hhhhhh

Containerisation
with Docker &
Kubernetes

Hello ! H

heptio

e I'mDan!

« Senior Field Engineer at Heptio
VMware

 Ex: _

Heptio

Docker _
Hewlett-Packard Enterprise
SkyBet

European Space Agency

« Still a maintainer and contributor to
various Docker and Moby projects
mainly GO, but | sometimes write C
if need be))

e« (@thebsdbox — for random nonsense

Agenda

* Where did Docker come from?
e Docker Under the Hood

* Using Docker

* Questions?

Where did Docker come from? E

dotCloud

Where did Docker come from?

Things broke a lot

192.168.137.101 - Pu

l--> Finished Dependency Resolution

java=1.4.2-gcj-compat=1.4.2.0-40jpp.115.i386 from base has depsolving problems
-=> Missing Dependency: /usr/bin/rebuild-security-providers is needed by packa

26 (base)

java-1.4.2-gcj-compat-1.4.2.0-403pp.115.i386 from base has depsolving procblems
--> Missing Dependency: /usr/bin/rebuild-security-providers is needed by pack:

86 (base)]

[Exror: Missing Dependency: /usr/bin/rebuild-security-providers is needed by pac

386 (base)

You could try using --skip-broken to work around the problem

You could try running: package-cleanup --problems

package-cleanup --dupes

rpm -Va --nofiles --nodiges

heptio

Where did Docker come from?

heptio

FreeBSD Jails Solaris Zones RedHat adds user Docker provides
expand on Unix bring the namespaces, limiting simple user tools and
chroot to isolate 2001 concept of 2006 root access in 2008 images. Containers

g0 mainstream

files snapshots containers
“\
\‘“«r‘

solaris Coogle @ rednat

2000 Linux-VServer 2004 Google introduces 2008 IBM creates LXC 2013
ports kernel Process Containers, providing user tools
isolation, but merged as cgroups for cgroups and
requires namespaces

recompilation

Docker under the hood H

heptio

CONTAINER CONTAINER

Tomcat PHP

Java MySQL

Docker Installation

Linux installation(s)

* apt—get install -y docker
* yum 1nstall -y docker

Docker for Mac
Docker for Windows

Docker on Windows 10 / 2016 / 2019

heptio

Docker Components

Docker CLI

dockerd

contalinerd

runc

E

heptio

Docker Command Line Interface H

* docker
* docker
* docker
* docker
* docker
* docker
* docker
* docker
* docker

* docker

build
run
logs
Ps
images
rm
tag
login

push/pull

inspect

heptio
build docker image from Dockerfile

run docker image

show log data for a running or stopped container

list running containers, —a includes stopped containers

list all images on the local volume

remove a container | docker rmi :remove animage
name a docker image

login to registry

push or pull volumes to/from Docker Registries

return info/metadata about a Docker object

Docker Command Line Interface H

heptio

o O
[dan@docker ~]$ docker run

/var/run/docker.sock
Connects to

Docker CLI dockerd

Exposes *
X.X.X.xX:<port>

* Configured in /etc/docker/json

LTI

Docker Daemon

Docker API

Distribution

Containerd

Docker CLI

Docker Engine

Orchestration

Docker Build
(BuildKit)

Volumes

Networking

Provides the “standard” interaction with
a container platform

* Image download from registries
* Plugin features to extend the
container platform for other

vendors

* In-build orchestration for multiple
docker Engines

e Container build function

E

heptio

containerd

* Manages the full container lifecycle:

Container execution
Image transfer/storage

Presentation of images to the OCI
runtime

Networking

Container supervision

containerd

<

ContainerService
Get
Update
Pause
Resume
Start
StartProcess
GetProcess
SignalProcess
GetProcess
DeleteProcess
ListProcesses

ExecutionService
Create
Delete
List

. . X

root_file system container.json

[

heptio

runc (or any OCI specific runtime) H

heptio

* Lowest level component
e Implements an OCl compatible interface

* Implements the namespace isolation that
“defines” a container

* Handles the starting, monitoring and stopping
of a container

_ﬁﬁ | il; T |
"r‘l"_-.'; \
) L ;

