
ContainerisationContainerisationContainerisationContainerisation

with Docker & with Docker & with Docker & with Docker &

KubernetesKubernetesKubernetesKubernetes

© 2018. Heptio. All Rights Reserved

Hello !

• I’m Dan !

• Senior Field Engineer at Heptio
VMware

• Ex:
• Heptio
• Docker
• Hewlett-Packard Enterprise
• SkyBet
• European Space Agency
• …

• Still a maintainer and contributor to
various Docker and Moby projects
(mainly GO, but I sometimes write C
(if need be))

• @thebsdbox – for random nonsense

© 2018. Heptio. All Rights Reserved

AgendaAgendaAgendaAgenda

• Where did Docker come from?

• Docker Under the Hood

• Using Docker

• Questions?

© 2018. Heptio. All Rights Reserved

Where did Docker come from?

In the beginning ...

© 2018. Heptio. All Rights Reserved

Where did Docker come from?

Things broke a lot ...

© 2018. Heptio. All Rights Reserved

Where did Docker come from?

Jails Zones Namespaces Docker

VServer cgroups LXC

FreeBSD Jails

expand on Unix

chroot to isolate

files

Linux-VServer

ports kernel

isolation, but

requires

recompilation

Solaris Zones

bring the

concept of

snapshots

Google introduces

Process Containers,

merged as cgroups

RedHat adds user

namespaces, limiting

root access in

containers

IBM creates LXC

providing user tools

for cgroups and

namespaces

Docker provides

simple user tools and

images. Containers

go mainstream

2000

2001

2004

2006

2008

2008

2013

© 2018. Heptio. All Rights Reserved

Docker under the hood

© 2018. Heptio. All Rights Reserved

Docker Installation

• Linux installation(s)

• apt-get install -y docker

• yum install -y docker

• Docker for Mac

• Docker for Windows

• Docker on Windows 10 / 2016 / 2019

© 2018. Heptio. All Rights Reserved

Docker Components

Docker CLI

dockerd

containerd

runc

© 2018. Heptio. All Rights Reserved

Docker Command Line Interface
• docker build build docker image from Dockerfile

• docker run run docker image

• docker logs show log data for a running or stopped container

• docker ps list running containers, -a includes stopped containers

• docker images list all images on the local volume

• docker rm remove a container | docker rmi : remove an image

• docker tag name a docker image

• docker login login to registry

• docker push/pull push or pull volumes to/from Docker Registries

• docker inspect return info/metadata about a Docker object

© 2018. Heptio. All Rights Reserved

Docker Command Line Interface

[dan@docker ~]$ docker run

Docker CLI

/var/run/docker.sock

x.x.x.x:<port>

dockerd

Connects to

Exposes *

* Configured in /etc/docker/json

Docker Daemon

• Provides the ”standard” interaction with

a container platform

• Image download from registries

• Plugin features to extend the

container platform for other

vendors

• In-build orchestration for multiple

docker Engines

• Container build function

containerd

• Manages the full container lifecycle:

• Container execution

• Image transfer/storage

• Presentation of images to the OCI

runtime

• Networking

• Container supervision

runc (or any OCI specific runtime)

