CKAD Test Preparatioge OREILLY

- I

CERTIFIED

kubernetes

APPLICATION
DEVELOPER

Y U

OREILLY L

By sebgoa

By Sebastien Goasguen, author of the Docker Cookbook and co-author of
Kubernetes cookbook.

@sebgoa [https:/github.com/triggermesh) @triggermesh

OREILLY"

SERR Doave’
=T b4
’ “‘k \"-_

Kub etes
Cookbook

BUILDING CLOUD NATIVE APPLICATIONS

Sébastien Goasguen

OREILLY’) 7

https://github.com/triggermesh

- I

CERTIFIED

kubernetes

APPLICATION
DEVELOPER

T -

The Cloud Native Computing Foundation hereby certifies that

Sebastien Goasguen

has successfully completed the program
requirements to be recognized as a

Certified Kubernetes Application Developer

July 11, 2018 CKAD-1800-0139-0100

DAN KOHN, EXECUTIVE DIRECTOR DATE OF COMPLETION CERTIFICATE ID NUMBER
CLOUD NATIVE COMPUTING FOUNDATION

OREILLY’ 74

Pre-requisities

minikube , https:/github.com/kubernetes/minikube
or Docker for Desktop (Mac/Windows)

kubectl , https://kubernetes.io/docs/user-guide/prereqs/
git

Manifests here:

https://github.com/sebgoa/oreilly-kubernetes

OREILLY" 4/74

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/user-guide/prereqs/
https://github.com/sebgoa/oreilly-kubernetes

Minikube

Minikube is open source and available on GitHub.

Install the latest release. e.g on OSX:

You will need an "Hypervisor" on your local machine, e.g VirtualBox, KVM,
Fusion

S minikube start

OREILLY’ 5 /74

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube/releases/tag/v0.28.0

Kubernetes Training

Goal: Review of API objects and practice to get ready for CKAD

Agenda
Morning:

e Review of most common API objects
« Focus on the Pod Specification

Afternoon:

e Practice
e Practice

OREILLY" 6174

Borg Heritage

» Borg was a Google secret for a long time.

« Orchestration system to manage all Google applications at scale
» Finally described publicly in 2015

» Paper explains ideas behind Kubernetes

& Research at Google

Home Publications People Teams Outreach Blog Work at Google

Large-scale cluster management at Google with Borg

Venue

Proceedings of the European Conference on

Computer Systems (EuroSys), ACM, Bordeaux,

France (2015)

Publication Year

2015

Authors

Abhishek Verma, Luis Pedrosa, Madhukar R

Korupolu, David Oppenheimer, Eric Tune, John

Wilkes

BibTeX

Abstract

oo

Google's Borg system is a cluster manager that runs hundreds of thousands of jobs, from many
thousands of different applications, across a number of clusters each with up 1o tens of thousands
of machines. It achieves high utilization by combining admission control, efficient task-packing,
over-commitment, and machine sharing with process-level performance isolation. It supports high
availability applications with runtime features that minimize fault-recovery time, and scheduling
policies that reduce the probabllity of correlated failures. Borg simplifies life for its users by
offering a declarative job specification language, name service integration, real-time job
monitering, and tools to analyze and simulate system behavior.

We present a summary of the Borg system architecture and features, important design decisions, a
quantitative analysis of some of its policy decisions, and a qualitative examination of lessons
learned from a decade of operational experience with it

7174

http://research.google.com/pubs/pub43438.html

What is it really ?

« Aresource manager with lots of HA features
» A scheduler to place containers in a cluster
« Deployed as services on VMs or Bare-metal machines

Kubernetes Cluster

Head Node Worker Nodes
:"
; API server kubelet
Scheduler kube_proxy

controller-manager

Possible HA configuration

OREILLY" 8 /74

Minikube

Minikube is open source and available on GitHub.

Desktop / Laptop
VirtualBox / Fusion / KVM ...