All tied together H

heptio

N Same Docker Ul and commands
[Docker En gine] User interacts with the Docker Engine
[containerd] Engine communicates with containerd

e

I R RN
[runc] [runc] [containerd spins up runc or other OCI
compliant runtime to run containers

Docker Image

heptio

Docker Image

/bin
/boot
/dev
/etc
/home
/1lib64
/mnt
/opt
/var

/usr
/usr/myapp

heptio

Docker Image

.
.

heptio

/bin

/boot

/dev

/etc
/etc/ssl.keys
/home
/1ib64
/mnt

/opt

/var

/usr
/usr/myapp

Docker Image

/bin
/boot
/dev
/etc
/home
/1lib64
/mnt
/opt
/var

/usr
/usr/myapp

heptio

Container Registry

* Container registries are now standardized through the Open Containers Initiative.

Project_A

App2

Registry Address/hostname
Customer_100 Web_tier

App_tier
*If no
hostname, DB_tier
defaults to
Docker hub Namespace Image

heptio

Latest,
5.9
5.8
4.9

Latest
1.0

1.2
i

2.0

2.0

Tag

Pulling an image from a Registry H

heptio

® O
[dan@docker ~]% docker pull quay.io/customer a/web tier:1.0

[dan@docker ~]% docker pull customer b/app tier:2.0

* Above specifies the project(namespace), the image and the specific tag (version) of the
image to be pulled.

What happens if no tag is
specified?

What is a container? H

heptio

dockerhost01.local

What is a container? H

heptio

PID Namespace

[dan@docker ~]$ docker run -d \
-p 8080:80 \

apache2

Mount Namespace

- >
:8080

Net Namespace

‘N::;e A‘tllllllllllllllllllllllllllll{!li" $Eb~ -

docker

dockerhost01.local

Using Docker

Using Docker H

heptio

Docker File Docker CLI

Docker Compose Container Orchestration

Dockerfile

FROM defines the base image
that the subsequent layers will
build on top of.

The base image scratch is the
smallest base image and allows
(as the name suggests) starting
from scratch.

FROM golang:1.9.2-alpine3.6
RUN go get github.com/thebsdbox/klippy

WORKDIR /go/src/github.com/thebsdbox/klippy

RUN go build -o /bin/klippy

ENTRYPOINT ["/bin/klippy"]
CMD ["--help"]

heptio

Dockerfile

RUN Creates a new empty layer
and will execute a command
upon that layer, any filesystem
changes will be then stored in
the new layer.

In this example go get will pull
go source code from the internet,
which will persist in this new
layer

FROM golang:1.9.2-alpine3.6

RUN go get github.com/thebsdbox/klippy

WORKDIR /go/src/github.com/thebsdbox/klippy

RUN go build -o /bin/klippy

ENTRYPOINT ["/bin/klippy"]
CMD ["--help"]

heptio

Dockerfile

WORKDIR sets the current
working directory for any
subsequent commands

FROM golang:1.9.2-alpine3.6
RUN go get github.com/thebsdbox/klippy

WORKDIR /go/src/github.com/thebsdbox/klippy

RUN go build -o /bin/klippy

ENTRYPOINT ["/bin/klippy"]
CMD ["--help"]

heptio

Dockerfile

ENTRYPOINT specifies the
command that will be ran by
default when the container is
ran.

CMD specifies a command that
is ran when no arguments are
passed to a container.