• Lowest level component

• Implements an OCI compatible interface

• Implements the namespace isolation that

“defines” a container

• Handles the starting, monitoring and stopping

of a container

All tied together

© 2018. Heptio. All Rights Reserved

Docker Image

/

/bin

/boot

/dev

/etc

/home

/lib64

/mnt

/opt

/var

/usr

/

/bin

/boot

/dev

/etc

/home

/lib64

/mnt

/opt

/var

/usr

© 2018. Heptio. All Rights Reserved

Docker Image

/

/bin

/boot

/dev

/etc

/home

/lib64

/mnt

/opt

/var

/usr

/

/bin

/boot

/dev

/etc

/home

/lib64

/mnt

/opt

/var

/usr

/usr/myapp

/

/usr/myapp

© 2018. Heptio. All Rights Reserved

Docker Image

/

/bin

/boot

/dev

/etc

/home

/lib64

/mnt

/opt

/var

/usr

/

/bin

/boot

/dev

/etc

/etc/ssl.keys

/home

/lib64

/mnt

/opt

/var

/usr

/usr/myapp

/

/usr/myapp

/

/etc/ssl.keys

© 2018. Heptio. All Rights Reserved

Docker Image

/

/bin

/boot

/dev

/etc

/home

/lib64

/mnt

/opt

/var

/usr

/

/bin

/boot

/dev

/etc

/home

/lib64

/mnt

/opt

/var

/usr

/usr/myapp

/

/usr/myapp

/

/etc/ssl.keys

/

/etc/ssl.keys

Container Registry
* Container registries are now standardized through the Open Containers Initiative.

Project_AProject_AProject_AProject_A

Customer_100Customer_100Customer_100Customer_100

App1App1App1App1

App2App2App2App2

Web_tierWeb_tierWeb_tierWeb_tier

App_tierApp_tierApp_tierApp_tier

DB_tierDB_tierDB_tierDB_tier

LatestLatestLatestLatest

5.95.95.95.9

5.85.85.85.8

4.94.94.94.9

LatestLatestLatestLatest

1.01.01.01.0

1.21.21.21.2

1.11.11.11.1

2.02.02.02.0

2.02.02.02.0

NamespaceNamespaceNamespaceNamespace ImageImageImageImage TagTagTagTag

Registry Address/hostnameRegistry Address/hostnameRegistry Address/hostnameRegistry Address/hostname

* If no

hostname,

defaults to

Docker hub

© 2018. Heptio. All Rights Reserved

Pulling an image from a Registry

[dan@docker ~]$ docker pull customer_b/app_tier:2.0

* Above specifies the project(namespace), the image and the specific tag (version) of the

image to be pulled.

What happens if no tag is
specified?

[dan@docker ~]$ docker pull quay.io/customer_a/web_tier:1.0

© 2018. Heptio. All Rights Reserved

What is a container?

dockerhost01.local

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jun12 ? 00:03:09 init [2]

root 2 0 0 Jun12 ? 00:00:00 [kthreadd]

root 3 2 0 Jun12 ? 00:01:44 [ksoftirqd/0]

root 4 2 0 Jun12 ? 00:01:58 [kworker/0:0]

root 5 2 0 Jun12 ? 00:00:00 [kworker/u:0]

root 6 2 0 Jun12 ? 00:00:00 [migration/0]

root 7 2 0 Jun12 ? 00:01:14 [watchdog/0]

root 8 2 0 Jun12 ? 00:00:00 [cpuset]

root 9 2 0 Jun12 ? 00:00:00 [khelper]

root 10 2 0 Jun12 ? 00:00:00 [kdevtmpfs]

root 11 2 0 Jun12 ? 00:00:00 [netns]

root 12 2 0 Jun12 ? 00:00:00 [xenwatch]

root 13 2 0 Jun12 ? 00:00:00 [xenbus]

root 14 2 0 Jun12 ? 00:00:36 [sync_supers]

root 15 2 0 Jun12 ? 00:00:00 [bdi-default]

PID NamespaceNet Namespace

Traffic

Mount Namespace

drwxr-xr-x 23 root root 4096 Apr 1 2014 .

drwxr-xr-x 23 root root 4096 Apr 1 2014 ..

drwxr-xr-x 2 root root 4096 Oct 20 2017 bin

drwxr-xr-x 3 root root 4096 Oct 20 2017 boot

drwxr-xr-x 11 root root 2780 Jun 12 09:37 dev

drwxr-xr-x 80 root root 4096 Jun 12 09:37 etc

drwxr-xr-x 4 root root 4096 Apr 21 2014 home

drwxr-xr-x 13 root root 4096 Apr 10 2014 lib

drwxr-xr-x 2 root root 4096 Oct 20 2017 lib64

drwx------ 2 root root 16384 Apr 1 2014 lost+found

drwxr-xr-x 2 root root 4096 Oct 16 2013 media

drwxr-xr-x 2 root root 4096 Sep 22 2013 mnt

drwxr-xr-x 2 root root 4096 Oct 16 2013 opt

© 2018. Heptio. All Rights Reserved

What is a container?