OREILLY o /74

https://github.com/kubernetes/minikube

Part |: APl Review

« Pods, ReplicaSets, Deployments
« Secrets, ConfigMaps
e kubectl create and kubectl apply

OREILLY" 10/74

Core Objects

See "Introduction to Kubernetes course"

Namespace (ns) A

9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Quotas
Network Policies
N RBAC
: Deployments
5:)‘) lica Set - Rolling updates
- Rollbacks

<count via label query>

~
\
[
Pods (po)
- Containers Service (svc)
- Volumes
<label selector>

Check API Resources with kubect1

Check it with kubectl:

$ kubectl get pods

$ kubectl get rc
$ kubectl get ns

But there is much more

$ kubectl proxy &

$ curl http://127.0.0.1:8001
{

"paths": [

"/ap-.l_”,

I|/ap_'L/V1ll s

||/apisll’

$ curl http://127.0.0.1:8001/api

OREILLY"

12 /74

Namespaces

Every request is namespaced e.g GET

https:

//192.168.99.100:8443/api/v1/namespaces/default/pods

Namespace A

: !

: !

| Quotas I
Object_A Network Policies

. B RBAC |

: !

l - - - - - - - - - - S A- J

Namespace B

| |
! [Object B] Quotas !
| Network Policies |
! [Object A] RBAC |
| |
1)

13/74

Labels

You will have noticed that every resource can contain labels in its metadata.
By default creating a deployment with kubectl run adds a label to the pods.

apiVersion: vi1
kind: Pod
metadata:

labels:
pod-template-hash: "3378155678"
run: ghost

You can then query by label and display labels in new columns:

$ kubectl get pods -1 run=ghost
NAME READY STATUS RESTARTS AGE
ghost-3378155678-eq516 1/1 Running 0 10m

$ kubectl get pods -Lrun

NAME READY STATUS RESTARTS AGE RUN
ghost-3378155678-eq516 1/1 Running O 10m ghost
nginx-3771699605-4v27e 1/1 Running 1 1h nginx

OREILLY" 1417

Become Friends with Pods

RN

Containers -

...

...

Volumes

— A — >
ConﬂgMap i

OREILLY 15 /74

Kubectl Pod commands

kubectl logs ...
kubectl describe ...
kubectl explain ...

kubectl exec ...
kubectl label ...
kubectl annotate ...

and tricks

kubectl get pods ... -0 json | jq ..

kubectl run ...--dry-run -o json
kubectl get pods --export

OREILLY" 16174

Powerful REST based API

YAML or JSON definitions for objects

$ kubectl --v=9 get pods

You can get every object, as well as delete them

OREILLY e

Exercise

e Use curl to list Pods
e Use curlto create a Pod
e Use curlto delete a Pod

OREILLY" 18174

ResourceQuota Object

Create a oreilly ns from a file:

apiVersion: vi
kind: Namespace

metadata:
name: oreilly

Then create a ResourceQuota to limit the number of Pods

$ cat rq.yaml
apiVersion: vi
kind: ResourceQuota
metadata:

name: object-counts
spec:

hard:

pods: "1"

$ kubectl create -f rqg.yaml --namespace=oreilly

Then test !

OREILLY" 19174

ReplicaSet Object

Same as all Objects. Contains apiVersion, kind, metadata

But also a spec which sets the number of replicas, and the selector. An RC
insures that the matching number of pods is running at all time. The template
section is a Pod definition.

apiVersion: extensions/vibeta
kind: ReplicaSet
metadata:
name: redis
namespace: default
spec:
replicas: 2
selector:
app: redis
template:
metadata:
name: redis
labels:
app: redis
spec:
containers:
- image: redis:3.2

OREILLY"

20 /74

Deployments

Namespace A

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

N
Deployments
Replica Set - Rolling updates
- Rollbacks

<query via label>

\\ Quotas
Network Policies
Pods RBAC
- Containers
- Volumes

OREILLY" 217

Scaling and Rolling update of Deployments

Just like RC, Deployments can be scaled.

$ kubectl scale deployment/nginx --replicas=4
deployment "nginx" scaled

$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 4 4 4 1 12m

What if you want to update all your Pods to a specific image version. latest is
not a version number...

$ kubectl set image deployment/nginx nginx=nginx:1.10 --all

What the RS and the Pods.

$ kubectl get rs --watch
NAME DESIRED CURRENT AGE

nginx-2529595191 0 0 3m
nginx-3771699605 4 4 46s

You can also use kubectl edit deployment/nginx

OREILLY 274

Accessing Services

Now that we have a good handle on creating resources, managing and
inspecting them with kubectl. The elephant in the room is how do you access
your applications ?