FROM golang:1.9.2-alpine3.6
RUN go get github.com/thebsdbox/klippy
WORKDIR /go/src/github.com/thebsdbox/klippy

RUN go build -o /bin/klippy

ENTRYPOINT ["/bin/klippy"]
CMD ["--help"]

heptio

Efficient Dockerfile(s) H

heptio

FROM golang:1.9.2-alpine3.6 AS build A MultiPart docker file allows
building your image from a
RUN go get github.com/thebsdbox/klippy number of other images

WORKDIR /go/src/github.com/thebsdbox/klippy
RUN go build -o /bin/klippy

Allows the separation of

: : , , building/compiling images to the
This results in a single layer image final I . . .
FROM scratch Inal application image, creating

COPY --from=build /bin/klippy /bin/klippy smaller images that only have
the assets that are needed.
ENTRYPOINT /bin/klippy"]

CMD ["--help"]

Docker CLI

heptio

The CLI is standard across all platforms, I'll be using
Docker for Mac to demonstrate some of the more
useful commands.

Some CLI commands, such as the stacks and
service commands will only appear once a node or
multiple nodes are in a cluster (also only master
nodes will be able to manage the cluster)

Docker Compose

heptio

Docker compose provides the
capability to orchestrate, build and
deploy an application that is built
from multiple containers.

A compose file is a yam1 file that
specifies the various containers that
make up an application, and how
the various containers should
interact.

OO M/
(CD
W

Docker Compose H

heptio

version: "3"

services:
result:
build: ./result
command: nodemon server.js
volumes:
- ./result:/app
ports:
"5001:80"
"5858:5858"

redis:
image: redis:alpine
container_name: redis
ports: ["6379"]

db:
image: postgres:9.4
container_name: db
volumes:
- "db-data:/var/lib/postgresql/data"

Docker Compose example E

hhhhhh
voting-app result-app
Python Node.js

https://github.com/dockersamples/example-voting-app

Container Orchestration H

heptio

Container orchestrators provide the functionality to manage containers over one or more
hosts. When a scheduling request is made (i.e. asking the orchestrator to deploy an
application) the orchestrator will be able to examine the environment and handle the
deployment and placement of containers within the cluster.

Orchestrator

Additional features (may) include:

* Provisioning hosts / l \

* Instantiating a set of containers
* Rescheduling failed containers
e Linking containers together through agreed interfaces Node Node Node

e Exposing services to machines outside of the cluster

e Scaling out or down the cluster by adding or removing containers

Container Orchestrators

Docker Swarm H

heptio

Docker Swarm: Produces a single, virtual Docker host by clustering multiple
Docker hosts together.

It presents the same Docker API; allowing it to integrate with any tool that
works with a single Docker host.

On a Manager node:
docker swarm init

docker swarm join —-—-token aabbcc 192.168.0.1:2377

On a Worker node:

docker swarm join —--token aabbcc 192.168.0.1:2377

Kubernetes H

heptio

Kubernetes was created by Google and is one of the most feature-rich and
widely used orchestration frameworks; its key features include:

* Automated deployment and replication of containers

* Online scale-in or scale-out of container clusters

* Load balancing over groups of containers

* Rolling upgrades of application containers

* Resilience, with automated rescheduling of failed containers

* Controlled exposure of network ports to systems outside of the cluster

Kubernetes is designed to work in multiple environments, including bare metal,
on-premises VMs, and public clouds.

Most public clouds now have a managed Kubernetes offering.

Questions?

Agenda

 What is Kubernetes
* Kubernetes Objects

* Kubernetes Networking

e Kubernetes in Action

What is Kubernetes?

* Container Orchestrator
* Provision, manage, scale applications

 Manage infrastructure resources needed by applications
* Volumes
* Networks
* Secrets
* And much much more ...

* Declarative model
* Provide the "desired state" and Kubernetes will make it happen

 What's in a name?
* Kubernetes (K8s/Kube): ‘helmsman’ in ancient Greek

How was Kubernetes created?

How was Kubernetes created?

* Based on Google’s Borg & Omega

 Open Governance
* Cloud Native Compute Foundation

* Adoption by Enterprise
 RedHat, Microsoft, VMware, IBM, and Amazon

Kubernetes Architecture H

At its core, Kubernetes is a database (etcd).

 The DB represents the user's desired state
 Watchers & controllers react to changes in the DB.
* Watchers attempt to make reality match the desired state

Kubernetes Architecture H

heptio

[Client/User)[API Server](WatcherControIIer]
Request Monitor \

v /\

Networks Node
Volumes

Secrets

|\

The API Server is the HTTP/REST
frontend to the DB

(more on controllers later ...)