dockerhost01.local

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jun12 ? 00:03:09 /usr/sbin/apache2 -k start

PID Namespace

Mount Namespace

drwxr-xr-x 23 root root 4096 Apr 1 2014 .

drwxr-xr-x 23 root root 4096 Apr 1 2014 ..

drwxr-xr-x 2 root root 4096 Oct 20 2017 bin

drwxr-xr-x 3 root root 4096 Oct 20 2017 boot

drwxr-xr-x 11 root root 2780 Jun 12 09:37 dev

drwxr-xr-x 80 root root 4096 Jun 12 09:37 etc

drwxr-xr-x 2 root root 4096 Oct 16 2013 opt

[dan@docker ~]$ docker run –d \

-p 8080:80 \

apache2

Net Namespace

:8080

© 2018. Heptio. All Rights Reserved

Using Docker

© 2018. Heptio. All Rights Reserved

Using Docker

Docker FileDocker FileDocker FileDocker File

Docker ComposeDocker ComposeDocker ComposeDocker Compose

Docker CLIDocker CLIDocker CLIDocker CLI

Container OrchestrationContainer OrchestrationContainer OrchestrationContainer Orchestration

© 2018. Heptio. All Rights Reserved

Dockerfile

FROM golang:1.9.2-alpine3.6

RUN go get github.com/thebsdbox/klippy

WORKDIR /go/src/github.com/thebsdbox/klippy

RUN go build -o /bin/klippy

ENTRYPOINT ["/bin/klippy"]

CMD ["--help"]

FROMFROMFROMFROM defines the base image

that the subsequent layers will

build on top of.

The base image scratchscratchscratchscratch is the

smallest base image and allows

(as the name suggests) starting

from scratch.

© 2018. Heptio. All Rights Reserved

Dockerfile

FROM golang:1.9.2-alpine3.6

RUN go get github.com/thebsdbox/klippy

WORKDIR /go/src/github.com/thebsdbox/klippy

RUN go build -o /bin/klippy

ENTRYPOINT ["/bin/klippy"]

CMD ["--help"]

RUNRUNRUNRUN Creates a new empty layer

and will execute a command

upon that layer, any filesystem

changes will be then stored in

the new layer.

In this example go get will pull

go source code from the internet,

which will persist in this new

layer

© 2018. Heptio. All Rights Reserved

Dockerfile

FROM golang:1.9.2-alpine3.6

RUN go get github.com/thebsdbox/klippy

WORKDIR /go/src/github.com/thebsdbox/klippy

RUN go build -o /bin/klippy

ENTRYPOINT ["/bin/klippy"]

CMD ["--help"]

WORKDIR WORKDIR WORKDIR WORKDIR sets the current

working directory for any

subsequent commands

© 2018. Heptio. All Rights Reserved

Dockerfile

FROM golang:1.9.2-alpine3.6

RUN go get github.com/thebsdbox/klippy

WORKDIR /go/src/github.com/thebsdbox/klippy

RUN go build -o /bin/klippy

ENTRYPOINT ["/bin/klippy"]

CMD ["--help"]

ENTRYPOINT ENTRYPOINT ENTRYPOINT ENTRYPOINT specifies the

command that will be ran by

default when the container is

ran.

CMD CMD CMD CMD specifies a command that

is ran when no arguments are

passed to a container.

© 2018. Heptio. All Rights Reserved

Efficient Dockerfile(s)

FROM golang:1.9.2-alpine3.6 AS build

RUN go get github.com/thebsdbox/klippy

WORKDIR /go/src/github.com/thebsdbox/klippy

RUN go build -o /bin/klippy

This results in a single layer image

FROM scratch

COPY --from=build /bin/klippy /bin/klippy

ENTRYPOINT /bin/klippy"]

CMD ["--help"]

A MultiPartMultiPartMultiPartMultiPart docker file allows

building your image from a

number of other images.

Allows the separation of

building/compiling images to the

final application image, creating

smaller images that only have

the assets that are needed.

© 2018. Heptio. All Rights Reserved

Docker CLI

The CLICLICLICLI is standard across all platforms, I’ll be using

Docker for Mac to demonstrate some of the more

useful commands.