The answer is Services, another Kubernetes object. Let's try it:

$ kubectl expose deployment/nginx --port=80 --type=NodePort
$ kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 10.0.0.1 <none> 443/TCP 18h

nginx 10.0.0.112 nodes 80/TCP 5s

$ kubectl get svc nginx -o yaml

apiVersion: vi
kind: Service

spec:
clusterIP: 10.0.0.112
ports:
- nodePort: 31230

$ minikube 1ip
192.168.99.100

ﬁ your browser at http://192.168.99.100:<nodePort>
23 /74

http://kubernetes.io/docs/user-guide/services/

Services Diagram

Backend Pod 1
labels: app=MyApp

Backend Pod 2
labels: app=MyApp

Backend Pod 3
labels: app=MyApp

port: 9376 port: 9376 port: 9376
apiserver
5) proxy to a backend
1) watch Services
and Endpoints kube - proxy

2) open proxy port

and set portal rules

4) redirect to (random)
proxy port

iptables

3) connect to 10.0.0.1:1234

Client

24 /74

Service Types

Services can be of three types:

e ClusterIP
e NodePort
e L.oadBalancer

LoadBalancer services are currently only implemented on public cloud
providers like GKE and AWS. Private cloud solutions also may implement this
service type if there is a Cloud provider plugin for them in Kubernetes (e.g
CloudStack, OpenStack)

ClusterlIP service type is the default and only provides access internally
(except if manually creating an external endpoint).

NodePort type is great for debugging, but you need to open your firewall on
that port (NodePort range defined in Cluster configuration). Not
recommended for public access.

OREILLY 25 /74

Exercise

e Run kubectl proxy
e Open your browser and find the correct URL to access your service

OREILLY" 26174

DNS

A DNS service is provided as a Kubernetes add-on in clusters. On GKE and
minikube this DNS service is provided by default. A service gets registered in
DNS and DNS lookup will further direct traffic to one of the matching Pods via
the ClusterIP of the service.

$ kubectl exec -ti busybox:1.28 -- nslookup nginx
Server: 10.0.0.10
Address 1: 10.0.0.10

Name: nginx
Address 1: 10.0.0.112

$ kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes 10.0.0.1 <none> 443/TCP 19h

nginx 10.0.0.112 nodes 80/TCP 36m

$ kubectl exec -ti busybox -- wget http://nginx

Connecting to nginx (10.0.0.112:80)

index.html 100% |*******************************| 612 0:00:00 ETA

OREILLY 2717

Exercise: WordPress

Create a deployment to run a MySQL Pod.

$ kubectl run mysql --image=mysql:5.5 --env=MYSQL_ROOT_PASSWORD=root

$ kubectl expose deployments mysql --port 3306

And now wordpress:

$ kubectl run wordpress --image=wordpress --env=WORDPRESS DB_HOST=mysql --

env=WORDPRESS_DB_PASSWORD=root
$ kubectl expose deployments wordpress --port 80 --type LoadBalancer

OREILLY"

28 /74

BREAK

OREILLY 29 /74

Part II: Other Objects and a bit more focus on Pods

e DaemonSets

o StatefulSets

e Cronjobs

» Jobs

e Ingress

e Persistent Volume Claims

OREILLY 30 /74

e.g CronJob

A Pod that is run on a schedule

apiVersion: batch/vibetal
kind: CronJob
metadata:

name: hello

spec:
schedule: "*/1 * * * *"
jobTemplate:
spec:
template:

spec:

containers:
- name: hello

image: busybox

args:

- /bin/sh

- -C

- date; echo Hello from the Kubernetes cluster
restartPolicy: OnFailure

OREILLY" 217

\lolumes

Define array of volumes in the Pod spec. Define your volume types.

spec:
contatiners:
- image: k8s.gcr.io/test-webserver

name: test-container
volumeMounts:

- mountPath: /cache
name: cache-volume
volumes:
- name: cache-volume
emptyDir: {}

OREILLY"

32 /74

Using Secrets

To avoid passing secrets directly in a Pod definition, Kubernetes has an API
object called secrets. You can create, get, delete secrets. They can be used in

Pod templates.

