable release. Read
through Travis’ documentation for more: Using Docker in Builds¹⁶¹.

• Networking/Disk/Memory: Travis CI continuously shifts the VM specs you’re
using, so don’t assume you’ll have X amount of RAM, disk space, or network
capacity. Add commands like cat /proc/cpuinfo, cat /proc/meminfo, free
-m, etc. in the .travis.yml before_install section if you need to figure out
the resources available in your VM.

¹⁶¹https://docs.travis-ci.com/user/docker/

https://docs.travis-ci.com/user/docker/
https://docs.travis-ci.com/user/docker/

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 329

See much more information about the VM environment on the Travis CI Build
Environment page¹⁶².

Real-world examples

This style of testing is integrated into many of the geerlingguy.* roles on Ansible
Galaxy; here are a few example roles using Travis CI integration in the way outlined
above:

• https://github.com/geerlingguy/ansible-role-java
• https://github.com/geerlingguy/ansible-role-apache
• https://github.com/geerlingguy/ansible-role-mysql

I’d like to give special thanks to Bert Van Vreckem, who helped me to get the initial
versions of this Docker-based test workflowworking on GitHub; he wrote a bit about
the process on his blog, too: Testing Ansible roles with Travis-CI: Multi-platform
tests¹⁶³.

Functional testing using serverspec

Serverspec¹⁶⁴ is a tool to help automate server tests using RSpec tests, which use a
Ruby-like DSL to ensure your server configuration matches your expectations. In a
sense, it’s another way of building well-tested infrastructure.

Serverspec tests can be run locally, via SSH, through Docker’s APIs, or through
other means, without the need for an agent installed on your servers, so it’s a
lightweight tool for testing your infrastructure (just like Ansible is a lightweight tool
for managing your infrastructure).

There’s a lot of debate over whether well-written Ansible playbooks themselves
(especially along with the dry-run --check mode) are adequate for well-tested
infrastructure, but many teams are more comfortable maintaining infrastructure

¹⁶²http://docs.travis-ci.com/user/ci-environment/
¹⁶³http://bertvv.github.io/notes-to-self/2015/12/13/testing-ansible-roles-with-travis-ci-part-2-multi-platform-tests/
¹⁶⁴http://serverspec.org/

http://docs.travis-ci.com/user/ci-environment/
http://docs.travis-ci.com/user/ci-environment/
http://bertvv.github.io/notes-to-self/2015/12/13/testing-ansible-roles-with-travis-ci-part-2-multi-platform-tests/
http://bertvv.github.io/notes-to-self/2015/12/13/testing-ansible-roles-with-travis-ci-part-2-multi-platform-tests/
http://serverspec.org/
http://docs.travis-ci.com/user/ci-environment/
http://bertvv.github.io/notes-to-self/2015/12/13/testing-ansible-roles-with-travis-ci-part-2-multi-platform-tests/
http://serverspec.org/

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 330

tests in Serverspec instead (especially if the team is already familiar with how
Serverspec and Rspec works!).

Consider this: a truly idempotent Ansible playbook is already a great testing tool if
it uses Ansible’s robust core modules and fail, assert, wait_for and other tests to
ensure a specific state for your server. If you use Ansible’s user module to ensure a
given user exists and is in a given group, and run the same playbook with --check

and get ok for the same task, isn’t that a good enough test your server is configured
correctly?

This book will not provide a detailed guide for using Serverspec with your Ansible-
managed servers, but here are a few resources in case you’d like to use it:

• A brief introduction to server testing with Serverspec¹⁶⁵
• Testing Ansible Roles with Test Kitchen, Serverspec and RSpec¹⁶⁶
• Testing infrastructure with serverspec¹⁶⁷

Other server and role testing tools

There are also a number of other projects which abstract the testing process a little
further than the above approach; some allowing more control and easier use outside
of the Travis CI environment, others focused more on Ansible roles in particular:

• molecule¹⁶⁸ - A generalized solution for testing Ansible roles in any environ-
ment.

• goss¹⁶⁹ - A generalized server validation tool.
• rolespec¹⁷⁰ - A library for testing Ansible roles on Travis or locally.

Each of the options has some benefits and drawbacks; you should check them all out
and find out which one works best in your workflow and skill-set.

¹⁶⁵https://www.debian-administration.org/article/703/A_brief_introduction_to_server-testing_with_serverspec
¹⁶⁶http://www.slideshare.net/MartinEtmajer/testing-ansible-roles-with-test-kitchen-serverspec-and-rspec-48185017
¹⁶⁷http://vincent.bernat.im/en/blog/2014-serverspec-test-infrastructure.html
¹⁶⁸https://github.com/ansible-community/molecule
¹⁶⁹https://github.com/aelsabbahy/goss
¹⁷⁰https://github.com/nickjj/rolespec

https://www.debian-administration.org/article/703/A_brief_introduction_to_server-testing_with_serverspec
http://www.slideshare.net/MartinEtmajer/testing-ansible-roles-with-test-kitchen-serverspec-and-rspec-48185017
http://vincent.bernat.im/en/blog/2014-serverspec-test-infrastructure.html
https://github.com/ansible-community/molecule
https://github.com/aelsabbahy/goss
https://github.com/nickjj/rolespec
https://www.debian-administration.org/article/703/A_brief_introduction_to_server-testing_with_serverspec
http://www.slideshare.net/MartinEtmajer/testing-ansible-roles-with-test-kitchen-serverspec-and-rspec-48185017
http://vincent.bernat.im/en/blog/2014-serverspec-test-infrastructure.html
https://github.com/ansible-community/molecule
https://github.com/aelsabbahy/goss
https://github.com/nickjj/rolespec

Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD 331

Summary

Tools to help manage, test, and run playbooks regularly and easily, such as Travis
CI, Jenkins, and Ansible Tower, also help deliver certainty when applying changes
to your infrastructure using Ansible. In addition the information contained in
this chapter, read through the Testing Strategies¹⁷¹ documentation in Ansible’s
documentation for a comprehensive overview of infrastructure testing and Ansible.

__

/ The first rule of any technology used \

| in a business is that automation |

| applied to an efficient operation will |

| magnify the efficiency. The second is |

| that automation applied to an |

| inefficient operation will magnify the |

\ inefficiency. (Bill Gates) /

--

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

¹⁷¹http://docs.ansible.com/test_strategies.html

http://docs.ansible.com/test_strategies.html
http://docs.ansible.com/test_strategies.html

Chapter 12 - Automating HTTPS
and TLS Certificates
Today’s application environment almost always requires the use of HTTP (and
HTTPS) for certain traffic—end users interacting with a website, microservices
communicating with each other internally or via the public Internet, or external APIs
interacting with your apps.

HTTPS was originally used only for sensitive transactions, like banking transactions
or secure web forms. It also used to require extra server CPU to encrypt data.
But today, when Google boosts search results for HTTPS-only sites, and when
processors barely show a differencewith encrypted or unencrypted traffic, it’s almost
universally understood that all HTTP services should be served via https://.

Traditionally, one blocker to using HTTPS everywhere was certificates were difficult
to acquire, manage, and renew. And they were also expensive!

Now, between Let’s Encrypt’s free certificates, more affordable wildcard certs, and
universal Server Name Indication (SNI) support, there is almost never an excuse not
to use HTTPS…

Except, that is, for the fact certificate management has been tricky to automate. This
chapter will show how Ansible solves this last problem by managing certificates and
securing all your HTTP traffic!

Generating Self-Signed Certificates with
Ansible

Whenever I’m building and testing a new server configuration that requires TLS
connections (typically HTTPS traffic over port 443), I need to use one or more valid
certificates which can be accepted by a browser user, or by something like curl, so I
can verify my TLS configuration is correct.

Chapter 12 - Automating HTTPS and TLS Certificates 333

Ansible makes generating self-signed certificates easy. There are four openssl_*

crypto-related modules useful in generating certificates:

• openssl_certificate - Generate and/or check OpenSSL certificates
• openssl_csr - Generate OpenSSL Certificate Signing Request (CSR)
• openssl_privatekey - Generate OpenSSL private keys
• openssl_publickey - Generate an OpenSSL public key from its private key

In order to use these modules, you need OpenSSL installed, and also one extra Python
dependency used by Ansible to interact with OpenSSL, the pyOpenSSL library.

Here’s a quick example of the tasks required to generate a self-signed cert:

- name: Ensure directory exists for local self-signed TLS certs.

file:

path: /etc/ssl/certs/example

state: directory

- name: Generate an OpenSSL private key.

openssl_privatekey:

path: /etc/ssl/certs/example/privkey.pem

- name: Generate an OpenSSL CSR.

openssl_csr:

path: /etc/ssl/certs/example/example.csr

privatekey_path: /etc/ssl/certs/example/privkey.pem

common_name: "example.com"

- name: Generate a Self Signed OpenSSL certificate.

openssl_certificate:

path: /etc/ssl/certs/example/fullchain.pem

privatekey_path: /etc/ssl/certs/example/privkey.pem

csr_path: /etc/ssl/private/example/example.csr

provider: selfsigned

Chapter 12 - Automating HTTPS and TLS Certificates 334

These tasks ensure there’s a directory inside which the certificate will live, create a
private key and Certificate Signing Request (CSR) in that directory, and use them to
generate the final cert.

You can then use this certificate to serve HTTPS requests using a web server; for
example, in an Nginx server configuration:

server {

listen 443 ssl default_server;

server_name example.com;

ssl_certificate {{ certificate_dir }}/{{ server_hostname }}/fullcha\

in.pem;

ssl_certificate_key {{ certificate_dir }}/{{ server_hostname }}/pri\

vkey.pem;

...

}

Let’s put together a full playbook using the openssl_*modules and Nginx, to build a
server complete with a self-signed certificate and a secure Nginx TLS configuration.

Idempotent Nginx HTTPS playbook with a self-signed
cert

For the sake of convenience, this example will target a Debian 9 server (though it
would be mostly unchanged for any other distribution), and there’s a fully tested
example included in this book’s GitHub repository: HTTPS Self-Signed Certificate
Demo VM¹⁷².

Create a new folder for the Self-Signed Certificate web server playbook, and add a
main.yml playbook:

¹⁷²https://github.com/geerlingguy/ansible-for-devops/tree/master/https-self-signed

https://github.com/geerlingguy/ansible-for-devops/tree/master/https-self-signed
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-self-signed
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-self-signed

Chapter 12 - Automating HTTPS and TLS Certificates 335

1 ---

2 - hosts: all

3

4 vars_files:

5 - vars/main.yml

6

7 pre_tasks:

8 - name: Ensure apt cache is updated.

9 apt: update_cache=yes cache_valid_time=600

10

11 - name: Install dependency for pyopenssl.

12 apt: name=libssl-dev state=present

To keep the main playbook tidy, we will store any variables in an included variables
file (go ahead and create an empty main.yml vars file in a vars directory). Next,
on most Debian (and Debian-derived) distros, I add in a pre_task to make sure the
Apt cache is up to date (this prevents errors when installing packages later). Finally,
libssl-dev is a dependency we’ll need to have on the system tomake sure pyopenssl
can be installed by pip later, so we’ll do that too.

Next, to save some time, we can rely on some Ansible Galaxy roles to install and
configure some required software on the server:

14 roles:

15 - geerlingguy.firewall

16 - geerlingguy.pip

17 - geerlingguy.nginx

We use the firewall role to configure iptables to only allow traffic to the server on
certain ports, pip to install Python’s Pip packagemanager and the required pyOpenSSL
library, and nginx to install and configure Nginx.

To get these roles installed, add a requirements.yml file to your playbook directory,
with the contents:

Chapter 12 - Automating HTTPS and TLS Certificates 336

1 ---

2 - src: geerlingguy.firewall

3 - src: geerlingguy.pip

4 - src: geerlingguy.nginx

Then run ansible-galaxy install -r requirements.yml to install the roles.

In most cases, you should create an ansible.cfg in the playbook directory,
with at least the following contents:

[defaults]

roles_path = ./roles

This way, role dependencies are installed inside the playbook directory
itself instead of in your system-wide roles directory (as long as you run
the ansible-galaxy command inside the playbook directory).

Now let’s define a few variables to make the firewall, pip, and nginx roles configure
things how we want:

1 # Firewall settings.

2 firewall_allowed_tcp_ports:

3 - "22"

4 - "80"

5 - "443"

6

7 # Python settings.

8 pip_package: python3-pip

9 pip_install_packages: ['pyopenssl']

10

11 # Nginx settings.

12 nginx_vhosts: []

13 nginx_remove_default_vhost: True

14 nginx_ppa_use: True

15 nginx_ppa_version: stable

16 nginx_docroot: /var/www/html

Chapter 12 - Automating HTTPS and TLS Certificates 337

For the firewall, you need port 22 open for remote SSH access, port 80 for HTTP
requests (which we’ll redirect to HTTPS), and 443 for HTTPS.

For Pip, we need to make sure the right version of pip is installed (so python3-pip

for Debian 9, which has Python 3 installed by default), and we tell it to install the
latest version of the pyopenssl package.

For Nginx, we want the default virtual host (server) which comes with the distro
package install to be removed, we want to set the role’s vhosts to an empty array
(since we’ll manage Nginx server configuration ourselves), and finally we’ll use the
docroot /var/www/html.

Now that we have all the base packages installed and configured, the next step is to
generate the self-signed certificate. To keep our playbook clean, the required tasks
can go into an imported task file, imported in the main.yml like so:

19 tasks:

20 - import_tasks: tasks/self-signed-cert.yml

Create a tasks folder, and create a self-signed-cert.yml task file inside. We’ll place
the tasks that create the key, generate the CSR, and generate the cert into this file:

1 ---

2 - name: Ensure directory exists for local self-signed TLS certs.

3 file:

4 path: "{{ certificate_dir }}/{{ server_hostname }}"

5 state: directory

6

7 - name: Generate an OpenSSL private key.

8 openssl_privatekey:

9 path: "{{ certificate_dir }}/{{ server_hostname }}/privkey.pem"

10

11 - name: Generate an OpenSSL CSR.

12 openssl_csr:

13 path: "{{ certificate_dir }}/{{ server_hostname }}.csr"

14 privatekey_path: "{{ certificate_dir }}/{{ server_hostname }}/privk\

15 ey.pem"

Chapter 12 - Automating HTTPS and TLS Certificates 338

16 common_name: "{{ server_hostname }}"

17

18 - name: Generate a Self Signed OpenSSL certificate.

19 openssl_certificate:

20 path: "{{ certificate_dir }}/{{ server_hostname }}/fullchain.pem"

21 privatekey_path: "{{ certificate_dir }}/{{ server_hostname }}/privk\

22 ey.pem"

23 csr_path: "{{ certificate_dir }}/{{ server_hostname }}.csr"

24 provider: selfsigned

We added a two variables which we’ll now define in the vars/main.yml file (using
variables makes it easier to change the site and/or refactor to allow multiple values
in the future). Add these variables to the vars file:

19 # Self-signed certificate settings.

20 certificate_dir: /etc/ssl/private

21 server_hostname: https.test

Now that the playbook can generate a certificate (or on future runs, idempotently
verify the certificate’s existence), we need to configure Nginx to use the cert to deliver
traffic using TLS for a particular URL.

The geerlingguy.nginx role took care of the majority of Nginx configuration, but
we disabled that role’s management of virtual hosts, in favor of managing a single
virtual host (or server directive) ourselves. The following tasks copy an example
landing page into a defined docroot, then our custom HTTPS server configuration
to use the generated cert for the docroot:

Chapter 12 - Automating HTTPS and TLS Certificates 339

22 - name: Ensure docroot exists.

23 file:

24 path: "{{ nginx_docroot }}"

25 state: directory

26

27 - name: Copy example index.html file in place.

28 copy:

29 src: files/index.html

30 dest: "{{ nginx_docroot }}/index.html"

31 mode: 0755

32

33 - name: Copy Nginx server configuration in place.

34 template:

35 src: templates/https.test.conf.j2

36 dest: /etc/nginx/sites-enabled/https.test.conf

37 mode: 0644

38 notify: restart nginx

Fairly straightforward, but we need to fill in a couple blanks. First, here’s a quick and
easy index.html just to allow you to test things out:

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>HTTPS Self-Signed Certificate Test</title>

5 <style>* { font-family: Helvetica, Arial, sans-serif }</style>

6 </head>

7 <body>

8 <h1>HTTPS Self-Signed Certificate Test</h1>

9 <p>If you can see this message, it worked!</p>

10 </body>

11 </html>

Put that HTML into your playbook directory at files/index.html, then create
another file, templates/https.test.conf.j2, with the following contents:

Chapter 12 - Automating HTTPS and TLS Certificates 340

1 # HTTPS Test server configuration.

2

3 # Redirect HTTP traffic to HTTPS.

4 server {

5 listen 80 default_server;

6 server_name _;

7 index index.html;

8 return 301 https://$host$request_uri;

9 }

10

11 # Serve HTTPS traffic using the self-signed certificate created by Ansi\

12 ble.

