
CKAD Test Preparation - O'REILLY

1 / 74

By sebgoa
By Sebastien Goasguen, author of the Docker Cookbook and co-author of
Kubernetes cookbook.

@sebgoa [https://github.com/triggermesh) @triggermesh

2 / 74

https://github.com/triggermesh

3 / 74

Pre-requisities
minikube , https://github.com/kubernetes/minikube
or Docker for Desktop (Mac/Windows)
kubectl , https://kubernetes.io/docs/user-guide/prereqs/
git

Manifests here:

https://github.com/sebgoa/oreilly-kubernetes

4 / 74

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/user-guide/prereqs/
https://github.com/sebgoa/oreilly-kubernetes

Minikube
Minikube is open source and available on GitHub.

Install the latest release. e.g on OSX:

You will need an "Hypervisor" on your local machine, e.g VirtualBox, KVM,
Fusion

$ minikube start

5 / 74

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube/releases/tag/v0.28.0

Kubernetes Training
Goal: Review of API objects and practice to get ready for CKAD

Questions, questions, questions, questions !!!!!

Agenda

Morning:

Review of most common API objects
Focus on the Pod Specification

Afternoon:

Practice
Practice

6 / 74

Borg Heritage
Borg was a Google secret for a long time.
Orchestration system to manage all Google applications at scale
Finally described publicly in 2015
Paper explains ideas behind Kubernetes

7 / 74

http://research.google.com/pubs/pub43438.html

What is it really ?
A resource manager with lots of HA features
A scheduler to place containers in a cluster
Deployed as services on VMs or Bare-metal machines

8 / 74

Minikube
Minikube is open source and available on GitHub.

9 / 74

https://github.com/kubernetes/minikube

Part I: API Review
Pods, ReplicaSets, Deployments
Secrets, ConfigMaps
kubectl create and kubectl apply

10 / 74

Core Objects
See "Introduction to Kubernetes course"

11 / 74

Check API Resources with kubectl
Check it with kubectl:

$ kubectl get pods
$ kubectl get rc
$ kubectl get ns

But there is much more

$ kubectl proxy &
$ curl http://127.0.0.1:8001
{
"paths": [
"/api",
"/api/v1",
"/apis",
...
$ curl http://127.0.0.1:8001/api

12 / 74

Namespaces
Every request is namespaced e.g GET
https://192.168.99.100:8443/api/v1/namespaces/default/pods

13 / 74

Labels
You will have noticed that every resource can contain labels in its metadata.
By default creating a deployment with kubectl run adds a label to the pods.

apiVersion: v1
kind: Pod
metadata:
...
 labels:
 pod-template-hash: "3378155678"
 run: ghost

You can then query by label and display labels in new columns:

$ kubectl get pods -l run=ghost
NAME READY STATUS RESTARTS AGE
ghost-3378155678-eq5i6 1/1 Running 0 10m
$ kubectl get pods -Lrun
NAME READY STATUS RESTARTS AGE RUN
ghost-3378155678-eq5i6 1/1 Running 0 10m ghost
nginx-3771699605-4v27e 1/1 Running 1 1h nginx

14 / 74

Become Friends with Pods

15 / 74

Kubectl Pod commands
kubectl logs ...
kubectl describe ...
kubectl explain ...
kubectl exec ...
kubectl label ...
kubectl annotate ...

and tricks

kubectl get pods ... -o json | jq ..
kubectl run ...--dry-run -o json
kubectl get pods --export

16 / 74

Powerful REST based API
YAML or JSON definitions for objects

$ kubectl --v=9 get pods
...

You can get every object, as well as delete them

17 / 74

Exercise
Use curl to list Pods
Use curl to create a Pod
Use curl to delete a Pod

18 / 74

ResourceQuota Object
Create a oreilly ns from a file:

apiVersion: v1
kind: Namespace
metadata:
 name: oreilly

Then create a ResourceQuota to limit the number of Pods

$ cat rq.yaml
apiVersion: v1
kind: ResourceQuota
metadata:
 name: object-counts
spec:
 hard:
 pods: "1"
...
$ kubectl create -f rq.yaml --namespace=oreilly

Then test !