$ kubectl get secrets

$ kubectl create secret generic --help
$ kubectl create secret generic mysql --from-literal=password=root

OREILLY" -

ConfigMap

To store a configuration file made of key value pairs, or simply to store a
generic file you can use a so-called config map and mount it inside a Pod

$ kubectl create configmap velocity

The mount looks like this:

spec:
containers:
- image: busybox

volumeMounts:

- mountPath: /velocity
name: test
name: busybox
volumes:
- name: test
configMap:
name: velocity

OREILLY"

--from-file=index.html

34 /74

For persistency use PV and PV(

kubectl get pv
kubectl get pvc

In Minikube dynamic provisioning is setup, you only need to write a volume
claim

kind: PersistentVolumeClaim
apiVersion: vi1
metadata:
name: myclaim
spec:

accessModes:
- ReadWriteOnce

resources:
requests:
storage: 8Gi

OREILLY"

35/74

Init-containers

Maybe you want to do some prep work before starting a container. Prep a file
system, run some provisioning script...They run to completion and then the

app starts.
You can run an initializing container:

apiVersion: vi
kind: Pod
metadata:
name: myapp-pod
labels:
app: myapp
spec:
containers:
- name: myapp-container
image: busybox
command: ['sh', '-c', 'echo The app is running! && sleep 3600']
initContailners:
- name: init-myservice
image: busybox
command: ['sh', '-c', 'until nslookup myservice; do echo waiting for myservic

OREILLY’ 26 /74

Use Volumes with Init-containers

Example the git initializer

apiVersion: vi
kind: Pod
metadata:
name: git-repo-demo
spec:
initContainers:
- name: git-clone
image: alpine/git # Any image with git will do
args:
- clone
- --single-branch
- https://github.com/kubernetes/kubernetes # Your repo
- [repo
volumeMounts:
- name: git-repo
mountPath: /repo
containers:
- name: busybox
image: busybox
args: ['sleep', '100000'] # Do nothing
volumeMounts:
- name: git-repo
mountPath: /repo
volumes:
- name: git-repo
emptyDir: {}

OREILLY"

Requests and Limits

Great example to follow in the docs

apiVersion: vi
kind: Pod
metadata:

name: memory-demo

namespace: mem-example

spec:

containers:

- name: memory-demo-ctr
image: polinux/stress
resources:

limits:
memory: "200Mi"
requests:
memory: "100Mi"
command: ["stress"]
args: ["--vm", "1", "--vm-bytes", "150M", "--vm-hang", "1"]

OREILLY" 2874

https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/

Default Limit Range in a Namespace

You can create default per namespace which will be automatically added in
each Pod manifest.

apiVersion: vi1
kind: LimitRange
metadata:

name: mem-limit-range
spec:

limits:
- default:
memory: 512Mi
defaultRequest:
memory: 256Mi
type: Container

Similar for CPUs And this goes in pair with quotas

OREILLY" 2974

Probes

e Liveness probe to know when to restart a container
« Readiness probe to know when to send traffice to it

Both can be an exec and http call or a tcp socket connection.

spec:
contailners:
- name: liveness
image: k8s.gcr.io/busybox
args:
- /bin/sh
- -C
- touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
livenessProbe:
exec:
command:
- cat
- /tmp/healthy
initialDelaySeconds: 5
periodSeconds: 5

OREILLY"

40/ 74

Relax isolation

Share the process namespace betwen all containers in a Pod

apiVersion: vi

kind: Pod

metadata:
name: nginx

spec:
shareProcessNamespace: true

containers:

- name: nginx
image: nginx

- name: shell
image: busybox

Useful for debugging ...

Container filesystems are visible to other containers in the pod
through the /proc/$pid/root link. This makes debugging easier, but it
also means that filesystem secrets are protected only by filesystem
permissions.

OREILLY" 17

Security Context

Set uid, gid, selinux, fs permissions, capabilities at the Pod or container level.

spec:
securityContext:

runAsNonRoot: true
containers:
- name: nginx

image: nginx

OREILLY"

42 174

ServiceAccount

Pods can talk to the Kubernetes API server using a service account

It used to be that this service account had full privileged access to the API
server(Now you need to grant it privileges to do anything, see RBAC roles
and rolebinding.