13 server {

14 listen 443 ssl default_server;

15 server_name {{ server_hostname }};

16 root {{ nginx_docroot }};

17

18 ssl_certificate {{ certificate_dir }}/{{ server_hostname }}/fullcha\

19 in.pem;

20 ssl_certificate_key {{ certificate_dir }}/{{ server_hostname }}/pri\

21 vkey.pem;

22 }

The most important parts of this server configuration instruct Nginx to use the SSL
certificate we generated (at the path {{ certificate_dir }}/{{ server_hostname

}}/fullchain.pem;) for requests over port 443 for the domain {{ server_hostname

}} (in this case, requests to https://https.test/).

Production-ready TLS configuration will usually have more options de-
fined than the above server directive. It’s best practice to always configure
TLS as secure as possible (later examples meant for production use will
do so), but this example does the bare minimum to get SSL working with
Nginx defaults.

Notice the notify: restart nginx in the Copy Nginx server configuration in

Chapter 12 - Automating HTTPS and TLS Certificates 341

place. task; this will force Nginx to restart after any configuration changes are made
(or during the first provision, when the template is copied).

Once you run this playbook, if there were no errors, you should be able to securely
access https://https.test/ (assuming you have a record for that domain in your
hosts file pointing to your server’s IP address!). You might receive a security warning
since it’s self-signed, but all modern browsers and HTTPS-enabled tools should now
be able to load the site over an encrypted connection!

HTTPS Test site loads with a security warning

If you rebuild the server for https.test more than once (thus creating a
new self-signed certificate), be sure to delete the certificate you previously
added to your list of trusted certificates (e.g. via Keychain Access on Mac
OS X for Chrome and Safari, or in FireFox under Preferences > Advanced
> Certificates).

Chapter 12 - Automating HTTPS and TLS Certificates 342

Automating Let’s Encrypt with Ansible for free
Certs

Self-signed certs are helpful in making sure certain environments can be accessed via
HTTPS, but they have a number of downsides, the major one being that every visitor
has to confirm a security exception the first time they visit, and similarly command
line tools like curl and HTTP libraries usually fail when they encounter a self-signed
cert, unless you specifically ignore cert trust settings (which is a security risk).

It’s usually best to use a valid certificate from one of the trusted Certificate
Authorities (CAs).

Traditionally, you had to give some money to a Certificate Authority (CA) and work
through a mostly-manual process to acquire a certificate. You can still do this, and
there are use cases where this is still the best option, but Let’s Encrypt¹⁷³ took the
world of HTTPS certificates by storm by offering free, easy-to-automate certificates
to everyone, with the goal of creating “a more secure and privacy-respecting Web.”

In this example, we’ll acquire a certificate from Let’s Encrypt and set up auto-renewal
(since Let’s Encrypt certs are only valid for 90 days) on an Ubuntu server. There’s a
fully tested version of this example included in this book’s GitHub repository: HTTPS
Let’s Encrypt Demo¹⁷⁴.

Use Galaxy roles to get things done faster

Instead of writing all the automation ourselves, we can rely on some roles from
Ansible Galaxy to do the heavy lifting. Create a requirements.yml file in a new
project directory, containing:

1 ---

2 - src: geerlingguy.firewall

3 - src: geerlingguy.certbot

4 - src: geerlingguy.nginx

¹⁷³https://letsencrypt.org/
¹⁷⁴https://github.com/geerlingguy/ansible-for-devops/tree/master/https-letsencrypt

https://letsencrypt.org/
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-letsencrypt
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-letsencrypt
https://letsencrypt.org/
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-letsencrypt

Chapter 12 - Automating HTTPS and TLS Certificates 343

We’ll use the geerlingguy.firewall role to secure unused ports on the server,
geerlingguy.certbot to acquire and set up autorenewal of Let’s Encrypt certs, and
nginx to configure a web server to serve content over HTTPS.

The geerlingguy.certbot role is the heart of the operation; here’s how it works:

1. First, it either installs Certbot from the system packages or from source,
depending on the value of certbot_install_from_source. Source installs are
usually more usable since Certbot sometimes adds helpful features that will
never be backported into system packages.

2. Then it creates a certificate if configured via certbot_create_if_missing and
if the certificate(s) specified in certbot_certs do not yet exist. It creates the
certificates using the certbot_create_command and can also stop and start
certain services while the certificates are being created.

3. Finally, if certbot_auto_renew is true, it sets up a cron job for certificate
renewal, using the certbot renew command along with the options passed in
via certbot_auto_renew_options. Auto renewal is one of the main benefits of
Let’s Encrypt, because as long as your renewal process is working, you’ll never
wake up to an outage due to an expired certificate again!

Once we have the requirements file set up, create an ansible.cfg file in the project
directory to tell Ansible where to store and use the downloaded roles:

1 [defaults]

2 roles_path = ./roles

Install the required roles with: ansible-galaxy install -r requirements.yml.

Create the playbook

Add a main.yml playbook to the project directory. This playbook will target servers
running Ubuntu’s minimal distribution (which may not include Python), so we need
to do a couple special things to make sure Ansible can operate on the server in
pre_tasks. Then we’ll run the three roles we downloaded from Ansible Galaxy, and
configure Nginx to serve a simple web page using a Let’s Encrypt certificate.

Chapter 12 - Automating HTTPS and TLS Certificates 344

First things first, start the play on all the letsencrypt hosts, and since we might have
to install Python to gather facts about the server for Ansible to use, disable the initial
gather_facts:

1 ---

2 - hosts: letsencrypt

3 gather_facts: false

4 become: true

5

6 vars_files:

7 - vars/main.yml

We will also need to perform most tasks using sudo (since we have to modify the
system, configure Nginx, etc.), so become: true is necessary. Finally, to add the
configuration for certificate generation, firewall configuration, and Nginx, we’ll put
all the variables in a vars/main.yml file.

In a series of pre_tasks in main.yml, install Python (if needed), gather facts (since
we disabled the global playbook gather_facts), and update Apt’s caches since we
want the freshest package data available when installing software:

9 pre_tasks:

10 - name: Install Python if not already present.

11 raw: test -e /usr/bin/python || (apt -y update && apt install -y \

12 python-minimal)

13 changed_when: false

14

15 - name: Gather facts after Python is definitely present.

16 setup:

17

18 - name: Ensure apt cache is updated.

19 apt: update_cache=true cache_valid_time=600

Now, it’s time for the meat of this playbook, the roles. Call each one:

Chapter 12 - Automating HTTPS and TLS Certificates 345

9 roles:

10 - geerlingguy.firewall

11 - geerlingguy.nginx

12 - geerlingguy.certbot

Since the roles will be doing the heavy lifting (yay for easy-to-read playbooks!), we
tell them what to do via variables in vars/main.yml:

1 ---

2 # Firewall settings.

3 firewall_allowed_tcp_ports:

4 - "22"

5 - "80"

6 - "443"

7

8 # Nginx settings.

9 nginx_vhosts: []

10 nginx_remove_default_vhost: true

11 nginx_ppa_use: true

12 nginx_ppa_version: stable

13 nginx_docroot: /var/www/html

14

15 # Let's Encrypt certificate settings.

16 certbot_create_if_missing: true

17 certbot_admin_email: "{{ letsencrypt_email }}"

18 certbot_certs:

19 - domains:

20 - "{{ inventory_hostname }}"

By section:

• For a typical webserver, we need port 22 for SSH access, port 80 for unencrypted
HTTP access (Let’s Encrypt needs this to operate using it’s default verification
mechanism), and port 443 for encrypted HTTPS access.

Chapter 12 - Automating HTTPS and TLS Certificates 346

• For Nginx, we will configure our own custom virtual host in a bit, so we make
sure the default vhost is removed, and we’ll also install the latest version of
Nginx from the Nginx Ubuntu PPA. We added an extra variable nginx_docroot
to tell our own automation code where to put a test web page and serve it via
Nginx.

• The Certbot role only requires a few variables to ensure a certificate is added:
– certbot_create_if_missing: The role will check if the certificate exists,
and if it doesn’t (e.g. on the first playbook run) it will create it. If it does
exist, it will be idempotent and make no changes.

– certbot_admin_email: Let’s Encrypt lets you associate an email address¹⁷⁵
with every certificate it generates, and uses this email address to notify the
owner of any problems with the certificate, like impending expiration due
to a server issue.

– certbot_certs: You can add one or more certificates using this list; and
each certificate can cover one or more domains using Subject Alternative
Name (SAN) certificates.

Two of the Jinja variables used in the vars file are not defined in vars—rather, they
will come from the inventory. We’ll set that up soon.

Now that we have the playbook configuring an HTTP/S-ready firewall, a Let’s
Encrypt certificate generated by Certbot, and a barebones Nginx web server, we
need to configure Nginx to serve some content, and to serve it over HTTPS using the
Let’s Encrypt certificate.

So for the last part of the playbook, we need to:

1. Ensure the nginx_docroot directory exists.
2. Create and copy over a sample index.html file to serve from that document

root.
3. Create and copy over a Nginx server configuration which directs all traffic to

HTTPS and serves the traffic using the generated Let’s Encrypt certificate.

To make sure the nginx_docroot exists, add a task to the tasks section of the
playbook:

¹⁷⁵https://letsencrypt.org/docs/expiration-emails/

https://letsencrypt.org/docs/expiration-emails/
https://letsencrypt.org/docs/expiration-emails/

Chapter 12 - Automating HTTPS and TLS Certificates 347

25 tasks:

26 - name: Ensure docroot exists.

27 file:

28 path: "{{ nginx_docroot }}"

29 state: directory

Since /var/www should already exist on anUbuntu server, this is all we need.
If the parent directory heirarchy didn’t exist (e.g. we had nginx_docroot

set to /var/www/example/html), this task may also need recurse: true to
ensure the parent directories exist.

Nowwe need an HTML file inside the docroot so Nginx can serve it, otherwise Nginx
will return a 404 Not Found. Create a simple HTML file named files/index.html in
your project directory, with the following contents:

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>HTTPS Let's Encrypt Test</title>

5 <style>* { font-family: Helvetica, Arial, sans-serif }</style>

6 </head>

7 <body>

8 <h1>HTTPS Let's Encrypt Test</h1>

9 <p>If you can see this message, it worked!</p>

10 </body>

11 </html>

Then add a copy task in main.yml to copy the file into place after the docroot task:

Chapter 12 - Automating HTTPS and TLS Certificates 348

31 - name: Copy example index.html file in place.

32 copy:

33 src: files/index.html

34 dest: "{{ nginx_docroot }}/index.html"

35 mode: 0755

Finally, we need to configure Nginx with two server blocks; one to redirect HTTP re-
quests to HTTPS, and the other to serve HTTPS traffic using the Let’s Encrypt certifi-
cates. Create aNginx configuration template in templates/https-letsencrypt.conf.j2
with the following:

1 # HTTPS server configuration.

2

3 # Redirect HTTP traffic to HTTPS.

4 server {

5 listen 80 default_server;

6 server_name _;

7 index index.html;

8 return 301 https://$host$request_uri;

9 }

10

11 # Serve HTTPS traffic using the Let's Encrypt certificate.

12 server {

13 listen 443 ssl default_server;

14 server_name {{ inventory_hostname }};

15 root {{ nginx_docroot }};

16

17 ssl_certificate /etc/letsencrypt/live/{{ inventory_hostname }}/full\

18 chain.pem;

19 ssl_certificate_key /etc/letsencrypt/live/{{ inventory_hostname }}/\

20 privkey.pem;

21 }

The first server block configures a default port 80 server which redirects all traffic
on port 80, for any incoming request, to the same URL, but with https://. This is a
handy way to force all traffic to SSL by default if you’re using Nginx.

Chapter 12 - Automating HTTPS and TLS Certificates 349

The second server block configures a default port 443 server which handles all
HTTPS traffic.

It uses the inventory_hostname to tell Nginx what domain should be used to serve
traffic, and it sets the document root to the nginx_docroot.

Finally, it tells Nginx to use the certificate and key inside the default Let’s Encrypt
generated certificate path, which is always /etc/letsencrypt/live/[domain]/*.pem.

Add a task templating this Jinja template to a Nginx config file in main.yml, making
sure to restart Nginx when the template is created or modified:

31 - name: Copy Nginx server configuration in place.

32 template:

33 src: templates/https-letsencrypt.conf.j2

34 dest: /etc/nginx/sites-enabled/https-letsencrypt.conf

35 mode: 0644

36 notify: restart nginx

At this point, we have a complete playbook. It should set up a firewall, create a
certificate, and configure Nginx to serve a web page using the certificate. But we
don’t have a server to run the playbook against!

Create a server and configure DNS

Let’s Encrypt generates certificates for domains only after verifying domain own-
ership. The Internet would be very insecure if Let’s Encrypt allowed any random
person to generate valid certificates for a domain like apple.com or google.com!

The easiest way to verify domain ownership to Let’s Encrypt is to ensure your server
is accessible over the public Internet. For internal servers, Let’s Encrypt might not be
the best option (though in some cases it can be made to work).

In Chapter 8, an example was provided for how to provision servers automatically via
Ansible. For your own project, youmaywant to automate the process of initial server
provisioning using Ansible, Terraform, or some other automation tool. But for this
example, you just need to make sure a server is running which is reachable via the
public Internet. You also need to point a domain at it (e.g. subdomain.example.com).

Chapter 12 - Automating HTTPS and TLS Certificates 350

Once you’ve done that, and can confirm you can SSH into the server at the actual
domain name (e.g. ssh myuser@subdomain.example.com), then you’re ready to point
the playbook at the server and configure everything via Ansible.

Point the playbook inventory at the server

Assuming your server is reachable at subdomain.example.com, and your SSH user-
name is myuser, create an inventory file in the project directory with the following
contents:

1 [letsencrypt]

2 subdomain.example.com

3

4 [letsencrypt:vars]

5 ansible_ssh_user=myuser

6 letsencrypt_email=webmaster@example.com

Now that the playbook knows how to connect to your public server, it’s time to try
it out. First, make sure all the required Galaxy roles are installed:

ansible-galaxy install -r requirements.yml

Then run the playbook:

ansible-playbook -i inventory main.yml

After a couple minutes, assuming Let’s Encrypt could reach your server at subdo-
main.example.com on port 80, you should be able to access the index.html webpage
created earlier over HTTPS.

Access your server over HTTPS!

Visit https://subdomain.example.com/ and you should see something like:

Chapter 12 - Automating HTTPS and TLS Certificates 351

HTTPS Test site loads with a valid Let’s Encrypt certificate

Automating free certificates with Let’s Encrypt can be fun, but make sure you’re
aware of Let’s Encrypt rate limits¹⁷⁶ before you go ahead and automate certs for
3,000 of your subdomains at once!

Configuring Nginx to proxy HTTP traffic and
serve it over HTTPS

One common problem you may encounter is an old web application or service which
is no longer updated but must continue running, and the need for HTTPS encryption
(whether for SEO or security compliance).

You could use a third party service like Cloudflare to proxy all traffic throughHTTPS,
but you’d still have a connection over the public Internet from Cloudflare’s network
to your backend server that’s unencrypted. Even if you’re using a CDN, it’s best to
encrypt the traffic all the way to as close to your application server as possible.

And that’s where Nginx comes in! There are other tools which can do the same thing,
but Nginx is easy to configure as an HTTPS proxy server for HTTP backends.

¹⁷⁶https://letsencrypt.org/docs/rate-limits/

https://letsencrypt.org/docs/rate-limits/
https://letsencrypt.org/docs/rate-limits/

Chapter 12 - Automating HTTPS and TLS Certificates 352

Modify the Nginx configuration to proxy traffic

We’re going to use the exact same playbook and configuration from the self-signed
certificate example earlier in this chapter, with two small modifications. The adjusted
playbook is available in this book’s GitHub repository: HTTPS Nginx Proxy Demo
VM¹⁷⁷. There are only two small changes needed to set up and test Nginx proxying
HTTPS traffic to an HTTP backend application:

1. Instead of serving traffic directly from Nginx, let Nginx proxy requests to a
backend server running on port 8080.

2. Run a backend HTTP server on port 8080 using Python.

First, configure the port 443 server block to proxy traffic to another service running
locally on port 8080:

11 # Proxy HTTPS traffic using a self-signed certificate.

12 server {

13 listen 443 ssl default_server;

14 server_name {{ server_hostname }};

15

16 location / {

17 include /etc/nginx/proxy_params;

18 proxy_pass http://localhost:8080;

19 proxy_read_timeout 90s;

20 proxy_redirect http://localhost:8080 {{ server_hostname }};

21 }

22

23 ssl_certificate {{ certificate_dir }}/{{ server_hostname }}/fullcha\

24 in.pem;

25 ssl_certificate_key {{ certificate_dir }}/{{ server_hostname }}/pri\

26 vkey.pem;

27 }

All that’s been done is the removal of the root directive, which was replaced with
the location directive. This particular location directive tells Nginx to proxy all
¹⁷⁷https://github.com/geerlingguy/ansible-for-devops/tree/master/https-nginx-proxy

https://github.com/geerlingguy/ansible-for-devops/tree/master/https-nginx-proxy
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-nginx-proxy
https://github.com/geerlingguy/ansible-for-devops/tree/master/https-nginx-proxy

Chapter 12 - Automating HTTPS and TLS Certificates 353

requests to any path (/ includes everything) to the address http://localhost:8080,
with a 90 second backend timeout.