Kubernetes Architecture H

* To work with Kubernetes, you use Kubernetes APl objects to describe your
cluster’s desired state: what applications or other workloads you want to run,
what container images they use, the number of replicas, what network and disk
resources you want to make available, and more.

* Once you’ve set your desired state, the Kubernetes Control Plane works to make
the cluster’s current state match the desired state. (Source: kubernetes.io)

E

Kubernetes Resource Model

A resource for every purpose

* Config Maps * Kubernetes aims to have the building blocks on
« Daemon Sets which you build a cloud native platform.

* Deployments

* Events * Therefore, the internal resource model is the

* Endpoints same as the end user resource model.

* Ingress

* Jobs Key Resources

* Nodes * Pod: set of co-located containers
 Namespaces * Smallest unit of deployment

e Pods * Several types of resources to help manage them

' * Replica Sets, Deployments, Stateful Sets, ...
* Persistent Volumes P ploy

* Replica Sets

e Services
* Secrets * Define how to expose your app as a DNS entry
* Service Accounts + Query based selector to choose which pods apply
» Services
» Stateful Sets, and more...

Kubernetes Objects

The big ones:

e Pod
e Service

e Volume

* Namespace

Kubernetes Objects: pods E

heptio

Drupal Pod R .
@ v | e The Pod is the core component of Kubernetes

e Collection of 1 or more containers

* Each pod should focus on one container,
however sidecar containers can be added to
enhance features of the core container

spec:
template:
spec:

containers:
- name: drupal
image: cr.io/repo/mydrupal:vi

Kubernetes Objects: pods H

* A pod is a running process on your cluster.

* the smallest, simplest unit
* may be one container or multiple (tightly-coupled) containers
» often Docker containers, but k&8s supports other container runtimes

e Each pod:

* has a unique IP
e can have storage volumes shared with the whole pod

* is managed by controllers
e controllers use pod templates to make pods

_ﬁﬁ | il; T |
"r‘l"_-.'; \
) L ;

p

Kubernetes Objects: pods

Drupal Pod

& v

Drupal Pod

W@ v

Drupal Pod

W@ v

A

A

Once Kubernetes understands what is in a pod, multiple
management features are available:

System Performance

* Scale up/down the number of pods based on CPU load or
other criteria

System Monitoring
* Probes to check the health of each pod
* Any unhealthy ones get killed and new pod is put into service

Deployments
* Deploy new versions of the container
* Control traffic to the new pods to test the new version
* Blue/Green deployments
* Rolling deployments

heptio

Kubernetes Objects: services H

* A logical set of pods
* like a microservice
* how groups of pods find each other (e.g., how frontends find backends)

* Services:

* have their IPs (sometimes called cluster-IP) managed by Kubernetes (although
you can manage it yourself)

e can provide access to pods, but also to outside services
* are discoverable, and create environment variables

Kubernetes Objects: services H

Drupal Pod
L

Drupal Pod
L

Drupal Pod

LXN

[

Y

Drupal Service

 Kubernetes Services are used to control
communications with the pods

* Load balance the requests
* Don’t send traffic to the unhealthy ones
* Only talk to the correct version

apiVersion: v1
kind: Service
metadata:

name: drupal
spec:

selector:
app: drupal
ports:
- name: http-port
port: 80
type: LoadBalancer

Kubernetes Objects: services H

Drupal Pod

*"w

™

Drupal Pod

& v

Drupal Pod

& v

Redis Pod

“rw

Ve

Y

Drupal Service

Redis Service

<

&

=
D
)
o

™

7

With the Service architecture Kubernetes handles things that
you often might have to worry about

* Service discovery
* Load balancing
* Scaling

Service discovery allows each pod just needs to call the
name of the service it wants to talk to

Services have multiple options
* Session based load balancing
* Single port based services
* External Services

The Service architecture of Kubernetes can be scaled up to
handle as many services as you would like for your system

Kubernetes Objects: volumes H

* a directory, usually with data in it, accessible to containers in a pod

e each container in the pod must specify what volumes and where to
mount them

* |ots of different kinds of volumes, some provider-specific!