A namespace has a default service account. Pods in a namespace will use this
service account. Otherwise create a new service account.

kubectl get ns
kubectl get sa

kubectl create ns kude
kubectl get sa -n kude

And the Pod spec:

apiVersion: vi
kind: Pod
metadata:

name: my-pod
spec:
serviceAccountName: kude

OREILLY" 4374

Network Policies

You need a Networking add-on that has a network policy controller.
Check Ahmet's tutorial https://ahmet.im/blog/kubernetes-network-policy/
And his repo https://github.com/ahmetb/kubernetes-networkpolicy-tutorial

OREILLY 14/74

https://ahmet.im/blog/kubernetes-network-policy/
https://github.com/ahmetb/kubernetes-networkpolicy-tutorial

Deny All Network Policy

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: web-deny-all

spec:
podSelector:
matchLabels:
app: web
ingres: []

OREILLY" 4574

Imperative/ Declarative

See a blog about it

kubectl create ns ghost
kubectl create quota blog --hard=pods=1 -n ghost

kubectl run ghost --image=ghost -n ghost
kubectl expose deployments ghost --port 2368 --type LoadBalancer -n ghost
kubectl run --generator=run-pod/v1l foobar --image=nginx

Get the manifests and become more declarative

kubectl get deployments ghost --export -n ghost -o yaml
kubectl create service clusterip foobar --tcp=80:80 -0 json --dry-run

kubectl replace -f ghost.yaml -n ghost
kubectl apply -f <object>.<yaml, json>

OREILLY" 1674

https://medium.com/bitnami-perspectives/imperative-declarative-and-a-few-kubectl-tricks-9d6deabdde

LUNCH BREAK

- I

CERTIFIED

kubernetes

APPLICATION
DEVELOPER

Y U

OREILLY" 17174

The Exam

» Logistics
« What to expect
 Bit of advice

From https://training.linuxfoundation.org/certification/certified-kubernetes-
application-developer-ckad/

This exam curriculum includes these general domains and their weights on
the exam:

Core Concepts — 13%
Configuration — 18%
Multi-Container Pods — 10%
Observability — 18%

Pod Design - 20%

Services & Networking — 13%
State Persistence — 8%

OREILLY" 1574

https://training.linuxfoundation.org/certification/certified-kubernetes-application-developer-ckad/

Curriculum

13% - Core Concepts

e Understand Kubernetes API primitives

e Create and configure basic Pods

10% Multi-Container Pods

* Understand Multi-Container Pod design patterns
(e.g. ambassador, adapter, sidecare)

O'REILLY"

18% - Configuration

e Understand ConfigMaps

* Understand SecurityContexts

* Define an application's resource requirements
* Create & consume Secrets

* Understand ServiceAccounts

18% - Observability

* Understand LivenessProbes and ReadinessProbes
* Understand container logging
* Understand how to monitor applications in Kubemetes

* Understand debugging in Kubernetes

49 /74

Curriculum

20% - Pod Design 13% - Services & Networking
e Understand how to use Labels, Selectors, ® Understand Services
and Annotations

* Demonstrate basic understanding of NetworkPolicies
* Understand Deployments and how to perform rolling

updates

* Understand Deployments and how to perform rollbacks

* Understand Jobs and CronJobs

8% - State Persistence

¢ Understand PersistentVolumeClaims for storage

OREILLY" 50/74

What to expect

Intense

Some questions are easy some take more time
Know your vi

Look up the documentation and paste

Review the kubectl cheat sheet

OREILLY 517

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

kubect1 Cheat sheet

kubectl config use-context my-cluster-name
kubectl get pods -o wide

kubectl get services --sort-by=.metadata.name
kubectl get pods -o json | jq
kubectl edit

kubectl run -i --tty busybox --image=busybox -- sh

.items[] ...

kubectl port-forward my-pod 5000:6000
kubectl top

kubectl exec

kubectl cp

kubectl scale

kubectl run --dry-run -o json
kubectl get ... -- export

OREILLY" 5 7

Practice - Pods

Create a Pod with name newyork and container image redis

OREILLY" 53 /74

Practice - Pods

Create a Pod with name newyork and container image redis

Create a Pod with name albany a container image busybox that sleeps and
define an environment variable VELOCITY whose value is rocks

OREILLY" oy

Practice - Pods

Create a Pod with name newyork and container image redis

Create a Pod with name albany a container image busybox that sleeps and
define an environment variable VELOCITY whose value is rocks