This assumes there’s a backend HTTP service running on port 8080, though! So, the
second step is to run something on port 8080. Luckily, since we already have Python
and a web root, we can use Python to run an HTTP server with a very simple CLI
command:

python3 -m http.server 8080 --directory /var/www/html

You can run that command interactively, or if you’re automating it in the Ansible
playbook from earlier, you can add a task after the “Copy example index.html file in
place.” task:

33 - name: Start simple python webserver on port 8080.

34 shell: >

35 python3 -m http.server 8080 --directory {{ nginx_docroot }} &

36 changed_when: false

37 async: 45

38 poll: 0

Note the use of &, async and poll to fire and forget the command, so it can run in the
background forever. It is not a good idea to run applications like this in production,
but for demonstration purposes it’s adequate to verify Nginx is proxying HTTPS
requests correctly.

The --directory option in this command requires Python 3.7 or later. Make
sure your operating system has this version of Python available (e.g. via
system packages, like with Debian 10 or later, or via a virtualenv).

Now that a server is running on port 8080, you should see Nginx proxying requests
successfully:

Chapter 12 - Automating HTTPS and TLS Certificates 354

Nginx proxies HTTPS requests to backend HTTP applications

If you log into the server and kill the Python process serving HTTP traffic on port
8080, then Nginx will still attempt to proxy traffic, but will return a 502 Bad Gateway
because the backend service is unavailable:

Nginx returns 502 Bad Gateway if the backend is unavailable

Once you learn to automate HTTPS certificates with Ansible and proxy backend
services with Nginx (or another suitable HTTPS-aware proxy), it becomes possible
to adopt HTTPS everywhere, no matter what kind of web applications you run.

Chapter 12 - Automating HTTPS and TLS Certificates 355

Summary

HTTPS is now an essential feature of any public-facing website and application, and
it’s fairly standard to use it on internal services too. Ansible automates the process
of encrypting all your HTTP traffic with TLS certificates, no matter the certificate
type or use case.

__

/ Fool me once, shame on you. Fool me twice, \

\ prepare to die. (Klingon Proverb) /

--

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 13 - Docker and Ansible
Docker is a highly optimized platform for building and running containers on
local machines and servers in a highly efficient manner. You can think of Docker
containers as sort-of lightweight virtual machines. This bookwon’t go into the details
of how Docker and Linux containers work, but will provide an introduction to how
Ansible can integrate with Docker to build, manage, and deploy containers.

Prior to running example Docker commands or building and managing
containers using Ansible, you’ll need tomake sure Docker is installed either
on your workstation or a VM or server where you’ll be testing everything.
Please see the installation guide for Docker¹⁷⁸ for help installing Docker on
whatever platform you’re using.

A brief introduction to Docker containers

Starting with an extremely simple example, let’s build a Docker image from a
Dockerfile. In this case, we want to show how Dockerfiles work and how we can
use Ansible to build the image in the same way as if we were to use the command
line with docker build.

Let’s start with a Dockerfile:

¹⁷⁸https://docs.docker.com/installation/

https://docs.docker.com/installation/
https://docs.docker.com/installation/

Chapter 13 - Docker and Ansible 357

1 # Build an example Docker container image.

2 FROM busybox

3 LABEL maintainer="Jeff Geerling"

4

5 # Run a command when the container starts.

6 CMD ["/bin/true"]

This Docker container doesn’t do much, but that’s okay; we just want to build it and
verify that it’s present and working—first with Docker, then with Ansible.

Save the above file as Dockerfile inside a new directory, and then on the command
line, run the following command to build the container:

$ docker build -t test .

After a few seconds, the Docker image should be built, and if you list all local images
with docker image, you should see your new test image (along with the busybox
image, which was used as a base):

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

test latest 50d6e6479bc7 About a minute ago 2.433 MB

busybox latest 4986bf8c1536 2 weeks ago 2.433 MB

If you want to run the container image you just created, enter the following:

$ docker run --name=test test

This creates a Docker container with the name test, and starts the container. Since
the only thing our container does is calls /bin/true, the container will run the
command, then exit. You can see the current status of all your containers (whether
or not they’re actively running) with the docker ps -a command:

Chapter 13 - Docker and Ansible 358

$ docker ps -a

CONTAINER ID IMAGE [...] CREATED STATUS

bae0972c26d4 test:latest [...] 3 seconds ago Exited (0) 2s ago

You can control the container using either the container ID (in this case, bae0972c26d4)
or the name (test); start with docker start [container], stop with docker stop

[container], delete/remove with docker rm [container].

If you delete the container (docker rm test) and the image you built (docker rmi

test), you can experiment with the Dockerfile by changing it and rebuilding the
image with docker build, then running the resulting image with docker run. For
example, if you change the command from /bin/true to /bin/false, then run build
and run the container, docker ps -a will show the container exited with the status
code 1 instead of 0.

For our purposes, this is a good introduction to how Docker works. To summarize:

• Dockerfiles contain the instructions Docker uses to build containers.
• docker build builds Dockerfiles and generates container images.
• docker images lists all images present on the system.
• docker run runs created images.
• docker ps -a lists all containers, both running and stopped.

When developing Dockerfiles to containerize your own applications, you will likely
want to get familiar with the Docker CLI and how the process works from a manual
perspective. But when building the final images and running them on your servers,
Ansible can help ease the process.

Using Ansible to build and manage containers

Ansible has built-in Docker modules that integrate nicely with Docker for container
management. We’re going to use them to automate the building and running of the
container (managed by the Dockerfile) we just created.

Move the Dockerfile you had into a subdirectory, and create a new Ansible playbook
(call it main.yml) in the project root directory. The directory layout should look like:

Chapter 13 - Docker and Ansible 359

docker/

main.yml

test/

Dockerfile

Inside the new playbook, add the following:

1 ---

2 - hosts: localhost

3 connection: local

4

5 tasks:

6 - name: Ensure Docker image is built from the test Dockerfile.

7 docker_image:

8 name: test

9 source: build

10 build:

11 path: test

12 state: present

The playbook uses the docker_image module to build an image. Provide a name for
the image, tell Ansible the source for the image is a build, then provide the path
to the Dockerfile in the build parameters (in this case, inside the test directory).
Finally, tell Ansible via the state parameter the image should be present, to ensure
it is built and available.

Ansible’s Docker integration may require you to install an extra Docker
python library on the system running the Ansible playbook. For example,
on ArchLinux, if you get the error “failed to import Python module”, you
will need to install the python2-docker package. On other distributions,
you may need to install the docker Python library via Pip (pip install

docker).

Run the playbook ($ ansible-playbook main.yml), and then list all the Docker
images ($ docker images). If all was successful, you should see a fresh test image
in the list.

Chapter 13 - Docker and Ansible 360

Run docker ps -a again, though, and you’ll see the new test image was never
run and is absent from the output. Let’s remedy that by adding another task to our
Ansible playbook:

12 - name: Ensure the test container is running.

13 docker_container:

14 image: test:latest

15 name: test

16 state: started

If you run the playbook again, Ansible will start the Docker container. Check the list
of containers with docker ps -a, and you’ll note the test container is again present.

You can remove the container and the image via ansible by changing the state

parameter to absent for both tasks.

This playbook assumes you have both Docker and Ansible installed on
whatever host you’re using to test Docker containers. If this is not the case,
you may need to modify the example so the Ansible playbook is targeting
the correct hosts and using the right connection settings. Additionally,
if the user account under which you run the playbook can’t run docker

commands, you may need to use become with this playbook.

The code example above can be found in the Ansible for DevOps GitHub
repository¹⁷⁹.

Building a Flask app with Ansible and Docker

Let’s build a more useful Docker-powered environment, with a container that runs
our application (built with Flask, a lightweight Python web framework), and a
container that runs a database (MySQL), along with a data container. We need a

¹⁷⁹https://github.com/geerlingguy/ansible-for-devops/tree/master/docker

https://github.com/geerlingguy/ansible-for-devops/tree/master/docker
https://github.com/geerlingguy/ansible-for-devops/tree/master/docker
https://github.com/geerlingguy/ansible-for-devops/tree/master/docker

Chapter 13 - Docker and Ansible 361

separate data container to persist the MySQL database, because data changed inside
the MySQL container is lost every time the container stops.

Docker stack for Flask App

We’ll create a VM using Vagrant to run our Docker containers so the same Docker
configuration can be tested on any machine capable of running Ansible and Vagrant.
Create a docker folder, and inside it, the following Vagrantfile:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 VAGRANTFILE_API_VERSION = "2"

5

6 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

7 config.vm.box = "geerlingguy/ubuntu1804"

8 config.vm.network :private_network, ip: "192.168.33.39"

9 config.ssh.insert_key = false

10

11 config.vm.hostname = "docker.test"

12 config.vm.provider :virtualbox do |v|

13 v.customize ["modifyvm", :id, "--name", "docker.test"]

14 v.customize ["modifyvm", :id, "--natdnshostresolver1", "on"]

15 v.customize ["modifyvm", :id, "--memory", 1024]

16 v.customize ["modifyvm", :id, "--cpus", 2]

Chapter 13 - Docker and Ansible 362

17 v.customize ["modifyvm", :id, "--ioapic", "on"]

18 end

19

20 # Enable provisioning with Ansible.

21 config.vm.provision "ansible" do |ansible|

22 ansible.playbook = "provisioning/main.yml"

23 end

24

25 end

We’ll use Ubuntu for this example, and we’ve specified an Ansible playbook
(provisioning/main.yml) to set everything up. Inside provisioning/main.yml, we
need to first install and configure Docker (which we’ll do using the Ansible Galaxy
role geerlingguy.docker), then run some additional setup tasks, and finally build
and start the required Docker containers:

1 ---

2 - hosts: all

3 become: true

4

5 roles:

6 - role: geerlingguy.docker

7

8 tasks:

9 - import_tasks: setup.yml

10 - import_tasks: docker.yml

We’re using sudo for everything because Docker either requires root privileges, or
requires the current user account to be in the docker group. It’s simplest for our
purposes to set everything up with sudo by setting become: yes.

The geerlingguy.docker role requires no additional settings or configuration, so we
can move on to setup.yml (in the same provisioning directory alongside main.yml):

Chapter 13 - Docker and Ansible 363

1 ---

2 - name: Install Pip.

3 apt: name=python-pip state=present

4

5 - name: Install Docker Python library.

6 pip: name=docker state=present

Ansible needs the docker Python library in order to control Docker via Python, so
we install pip, then use it to install docker.

Next is the meat of the playbook: docker.yml (also in the provisioning directory).
The first task is to build Docker images for our data, application, and database
containers:

1 ---

2 - name: Build Docker images from Dockerfiles.

3 docker_image:

4 name: "{{ item.name }}"

5 tag: "{{ item.tag }}"

6 source: build

7 build:

8 path: "/vagrant/provisioning/{{ item.directory }}"

9 pull: false

10 state: present

11 with_items:

12 - { name: data, tag: latest, directory: data }

13 - { name: flask, tag: latest, directory: www }

14 - { name: db, tag: latest, directory: db }

Don’t worry that we haven’t yet created the actual Dockerfiles required to create the
Docker images; we’ll do that after we finish structuring everything with Ansible.

Like our earlier usage of docker_image, we supply a name, build.path, and source

for each image. In this example, we’re also adding a tag, which behaves like a git tag,
allowing future Docker commands to use the images we created at a specific version.
We’ll be building three containers, data, flask, and db, and we’re pointing Docker

Chapter 13 - Docker and Ansible 364

to the path /vagrant/provisioning/[directory], where [directory] contains the
Dockerfile and any other helpful files to be used to build the Docker image.

After building the images, we will need to start each of them (or at least make sure a
container is present, in the case of the data container—since you can use data volumes
from non-running containers). We’ll do that in three separate docker_container

tasks:

16 # Data containers don't need to be running to be utilized.

17 - name: Run a Data container.

18 docker_container:

19 image: data:latest

20 name: data

21 state: present

22

23 - name: Run a Flask container.

24 docker_container:

25 image: www:latest

26 name: www

27 state: started

28 command: python /opt/www/index.py

29 ports: "80:80"

30

31 - name: Run a MySQL container.

32 docker_container:

33 image: db:latest

34 name: db

35 state: started

36 volumes_from: data

37 ports: "3306:3306"

38 env:

39 MYSQL_ROOT_PASSWORD: root

40 MYSQL_DATABASE: flask

41 MYSQL_USER: flask

42 MYSQL_PASSWORD: flask

Each of these containers’ configuration is a little more involved than the previous. In

Chapter 13 - Docker and Ansible 365

the case of the first container, it’s just present; Ansible will ensure a data container
is present.

For the Flask container, we need to make sure our app is not only running, but
continues to run. So, unlike our earlier usage of /bin/true to run a container briefly
and exit, in this case we will provide an explicit command to run:

25 command: python /opt/www/index.py

Calling the script directly will launch the app in the foreground and log everything
to stdout, making it easy to inspect what’s going on with docker logs [container]

if needed.

Additionally, we want to map the container’s port 80 to the host’s port 80, so external
users can load pages over HTTP. This is done using the ports option, passing data
just as you would using Docker’s --publish syntax.

The Flask container will have a static web application running on it, and has no
need for extra non-transient file storage, but the MySQL container will mount a data
volume from the data container, so it has a place to store data that won’t vanish
when the container dies and is restarted.

Thus, for the db container, we have two special options: the volumes_from option,
which mounts volumes from the specified container (in this case, the data container),
and the command, which calls a shell script to start MySQL. We’ll get to why we’re
running a shell script and not launching a MySQL daemon directly in a bit.

Now that we have the playbook structured to build our Docker-based infrastructure,
we’ll build out each of the three Dockerfiles and related configuration to support the
data, www, and db containers.

At this point, we should have a directory structure like:

Chapter 13 - Docker and Ansible 366

docker/

provisioning/

data/

db/

www/

docker.yml

main.yml

setup.yml

Vagrantfile

It’s best to use lightweight base images without any extra frills instead
of heavyweight ‘VM-like’ images. Additionally, lightweight server envi-
ronments where containers are built and run, like CoreOS, don’t need the
baggage of a standard Linux distribution. If you need Ansible available for
configuration and container management in such an environment, you also
need to have Python and other dependencies installed.

Data storage container

For the data storage container, we don’t needmuch; we just need to create a directory
and set it as an exposed mount point using VOLUME:

1 # Build a simple MySQL data volume Docker container.

2 FROM busybox

3 MAINTAINER Jeff Geerling <geerlingguy@mac.com>

4

5 # Create data volume for MySQL.

6 RUN mkdir -p /var/lib/mysql

7 VOLUME /var/lib/mysql

We create a directory (line 6), and expose the directory as a volume (line 7) which
can be mounted by the host or other containers. Save the above into a new file,
docker/provisioning/data/Dockerfile.

Chapter 13 - Docker and Ansible 367

This container builds on top of the official busybox base image. Busybox
is an extremely simple distribution that is Linux-like but does not contain
every option or application generally found in popular distributions like
Debian, Ubuntu, or RHEL. Since we only need to create and share a
directory, we don’t need any additional ‘baggage’ inside the container. In
the Docker world, it’s best to use the most minimal base images possible,
and to only install and run the bare necessities inside each container to
support the container’s app.

Flask container

Flask¹⁸⁰ is a lightweight Python web framework “based on Werkzeug, Jinja 2 and
good intentions”. It’s a great web framework for small, fast, and robust websites and
apps, or even an API. For our purposes, we need to build a Flask app that connects to a
MySQL database and displays the status of the connection on a basic web page (very
much like our PHP example, in the earlier Highly-Available Infrastructure example).

Here’s the code for the Flask app (save it as docker/provisioning/www/index.py.j2):

1 # Infrastructure test page.

2 from flask import Flask

3 from flask import Markup

4 from flask import render_template

5 from flask_sqlalchemy import SQLAlchemy

6 from sqlalchemy import text

7

8 app = Flask(__name__)

9

10 # Configure MySQL connection.

11 db_uri = 'mysql://flask:flask@{{ host_ip_address }}/flask'

12 app.config['SQLALCHEMY_DATABASE_URI'] = db_uri

13 db = SQLAlchemy(app)

14

15 @app.route("/")

¹⁸⁰https://palletsprojects.com/p/flask/

https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/

Chapter 13 - Docker and Ansible 368

16 def test():

17 mysql_result = False

18 try:

19 query = text('SELECT 1')

20 result = db.engine.execute(query)

21 if [row[0] for row in result][0] == 1:

22 mysql_result = True

23 except:

24 pass

25

26 if mysql_result:

27 result = Markup('PASS')

28 else:

29 result = Markup('FAIL')

30

31 # Return the page with the result.

32 return render_template('index.html', result=result)

33

34 if __name__ == "__main__":

35 app.run(host="0.0.0.0", port=80)

This app defines one route (/), listens on every interface on port 80, and shows
a MySQL connection status page rendered by the template index.html. There’s
nothing particularly complicated in this application, but there is one Jinja variable ({{
host_ip_address }}) which an Ansible playbook will replace during deployment,
and the app has a few dependencies (like flask-sqlalchemy) which will need to be
installed via the Dockerfile.