19 / 74

ReplicaSet Object
Same as all Objects. Contains apiVersion, kind, metadata

But also a spec which sets the number of replicas, and the selector. An RC
insures that the matching number of pods is running at all time. The template
section is a Pod definition.

apiVersion: extensions/v1beta
kind: ReplicaSet
metadata:
 name: redis
 namespace: default
spec:
 replicas: 2
 selector:
 app: redis
 template:
 metadata:
 name: redis
 labels:
 app: redis
 spec:
 containers:
 - image: redis:3.2

20 / 74

Deployments

21 / 74

Scaling and Rolling update of Deployments
Just like RC, Deployments can be scaled.

$ kubectl scale deployment/nginx --replicas=4
deployment "nginx" scaled
$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 4 4 4 1 12m

What if you want to update all your Pods to a specific image version. latest is
not a version number...

$ kubectl set image deployment/nginx nginx=nginx:1.10 --all

What the RS and the Pods.

$ kubectl get rs --watch
NAME DESIRED CURRENT AGE
nginx-2529595191 0 0 3m
nginx-3771699605 4 4 46s

You can also use kubectl edit deployment/nginx

22 / 74

Accessing Services
Now that we have a good handle on creating resources, managing and
inspecting them with kubectl. The elephant in the room is how do you access
your applications ?

The answer is Services, another Kubernetes object. Let's try it:

$ kubectl expose deployment/nginx --port=80 --type=NodePort
$ kubectl get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 10.0.0.1 <none> 443/TCP 18h
nginx 10.0.0.112 nodes 80/TCP 5s
$ kubectl get svc nginx -o yaml

apiVersion: v1
kind: Service
...
spec:
 clusterIP: 10.0.0.112
 ports:
 - nodePort: 31230
...

$ minikube ip
192.168.99.100

Open your browser at http://192.168.99.100:<nodePort>

23 / 74

http://kubernetes.io/docs/user-guide/services/

Services Diagram

24 / 74

Service Types
Services can be of three types:

ClusterIP
NodePort
LoadBalancer

LoadBalancer services are currently only implemented on public cloud
providers like GKE and AWS. Private cloud solutions also may implement this
service type if there is a Cloud provider plugin for them in Kubernetes (e.g
CloudStack, OpenStack)

ClusterIP service type is the default and only provides access internally
(except if manually creating an external endpoint).

NodePort type is great for debugging, but you need to open your firewall on
that port (NodePort range defined in Cluster configuration). Not
recommended for public access.

25 / 74

Exercise
Run kubectl proxy
Open your browser and find the correct URL to access your service

26 / 74

DNS
A DNS service is provided as a Kubernetes add-on in clusters. On GKE and
minikube this DNS service is provided by default. A service gets registered in
DNS and DNS lookup will further direct traffic to one of the matching Pods via
the ClusterIP of the service.

$ kubectl exec -ti busybox:1.28 -- nslookup nginx
Server: 10.0.0.10
Address 1: 10.0.0.10

Name: nginx
Address 1: 10.0.0.112
$ kubectl get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 10.0.0.1 <none> 443/TCP 19h
nginx 10.0.0.112 nodes 80/TCP 36m
$ kubectl exec -ti busybox -- wget http://nginx
Connecting to nginx (10.0.0.112:80)
index.html 100% |*******************************| 612 0:00:00 ETA

27 / 74

Exercise: WordPress
Create a deployment to run a MySQL Pod.

$ kubectl run mysql --image=mysql:5.5 --env=MYSQL_ROOT_PASSWORD=root
$ kubectl expose deployments mysql --port 3306

And now wordpress:

$ kubectl run wordpress --image=wordpress --env=WORDPRESS_DB_HOST=mysql --
env=WORDPRESS_DB_PASSWORD=root
$ kubectl expose deployments wordpress --port 80 --type LoadBalancer

28 / 74

BREAK

29 / 74

Part II: Other Objects and a bit more focus on Pods
DaemonSets
StatefulSets
CronJobs
Jobs
Ingress
Persistent Volume Claims
...