Create a Pod with two containers, one name foo, the other one named bar .
The first one with the image nginx and the second one with the image redis.
The Pod should be called foobar and have the label foo=bar

OREILLY 55 /74

Practice - Pods

Given the following manifest, set the container resource request for memory
to 128 Mega bytes.

apiVersion: vi1
kind: Pod
metadata:

name: questionl0

spec:
containers:

- name: nginx

image: nginx

Tip: Use the polinux/stress container from the documentation to convince
yourself that it works. i.e run the example in the doc

OREILLY" S6 /74

Practice - Pods

Create a deployment object called foo123 with 2 replicas that uses image
nginx.

Once the pods are running scale the deployment to 4

Expose the deployment via a service

OREILLY 57 /74

Practice -- init-containers

A Python app is containerized in a Docker image mypytonapp, it needs some
modules defined in a requirements. txt file.

Configure an init container that installs the dependencies via a shared volume
in a Pod that runs the Python app

OREILLY" 5574

Practice - Deployments

Perform a rolling update of Deployment foo123 by changing the image of
container foo from nginx to runseb/2048

OREILLY" 59 /74

Pratice - Services

Given the manifest for a Pod:

apiVersion: vi
kind: Pod
metadata:

name: questionl0

spec:
containers:

- name: nginx

image: nginx

Expose it to the internet by creating a service. Fix any potential issues that
may arise.

OREILLY" 50 /7

Practice - Networking

List the network Policies and figure out why they are not working ?

tip Try configure minikube for testing network policies and run a few tests
from Ahmet's blog.

OREILLY" 6174

Practice - CronJob

Write a cronjob manifest that outputs the date every 5 minutes to stdout

OREILLY 62 /74

Practice - Configuration

Given a file file.txt containing the sentence I will pass CKAD, mount this file
inside a Pod using a configMap and copy the file from the Pod back to the host.

extra what is the size limit of a ConfigMap ?

OREILLY" 63 /7

Practice - Configuration

Given a file file.txt containing the sentence I will pass CKAD, mount this file
inside a Pod using a configMap and copy the file from the Pod back to the host.

extra what is the size limit of a ConfigMap ?

Create a secret and mount it inside a Pod using a Volume.

OREILLY’ 6117

Practice - Configuration

Given a file file.txt containing the sentence I will pass CKAD, mount this file
inside a Pod using a configMap and copy the file from the Pod back to the host.

extra what is the size limit of a ConfigMap ?
Create a secret and mount it inside a Pod using a Volume.

Do it again but using an environment variable

OREILLY 65 174

Practice - Persistency

Create a PVC that requests 500 Megabytes and use this PVC to make the data of
a mysql Pod persistent.

OREILLY" 66 /74

Practice - Monitoring

Find the logs of the Pod called X

extra what would you use to aggregate the logs of all containers ?

OREILLY 67 /74

Practice - Monitoring

Find the logs of the Pod called X
extra what would you use to aggregate the logs of all containers ?

Among all the Pods running in cluster v, find the Pod that consumes the most
CPUs

OREILLY 68 /74

Practice - Security

Write a Dockerfile for an image that can run in a Pod with a securityContext
that does not let run as root.

Write the Pod manifest

OREILLY’ 69 /74

Practice - Probes

Come up with an example to showcase the behavior of Liveness and
readinessprobes

OREILLY’ 2017

Practice - Service Account

Create a namespace
Extract the JWT token of the default service account

Set the kubectl config profile to access the cluster using this new service
account.

Create the RBAC roles to be able to create Pods in the created namespace

OREILLY 71174

Practice - Service Account

Write a toy Python (or your preferred language) app that you containerize
(write a Dockerfile) that needs to call the k8s API server

Demonstrate that with the default service account the app calls fail and that
when you give the service account the proper privileges it runs properly

tip check out the kubectl auth can-i command

OREILLY’ 017

Bottom line

Make sure you know vi

Make sure you know your YAML syntax/linting

Make sure you know the structure of API objects

Make sure you know how to navigate the Kubernetes documentation
quickly

e Make sure you know kubectl

OREILLY 73 /74

Thank You

And good luck tomorrow

- I

CERTIFIED

kubernetes

APPLICATION
DEVELOPER

Y U

OREILLY’ e