Since we are using a Jinja template to render the page, let’s create that template
in docker/provisioning/www/templates/index.html (Flask automatically picks up
any templates inside a templates directory):

Chapter 13 - Docker and Ansible 369

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Flask + MySQL Docker Example</title>

5 <style>* { font-family: Helvetica, Arial, sans-serif }</style>

6 </head>

7 <body>

8 <h1>Flask + MySQL Docker Example</h1>

9 <p>MySQL Connection: {{ result }}</p>

10 </body>

11 </html>

In this case, the .html template contains a Jinja variable ({{ result }}), and Flask
will fill in the variable with the status of the MySQL connection.

Now that we have the app defined, we need to build the container to run the app.
Here is a Dockerfile that will install all the required dependencies, then copy an
Ansible playbook and the app itself into place so we can do the more complicated
configuration (like copying a template with variable replacement) through Ansible:

1 # A simple Flask app container.

2 FROM geerlingguy/docker-ubuntu1804-ansible

3 MAINTAINER Jeff Geerling <geerlingguy@mac.com>

4

5 # Install Flask app dependencies.

6 RUN apt-get install -y libmysqlclient-dev build-essential \

7 python-dev python-pip

8 RUN pip install flask flask-sqlalchemy mysql-python

9

10 # Install playbook and run it.

11 COPY playbook.yml /etc/ansible/playbook.yml

12 COPY index.py.j2 /etc/ansible/index.py.j2

13 COPY templates /etc/ansible/templates

14 RUN mkdir -m 755 /opt/www

15 RUN ansible-playbook /etc/ansible/playbook.yml --connection=local

16

17 EXPOSE 80

Chapter 13 - Docker and Ansible 370

Instead of installing apt and pip packages using Ansible, we’ll install them using RUN
commands in the Dockerfile. This allows those commands to be cached by Docker.
Generally, more complicated package installation and configuration is easier and
more maintainable inside Ansible, but in the case of package installation, having
Docker cache the steps so future docker build commands take seconds instead of
minutes is worth the verbosity of the Dockerfile.

At the end of the Dockerfile, we run a playbook (which should be located in the same
directory as the Dockerfile) and expose port 80 so the app can be accessed via HTTP
by the outside world. Next we’ll create the app deployment playbook.

Purists might cringe at the sight of an Ansible playbook inside a Dockerfile,
and for good reason! Commands like the ansible-playbook command
cover up configuration that might normally be done (and cached) within
Docker. Additionally, using the ansible/ubuntu16.04-ansible base image
(which includes Ansible) requires an initial download that’s 50+ MB larger
than a comparable Debian or Ubuntu image without Ansible. However, for
brevity and ease of maintenance, we’re using Ansible to manage all the app
configuration inside the container (otherwise we’d need to run a bunch
of verbose and incomprehensible shell commands to replace Ansible’s
template functionality).

Ansible Container¹⁸¹ is an Ansible-based container build and automation
tool that helps in this situation, by splitting container builds into layers by
Ansible roles.

In order for the Flask app to function properly, we need to get the host_ip_address,
then replace the variable in the index.py.j2 template. Create the Flask deployment
playbook at docker/provisioning/www/playbook.yml:

¹⁸¹https://github.com/ansible/ansible-container

https://github.com/ansible/ansible-container
https://github.com/ansible/ansible-container

Chapter 13 - Docker and Ansible 371

1 ---

2 - hosts: localhost

3 become: true

4

5 tasks:

6 - name: Get host IP address.

7 shell: "/sbin/ip route | awk '/default/ { print $3 }'"

8 register: host_ip

9 changed_when: false

10

11 - name: Set host_ip_address variable.

12 set_fact:

13 host_ip_address: "{{ host_ip.stdout }}"

14

15 - name: Copy Flask app into place.

16 template:

17 src: /etc/ansible/index.py.j2

18 dest: /opt/www/index.py

19 mode: 0755

20

21 - name: Copy Flask templates into place.

22 copy:

23 src: /etc/ansible/templates

24 dest: /opt/www

25 mode: 0755

The shell command that registers the host_ip is an easy way to retrieve the IP while
still letting Docker do its own virtual network management.

The last two tasks copy the flask app and templates directory into place.

The docker/provisioning/www directory should now contain the following:

Chapter 13 - Docker and Ansible 372

www/

templates/

index.html

Dockerfile

index.py.j2

playbook.yml

MySQL container

We’ve configured MySQL a few times throughout this book, so little time will
be spent discussing how MySQL is set up. We’ll instead dive into how MySQL
works inside a Docker container, with a persistent data volume from the previously-
configured data container.

For MySQL, there is already a very well-maintained and flexible community MySQL
Docker image we can rely on. To use it, we’ll wrap it in our own Dockerfile (in case
we want to make further customizations in the future).

1 # A simple MySQL container.

2 FROM mysql:5.7

3 MAINTAINER Jeff Geerling <geerlingguy@mac.com>

4

5 EXPOSE 3306

This Dockerfile tells Docker to pull from the mysql image on Docker Hub, and then
expose port 3306.

The docker/provisioning/db directory should now contain the following:

db/

Dockerfile

Chapter 13 - Docker and Ansible 373

Ship it!

Now that everything’s in place, you should be able to cd into the main docker

directory, and run vagrant up. After 10 minutes or so, Vagrant should show
Ansible provisioning was successful, and if you visit http://192.168.33.39/ in your
browser, you should see something like the following:

Docker orchestration success!

If you see “MySQL Connection: PASS”, congratulations, everything worked! If it
shows ‘FAIL’, you might need to give the MySQL a little extra time to finish it’s
initialization, since it has to build it’s environment on first launch. If the page
doesn’t show up at all, you might want to compare your code with the Docker Flask
example¹⁸² on GitHub.

The entire Docker Flask example¹⁸³ is available on GitHub, if you’d like to clone it
and try it locally.

Building containers with Ansible from the
outside

In the previous example, an Ansible playbook was run inside a Docker container to
build the Flask application image. While this approach works and is maintainable, it
alsomakes for a lot of cruft. Onemajor advantage of container-based app deployment
is a nice tidy container image per service.

To use Ansible inside a container requires a lot of dependencies—Python, Ansible’s
dependencies, and Ansible itself.

One solution to this problem is to use Ansible Container¹⁸⁴. One of the key features
of Ansible Container is a container image build system which takes a set of Ansible
¹⁸²https://github.com/geerlingguy/ansible-vagrant-examples/tree/master/docker
¹⁸³https://github.com/geerlingguy/ansible-vagrant-examples/tree/master/docker
¹⁸⁴https://docs.ansible.com/ansible-container/

https://github.com/geerlingguy/ansible-vagrant-examples/tree/master/docker
https://github.com/geerlingguy/ansible-vagrant-examples/tree/master/docker
https://github.com/geerlingguy/ansible-vagrant-examples/tree/master/docker
https://docs.ansible.com/ansible-container/
https://github.com/geerlingguy/ansible-vagrant-examples/tree/master/docker
https://github.com/geerlingguy/ansible-vagrant-examples/tree/master/docker
https://docs.ansible.com/ansible-container/

Chapter 13 - Docker and Ansible 374

roles and applies them to a Docker image, one by one, using a ‘helper’ container to
run Ansible. So instead of Ansible running inside the container being built, you use
Ansible to build the container. Each role is applied as a single container image layer,
and there’s no extra cruft.

As of late 2018, Ansible Container’s status as a fully supported and maintained
project is a little fuzzy, so this book won’t provide any complete Ansible Container
examples; however, if you’re interested in trying it out, follow the official Ansible
Container Demo¹⁸⁵.

Build a Hubot Slack bot container with
ansible_connection: docker

Most examples in this book use the default ansible_connection plugin, ssh, which
connects to servers using SSH. A few examples also use the local plugin, which runs
commands locally without SSH.

There are actually a few dozen connection plugins that ship with Ansible, including
kubectl for interacting with Kubernetes pods, saltstack for piggybacking salt
minions, winrm for connecting over Microsoft’s WinRM, and docker, which runs
tasks in Docker containers.

This last connection plugin is helpful if you want to build Docker container images
using Ansible without the overhead of installing Ansible inside the container.

To learn how the docker connection plugin works, we’ll build a Hubot Slack bot.

Hubot and Slack

To give a little background, Hubot¹⁸⁶ is an open-source chat bot fromGitHub, written
in CoffeeScript, which can be connected to many different chat systems. Slack¹⁸⁷ is
an popular chat platform used by many businesses to communicate. Many teams
benefit from a bot like Hubot, as they can store data in Hubot for quick retrieval, or
even connect Hubot to other services (like CI tools) and kick off deployments, check
infrastructure health, and do other helpful things.

¹⁸⁵https://ansible.github.io/ansible-container-demo/
¹⁸⁶https://hubot.github.com
¹⁸⁷https://slack.com

https://ansible.github.io/ansible-container-demo/
https://ansible.github.io/ansible-container-demo/
https://hubot.github.com/
https://slack.com/
https://ansible.github.io/ansible-container-demo/
https://hubot.github.com/
https://slack.com/

Chapter 13 - Docker and Ansible 375

Building a Docker container with Ansible

The first step in setting up our bot project is to create a new directory (e.g.
docker-hubot) and an Ansible playbook, we’ll call it main.yml.

You’ll have to have Docker installed and running on the computer where you’ll run
this playbook, and the first few setup steps will use connection: local to get the
container build started:

1 ---

2 - hosts: localhost

3 connection: local

4 gather_facts: no

5

6 vars:

7 base_image: node:8

8 container_name: hubot_slack

9 image_namespace: a4d

10 image_name: hubot-slack

There are also a few variables defined which we’ll use later in the playbook to define
things like the Docker base image to be used, the name for the container we’re
building, and the namespace and name for the final generated Docker image. We
don’t need to gather_facts since we aren’t going to domuch on the local connection.

12 pre_tasks:

13 - name: Make the latest version of the base image available locally.

14 docker_image:

15 name: '{{ base_image }}'

16 source: pull

17 force_source: true

18

19 - name: Create the Docker container.

20 docker_container:

21 image: '{{ base_image }}'

22 name: '{{ container_name }}'

Chapter 13 - Docker and Ansible 376

23 command: sleep infinity

24

25 - name: Add the newly created container to the inventory.

26 add_host:

27 hostname: '{{ container_name }}'

28 ansible_connection: docker

In a pre_tasks area, we’ll set up the Docker container so we can get Hubot on it:

1. The docker_image task: Pull the base_image (Ansible’s equivalent of docker

pull), and make sure the latest version is always present when the playbook
runs.

2. The docker_container task: Create a Docker container (Ansible’s equivalent of
docker run) from the base_image.

3. The add_host task: Add the just-created container to the Ansible inventory.

Now that we have a container running and in the inventory, we can build inside of
it, using the docker connection plugin. Following the best practices we established
earlier in the book, we’ll put all the reusable logic inside an Ansible role, which we’ll
create in amoment. For now,we can call the role about to be created in the playbook’s
roles section:

30 roles:

31 - name: hubot-slack

32 delegate_to: '{{ container_name }}'

Note the delegate_to. Any task, playbook, or role we want Ansible to run inside the
Docker container needs to be delegated to the container.

Before building the hubot-slack role, let’s finish off the container image build
process and the rest of the main playbook:

Chapter 13 - Docker and Ansible 377

34 post_tasks:

35 - name: Clean up the container.

36 shell: >

37 apt-get remove --purge -y python &&

38 rm -rf /var/lib/apt/lists/*

39 delegate_to: '{{ container_name }}'

40 args:

41 warn: false

42

43 - name: Commit the container.

44 command: >

45 docker commit

46 -c 'USER hubot'

47 -c 'WORKDIR "/home/hubot"'

48 -c 'CMD ["bin/hubot", "--adapter", "slack"]'

49 -c 'VOLUME ["/home/hubot/scripts"]'

50 {{ container_name }} {{ image_namespace }}/{{ image_name }}:lat\

51 est

52

53 - name: Remove the container.

54 docker_container:

55 name: '{{ container_name }}'

56 state: absent

The post-tasks clean up unnecessary cruft inside the container (trimming down the
size of the committed image), commit the Docker container to an image (tagged
a4d/hubot-slack:latest), and remove the running container.

When building from a Dockerfile, you can set things like the USER (the user used to
run the CMD or ENTRYPOINT in the container) and CMD (the defaults for an executing
container) directly. In our case, since we’re not building from a Dockerfile, we set
these options using docker commit’s -c or --change option.

Now that we have the main scaffolding in place for building a Docker container,
committing an image from that container, and tearing down the container, it’s time
to add the ‘meat’ to our playbook—the role that installs Hubot and its Slack adapter.

Chapter 13 - Docker and Ansible 378

Building the hubot-slack role

As with any role, the easiest way to scaffold the necessary files is using the
ansible-galaxy command. Create a hubot-slack role in a roles subdirectory with:

ansible-galaxy init hubot-slack

You can delete some unneeded role directories, namely files, handlers, templates,
tests, and vars. If you want, fill in the metadata fields inside meta/main.yml (this is
only needed if you’re publishing the role on Ansible Galaxy or if you need to have
other roles defined as dependencies, though).

SinceHubot isn’t too hard to install, we can do everythingwe need inside tasks/main.yml.
The first thing we need to do is ensure all the required dependencies for generating
our bot are present:

1 ---

2 - name: Install dependencies.

3 package:

4 name: sudo

5 state: present

6

7 - name: Install required Node.js packages.

8 npm:

9 name: "{{ item }}"

10 state: present

11 global: yes

12 with_items:

13 - yo

14 - generator-hubot

Because we want to be able to run certain commands as a hubot user later, we’ll need
sudo present so Ansible can become the hubot user. Then we’ll install some require
dependencies—yo and generator-hubot, which are used to build the bot. Node.js is
already present inside the container, since we chose to build the container based off
the node:8 base image.

Chapter 13 - Docker and Ansible 379

16 - name: Ensure hubot user exists.

17 user:

18 name: hubot

19 create_home: yes

20 home: "{{ hubot_home }}"

It’s best to run Hubot inside an isolated directory, using a dedicated user account, so
we set up a hubot user account with its own home directory. To make the Hubot role
easier to adapt, a variable is used for the hubot user’s home directory. We’ll define
that later in defaults/main.yml.

22 - name: Generate hubot.

23 command: >

24 yo hubot

25 --owner="{{ hubot_owner }}"

26 --name="{{ hubot_name }}"

27 --description="{{ hubot_description }}"

28 --adapter=slack

29 --defaults

30 chdir={{ hubot_home }}

31 become: yes

32 become_user: hubot

The yo hubot command scaffolds all the code necessary to run Hubot, and all the
options passed in tell the generator to run non-interactively. We will define the
default role hubot_ vars in this command later in defaults/main.yml.

Chapter 13 - Docker and Ansible 380

34 - name: Remove certain scripts from external-scripts.json.

35 lineinfile:

36 path: "{{ hubot_home }}/external-scripts.json"

37 regexp: "{{ item }}"

38 state: absent

39 with_items:

40 - 'redis-brain'

41 - 'heroku'

42 become: yes

43 become_user: hubot

44

45 - name: Remove the hubot-scripts.json file.

46 file:

47 path: "{{ hubot_home }}/hubot-scripts.json"

48 state: absent

There are a couple cleanup tasks which make sure Hubot runs properly in this
isolated container. In the lineinfile task, the persistent Redis connection plugin
and Heroku support are removed, since they are not needed. Also, the unused
hubot-scripts.json file is removed to prevent errors during Hubot startup.

The final step in creating the hubot-slack role is to add default values for the
variables we’re using in the role, so put the following inside defaults/main.yml:

1 ---

2 hubot_home: /home/hubot

3 hubot_owner: Ansible for DevOps

4 hubot_name: a4dbot

5 hubot_description: Ansible for DevOps test bot.

Building and running the Hubot Slack bot container

You should now have a directory containing the main.yml Ansible playbook and a
hubot-slack role inside the roles directory. To build the container image, make sure
Docker is running, and run:

Chapter 13 - Docker and Ansible 381

ansible-playbook main.yml

Once the playbook completes, run docker images to verify the a4d/hubot-slack

image was created:

$ docker images

REPOSITORY TAG IMAGE ID SIZE

a4d/hubot-slack latest 142db74437da 804MB

node 8 55791187f71c 673MB

Before you can run an instance of the new container image and have your bot in your
Slack channels, you have to get an API token from Slack. Follow the instructions in
Slack’s guide, Slack Developer Kit for Hubot¹⁸⁸, and get an API token.

Then run the following command to run an instance of Hubot attached to your Slack
channel (replace TOKEN with your bot’s Slack API token):

docker run -d --name hubot -e HUBOT_SLACK_TOKEN=TOKEN a4d/hubot-slack

The container should start, and you should see a new active member in your Slack
team! In Slack, you can invite the bot to channels, converse directly, etc. (send a
message with help to the bot to get all available commands).

If something went wrong, use docker logs hubot to find out what happened.

Once you’re finished playing around with Hubot, you can kill and remove the
container with docker rm -f hubot.

Summary

You can use Ansible to build containers many different ways, depending on how
you want to architect your container build pipeline. Using Ansible with the docker
connection plugin allows you to treat a Docker container much like any other server
in your fleet.