Some CLICLICLICLI commands, such as the stacksstacksstacksstacks and

serviceserviceserviceservice commands will only appear once a node or

multiple nodes are in a cluster (also only master

nodes will be able to manage the cluster)

© 2018. Heptio. All Rights Reserved

Docker Compose

Docker composeDocker composeDocker composeDocker compose provides the

capability to orchestrate, build and

deploy an application that is built

from multiple containers.

A compose compose compose compose file is a yaml file that

specifies the various containers that

make up an application, and how

the various containers should

interact.

© 2018. Heptio. All Rights Reserved

Docker Compose

version: "3"

services:

result:

build: ./result

command: nodemon server.js

volumes:

- ./result:/app

ports:

- "5001:80"

- "5858:5858"

redis:

image: redis:alpine

container_name: redis

ports: ["6379"]

db:

image: postgres:9.4

container_name: db

volumes:

- "db-data:/var/lib/postgresql/data"

© 2018. Heptio. All Rights Reserved

Docker Compose example

https://github.com/dockersamples/example-voting-app

© 2018. Heptio. All Rights Reserved

Container Orchestration

Container orchestrators Container orchestrators Container orchestrators Container orchestrators provide the functionality to manage containers over one or more

hosts. When a schedulingschedulingschedulingscheduling request is made (i.e. asking the orchestrator to deploy an

application) the orchestrator will be able to examine the environment and handle the

deployment and placement of containers within the cluster.

Additional features (may) include:

• Provisioning hosts

• Instantiating a set of containers

• Rescheduling failed containers

• Linking containers together through agreed interfaces

• Exposing services to machines outside of the cluster

• Scaling out or down the cluster by adding or removing containers

© 2018. Heptio. All Rights Reserved

Container Orchestrators

© 2018. Heptio. All Rights Reserved

Docker Swarm

Docker SwarmDocker SwarmDocker SwarmDocker Swarm: Produces a single, virtual Docker host by clustering multiple

Docker hosts together.

It presents the same Docker API; allowing it to integrate with any tool that

works with a single Docker host....

On a ManagerManagerManagerManager node:

docker swarm init

...

docker swarm join --token aabbcc 192.168.0.1:2377

...

On a Worker Worker Worker Worker node:

docker swarm join --token aabbcc 192.168.0.1:2377

© 2018. Heptio. All Rights Reserved

Kubernetes

Kubernetes Kubernetes Kubernetes Kubernetes was created by Google and is one of the most feature-rich and

widely used orchestration frameworks; its key features include:

• Automated deployment and replication of containers

• Online scale-in or scale-out of container clusters

• Load balancing over groups of containers

• Rolling upgrades of application containers

• Resilience, with automated rescheduling of failed containers

• Controlled exposure of network ports to systems outside of the cluster

Kubernetes is designed to work in multiple environments, including bare metal,

on-premises VMs, and public clouds.

Most public clouds now have a managed Kubernetes offering.

© 2018. Heptio. All Rights Reserved

Questions?

© 2018. Heptio. All Rights Reserved

AgendaAgendaAgendaAgenda

• What is Kubernetes

• Kubernetes Objects

• Kubernetes Networking

• Kubernetes in Action

What is Kubernetes?What is Kubernetes?What is Kubernetes?What is Kubernetes?

• Container OrchestratorContainer OrchestratorContainer OrchestratorContainer Orchestrator
• Provision, manage, scale applications

• Manage infrastructure resources needed by applications
• Volumes
• Networks
• Secrets
• And much much more ...

• Declarative model
• Provide the "desired state" and Kubernetes will make it happen

• What's in a name?
• Kubernetes (K8s/Kube): ‘helmsman’ in ancient Greek

How was Kubernetes created?How was Kubernetes created?How was Kubernetes created?How was Kubernetes created?

How was Kubernetes created?How was Kubernetes created?How was Kubernetes created?How was Kubernetes created?

• Based on Google’s Borg & Omega

• Open Governance
• Cloud Native Compute Foundation

• Adoption by Enterprise
• RedHat, Microsoft, VMware, IBM, and Amazon

At its core, Kubernetes is a database (etcd).