Kubernetes Objects: namespaces H

* multiple virtual clusters in the same physical cluster
* provide scope for names: names in each namespace are unique
* can be used to divide resources across users

e you don’t need namespaces just to differentiate different versions of
the same software: use labels instead

Kubernetes Controllers H

Deployments
* use instead of ReplicaSets
» describe the desired state, and the controller makes it happen in a controlled way
* can be versioned for easy rollback
* give status updates for monitoring (progressing, complete, fail to progress)

StatefulSets

* manages the deployment and scaling of a set of pods, and provides guarantees about the ordering and
uniqueness of these pods

* use when you need stable ids, persistent storage, or ordered creation or deletion

DaemonSets
* runs a copy of a pod in all nodes
» used for logging, etc.

Jobs
* creates one or more pods, that run and terminate

\ X \;\
\ \ NS
N A\ %

Kubernetes Client

* CLI tool to interact with Kubernetes cluster

» Platform specific binary available to download
* https://kubernetes.io/docs/tasks/tools/install-kubectl

* The user directly manipulates resources via json/yaml

$ kubectl (create]|get|applyldelete) —-f myResource.yaml

heptio

Kubernetes Networking

Summary Pods Pod trafficis Pod traffic is Pod traffic is
communicate routedover encapsulatedin an routed in a cloud
using Layer 2 underlay overlay network and uses virtual network

network the underlay network

Underlying L2 ARP, Routing VXLAN Cloud fabric

Technology Broadcast protocols

such as BGP
Encapsulation None None Overlay None

Examples Calico Flannel, Weave GKS, ACS, AKS

Kubernetes Networking

Summary Service is Typically Typically implemented as http
exposed using a implemented as load balancer
reserved port in network load

all nodes of balancer
cluster(Default:
32000-32767)
IP Address Node IP is used Each service Many services can share same
for external needs to have external IP, uses path based

communication own external IP demux

Use Case Testing L3 Services L7 Services

Examples GKE Network Nginx, Contour
Load balancer

heptio

NodePort

Sevvice

\;

Yubernetes cluster

M

M

Port 30000 Port/ 30000 port.Soooo

VM

\ Troffic |

apiVersion: v1
kind: Service
metadata:

name: productpage

labels:

app: productpage

spec:

type: NodePort

ports:
- port:

targetPort:
selector:

app: productpage

heptio

Load Balancer
T\mf{ic

|

_oaé Rolancer

Sevvice

< VN

Kubernetes cluster

_——

apiVersion: v1
kind: Service
metadata:

name: productpage

labels:

app: productpage

spec:

type: LoadBalancer

ports:
- port:

targetPort:

selector:

app: productpage

heptio

Load Balancer

apiVersion: extensions/vibetal

kind: Ingress

metadata:
TMH\[C name: gateway
| spec:
‘Y\PSS 1 backend:
serviceName: productpage
—foo.mwjt\ma\n Com m\j&maiﬂ.(am/‘mf Oﬂq\?r servicePort:
/ rules:
'/ \, - host: mydomain.com
Service Service Service http:
J |,/ ﬁ\ / dfji paths:
fod - path: /productpage
Kubernetes Cluster backend:

serviceName: productpage

servicePort: 9080

Under the covers

1. User via "kubectl" deploys a new application [
(kubectl)

2. APl server receives the request and
stores it in the DB (etcd)

@ deployment.yml
3. Watchers/controllers detect the resource

changes and act upon it / AVPI }_[— @ fv\ 0 Kubl:ﬂ Cube. ?\

Kub Client J

4. ReplicaSet watcher/controller detects the Server (etcd) Proxy
new app and creates new pods to match N)~ \ z “,

the desired # of instances 4 3 [Ppod/service

Controllers Docker

5. Scheduler assigns new pods to a kubelet é‘ged“'ef F;ﬂgsrﬁ: Engine .. .
6. Kubelet detects pods and deploys them

_ [Base OS/Kernel

. : :]
via the container running (e.g. Docker) \ oter / \ e /
7. Kubeproxy manages network traffic

for the pods - including service discovery
and load-balancing

Kubernetes In Action!