¹⁸⁸https://slackapi.github.io/hubot-slack/

https://slackapi.github.io/hubot-slack/
https://slackapi.github.io/hubot-slack/

Chapter 13 - Docker and Ansible 382

Some parts of an Ansible-based container build pipeline require a little more
verbosity, but in the end, you can do things like use the exact same Ansible
roles for VMs and bare metal servers as you do a Docker container, making your
overall infrastructure maintenance easier. Instead of maintaining legacy servers
using Ansible playbooks, and Docker containers using Dockerfiles, you can do
everything with Ansible!

The entire Docker Hubot Slack bot example¹⁸⁹ is available on GitHub, if you’d like
to clone it and try it locally.

Summary

The examples shown here barely scratch the surface of what makes Docker (and con-
tainer-based application deployment in general) a fascinating and useful application
deployment tool. Docker and other container-based tools are still in their infancy, so
there are dozens of ways manage the building, running, and linking of containers.
Ansible is a solid contender for managing your entire container-based application
lifecycle (and the infrastructure on which it runs).

/ Any sufficiently advanced technology is \

| indistinguishable from magic. |

\ (Arthur C. Clarke) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

¹⁸⁹https://github.com/geerlingguy/ansible-for-devops/tree/master/docker-hubot

https://github.com/geerlingguy/ansible-for-devops/tree/master/docker-hubot
https://github.com/geerlingguy/ansible-for-devops/tree/master/docker-hubot

Chapter 14 - Kubernetes and
Ansible
Most real-world applications require a lot more than a couple Docker containers
running on a host. You may need five, ten, or dozens of containers running. And
when you need to scale, you need them distributed across multiple hosts. And then
when you have multiple containers on multiple hosts, you need to aggregate logs,
monitor resource usage, etc.

Because of this, many different container scheduling platforms have been developed
which aid in deploying containers and their supporting services: Kubernetes, Mesos,
Docker Swarm, Rancher, OpenShift, etc. Because of its increasing popularity and
support across all major cloud providers, this book will focus on usage of Kubernetes
as a container scheduler.

A bit of Kubernetes history

Kubernetes logo

In 2013, some Google engineers began working to create an open source represen-
tation of the internal tool Google used to run millions of containers in the Google
data centers, named Borg. The first version of Kubernetes was known as Seven of

Chapter 14 - Kubernetes and Ansible 384

Nine (another Star Trek reference), but was finally renamed Kubernetes (a mangled
translation of the Greek word for ‘helmsman’) to avoid potential legal issues.

To keep a little of the original geek culture Trek reference, it was decided the logo
would have seven sides, as a nod to the working name ‘Seven of Nine’.

In a few short years, Kubernetes went from being one of many up-and-coming
container scheduler engines to becoming almost a de facto standard for large scale
container deployment. In 2015, at the same time as Kubernetes’ 1.0 release, the Cloud
Native Computing Foundation (CNCF) was founded, to promote containers and
cloud-based infrastructure.

Kubernetes is one of many projects endorsed by the CNCF for ‘cloud-native’
applications, and has been endorsed by VMware, Google, Twitter, IBM, Microsoft,
Amazon, and many other major tech companies.

By 2018, Kubernetes was available as a service offering from all the major cloud
providers, and most other competing software has either begun to rebuild on top of
Kubernetes, or become more of a niche player in the container scheduling space.

Kubernetes is often abbreviated ‘K8s’ (K + eight-letters + s), and the two terms are
interchangeable.

Evaluating the need for Kubernetes

If Kubernetes seems to be taking the world of cloud computing by storm, should you
start moving all your applications into Kubernetes clusters? Not necessarily.

Kubernetes is a complex application, and even if you’re using a managed Kubernetes
offering, you need to learn new terminology and many new paradigms to get
applications—especially non-‘cloud native’ applications—running smoothly.

If you already have automation around existing infrastructure projects, and it’s
running smoothly, I would not start moving things into Kubernetes unless the
following criteria are met:

1. Your application doesn’t require much locally-available stateful data (e.g. most
databases, many file system-heavy applications).

2. Your application has many parts which can be broken out and run on an ad-hoc
basis, like cron jobs or other periodic tasks.

Chapter 14 - Kubernetes and Ansible 385

Kubernetes, like Ansible, is best introduced incrementally into an existing orga-
nization. You might start by putting temporary workloads (like report-generating
jobs) into a Kubernetes cluster. Then you can work on moving larger and persistent
applications into a cluster.

If you’re working on a green field project, with enough resources to devote some
time up front to learning the ins and outs of Kubernetes, it makes sense to at least
give Kubernetes a try for running everything.

Building a Kubernetes cluster with Ansible

There are a few different ways you can build a Kubernetes cluster:

• Using kubeadm¹⁹⁰, a tool included with Kubernetes to set up a minimal but fully
functional Kubernetes cluster in any environment.

• Using tools like kops¹⁹¹ or kubespray¹⁹² to build a production-ready Kubernetes
cluster in almost any environment.

• Using tools like Terraform or CloudFormation—or even Ansible modules—to
create a managed Kubernetes cluster using a cloud provider like AWS, Google
Cloud, or Azure.

There are many excellent guides online for the latter options, so we’ll stick to
using kubeadm in this book’s examples. And, lucky for us, there’s an Ansible role
(geerlingguy.kubernetes) which already wraps kubeadm in an easy-to-use manner
so we can integrate it with our playbooks.

¹⁹⁰https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
¹⁹¹https://github.com/kubernetes/kops
¹⁹²https://github.com/kubernetes-incubator/kubespray

https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
https://github.com/kubernetes/kops
https://github.com/kubernetes-incubator/kubespray
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
https://github.com/kubernetes/kops
https://github.com/kubernetes-incubator/kubespray

Chapter 14 - Kubernetes and Ansible 386

Kuberenetes architecture for a simple cluster

As with other multi-server examples in this book, we can describe a three server
setup to Vagrant so we can build a full ‘bare metal’ Kubernetes cluster. Create a
project directory and add the following in a Vagrantfile:

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 VAGRANTFILE_API_VERSION = "2"

5

6 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

7 config.vm.box = "geerlingguy/debian9"

8 config.ssh.insert_key = false

9 config.vm.provider "virtualbox"

10

Chapter 14 - Kubernetes and Ansible 387

11 config.vm.provider :virtualbox do |v|

12 v.memory = 1024

13 v.cpus = 1

14 v.linked_clone = true

15 end

16

17 # Define three VMs with static private IP addresses.

18 boxes = [

19 { :name => "master", :ip => "192.168.84.2" },

20 { :name => "node1", :ip => "192.168.84.3" },

21 { :name => "node2", :ip => "192.168.84.4" },

22]

23

24 # Provision each of the VMs.

25 boxes.each do |opts|

26 config.vm.define opts[:name] do |config|

27 config.vm.hostname = opts[:name] + ".k8s.test"

28 config.vm.network :private_network, ip: opts[:ip]

29

30 # Provision all the VMs using Ansible after last VM is up.

31 if opts[:name] == "node2"

32 config.vm.provision "ansible" do |ansible|

33 ansible.playbook = "main.yml"

34 ansible.inventory_path = "inventory"

35 ansible.limit = "all"

36 end

37 end

38 end

39 end

40

41 end

The Vagrantfile creates three VMs:

• master, which will be configured as the Kubernetes master server, running the
scheduling engine.

Chapter 14 - Kubernetes and Ansible 388

• node1, a Kubernetes node to be joined to the master.
• node2, another Kubernetes node to be joined to the master.

You could technically add as many more nodeX VMs as you want, but since most
people don’t have a terabyte of RAM, it’s better to be conservative in a local setup!

Once the Vagrantfile is ready, you should add an inventory file to tell Ansible about
the VMs; note our ansible configuration in the Vagrantfile points to a playbook in
the same directory, main.yml and an inventory file, inventory. In the inventory file,
put the following contents:

1 [k8s-master]

2 master ansible_host=192.168.84.2 kubernetes_role=master

3

4 [k8s-nodes]

5 node1 ansible_host=192.168.84.3 kubernetes_role=node

6 node2 ansible_host=192.168.84.4 kubernetes_role=node

7

8 [k8s:children]

9 k8s-master

10 k8s-nodes

11

12 [k8s:vars]

13 ansible_ssh_user=vagrant

14 ansible_ssh_private_key_file=~/.vagrant.d/insecure_private_key

The inventory is broken up into three groups: k8s-master (the Kubernetes master),
k8s-nodes (all the nodes that will join the master), and k8s (a group with all the
servers, helpful for initializing the cluster or operating on all the servers at once).

We’ll refer to the servers using the k8s inventory group in our Kubernetes setup
playbook. Let’s set up the playbook now:

Chapter 14 - Kubernetes and Ansible 389

1 ---

2 - hosts: k8s

3 become: yes

4

5 vars_files:

6 - vars/main.yml

We’ll operate on all the k8s servers defined in the inventory, and we’ll need to
operate as the root user to set up Kubernetes and its dependencies, so we add become:
yes. Also, to keep things organized, all the playbook variables will be placed in the
included vars file vars/main.yml (you can create that file now).

Next, because Vagrant’s virtual network interfaces can confuse Kubernetes and
Flannel (the Kubernetes networking plugin we’re going to use for inter-node com-
munication), we need to copy a custom Flannel manifest file into the VM. Instead
of printing the whole file in this book (it’s a lot of YAML!), you can grab a copy of
the file from the URL: https://github.com/geerlingguy/ansible-for-devops/blob/mas-
ter/kubernetes/files/manifests/kube-system/kube-flannel-vagrant.yml

Save the file in your project folder in the path:

files/manifests/kube-system/kube-flannel-vagrant.yml

Now add a task to copy the manifest file into place using pre_tasks (we need to do
this before any Ansible roles are run):

8 pre_tasks:

9 - name: Copy Flannel manifest tailored for Vagrant.

10 copy:

11 src: files/manifests/kube-system/kube-flannel-vagrant.yml

12 dest: "~/kube-flannel-vagrant.yml"

Next we need to prepare the server to be able to run kubelet (all Kubernetes nodes
run this service, which schedules Kubernetes Pods on individual nodes). kubelet has
a couple special requirements:

Chapter 14 - Kubernetes and Ansible 390

• Swap should be disabled on the server (there are a few valid reasons why you
might keep swap enabled, but it’s not recommended and requires more work
to get kubelet running well.)

• Docker (or an equivalent container runtime) should be installed on the server.

Lucky for us, there are Ansible Galaxy roles which configure swap and install Docker,
so let’s add them in the playbook’s roles section:

14 roles:

15 - role: geerlingguy.swap

16 tags: ['swap', 'kubernetes']

17

18 - role: geerlingguy.docker

19 tags: ['docker']

We also need to add some configuration to ensure we have swap disabled and Docker
installed correctly. Add the following variables in vars/main.yml:

1 swap_file_state: absent

2 swap_file_path: /dev/mapper/packer--debian--9--amd64--vg-swap_1

3

4 docker_package: docker-ce=5:18.09.0~3-0~debian-stretch

5 docker_install_compose: False

The swap_file_path is specific to the 64-bit Debian 9 Vagrant box used in the
Vagrantfile, so if you want to use a different OS or install on a cloud server, the
default system swap file may be at a different location.

It’s a best practice to specify a Docker version that’s beenwell-testedwith a particular
version of Kubernetes, and in this case, the latest version of Kubernetes at the time of
this writing—1.13—works well with Docker 18.09, so we lock in that package version
using the docker_package variable.

Back in the main.yml playbook, we’ll put the last role necessary to get Kubernetes up
and running on the cluster:

Chapter 14 - Kubernetes and Ansible 391

21 - role: geerlingguy.kubernetes

22 tags: ['kubernetes']

At this point, our playbook uses three Ansible Galaxy roles. To make installation and
maintenance easier, add a requirements.yml file with the roles listed inside:

1 ---

2 - src: geerlingguy.swap

3 - src: geerlingguy.docker

4 - src: geerlingguy.kubernetes

Then run ansible-galaxy install -r requirements.yml -p ./roles to install the
roles in the project directory.

As a final step, before building the cluster with vagrant up, we need to set a
few configuration options to ensure Kubernetes starts correctly and the inter-node
network functions properly. Add the following variables to tell the Kubernetes role
a little more about the cluster:

8 kubernetes_version: '1.13'

9 kubernetes_allow_pods_on_master: False

10 kubernetes_pod_network_cidr: '10.244.0.0/16'

11 kubernetes_packages:

12 - name: kubelet=1.13.8-00

13 state: present

14 - name: kubectl=1.13.8-00

15 state: present

16 - name: kubeadm=1.13.8-00

17 state: present

18 - name: kubernetes-cni

19 state: present

20

21 kubernetes_apiserver_advertise_address: "192.168.84.2"

22 kubernetes_flannel_manifest_file: "~/kube-flannel-vagrant.yml"

23 kubernetes_kubelet_extra_args: '--node-ip={{ inventory_hostname }}'

Let’s go through the variables one-by-one:

Chapter 14 - Kubernetes and Ansible 392

• kubernetes_version: Kubernetes is a fast-moving target, and it’s best practice
to specify the version you’re targeting—but to update as soon as possible to the
latest version!

• kubernetes_allow_pods_on_master: It’s best to dedicate the Kubernetes master
server to managing Kubernetes alone. You can run pods other than the Kuber-
netes system pods on the master if you want, but it’s rarely a good idea.

• kubernetes_pod_network_cidr: Because the default network suggested in the
Kubernetes documentation conflicts with many home and private network IP
ranges, this custom CIDR is a bit of a safer option.

• kubernetes_packages: Along with specifying the kubernetes_version, if you
want to make sure there are no surprises when installing Kubernetes, it’s
important to also lock in the versions of the packages that make up the
Kubernetes cluster.

• kubernetes_apiserver_advertise_address: To ensure Kubernetes knows the
correct interface to use for inter-node API communication, we explicitly set
the IP of the master node (this could also be the DNS name for the master, if
desired).

• kubernetes_flannel_manifest_file: Because Vagrant’s virtual network inter-
faces confuse the default Flannel configuration, we specify the custom Flannel
manifest we copied earlier in the playbook’s pre_tasks.

• kubernetes_kubelet_extra_args: Because Vagrant’s virtual network interfaces
can also confuse Kubernetes, it’s best to explicitly define the node-ip to be
advertised by kubelet.

Whew! We finally have the full project ready to go. It’s time to build the cluster!
Assuming all the files are in order, you can run vagrant up, and after a few minutes,
you should have a three-node Kubernetes cluster running locally.

To verify the cluster is operating normally, log into the master server and check the
node status with kubectl:

Chapter 14 - Kubernetes and Ansible 393

Log into the master VM.

$ vagrant ssh master

Switch to the root user.

vagrant@master:~$ sudo su

Check node status.

root@master# kubectl get nodes

NAME STATUS ROLES AGE VERSION

master Ready master 13m v1.11.2

node1 Ready <none> 12m v1.11.2

node2 Ready <none> 12m v1.11.2

If any of the nodes aren’t reporting Ready, then something may be mis-configured.
You can check the system logs to see if kubelet is having trouble, or read through
the Kubernetes documentation to Troubleshoot Clusters¹⁹³.

You can also check to ensure all the system pods (which run services like DNS, etcd,
Flannel, and the Kubernetes API) are running correctly with the command:

root@master# kubectl get pods -n kube-system

This should print a list of all the core Kubernetes service pods (some of which are
displayed multiple times—one for each node in the cluster), and the status should be
Running after all the pods start correctly.

The Kubernetes cluster example above can be found in the Ansible for
DevOps GitHub repository¹⁹⁴.

Managing Kubernetes with Ansible

Once you have a Kubernetes cluster—whether bare metal or managed by a cloud
provider—you need to deploy applications inside. Ansible has a few modules which
make it easy to automate.

¹⁹³https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/
¹⁹⁴https://github.com/geerlingguy/ansible-for-devops/tree/master/kubernetes

https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/
https://github.com/geerlingguy/ansible-for-devops/tree/master/kubernetes
https://github.com/geerlingguy/ansible-for-devops/tree/master/kubernetes
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/
https://github.com/geerlingguy/ansible-for-devops/tree/master/kubernetes

Chapter 14 - Kubernetes and Ansible 394

Ansible’s k8s module

The k8s module (also aliased as k8s_raw and kubernetes) requires the OpenShift
Python client to communicate with the Kubernetes API. So before using the k8s

role, you need to install the client. Since it’s installed with pip, we need to install Pip
as well.

Create a new k8s-module.yml playbook in an examples directory in the same project
we used to set up the Kubernetes cluster, and put the following inside:

1 ---

2 - hosts: k8s-master

3 become: yes

4

5 pre_tasks:

6 - name: Ensure Pip is installed.

7 package:

8 name: python-pip

9 state: present

10

11 - name: Ensure OpenShift client is installed.