• The DB represents the user's desired state

• Watchers & controllers react to changes in the DB.

• Watchers attempt to make reality match the desired state

Kubernetes ArchitectureKubernetes ArchitectureKubernetes ArchitectureKubernetes Architecture

The API Server is the HTTP/REST
frontend to the DB

(more on controllers later ...)

DB

API ServerClient/User Watcher Controller

NodeNetworks

Volumes

Secrets

...

Request Monitor

Kubernetes ArchitectureKubernetes ArchitectureKubernetes ArchitectureKubernetes Architecture

• To work with Kubernetes, you use Kubernetes API objects to describe your
cluster’s desired state: what applications or other workloads you want to run,
what container images they use, the number of replicas, what network and disk
resources you want to make available, and more.

• Once you’ve set your desired state, the Kubernetes Control Plane works to make
the cluster’s current state match the desired state. (Source: kubernetes.io)

Kubernetes ArchitectureKubernetes ArchitectureKubernetes ArchitectureKubernetes Architecture

Kubernetes Resource ModelKubernetes Resource ModelKubernetes Resource ModelKubernetes Resource Model
A resource for every purpose

• Config Maps
• Daemon Sets
• DeploymentsDeploymentsDeploymentsDeployments
• Events
• Endpoints
• Ingress
• Jobs
• Nodes
• Namespaces
• PodsPodsPodsPods
• Persistent Volumes
• Replica Sets
• Secrets
• Service Accounts
• ServicesServicesServicesServices
• Stateful Sets, and more...

• Kubernetes aims to have the building blocks on
which you build a cloud native platform.

• Therefore, the internal resource model isisisis the
same as the end user resource model.

Key ResourcesKey ResourcesKey ResourcesKey Resources
• Pod: set of co-located containers

• Smallest unit of deployment
• Several types of resources to help manage them
• Replica Sets, Deployments, Stateful Sets, ...

• Services
• Define how to expose your app as a DNS entry
• Query based selector to choose which pods apply

The big ones:

• PodPodPodPod

• ServiceServiceServiceService

• VolumeVolumeVolumeVolume

• NamespaceNamespaceNamespaceNamespace

Kubernetes ObjectsKubernetes ObjectsKubernetes ObjectsKubernetes Objects

Kubernetes Objects: podsKubernetes Objects: podsKubernetes Objects: podsKubernetes Objects: pods

• The Pod is the core component of Kubernetes

• Collection of 1 or more containers

• Each pod should focus on one container,
however sidecar containers can be added to
enhance features of the core container

spec:
template:
spec:
containers:
- name: drupal
image: cr.io/repo/mydrupal:v1

• A pod is a running process on your cluster.
• the smallest, simplest unit

• may be one container or multiple (tightly-coupled) containers

• often Docker containers, but k8s supports other container runtimes

• Each pod:
• has a unique IP

• can have storage volumes shared with the whole pod

• is managed by controllers

• controllers use pod templates to make pods

Kubernetes Objects: podsKubernetes Objects: podsKubernetes Objects: podsKubernetes Objects: pods

Kubernetes Objects: podsKubernetes Objects: podsKubernetes Objects: podsKubernetes Objects: pods

• Once Kubernetes understands what is in a pod, multiple
management features are available:

• System Performance

• Scale up/down the number of pods based on CPU load or
other criteria

• System Monitoring

• Probes to check the health of each pod

• Any unhealthy ones get killed and new pod is put into service

• Deployments

• Deploy new versions of the container

• Control traffic to the new pods to test the new version

• Blue/Green deployments

• Rolling deployments

• A logical set of pods
• like a microservice

• how groups of pods find each other (e.g., how frontends find backends)

• Services:
• have their IPs (sometimes called cluster-IP) managed by Kubernetes (although

you can manage it yourself)

• can provide access to pods, but also to outside services

• are discoverable, and create environment variables

Kubernetes Objects: servicesKubernetes Objects: servicesKubernetes Objects: servicesKubernetes Objects: services