30 / 74

e.g CronJob
A Pod that is run on a schedule

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: hello
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: hello
 image: busybox
 args:
 - /bin/sh
 - -c
 - date; echo Hello from the Kubernetes cluster
 restartPolicy: OnFailure

31 / 74

Volumes
Define array of volumes in the Pod spec. Define your volume types.

...
spec:
 containers:
 - image: k8s.gcr.io/test-webserver
 name: test-container
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir: {}

32 / 74

Using Secrets
To avoid passing secrets directly in a Pod definition, Kubernetes has an API
object called secrets. You can create, get, delete secrets. They can be used in
Pod templates.

$ kubectl get secrets
$ kubectl create secret generic --help
$ kubectl create secret generic mysql --from-literal=password=root

33 / 74

Con�gMap
To store a configuration file made of key value pairs, or simply to store a
generic file you can use a so-called config map and mount it inside a Pod

$ kubectl create configmap velocity --from-file=index.html

The mount looks like this:

...
spec:
 containers:
 - image: busybox
...
 volumeMounts:
 - mountPath: /velocity
 name: test
 name: busybox
 volumes:
 - name: test
 configMap:
 name: velocity

34 / 74

For persistency use PV and PVC
kubectl get pv
kubectl get pvc

In Minikube dynamic provisioning is setup, you only need to write a volume
claim

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi

35 / 74

Init-containers
Maybe you want to do some prep work before starting a container. Prep a file
system, run some provisioning script...They run to completion and then the
app starts.

You can run an initializing container:

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
spec:
 containers:
 - name: myapp-container
 image: busybox
 command: ['sh', '-c', 'echo The app is running! && sleep 3600']
 initContainers:
 - name: init-myservice
 image: busybox
 command: ['sh', '-c', 'until nslookup myservice; do echo waiting for myservice; sleep

36 / 74

Use Volumes with Init-containers
Example the git initializer

apiVersion: v1
kind: Pod
metadata:
 name: git-repo-demo
spec:
 initContainers:
 - name: git-clone
 image: alpine/git # Any image with git will do
 args:
 - clone
 - --single-branch
 - --
 - https://github.com/kubernetes/kubernetes # Your repo
 - /repo
 volumeMounts:
 - name: git-repo
 mountPath: /repo
 containers:
 - name: busybox
 image: busybox
 args: ['sleep', '100000'] # Do nothing
 volumeMounts:
 - name: git-repo
 mountPath: /repo
 volumes:
 - name: git-repo
 emptyDir: {}

37 / 74

Requests and Limits
Great example to follow in the docs

apiVersion: v1
kind: Pod
metadata:
 name: memory-demo
 namespace: mem-example
spec:
 containers:
 - name: memory-demo-ctr
 image: polinux/stress
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"
 command: ["stress"]
 args: ["--vm", "1", "--vm-bytes", "150M", "--vm-hang", "1"]

38 / 74

https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/

Default Limit Range in a Namespace
You can create default per namespace which will be automatically added in
each Pod manifest.

apiVersion: v1
kind: LimitRange
metadata:
 name: mem-limit-range
spec:
 limits:
 - default:
 memory: 512Mi
 defaultRequest:
 memory: 256Mi
 type: Container

Similar for CPUs And this goes in pair with quotas

39 / 74

Probes
Liveness probe to know when to restart a container
Readiness probe to know when to send traffice to it

Both can be an exec and http call or a tcp socket connection.

spec:
 containers:
 - name: liveness
 image: k8s.gcr.io/busybox
 args:
 - /bin/sh
 - -c
 - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
 livenessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5

40 / 74

Relax isolation
Share the process namespace betwen all containers in a Pod

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 shareProcessNamespace: true
 containers:
 - name: nginx
 image: nginx
 - name: shell
 image: busybox
...