12 pip:

13 name: openshift

14 state: present

We’ll soon add a task to create a Kubernetes deployment that runs three Nginx
replicas based on the official Nginx Docker image. Before adding the task, we
need to create a Kubernetes manifest, or definition file. Create a file in the path
examples/files/nginx.yml, and put in the following contents:

Chapter 14 - Kubernetes and Ansible 395

1 ---

2 apiVersion: apps/v1

3 kind: Deployment

4 metadata:

5 name: a4d-nginx

6 namespace: default

7 labels:

8 app: nginx

9 spec:

10 replicas: 3

11 selector:

12 matchLabels:

13 app: nginx

14 template:

15 metadata:

16 labels:

17 app: nginx

18 spec:

19 containers:

20 - name: nginx

21 image: nginx:1.7.9

22 ports:

23 - containerPort: 80

We won’t get into the details of how Kubernetes manifests work, or why it’s
structured the way it is. If you want more details about this example, please read
through the Kubernetes documentation, specifically Creating a Deployment¹⁹⁵.

Going back to the k8s-module.yml playbook, add a tasks section which uses the k8s
module to apply the nginx.yml manifest to the Kubernetes cluster:

¹⁹⁵https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#creating-a-deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#creating-a-deployment
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#creating-a-deployment

Chapter 14 - Kubernetes and Ansible 396

16 tasks:

17 - name: Apply definition file from Ansible controller file system.

18 k8s:

19 state: present

20 definition: "{{ lookup('file', 'files/nginx.yml') | from_yaml }\

21 }"

We now have a complete playbook! Run it with the command:

ansible-playbook -i ../inventory k8s-module.yml

If you log back into the master VM (vagrant ssh master), change to the root user
(sudo su), and list all the deployments (kubectl get deployments), you should see
the new deployment that was just applied:

root@master:/home/vagrant# kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

a4d-nginx 3 3 3 3 3m

People can’t access the deployment from the outside, though. For that, we need to
expose Nginx to the world. And to do that, we could add more to the nginx.yml

manifest file, or we can also apply it directly with the k8smodule. Add another task:

22 - name: Expose the Nginx service with an inline Service definition.

23 k8s:

24 state: present

25 definition:

26 apiVersion: v1

27 kind: Service

28 metadata:

29 labels:

30 app: nginx

31 name: a4d-nginx

32 namespace: default

33 spec:

Chapter 14 - Kubernetes and Ansible 397

34 type: NodePort

35 ports:

36 - port: 80

37 protocol: TCP

38 targetPort: 80

39 selector:

40 app: nginx

This definition is defined inline with the Ansible playbook. I generally prefer to keep
the Kubernetes manifest definitions in separate files, just to keep my playbooks more
concise, but either way works great!

If you run the playbook again, then log back into the master to use kubectl like
earlier, you should be able to see the new Service using kubectl get services:

root@master:/home/vagrant# kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) A\

GE

a4d-nginx NodePort 10.101.211.71 <none> 80:30681/TCP 3m

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 5d

The Service exposes a NodePort on each of the Kubernetes nodes—in this case, port
30681, so you can send a request to any node IP or DNS name and the request will
be routed by Kubernetes to an Nginx service Pod, no matter what node it’s running
on.

So in the example above, I visited http://192.168.84.3:30681/, and got the default
Nginx welcome message:

Chapter 14 - Kubernetes and Ansible 398

Welcome to nginx message in browser

For a final example, it might be convenient for the playbook to output a debug
message with the NodePort the Service is using. In addition to applying or deleting
Kubernetes manifests, the k8s module can get cluster and resource information that
can be used elsewhere in your playbooks.

Add two final tasks to retrieve the NodePort for the a4d-nginx service using k8s_-

info, then display it using debug:

42 - name: Get the details of the a4d-nginx Service.

43 k8s_info:

44 api_version: v1

45 kind: Service

46 name: a4d-nginx

47 namespace: default

48 register: a4d_nginx_service

49

50 - name: Print the NodePort of the a4d-nginx Service.

51 debug:

52 var: a4d_nginx_service.resources[0].spec.ports[0].nodePort

When you run the playbook, you should now see the NodePort in the debug output:

Chapter 14 - Kubernetes and Ansible 399

TASK [Print the NodePort of the a4d-nginx Service.] *******************\

**

ok: [master] => {

"a4d_nginx_service.result.spec.ports[0].nodePort": "30681"

}

For bonus points, you can build a separate cleanup playbook to delete the Service
and Deployment objects using state: absent:

1 ---

2 - hosts: k8s-master

3 become: yes

4

5 tasks:

6 - name: Remove resources in Nginx Deployment definition.

7 k8s:

8 state: absent

9 definition: "{{ lookup('file', 'files/nginx.yml') | from_yaml }\

10 }"

11

12 - name: Remove the Nginx Service.

13 k8s:

14 state: absent

15 api_version: v1

16 kind: Service

17 namespace: default

18 name: a4d-nginx

You could build an entire ecosystem of applications using nothing but Ansible’s k8s
module and custom manifests. But there are many times when you might not have
the time to tweak a bunch of Deployments, Services, etc. to get a complex application
running, especially if it’s an application with many components that you’re not
familiar with.

Luckily, the Kubernetes community has put together a number of ‘charts’ describing
common Kubernetes applications, and you can install them using Helm¹⁹⁶.

¹⁹⁶https://www.helm.sh

https://www.helm.sh/
https://www.helm.sh/

Chapter 14 - Kubernetes and Ansible 400

Managing Kubernetes Applications with Helm

Helm consists of two components: helm, a binary which you install on a control
machine to control applications in a Kubernetes cluster, and Tiller, the component
which runs inside the Kubernetes cluster and coordinates chart operations triggered
by Helm.

To automate Helm and Tiller setup, we’ll create a playbook that installs the helm

binary, configures Kubernetes to allow Tiller to manage resources, and then runs
helm init to initialize Tiller in the cluster.

Create a helm.yml playbook in the examples directory, and put in the following:

1 ---

2 - hosts: k8s-master

3 become: yes

4

5 tasks:

6 - name: Create Tiller ServiceAccount.

7 k8s:

8 state: present

9 definition:

10 apiVersion: v1

11 kind: ServiceAccount

12 metadata:

13 name: tiller

14 namespace: kube-system

15

16 - name: Apply Tiller RBAC definition.

17 k8s:

18 state: present

19 definition: "{{ lookup('file', 'files/tiller-rbac.yml') | from_\

20 yaml }}"

21

22 - name: Retrieve helm binary archive.

23 unarchive:

24 src: https://storage.googleapis.com/kubernetes-helm/helm-v2.10.\

Chapter 14 - Kubernetes and Ansible 401

25 0-linux-amd64.tar.gz

26 dest: /tmp

27 creates: /usr/local/bin/helm

28 remote_src: yes

29

30 - name: Move helm binary into place.

31 command: >

32 cp /tmp/linux-amd64/helm /usr/local/bin/helm

33 creates=/usr/local/bin/helm

34

35 - name: Set up Helm and Tiller.

36 command: helm init --service-account tiller

37 register: helm_init_result

38 changed_when: "'already installed' not in helm_init_result.stdout"

Tiller needs to be allowed to manage certain resources in the cluster, so the first
two tasks in this playbook define a tiller namespace which Tiller will operate
within, and then apply an RBAC definition which defines a ClusterRoleBinding

that allows Tiller to operate as a cluster-admin. Create the tiller-rbac.yml file
inside the examples/files directory, with the contents:

1 ---

2 apiVersion: rbac.authorization.k8s.io/v1beta1

3 kind: ClusterRoleBinding

4 metadata:

5 name: tiller

6 roleRef:

7 apiGroup: rbac.authorization.k8s.io

8 kind: ClusterRole

9 name: cluster-admin

10 subjects:

11 - kind: ServiceAccount

12 name: tiller

13 namespace: kube-system

The next tasks in the Helm playbook download helm, place it in /usr/local/bin,
and then initializes helm in the local user account, and tiller in the Kubernetes

Chapter 14 - Kubernetes and Ansible 402

cluster (utilizing the tiller service account we configured in the tiller-rbac.yml
manifest).

At this point, if you run the playbook, then check running services, you should see
Tiller running, ready to deploy new Helm charts:

root@master:/home/vagrant# kubectl get services -n kube-system

NAME TYPE CLUSTER-IP PORT(S) AGE

kube-dns ClusterIP 10.96.0.10 53/UDP,53/TCP 6d

tiller-deploy ClusterIP 10.99.161.154 44134/TCP 5m

Let’s take it a little further, though, and automate the deployment of a chart
maintained in Helm’s stable chart collection. Add more tasks to the playbook:

38 - name: Get Tiller's ClusterIP.

39 k8s:

40 api_version: v1

41 kind: Service

42 name: tiller-deploy

43 namespace: kube-system

44 register: tiller_service

45

46 - name: Set the Helm host and port.

47 set_fact:

48 helm_host: "{{ tiller_service.result.spec.clusterIP }}"

49 helm_port: "{{ tiller_service.result.spec.ports[0].port }}"

50

51 - name: Wait for Tiller to become responsive.

52 wait_for:

53 host: '{{ helm_host }}'

54 port: '{{ helm_port }}'

55 state: started

56

57 - name: List installed Helm charts.

58 command: helm list

59 environment:

Chapter 14 - Kubernetes and Ansible 403

60 HELM_HOST: '{{ helm_host }}:{{ helm_port }}'

61 register: helm_list_results

62 changed_when: False

63

64 - name: Install phpMyAdmin with Helm.

65 command: >

66 helm install --name phpmyadmin stable/phpmyadmin

67 --set service.type=NodePort

68 environment:

69 HELM_HOST: '{{ helm_host }}:{{ helm_port }}'

70 when: "'phpmyadmin' not in helm_list_results.stdout"

After helm init is run, the tiller-deploy service takes a little time to start up. The
first three tasks get the tiller IP address and port, then wait for tiller to be responsive
(using wait_for) before the rest of the playbook runs.

Then we check all deployed charts using the command helm list, and if the chart we
are deploying (phpmyadmin) is not in the list results, we install it with the command
helm install stable/phpmyadmin. Note that we explicitly define the HELM_HOST

environment variable.Without this, the helm commandmay have a hard time finding
the right host for Tiller.

Also, because the default formost Helm charts is to use a service type of LoadBalancer,
and it’s a little difficult to set up Load Balancer services in a bare metal Kubernetes
cluster, we are overriding the service.type for the stable/phpmyadmin chart and
forcing it to use NodePort.

Many charts (e.g. stable/wordpress, stable/drupal, stable/jenkins) will
install but won’t fully run on this Kubernetes cluster, because they require
Persistent Volumes (PVs), which require some kind of shared filesystem
(e.g. NFS, Ceph, Gluster, or something similar) among all the nodes. If you
want to use charts which require PVs, check out the NFS configuration
used in the Raspberry Pi Dramble¹⁹⁷ project, which allows applications to
use Kubernetes PVs and PVCs.

At this point, you could log into the master, change to the root user (sudo su), and

¹⁹⁷https://github.com/geerlingguy/raspberry-pi-dramble

https://github.com/geerlingguy/raspberry-pi-dramble
https://github.com/geerlingguy/raspberry-pi-dramble

Chapter 14 - Kubernetes and Ansible 404

run kubectl get services to see the phpmyadmin service’s NodePort, but it’s better
to automate that step at the end of the helm.yml playbook:

72 - name: Get the details of the phpmyadmin Service.

73 k8s:

74 api_version: v1

75 kind: Service

76 name: phpmyadmin

77 namespace: default

78 register: phpmyadmin_service

79

80 - name: Print the NodePort of the phpmyadmin Service.

81 debug:

82 var: phpmyadmin_service.result.spec.ports[0].nodePort

Run the playbook, grab the debug value, and append the port to the IP address of any
of the clustermembers. Once the phpmyadmin deployment is running and healthy (this
takes about 30 seconds), you can access phpMyAdmin at http://192.168.84.3:31872/
(substituting the NodePort from your own cluster):

phpMyAdmin running in the browser on a NodePort

Chapter 14 - Kubernetes and Ansible 405

Interacting with Pods using the kubectl connection plugin

Ansible ships with a number of Connection Plugins. Last chapter, we used the docker
connection plugin to interact with Docker containers natively, to avoid having to use
SSH with a container or installing Ansible inside the container.

This chapter, we’ll use the kubectl connection plugin, which allows Ansible to
natively interact with running Kubernetes pods.

One of the main tenets of ‘immutable infrastructure’ (which is truly
realized when you start using Kubernetes correctly) is not logging into
individual containers and running commands, so this example may seem
contrary to the core purpose of Kubernetes. However, it is sometimes
necessary to do so. In cases where your applications are not built in a way
that works completely via external APIs and Pod-to-Pod communication,
you might need to run a command directly inside a running Pod.

Before using the kubectl connection plugin, you should already have the kubectl

binary installed and available in your $PATH. You should also have a running
Kubernetes cluster; for this example, I’ll assume you’re still using the same cluster
from the previous examples, with the phpmyadmin service running.

Create a new playbook in the examples directory, named kubectl-connection.yml.
The first thing we’ll do in the playbook is retrieve the kubectl config file from the
master server so we can run commands delegated directly to a Pod of our choosing:

1 ---

2 # This playbook assumes you already have the kubectl binary installed

3 # and available in the $PATH.

4 - hosts: k8s-master

5 become: yes

6

7 tasks:

8 - name: Retrieve kubectl config file from the master server.

9 fetch:

10 src: /root/.kube/config

11 dest: files/kubectl-config

12 flat: yes

Chapter 14 - Kubernetes and Ansible 406

After using fetch to grab the config file, we need to find the name of the phpmyadmin
Pod. This is necessary so we can add the Pod directly to our inventory:

14 - name: Get the phpmyadmin Pod name.

15 command: >

16 kubectl --no-headers=true get pod -l app=phpmyadmin

17 -o custom-columns=:metadata.name

18 register: phpmyadmin_pod

I’ve used the kubectl command directly here, because there’s no simple way using
the k8smodule and Kubernetes’ API to directly get the name of a Pod for a given set
of conditions—in this case, with the label app=phpmyadmin.

We can now add the pod by name name (using phpmyadmin_pod.stdout) to the
current play’s inventory:

20 - name: Add the phpmyadmin Pod to the inventory.

21 add_host:

22 name: '{{ phpmyadmin_pod.stdout }}'

23 ansible_kubectl_namespace: default

24 ansible_kubectl_config: files/kubectl-config

25 ansible_connection: kubectl

The ansible_connection: kubectl is key here; it tells Ansible to use the kubectl

connection plugin when connecting to this host.

There are a number of options you can pass to the kubectl connection plugin to tell
it how to connect to your Kubernetes cluster and pod. In this case, the location of
the downloaded kubectl config file is passed to ansible_kubectl_config so Ansible
knows where the cluster configuration exists. It’s also a good practice to always pass
the namespace of an object, so we’ve set that as well.

Now that we have a new host (in this case, the phpmyadmin service’s Pod) added to
the inventory, let’s run a task directly against it:

Chapter 14 - Kubernetes and Ansible 407

28 # Note: Python is required to use other modules.

29 - name: Run a command inside the container.

30 raw: date

31 register: date_output

32 delegate_to: '{{ phpmyadmin_pod.stdout }}'

33

34 - debug: var=date_output.stdout

The raw task passes through the given command directly using kubectl exec, and
returns the output. The debug task should then print the output of the date command,
run inside the container.

You can do a lot more with the kubectl connection plugin, and you could even have
a Dynamic inventory which populates a whole set of Pods for you to work with. It’s
generally not ideal to directly interact with pods, but when it’s necessary, it’s nice to
be able to automate it with Ansible!

The rawmodule was used to run the date command in this example because
all other Ansible modules require Python to be present on the container
running in the Pod. For many use cases, running a raw command should
be adequate. But if you want to be able to use any other modules, you’ll
need to make sure Python is present in the container before you try using
the kubectl connection plugin with it.

Summary

There are many ways you can build a Kubernetes cluster, whether on a managed
cloud platform or bare metal. There are also many ways to deploy and manage
applications within a Kubernetes cluster.

Ansible’s robust variable management, Jinja templating, and YAML support makes
it a strong contender for managing Kubernetes resources. At the time of this writing,
Ansible has a stable k8s module, an experimental helm module, and a kubectl

connection plugin, and the interaction between Ansible and Kubernetes is still being
refined every release.

Chapter 14 - Kubernetes and Ansible 408

/ Never try to teach a pig to sing. It \

| wastes your time and annoys the pig. |

\ (Proverb) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Afterword
You should be well on your way towards streamlined infrastructure management.
Many developers and sysadmins have been helped by this book, and many have
even gone further and contributed back to the book, in the form of corrections,
suggestions, and fruitful discussion!