Kubernetes ObjectsKubernetes ObjectsKubernetes ObjectsKubernetes Objects: services: services: services: services

• Kubernetes Services are used to control
communications with the pods

• Load balance the requests

• Don’t send traffic to the unhealthy ones

• Only talk to the correct version

apiVersion: v1
kind: Service
metadata:

name: drupal
spec:

selector:
app: drupal

ports:
- name: http-port

port: 80
type: LoadBalancer

Kubernetes Objects: servicesKubernetes Objects: servicesKubernetes Objects: servicesKubernetes Objects: services

• With the Service architecture Kubernetes handles things that
you often might have to worry about

• Service discovery

• Load balancing

• Scaling

• Service discovery allows each pod just needs to call the
name of the service it wants to talk to

• Services have multiple options

• Session based load balancing

• Single port based services

• External Services

• The Service architecture of Kubernetes can be scaled up to
handle as many services as you would like for your system

• a directory, usually with data in it, accessible to containers in a pod

• each container in the pod must specify what volumes and where to
mount them

• lots of different kinds of volumes, some provider-specific!

Kubernetes Objects: volumesKubernetes Objects: volumesKubernetes Objects: volumesKubernetes Objects: volumes

• multiple virtual clusters in the same physical cluster

• provide scope for names: names in each namespace are unique

• can be used to divide resources across users

• you don’t need namespaces just to differentiate different versions of
the same software: use labels instead

Kubernetes Objects: namespacesKubernetes Objects: namespacesKubernetes Objects: namespacesKubernetes Objects: namespaces

• DeploymentsDeploymentsDeploymentsDeployments
• use instead of ReplicaSets

• describe the desired state, and the controller makes it happen in a controlled way

• can be versioned for easy rollback

• give status updates for monitoring (progressing, complete, fail to progress)

• StatefulSetsStatefulSetsStatefulSetsStatefulSets
• manages the deployment and scaling of a set of pods, and provides guarantees about the ordering and
uniqueness of these pods

• use when you need stable ids, persistent storage, or ordered creation or deletion

• DaemonSetsDaemonSetsDaemonSetsDaemonSets
• runs a copy of a pod in all nodes

• used for logging, etc.

• JobsJobsJobsJobs
• creates one or more pods, that run and terminate

Kubernetes ControllersKubernetes ControllersKubernetes ControllersKubernetes Controllers

Kubernetes ClientKubernetes ClientKubernetes ClientKubernetes Client

• CLI tool to interact with Kubernetes cluster

• Platform specific binary available to download
• https://kubernetes.io/docs/tasks/tools/install-kubectl

• The user directly manipulates resources via json/yaml

$ kubectl (create|get|apply|delete) -f myResource.yaml

Kubernetes NetworkingKubernetes NetworkingKubernetes NetworkingKubernetes Networking
Type/FeaturesType/FeaturesType/FeaturesType/Features L2L2L2L2 L3L3L3L3 OverlayOverlayOverlayOverlay CloudCloudCloudCloud

SummarySummarySummarySummary Pods

communicate

using Layer 2

Pod traffic is

routed over

underlay

network

Pod traffic is

encapsulated in an

overlay network and uses

the underlay network

Pod traffic is

routed in a cloud

virtual network

Underlying Underlying Underlying Underlying

TechnologyTechnologyTechnologyTechnology

L2 ARP,

Broadcast

Routing

protocols

such as BGP

VXLAN Cloud fabric

EncapsulationEncapsulationEncapsulationEncapsulation None None Overlay None

ExamplesExamplesExamplesExamples Calico Flannel, Weave GKS, ACS, AKS

Kubernetes NetworkingKubernetes NetworkingKubernetes NetworkingKubernetes Networking
FeaturesFeaturesFeaturesFeatures NodePortNodePortNodePortNodePort Load BalancerLoad BalancerLoad BalancerLoad Balancer IngressIngressIngressIngress

SummarySummarySummarySummary Service is

exposed using a

reserved port in

all nodes of

cluster(Default:

32000-32767)