Useful for debugging ...

Container filesystems are visible to other containers in the pod
through the /proc/$pid/root link. This makes debugging easier, but it
also means that filesystem secrets are protected only by filesystem
permissions.

41 / 74

Security Context
Set uid, gid, selinux, fs permissions, capabilities at the Pod or container level.

...
spec:
 securityContext:
 runAsNonRoot: true
 containers:
 - name: nginx
 image: nginx

42 / 74

ServiceAccount
Pods can talk to the Kubernetes API server using a service account

It used to be that this service account had full privileged access to the API
server ...:(Now you need to grant it privileges to do anything, see RBAC roles
and rolebinding.

A namespace has a default service account. Pods in a namespace will use this
service account. Otherwise create a new service account.

kubectl get ns
kubectl get sa
kubectl create ns kude
kubectl get sa -n kude

And the Pod spec:

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 serviceAccountName: kude

43 / 74

Network Policies
You need a Networking add-on that has a network policy controller.

Check Ahmet's tutorial https://ahmet.im/blog/kubernetes-network-policy/

And his repo https://github.com/ahmetb/kubernetes-networkpolicy-tutorial

44 / 74

https://ahmet.im/blog/kubernetes-network-policy/
https://github.com/ahmetb/kubernetes-networkpolicy-tutorial

Deny All Network Policy
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-deny-all
spec:
 podSelector:
 matchLabels:
 app: web
 ingres: []

45 / 74

Imperative/ Declarative
See a blog about it

kubectl create ns ghost
kubectl create quota blog --hard=pods=1 -n ghost
kubectl run ghost --image=ghost -n ghost
kubectl expose deployments ghost --port 2368 --type LoadBalancer -n ghost
kubectl run --generator=run-pod/v1 foobar --image=nginx

Get the manifests and become more declarative

kubectl get deployments ghost --export -n ghost -o yaml
kubectl create service clusterip foobar --tcp=80:80 -o json --dry-run
kubectl replace -f ghost.yaml -n ghost
kubectl apply -f <object>.<yaml,json>

46 / 74

https://medium.com/bitnami-perspectives/imperative-declarative-and-a-few-kubectl-tricks-9d6deabdde

LUNCH BREAK

47 / 74

The Exam
Logistics
What to expect
Bit of advice

From https://training.linuxfoundation.org/certification/certified-kubernetes-
application-developer-ckad/

This exam curriculum includes these general domains and their weights on
the exam:

Core Concepts – 13%
Configuration – 18%
Multi-Container Pods – 10%
Observability – 18%
Pod Design – 20%
Services & Networking – 13%
State Persistence – 8%

48 / 74

https://training.linuxfoundation.org/certification/certified-kubernetes-application-developer-ckad/

Curriculum

49 / 74

Curriculum

50 / 74

What to expect
Intense
Some questions are easy some take more time
Know your vi
Look up the documentation and paste

Review the kubectl cheat sheet

51 / 74

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

kubectl Cheat sheet
kubectl config use-context my-cluster-name
kubectl get pods -o wide
kubectl get services --sort-by=.metadata.name
kubectl get pods -o json | jq '.items[] ...
kubectl edit
kubectl run -i --tty busybox --image=busybox -- sh
kubectl port-forward my-pod 5000:6000
kubectl top
kubectl exec
kubectl cp
kubectl scale
kubectl run --dry-run -o json
kubectl get ... -- export

52 / 74

Practice - Pods
Create a Pod with name newyork and container image redis

53 / 74

Practice - Pods
Create a Pod with name newyork and container image redis

Create a Pod with name albany a container image busybox that sleeps and
define an environment variable VELOCITY whose value is rocks

54 / 74

Practice - Pods
Create a Pod with name newyork and container image redis

Create a Pod with name albany a container image busybox that sleeps and
define an environment variable VELOCITY whose value is rocks