Thanks to you for purchasing and reading this book, and a special thanks to all those
who have given direct feedback in the form of corrections, PRs, or suggestions for
improvement:

@LeeVanSteerthem, Jonathan Nakatsui, Joel Shprentz, Hugo Posca, Jon Forrest,
Rohit Bhute, George Boobyer (@ibluebag), Jason Baker (@Alchemister5), Jonathan
Le (@jonathanhle), Barry McClendon, Nestor Feliciano, @dan_bohea, @lekum,
@queue_tip_, @wimvandijck, André, @39digits, @aazon, Ned Schumann, @andy-
post, @michel_slm, @erimar77, @geoand, Larry B, Tim Gerla, @b_borysenko,
Stephen H, @chesterbr, @mrjester888, @gkedge, @opratr, @briants5, @atweb,
@devtux_at,@sillygwailo, Anthony R,@arbabnazar, LeroyH, David, Joel S, Stephen
W, PaulM, Adrian,@daniloradenovic,@e1nh4nd3r,@daniel,@guntbert,@rdonkin,
@charleshepner, /u/levelupirl,@tychay,@williamt,@wurzeldub,@santisaez,@jon-
leibowitz,@mattjmcnaughton,@cwardgar,@rschmidtz,@scarroy, BenK,@codeyy,
@Gogoswitch, bngsudheer, @vtraida, @everett-toews, Germain G, vinceskahan,
@vaygr, bryankennedy, i-zu, jdavid5815, krystan, nkabir, dglinder, ck05, and scott-
davis99!

Appendix A - Using Ansible on
Windows workstations
Ansible works primarily over the SSH protocol, which is supported natively by most
every server, workstation, and operating system on the planet, with one exception—
Microsoft’s venerable Windows OS (though this may change in the coming years).

To use SSH on Windows, you need additional software. But Ansible also requires
other utilities and subsystems only present on Linux or other UNIX-like operating
systems. This poses a problem for many system administrators who are either forced
to use or have chosen to use Windows as their primary OS.

This appendix will guide Windows users through the author’s preferred method of
using Ansible on a Windows workstation.

Ansible 1.7 and later can manage Windows hosts (see Ansible’s Windows
Support¹⁹⁸ documentation), but doesn’t run within Windows natively. You
still need to follow the instructions here to run the Ansible client on a
Windows host.

Method 1 - Use the Windows Subsystem for
Linux / Bash on Ubuntu

If you are running Windows 10, and have installed either the Anniversary Update or
any later version, you can install the Windows Subsystem for Linux (WSL), which
is the most seamless Bash integration you can currently get for Windows.

The WSL downloads Ubuntu and places it in a special privileged VM layer that’s as
transparent as it can be while still existing sandboxed from the general Windows

¹⁹⁸http://docs.ansible.com/intro_windows.html

http://docs.ansible.com/intro_windows.html
http://docs.ansible.com/intro_windows.html
http://docs.ansible.com/intro_windows.html

Appendix A - Using Ansible on Windows workstations 411

environment. Using WSL, you can open up an Ubuntu command prompt and have
access to almost all the same software and functionality you would have if you were
running Ubuntu natively!

Microsoft has the most up-to-date installation guide¹⁹⁹ on their Developer Network
site, but the installation process is straightforward:

1. Turn on Developer mode (inside Settings > Update and Security > For develop-
ers).

2. Open a PowerShell prompt as an administrator and run the command:

Enable-WindowsOptionalFeature -Online -FeatureName \

Microsoft-Windows-Subsystem-Linux

3. Restart your computer when prompted.

At this point, the WSL is installed, but Ubuntu has not yet been installed. To do that:

1. Open a Command prompt (cmd), and run the command bash.
2. Accept the license by typing y when prompted.
3. The first time Ubuntu is installed, you’ll also be asked for a username and

password to use in the bash environment.

Once installation completes, there will be a shortcut either on your Desktop or in the
Start menu, and you can either use this shortcut to launch a bash session, or type
bash in a Command prompt.

Now that you have Bash on Ubuntu running insideWindows, you can install Ansible
inside the WSL environment just like you would if you were running Ubuntu
natively!

Installing Ansible inside Bash on Ubuntu

Before installing Ansible, make sure your package list is up to date by updating apt-
get:

¹⁹⁹https://msdn.microsoft.com/en-us/commandline/wsl/install_guide

https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide

Appendix A - Using Ansible on Windows workstations 412

$ sudo apt-get update

The easiest way to install Ansible is to use pip, a packagemanager for Python. Python
should already be installed on the system, but pipmay not be, so let’s install it, along
with Python’s development header files (which are in the python-dev package).

$ sudo apt-get install -y python-pip python-dev

After the installation is complete, install Ansible:

$ sudo pip install ansible

After Ansible and all its dependencies are downloaded and installed, make sure
Ansible is running and working:

$ ansible --version

ansible 2.9.5

Upgrading Ansible is also easy with pip: Run sudo pip install --upgrade

ansible to get the latest version.

You can now use Ansible within the Ubuntu Bash environment. You can access files
on the Windows filesystem inside the /mnt folder (/mnt/c corresponds to C:\), but
be careful when moving things between Windows and the WSL, as strange things
can happen because of line ending, permissions, and filesystem differences!

Method 2 - When WSL is not an option

If you’re runningWindows 7 or 8, or for some reason can’t install or use theWindows
Subsystem for Linux in Windows 10 or later, then the best alternative is to build a
local Virtual Machine (VM) and install and use Ansible inside.

Appendix A - Using Ansible on Windows workstations 413

Prerequisites

The easiest way to build a VM is to download and install Vagrant and VirtualBox
(both 100% free!), and then use Vagrant to install Linux, and PuTTY to connect and
use Ansible. Here are the links to download these applications:

1. Vagrant²⁰⁰
2. VirtualBox²⁰¹
3. PuTTY²⁰²

Once you’ve installed all three applications, you can use either the command prompt
(cmd), Windows PowerShell, or a Linux terminal emulator like Cygwin to boot up a
basic Linux VM with Vagrant (if you use Cygwin, which is not covered here, you
could install its SSH component and use it for SSH, and avoid using PuTTY).

Set up an Ubuntu Linux Virtual Machine

Open PowerShell (open the Start Menu or go to the Windows home and type in
‘PowerShell’), and change directory to a place where you will store some metadata
about the virtual machine you’re about to boot. I like having a ‘VMs’ folder in my
home directory to contain all my virtual machines:

Change directory to your user directory.

PS > cd C:/Users/[username]

Make a 'VMs' directory and cd to it.

PS > md -Name VMs

PS > cd VMs

Make a 'Ubuntu64' directory and cd to it.

PS > md -Name ubuntu-bionic-64

PS > cd ubuntu-bionic-64

Now, use vagrant to create the scaffolding for our new virtual machine:

²⁰⁰http://www.vagrantup.com/downloads.html
²⁰¹https://www.virtualbox.org/
²⁰²http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Appendix A - Using Ansible on Windows workstations 414

PS > vagrant init ubuntu/bionic64

Vagrant creates a ‘Vagrantfile’ describing a basic Ubuntu 64-bit virtual machine in
the current directory, and is now ready for you to run vagrant up to download and
build the machine. Run vagrant up, and wait for the box to be downloaded and
installed:

PS > vagrant up

After a few minutes, the box will be downloaded and a new virtual machine set
up inside VirtualBox. Vagrant will boot and configure the machine according to the
defaults defined in the Vagrantfile. Once the VM is booted and you’re back at the
command prompt, it’s time to log into the VM.

Log into the Virtual Machine

Use vagrant ssh-config to grab the SSH connection details, which you will then
enter into PuTTY to connect to the VM.

PS > vagrant ssh-config

It should show something like:

Host default

Hostname 127.0.0.1

User vagrant

Port 2222

UserKnownHostsFile /dev/null

StrictHostKeyChecking no

PasswordAuthentication no

IdentityFile C:/Users/[username]/.vagrant.d/insecure_private_key

IdentitiesOnly yes

LogLevel FATAL

Appendix A - Using Ansible on Windows workstations 415

The lines we’re interested in are the Hostname, User, Port, and IdentityFile.

Launch PuTTY, and enter the connection details:

• Host Name (or IP address): 127.0.0.1
• Port: 2222

Click Open to connect, and if you receive a Security Alert concerning the server’s
host key, click ‘Yes’ to tell PuTTY to trust the host. You can save the connection
details by entering a name in the ‘Saved Sessions’ field and clicking ‘Save’ to save
the details.

PuTTY will ask for login credentials; we’ll use the default login for a Vagrant box
(vagrant for both the username and password):

login as: vagrant

vagrant@127.0.0.1's password: vagrant

You should now be connected to the virtual machine, and see the message of the day:

Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-43-generic x86_64)

...

vagrant@ubuntu-bionic:~$

If you see this prompt, you’re logged in, and you can start administering the VM.
The next (and final) step is to install Ansible.

This example uses PuTTY to log into the VM, but other applications like
Cygwin²⁰³ or Git for Windows²⁰⁴ work just as well, and may be easier to
use. Since these alternatives have built-in SSH support, you don’t need to
do any extra connection configuration, or even launch the apps manually;
just cd to the same location as the Vagrantfile, and enter vagrant ssh!

²⁰³http://cygwin.com/install.html
²⁰⁴http://git-scm.com/download/win

http://cygwin.com/install.html
http://git-scm.com/download/win
http://cygwin.com/install.html
http://git-scm.com/download/win

Appendix A - Using Ansible on Windows workstations 416

Install Ansible

Before installing Ansible, make sure your package list is up to date by updating apt-
get:

$ sudo apt-get update

The easiest way to install Ansible is to use pip, a packagemanager for Python. Python
should already be installed on the system, but pipmay not be, so let’s install it, along
with Python’s development header files (which are in the python-dev package).

$ sudo apt-get install -y python-pip python-dev

After the installation is complete, install Ansible:

$ sudo pip install ansible

After Ansible and all its dependencies are downloaded and installed, make sure
Ansible is running and working:

$ ansible --version

ansible 2.9.5

Upgrading Ansible is also easy with pip: Run sudo pip install --upgrade

ansible to get the latest version.

You should now have Ansible installed within a virtual machine running on your
Windows workstation. You can control the virtual machine with Vagrant (cd to the
location of the Vagrantfile), using up to boot or wake the VM, halt to shut down
the VM, or suspend to sleep the VM. Log into the VM manually using PuTTY or via
vagrant ssh with Cygwin or Git’s Windows shell.

Use Ansible from within the virtual machine just as you would on a Linux or Mac
workstation directly. If you need to share files between your Windows environment
and the VM, Vagrant conveniently maps /vagrant on the VM to the same folder
where your Vagrantfile is located. You can also connect between the two via other
methods (SSH, SMB, SFTP etc.) if you so desire.

Appendix A - Using Ansible on Windows workstations 417

Summary

There are other ways to ‘hack’ Ansible into running natively within Windows
(without a Linux VM), such as the ansible-babun-bootstrap²⁰⁵, but I recommend
either using the WSL or running everything within a Linux VM as performance will
be optimal and the number of environment-related problems you encounter will be
greatly reduced!

²⁰⁵https://github.com/jonathanhle/ansible-babun-bootstrap

https://github.com/jonathanhle/ansible-babun-bootstrap
https://github.com/jonathanhle/ansible-babun-bootstrap

Appendix B - Ansible Best
Practices and Conventions
Ansible’s flexibility allows for a variety of organization methods and configuration
syntaxes. You may have many tasks in one main file, or a few tasks in many files. You
might prefer defining variables in group variable files, host variable files, inventories,
or elsewhere, or you might try to find ways of avoiding variables in inventories
altogether.

There are few universal best practices in Ansible, but this appendix contains helpful
suggestions for organizing playbooks, writing tasks, using roles, and otherwise build
infrastructure with Ansible.

In addition to this appendix (which contains mostly observations from the author’s
own daily use of Ansible), please read through the official Ansible Best Practices²⁰⁶
guide, which contains a wealth of hard-earned knowledge.

Playbook Organization

Playbooks are Ansible’s bread and butter, so it’s important to organize them in a
logical manner for easier debugging and maintenance.

Write comments and use name liberally

Many tasks you write will be fairly obvious when you write them, but less so six
months later when you are making changes. Just like application code, Ansible
playbooks should be documented so you spend less time familiarizing yourself with
what a particular task is supposed to do, and more time fixing problems or extending
your playbooks.

²⁰⁶http://docs.ansible.com/playbooks_best_practices.html

http://docs.ansible.com/playbooks_best_practices.html
http://docs.ansible.com/playbooks_best_practices.html

Appendix B - Ansible Best Practices and Conventions 419

In YAML, write comments by starting a line with a hash (#). If the comment spans
multiple lines, start each line with #.

It’s also a good idea to use a name for every task you write, besides the most trivial. If
you’re using the git module to check out a specific tag, use a name to indicate what
repository you’re using, why a tag instead of a commit hash, etc. This way, whenever
your playbook is run, you’ll see the comment you wrote and be assured what’s going
on.

- hosts: all

tasks:

This task takes up to five minutes and is required so we will

have access to the images used in our application.

- name: Copy the entire file repository to the application.

copy:

src: [...]

This advice assumes your comments actually indicate what’s happening in your
playbooks! I use full sentences with a period for all comments and names, but it’s okay
to use a slightly different style. Just be consistent, and remember, bad comments are
worse than no comments at all.

Include related variables and tasks

If you find yourself writing a playbook over 50-100 lines and configuring three or four
different applications or services, it may help to separate each group of tasks into a
separate file, and use import_tasks or include_tasks to place them in a playbook
(see Chapter 6 for details about when to use which syntax).

Additionally, variables are usually better left in their own file and included using
vars_files rather than defined inline with a playbook.

Appendix B - Ansible Best Practices and Conventions 420

- hosts: all

vars_files:

- vars/main.yml

handlers:

- import_tasks: handlers/handlers.yml

tasks:

- import_tasks: tasks/init.yml

- import_tasks: tasks/database.yml

- import_tasks: tasks/app.yml

Using a more hierarchical model like this allows you to see what your playbook is
doing at a higher level, and also lets you manage each portion of a configuration or
deployment separately. I generally split tasks into separate files once I reach 15-20
tasks in a given file.

Use Roles to bundle logical groupings of configuration

Along the same lines as using included files to better organize your playbooks and
separate bits of configuration logically, Ansible roles supercharge your ability to
manage infrastructure well.

Using loosely-coupled roles to configure individual components of your servers (like
databases, application deployments, the networking stack, monitoring packages, etc.)
allows you to write configuration once, and use it on all your servers, regardless of
their role.

You’ll probably configure something like NTP (Network Time Protocol) on every
single server you manage, or at a minimum, set a timezone for the server. Instead of
adding two or three tasks to every playbook you manage, set up a role (maybe call
it time or ntp) to do this configuration, and use a few variables to allow different
groups of servers to have customized settings.

Additionally, if you learn to build robust and generic roles, you could share them on
Ansible Galaxy so others use them and help you make them even better!

Appendix B - Ansible Best Practices and Conventions 421

Use role defaults and vars correctly

Set all role default variables likely to be overridden inside defaults/main.yml, and
set variables likely never to be overridden in vars/main.yml.

If you have a variable that needs to be overridden, but you need to include it in a
platform-specific vars file (e.g. one vars file for Debian, one for RHEL), then create
the variable in vars/[file].yml as __varname, and use set_fact to set the variable
at runtime if the variable varname is not defined. This way playbooks using your role
can still override one of these variables.

For example, if you need to have a variable like package_config_path that is de-
faulted to one value on Debian, and another on RHEL, but may need to be overridden
from time to time, you can create two files, vars/Debian.yml and vars/RedHat.yml,
with the contents:

Inside vars/Debian.yml

__package_config_path: /etc/package/package.conf

Inside vars/RedHat.yml

__package_config_path: /etc/package/configfile

Then, in the playbook using the variable, include the platform-specific vars file and
define the final package_config_path variable at runtime:

Appendix B - Ansible Best Practices and Conventions 422

Include variables and define needed variables.

- name: Include OS-specific variables.

include_vars: "{{ ansible_os_family }}.yml"

- name: Define package_config_path.

set_fact:

package_config_path: "{{ __package_config_path }}"

when: package_config_path is not defined

This way, any playbook using role can override the platform-specific defaults by
defining package_config_path in its own variables.

YAML Conventions and Best Practices

YAML is a human-readable, machine-parseable syntax that allows for almost any
list, map, or array structure to be described using a few basic conventions, so it’s a
great fit for configuration management. Consider the following method of defining
a list (or ‘collection’) of widgets:

widget:

- foo

- bar

- fizz

This would translate into Python (using the PyYAML library employed by Ansible) as
the following:

translated_yaml = {'widget': ['foo', 'bar', 'fizz']}

And what about a structured list/map in YAML?

Appendix B - Ansible Best Practices and Conventions 423

widget:

foo: 12

bar: 13

The resulting Python:

translated_yaml = {'widget': {'foo': 12, 'bar': 13}}

A few things to note with both of the above examples:

• YAMLwill try to determine the type of an item automatically. So foo in the first
example would be translated as a string, true or falsewould be a boolean, and
123 would be an integer. Read the official documentation for further insight,
but for our purposes, declaring strings with quotes ('' or "") will minimize
surprises.

• Whitespace matters! YAML uses spaces (literal space characters—not tabs) to
define structure (mappings, array lists, etc.), so set your editor to use spaces
for tabs. You can use either a tab or a space to delimit parameters (like
apt: name=foo state=present—either a tab or a space between parameters),
but it’s preferred to use spaces everywhere, to minimize errors and display
irregularities across editors and platforms.

• YAML syntax is robust and well-documented. Read through the official YAML
Specification²⁰⁷ and/or the PyYAMLDocumentation²⁰⁸ to dig deeper.