Typically

implemented as

network load

balancer

Typically implemented as http

load balancer

IP AddressIP AddressIP AddressIP Address Node IP is used

for external

communication

Each service

needs to have

own external IP

Many services can share same

external IP, uses path based

demux

Use CaseUse CaseUse CaseUse Case Testing L3 Services L7 Services

ExamplesExamplesExamplesExamples GKE Network

Load balancer

Nginx, Contour

NodePortNodePortNodePortNodePort apiVersion: v1

kind: Service

metadata:

name: productpage

labels:

app: productpage

spec:

type: NodePort

ports:
- port: 30000

targetPort: 9080

selector:

app: productpage

Load BalancerLoad BalancerLoad BalancerLoad Balancer
apiVersion: v1

kind: Service

metadata:

name: productpage

labels:

app: productpage

spec:

type: LoadBalancer

ports:
- port: 80

targetPort: 9080

selector:

app: productpage

Load BalancerLoad BalancerLoad BalancerLoad Balancer
apiVersion: extensions/v1beta1

kind: Ingress    

metadata:

name: gateway

spec:

backend:

     serviceName: productpage

servicePort: 9080

rules:

     - host: mydomain.com

http:

     paths:

     - path: /productpage

backend:

     serviceName: productpage

servicePort: 9080

Under the coversUnder the coversUnder the coversUnder the covers

1. User via "kubectlkubectlkubectlkubectl" deploys a new application

2. API server receives the request and
stores it in the DB (etcdetcdetcdetcd)

3. Watchers/controllers detect the resource
changes and act upon it

4.4.4.4. ReplicaSetReplicaSetReplicaSetReplicaSet watcher/controller detects the
new app and creates new pods to match
the desired # of instances

5. Scheduler assigns new pods to a kubeletkubeletkubeletkubelet

6.6.6.6. KubeletKubeletKubeletKubelet detects pods and deploys them
via the container running (e.g. Docker)

7.7.7.7. KubeproxyKubeproxyKubeproxyKubeproxy manages network traffic
for the pods – including service discovery
and load-balancing

Node
Node

Pod

Base OS/Kernel

Docker

Engine

Images

LibertyUbuntu

Kublet
Kube-

Proxy

Pod/Service

C C C

Master

API

Server

Controllers

Replication

Endpoints

...

Kub Client

(kubectl)

deployment.yml

Storage

(etcd)

7

1

2

3

4

6

Scheduler

5

Kubernetes in Action!Kubernetes in Action!Kubernetes in Action!Kubernetes in Action!

Where is Kubernetes?Where is Kubernetes?Where is Kubernetes?Where is Kubernetes?

• Main Website - http://kubernetes.io

• Source Code - https://github.com/kubernetes

• YouTube - https://www.youtube.com/channel/UCZ2bu0qutTOM0tHYa_jkIwg

Getting KubernetesGetting KubernetesGetting KubernetesGetting Kubernetes

• Azure Kubernetes ServiceAzure Kubernetes ServiceAzure Kubernetes ServiceAzure Kubernetes Service

• Amazon Elastic Container Service for KubernetesAmazon Elastic Container Service for KubernetesAmazon Elastic Container Service for KubernetesAmazon Elastic Container Service for Kubernetes

• Google Kubernetes EngineGoogle Kubernetes EngineGoogle Kubernetes EngineGoogle Kubernetes Engine

• Digital Ocean KubernetesDigital Ocean KubernetesDigital Ocean KubernetesDigital Ocean Kubernetes

ClusterClusterClusterCluster----APIAPIAPIAPI

•A management framework to handle day 1 and 2 operations for kubernetes

cluster

• Day 1) Bringing up a cluster

• Solves from 0 to Kubernetes

• Day 2) Managing a cluster

• Managing in an idiomatic kubernetes way

• Upgrades

• Scaling

• Standardizing a fragmented ecosystem

• Many tools, all with varying scope and user experience

•Experimenting still!

KubevirtKubevirtKubevirtKubevirt

CNCFCNCFCNCFCNCF
* Cloud Native Computing Foundation

© 2018. Heptio. All Rights Reserved

© 2018. Heptio. All Rights Reserved

Questions?

© 2018. Heptio. All Rights Reserved

Thankyou !