Create a Pod with two containers, one name foo, the other one named bar .
The first one with the image nginx and the second one with the image redis.
The Pod should be called foobar and have the label foo=bar

55 / 74

Practice - Pods
Given the following manifest, set the container resource request for memory
to 128 Mega bytes.

apiVersion: v1
kind: Pod
metadata:
 name: question10
spec:
 containers:
 - name: nginx
 image: nginx

Tip: Use the polinux/stress container from the documentation to convince
yourself that it works. i.e run the example in the doc

56 / 74

Practice - Pods
Create a deployment object called foo123 with 2 replicas that uses image
nginx.

Once the pods are running scale the deployment to 4

Expose the deployment via a service

57 / 74

Practice -- init-containers
A Python app is containerized in a Docker image mypytonapp, it needs some
modules defined in a requirements.txt file.

Configure an init container that installs the dependencies via a shared volume
in a Pod that runs the Python app

58 / 74

Practice - Deployments
Perform a rolling update of Deployment foo123 by changing the image of
container foo from nginx to runseb/2048

59 / 74

Pratice - Services
Given the manifest for a Pod:

apiVersion: v1
kind: Pod
metadata:
 name: question10
spec:
 containers:
 - name: nginx
 image: nginx

Expose it to the internet by creating a service. Fix any potential issues that
may arise.

60 / 74

Practice - Networking
List the network Policies and figure out why they are not working ?

tip Try configure minikube for testing network policies and run a few tests
from Ahmet's blog.

61 / 74

Practice - CronJob
Write a cronjob manifest that outputs the date every 5 minutes to stdout

62 / 74

Practice - Con�guration
Given a file file.txt containing the sentence I will pass CKAD, mount this file
inside a Pod using a configMap and copy the file from the Pod back to the host.

extra what is the size limit of a ConfigMap ?

63 / 74

Practice - Con�guration
Given a file file.txt containing the sentence I will pass CKAD, mount this file
inside a Pod using a configMap and copy the file from the Pod back to the host.

extra what is the size limit of a ConfigMap ?

Create a secret and mount it inside a Pod using a Volume.

64 / 74

Practice - Con�guration
Given a file file.txt containing the sentence I will pass CKAD, mount this file
inside a Pod using a configMap and copy the file from the Pod back to the host.

extra what is the size limit of a ConfigMap ?

Create a secret and mount it inside a Pod using a Volume.

Do it again but using an environment variable

65 / 74

Practice - Persistency
Create a PVC that requests 500 Megabytes and use this PVC to make the data of
a mysql Pod persistent.

66 / 74

Practice - Monitoring
Find the logs of the Pod called X

extra what would you use to aggregate the logs of all containers ?

67 / 74

Practice - Monitoring
Find the logs of the Pod called X

extra what would you use to aggregate the logs of all containers ?

Among all the Pods running in cluster Y, find the Pod that consumes the most
CPUs

68 / 74

Practice - Security
Write a Dockerfile for an image that can run in a Pod with a securityContext
that does not let run as root.

Write the Pod manifest

69 / 74

Practice - Probes
Come up with an example to showcase the behavior of Liveness and
readinessprobes

70 / 74

Practice - Service Account
Create a namespace

Extract the JWT token of the default service account

Set the kubectl config profile to access the cluster using this new service
account.

Create the RBAC roles to be able to create Pods in the created namespace

71 / 74

Practice - Service Account
Write a toy Python (or your preferred language) app that you containerize
(write a Dockerfile) that needs to call the k8s API server

Demonstrate that with the default service account the app calls fail and that
when you give the service account the proper privileges it runs properly

tip check out the kubectl auth can-i command

72 / 74

Bottom line
Make sure you know vi
Make sure you know your YAML syntax/linting
Make sure you know the structure of API objects
Make sure you know how to navigate the Kubernetes documentation
quickly
Make sure you know kubectl

73 / 74

Thank You
And good luck tomorrow

74 / 74