YAML for Ansible tasks

Consider the following task:

- name: Install foo.

apt: name=foo state=present

All well and good, right?Well, as you get deeper into Ansible and start defining more
complex configuration, you might start seeing tasks like the following:

²⁰⁷http://www.yaml.org/spec/1.2/spec.html
²⁰⁸http://pyyaml.org/wiki/PyYAMLDocumentation

http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
http://pyyaml.org/wiki/PyYAMLDocumentation
http://www.yaml.org/spec/1.2/spec.html
http://pyyaml.org/wiki/PyYAMLDocumentation

Appendix B - Ansible Best Practices and Conventions 424

- name: Copy Phergie shell script into place.

template: src=templates/phergie.sh.j2 dest=/opt/phergie.sh \

owner={{ phergie_user }} group={{ phergie_user }} mode=755

The one-line syntax (which uses Ansible-specific key=value shorthand for defining
parameters) has some positive attributes:

• Simpler tasks (like installations and copies) are compact and readable. apt:
name=apache2 state=present and apt-get install -y apache2 are similarly
concise; in this way, an Ansible playbook feels very much like a shell script.

• Playbooks are more compact, and more configuration is be displayed on one
screen.

• Ansible’s official documentation follows this format, as do many existing roles
and playbooks.

However, as highlighted in the above example, there are a few issues with this
key=value syntax:

• Smaller monitors, terminal windows, and source control applications will either
wrap or hide part of the task line.

• Diff viewers and source control systems generally don’t highlight intra-line
differences as well as full line changes.

• Variables and parameters are converted to strings, which may or may not be
desired.

Ansible’s shorthand syntax is troublesome for complicated playbooks and roles, but
luckily there are other ways to write tasks which are better for narrower displays,
version control software and diffing.

Three ways to format Ansible tasks

The following methods are most often used to define Ansible tasks in playbooks:

Shorthand/one-line (key=value)

Ansible’s shorthand syntax uses key=value parameters after the name of a module
as a key:

Appendix B - Ansible Best Practices and Conventions 425

- name: Install Nginx.

yum: name=nginx state=present

For any situation where an equivalent shell command would roughly match what
I’m writing in the YAML, I prefer this method, since it’s immediately obvious what’s
happening, and it’s highly unlikely any of the parameters (like state=present) will
change frequently during development.

Ansible’s official documentation generally uses this syntax, so it maps nicely to
examples you’ll find from Ansible, Inc. and many other sources.

Structured map/multi-line (key:value)

Define a structured map of parameters (using key: value, with each parameter on
its own line) for a task:

- name: Copy Phergie shell script into place.

template:

src: "templates/phergie.sh.j2"

dest: "/home/{{ phergie_user }}/phergie.sh"

owner: "{{ phergie_user }}"

group: "{{ phergie_user }}"

mode: 0755

A few notes on this syntax:

• The structure is all valid YAML, and functions similarly to Ansible’s shorthand
syntax.

• Strings, booleans, integers, octals, etc. are all preserved (instead of being
converted to strings).

• Each parameter must be on its own line; multiple variables can’t be chained
together (e.g. mode: 0755, owner: root, user: root) to save space.

• YAML syntax highlighting works slightly better for this format than key=value,
since each key will be highlighted, and values will be displayed as constants,
strings, etc.

Appendix B - Ansible Best Practices and Conventions 426

Folded scalars/multi-line (>)

Use the > character to break up Ansible’s shorthand key=value syntax over multiple
lines.

- name: Copy Phergie shell script into place.

template: >

src=templates/phergie.sh.j2

dest=/home/{{ phergie_user }}/phergie.sh

owner={{ phergie_user }} group={{ phergie_user }} mode=755

In YAML, the > character denotes a folded scalar, where every line that follows (as
long as it’s indented further than the line with the >) will be joined with the line
above by a space. So the above YAML and the earlier template example will function
exactly the same.

This syntax allows arbitrary splitting of lines on parameters, but it does not preserve
value types (0775 would be converted to a string, for example).

While this syntax is often seen in the wild, I don’t recommend it except for certain
situations, like tasks using the command and shell modules with extra options:

- name: Install Drupal.

command: >

drush si -y --site-name="{{ drupal_site_name }}"

--account-name=admin

--account-pass=admin

--db-url=mysql://{{ domain }}:1234@localhost/{{ domain }}

--root={{ drupal_core_path }}

creates={{ drupal_core_path }}/sites/default/settings.php

notify: restart apache

become_user: www-data

Sometimes the above is as good as you can do to keep unwieldy tasks formatted in a
legible manner.

Appendix B - Ansible Best Practices and Conventions 427

Using | to format multiline variables

In addition to using > to join multiple lines using spaces, YAML allows the use of |
(pipe) to define literal scalars, to define strings with newlines preserved.

For example:

1 extra_lines: |

2 first line

3 second line

4 third line

Would be translated to a block of text with newlines intact:

1 first line

2 second line

3 third line

Using a folded scalar (>) would concatenate the lines, which might not be desirable.
For example:

1 extra_lines: >

2 first line

3 second line

4 third line

Would be translated to a single string with no newlines:

1 first line second line third line

Using ansible-playbook

Generally, running playbooks from your own computer or a central playbook runner
is preferable to running Ansible playbooks locally (using --connection=local), since

Appendix B - Ansible Best Practices and Conventions 428

Ansible and all its dependencies don’t need to be installed on the system you’re
provisioning. Because of Ansible’s optimized use of SSH for remote communication,
there is usually minimal difference in performance running Ansible locally or from
a remote workstation (barring network flakiness or a high-latency connection).

Use Ansible Tower

If you are able to use Ansible Tower to run your playbooks, this is even better, as
you’ll have a central server running Ansible playbooks, logging output, compiling
statistics, and even allowing a team to work together to build servers and deploy
applications in one place.

Specify --forks for playbooks running on > 5
servers

If you are running a playbook on a large number of servers, consider increasing the
number of forks Ansible uses to run tasks simultaneously. The default, 5, means
Ansible will only run a given task on 5 servers at a time. Consider increasing this to
10, 15, or however many connections your local workstation and ISP can handle—this
will dramatically reduce the amount of time it takes a playbook to run.

Set forks=[number] in Ansible’s configuration file to set the default forks value for
all playbook runs.

Use Ansible’s Configuration file

Ansible’s main configuration file, in /etc/ansible/ansible.cfg, allows a wealth of
optimizations and customizations for running playbooks and ad-hoc tasks.

Read through the official documentation’s Ansible Configuration File²⁰⁹ page for
customizable options in ansible.cfg.

²⁰⁹http://docs.ansible.com/intro_configuration.html

http://docs.ansible.com/intro_configuration.html
http://docs.ansible.com/intro_configuration.html

Appendix B - Ansible Best Practices and Conventions 429

Summary

One of Ansible’s strengths is its flexibility; there are often multiple ‘right’ ways of
accomplishing your goals. I have chosen to use the methods I outlined above as they
have proven to help me write and maintain a variety of playbooks and roles with
minimal headaches.

It’s perfectly acceptable to try a different approach; as with most programming and
technical things, being consistent is more important than following a particular set of
rules, especially if the ruleset isn’t universally agreed upon. Consistency is especially
important when you’re not working solo—if every team member used Ansible in a
different way, it would become difficult to share work very quickly!

	Table of Contents
	Foreword
	Preface
	Who is this book for?
	Typographic conventions
	Please help improve this book!
	Current Published Book Version Information

	About the Author

	Introduction
	In the beginning, there were sysadmins
	Modern infrastructure management
	Ansible and Red Hat
	Ansible Examples
	Other resources

	Chapter 1 - Getting Started with Ansible
	Ansible and Infrastructure Management
	On snowflakes and shell scripts
	Configuration management

	Installing Ansible
	Creating a basic inventory file
	Running your first Ad-Hoc Ansible command
	Summary

	Chapter 2 - Local Infrastructure Development: Ansible and Vagrant
	Prototyping and testing with local virtual machines
	Your first local server: Setting up Vagrant
	Using Ansible with Vagrant
	Your first Ansible playbook
	Cleaning Up
	Summary

	Chapter 3 - Ad-Hoc Commands
	Conducting an orchestra
	Build infrastructure with Vagrant for testing
	Inventory file for multiple servers
	Your first ad-hoc commands
	Discover Ansible's parallel nature
	Learning about your environment
	Make changes using Ansible modules

	Configure groups of servers, or individual servers
	Configure the Application servers
	Configure the Database servers
	Make changes to just one server

	Manage users and groups
	Manage packages
	Manage files and directories
	Get information about a file
	Copy a file to the servers
	Retrieve a file from the servers
	Create directories and files
	Delete directories and files

	Run operations in the background
	Update servers asynchronously with asynchronous jobs

	Check log files
	Manage cron jobs
	Deploy a version-controlled application
	Ansible's SSH connection history
	Paramiko
	OpenSSH (default)
	Faster OpenSSH with Pipelining

	Summary

	Chapter 4 - Ansible Playbooks
	Power plays
	Running Playbooks with ansible-playbook
	Limiting playbooks to particular hosts and groups
	Setting user and sudo options with ansible-playbook
	Other options for ansible-playbook

	Real-world playbook: CentOS Node.js app server
	Add extra repositories
	Deploy a Node.js app
	Launch a Node.js app
	Node.js app server summary

	Real-world playbook: Ubuntu LAMP server with Drupal
	Include a variables file, and discover pre_tasks and handlers
	Basic LAMP server setup
	Configure Apache
	Configure PHP with lineinfile
	Configure MySQL
	Install Composer and Drush
	Install Drupal with Git and Drush
	Drupal LAMP server summary

	Real-world playbook: Ubuntu server with Solr
	Include a variables file, and more pre_tasks
	Install Java 8
	Install Apache Solr
	Apache Solr server summary

	Summary

	Chapter 5 - Ansible Playbooks - Beyond the Basics
	Handlers
	Environment variables
	Per-play environment variables

	Variables
	Playbook Variables
	Inventory variables
	Registered Variables
	Accessing Variables
	Host and Group variables
	Automatically-loaded group_vars and host_vars
	Magic variables with host and group variables and information

	Facts (Variables derived from system information)
	Local Facts (Facts.d)

	Ansible Vault - Keeping secrets secret
	Variable Precedence

	If/then/when - Conditionals
	Jinja Expressions, Python built-ins, and Logic
	register
	when
	changed_when and failed_when
	ignore_errors

	Delegation, Local Actions, and Pauses
	Pausing playbook execution with wait_for
	Running an entire playbook locally

	Prompts
	Tags
	Blocks
	Summary

	Chapter 6 - Playbook Organization - Roles, Includes, and Imports
	Imports
	Includes
	Dynamic includes
	Handler imports and includes
	Playbook imports
	Complete includes example

	Roles
	Role scaffolding
	Building your first role
	More flexibility with role vars and defaults
	Other role parts: handlers, files, and templates
	Handlers
	Files and Templates

	Organizing more complex and cross-platform roles

	Ansible Galaxy
	Getting roles from Galaxy
	Using role requirements files to manage dependencies

	A LAMP server in nine lines of YAML
	A Solr server in seven lines of YAML
	Helpful Galaxy commands
	Contributing to Ansible Galaxy

	Summary

	Chapter 7 - Inventories
	A real-world web application server inventory
	Non-prod environments, separate inventory files

	Inventory variables
	host_vars
	group_vars

	Ephemeral infrastructure: Dynamic inventory
	Dynamic inventory with DigitalOcean
	DigitalOcean account prerequisites
	Connecting to your DigitalOcean account
	Creating a droplet with Ansible
	DigitalOcean dynamic inventory with digital_ocean.py

	Dynamic inventory with AWS
	Inventory on-the-fly: add_host and group_by
	Multiple inventory sources - mixing static and dynamic inventories
	Creating custom dynamic inventories
	Building a Custom Dynamic Inventory in Python
	Building a Custom Dynamic Inventory in PHP
	Managing a PaaS with a Custom Dynamic Inventory

	Summary

	Chapter 8 - Ansible Cookbooks
	Highly-Available Infrastructure with Ansible
	Directory Structure
	Individual Server Playbooks
	Main Playbook for Configuring All Servers
	Getting the required roles
	Vagrantfile for Local Infrastructure via VirtualBox
	Provisioner Configuration: DigitalOcean
	Provisioner Configuration: Amazon Web Services (EC2)
	Summary

	ELK Logging with Ansible
	ELK Playbook
	Forwarding Logs from Other Servers
	Summary

	GlusterFS Distributed File System Configuration with Ansible
	Configuring Gluster - Basic Overview
	Configuring Gluster with Ansible
	Summary

	Mac Provisioning with Ansible and Homebrew
	Running Ansible playbooks locally
	Automating Homebrew package and app management
	Configuring Mac OS X through dotfiles
	Summary

	Chapter 9 - Deployments with Ansible
	Deployment strategies
	Simple single-server deployments
	Provisioning a Ruby on Rails server
	Deploying a Rails app to the server
	Provisioning and Deploying the Rails App
	Deploying application updates

	Zero-downtime multi-server deployments
	Ensuring zero downtime with serial and integration tests
	Deploying to app servers behind a load balancer

	Capistrano-style and blue-green deployments
	Additional Deployment Features
	Summary

	Chapter 10 - Server Security and Ansible
	A brief history of SSH and remote access
	Telnet
	rlogin, rsh and rcp
	SSH
	The evolution of SSH and the future of remote access

	Use secure and encrypted communication
	Disable root login and use sudo
	Remove unused software, open only required ports
	Use the principle of least privilege
	User account configuration
	File permissions

	Update the OS and installed software
	Automating updates
	Automating updates for RHEL systems
	Automating updates for Debian-based systems

	Use a properly-configured firewall
	Configuring a firewall with ufw on Debian or Ubuntu
	Configuring a firewall with firewalld on RHEL, Fedora, or CentOS

	Make sure log files are populated and rotated
	Monitor logins and block suspect IP addresses
	Use SELinux (Security-Enhanced Linux) or AppArmor
	Summary and further reading

	Chapter 11 - Automating Your Automation - Ansible Tower and CI/CD
	Ansible Tower
	Getting and Installing Ansible Tower
	Using Ansible Tower
	Other Tower Features of Note
	Tower Alternatives

	Jenkins CI
	Build a local Jenkins server with Ansible
	Create an Ansible playbook on the Jenkins server
	Create a Jenkins job to run an Ansible Playbook

	Unit, Integration, and Functional Testing
	Debugging and Asserting
	The debug module
	The fail and assert modules

	Checking syntax and performing dry runs

	Automated testing on GitHub using Travis CI
	Testing on multiple OSes with Docker
	Setting up the test
	Building Docker containers in Travis
	Testing the role's syntax
	Role success - first run
	Role idempotence
	Role success - final result
	Some notes about Travis CI
	Real-world examples

	Functional testing using serverspec
	Other server and role testing tools

	Summary

	Chapter 12 - Automating HTTPS and TLS Certificates
	Generating Self-Signed Certificates with Ansible
	Idempotent Nginx HTTPS playbook with a self-signed cert

	Automating Let's Encrypt with Ansible for free Certs
	Use Galaxy roles to get things done faster
	Create the playbook
	Create a server and configure DNS
	Point the playbook inventory at the server
	Access your server over HTTPS!

	Configuring Nginx to proxy HTTP traffic and serve it over HTTPS
	Modify the Nginx configuration to proxy traffic

	Summary

	Chapter 13 - Docker and Ansible
	A brief introduction to Docker containers
	Using Ansible to build and manage containers
	Building a Flask app with Ansible and Docker
	Data storage container
	Flask container
	MySQL container
	Ship it!

	Building containers with Ansible from the outside
	Build a Hubot Slack bot container with ansible_connection: docker
	Hubot and Slack
	Building a Docker container with Ansible
	Building the hubot-slack role
	Building and running the Hubot Slack bot container

	Summary

	Summary

	Chapter 14 - Kubernetes and Ansible
	A bit of Kubernetes history
	Evaluating the need for Kubernetes
	Building a Kubernetes cluster with Ansible
	Managing Kubernetes with Ansible
	Ansible's k8s module
	Managing Kubernetes Applications with Helm
	Interacting with Pods using the kubectl connection plugin

	Summary

	Afterword
	Appendix A - Using Ansible on Windows workstations
	Method 1 - Use the Windows Subsystem for Linux / Bash on Ubuntu
	Installing Ansible inside Bash on Ubuntu

	Method 2 - When WSL is not an option
	Prerequisites
	Set up an Ubuntu Linux Virtual Machine
	Log into the Virtual Machine
	Install Ansible

	Summary

	Appendix B - Ansible Best Practices and Conventions
	Playbook Organization
	Write comments and use name liberally
	Include related variables and tasks
	Use Roles to bundle logical groupings of configuration
	Use role defaults and vars correctly

	YAML Conventions and Best Practices
	YAML for Ansible tasks
	Three ways to format Ansible tasks
	Shorthand/one-line (key=value)
	Structured map/multi-line (key:value)
	Folded scalars/multi-line (>)

	Using | to format multiline variables

	Using ansible-playbook
	Use Ansible Tower
	Specify –forks for playbooks running on > 5 servers
	Use Ansible's Configuration file
	Summary