Where is Kubernetes?

e Main Website - http://kubernetes.io

* Source Code - https://github.com/kubernetes

* YouTube - https://www.youtube.com/channel/UCZ2buOqutTOMOtHYa_jklws

Getting Kubernetes

& Welcome X

@ Docker is now up and running!

Open your favorite terminal and start
typing Docker commands.

Y Microsoft PowerShell a

> docker run

Login with your Docker ID:

Docker ID
Password

If you don't have a Docker ID yet, you
can create one on cloud.docker.com

We send usage statistics, check your privacy settings,

heptio

pG & DRop ‘

=m

Docker.app Applications

Azure Kubernetes Service
Amazon Elastic Container Service for Kubernetes
Google Kubernetes Engine

Digital Ocean Kubernetes

Cluster-API

*A management framework to handle day 1 and 2 operations for kubernetes
cluster
 Day 1) Bringing up a cluster
e Solves from O to Kubernetes
 Day 2) Managing a cluster
* Managing in an idiomatic kubernetes way
* Upgrades
e Scaling
« Standardizing a fragmented ecosystem
* Many tools, all with varying scope and user experience
*Experimenting still!

[Provider Configuration

L LI L B L B B

L L B B B B I B B O B B

Infrastructure Providers

Cloud, On-Prem, Bare Metal
Potential Providers =>

. @
AWS Azure GCP

)| vimware

i API Server + Controllers

vmware Bare Metal
Bootstrapping Machine
*** NOTE: can be run locally, on a VM, and later pivoted to a cluster ***
Provisions =
Bootstrapping
Machine Machine Controller
T _— — (o]
Machine
MachineSet

Provider

Machine

Actuator

cluster.yam

Manage Clusters
and Machines

¥ Kubernetes Cluster A

machines.yaml

L L B B B B B N B I B B
L L B B B B B B B N B B BB B B B B L B

-

kubeadm

i can be pivoted to master Creates Machines

after '?OOSU{JD'DHTU Bootstraps cluster
Upgrades Cluster
kubeadm
-
Node Machines

heptio

Kubevirt

&

Leverage KubeVirt and Kubernetes to
manage virtual machines for impractical-to-
containerize apps.

5
.

Combine existing virtualized workloads with
new container workloads on the one
platform.

Support development of new microservice
applications in containers that interact with
existing virtualized applications.

heptio

heptio

CNCF

* Cloud Native Computing Foundation

Greyed 1og04 are rot open source

Serverless

Kubernetes Certified Service Provider

Service Mesh

work
Key Management

LINKERD

Continuous Integration & Delivery
Cloud-Native Netw

API Gateway

A=)
y—
(8]
=
(8]
—
©
()]
Q
©
o
(]
o
=
-
3]
=
=]
(8]
©
e
Q
—
c
()]
L=
+
()]
)]
w

@
)
g
E
L
P
=
&3
‘@
[=]
c
]
&
o
o
g
<

Security & Compliance

Service Proxy

CLOUD NATIVE

Container Runtime

Landscape
2t vaapoine /AMPify

e

a map m CLOUD NATIVE

terrain
CNCF Projects

representing a particularly well-traveled

Streaming & Messaging
Remote Procedure Call

with

Container Registry

intended as
through the]
of cloud native teahno_logr‘es. There are

'E This landscape is ir
application,

Coordination & Service Discovery

Database
Cloud-Native Storage

Automation & Configuration

Scheduling & Orchestration

Juawabeuepy .
wawdojaaaq pue uoniuyaq ddy 3 UOREISAYRIO awnuny Bujuoisiroid pPNoID

CNCF Cloud Native Landscape
2019-02-26T06:38:23Z b4139b2

Questions?

Thankyou !

