
DEVOPS

GIT:-
Git is a distributed version-control system for tracking changes in source
code during software development. It is designed for coordinating work
among programmers, but it can be used to track changes in any set of files. Its
goals include speed, data integrity, and support for distributed, non-linear
workflows.

Git was created by Linus Torvalds in 2005 for development of the Linux kernel,
with other kernel developers contributing to its initial development.Its current
maintainer since 2005 is Junio Hamano. As with most other distributed version-
control systems, and unlike most client–server systems, every Git directory on
every computer is a full-fledged repository with complete history and full
version-tracking abilities, independent of network access or a central server.

Install git:-

 You should be running a server with any Ubuntu 16.04 LTS release.

 You will need to log in to SSH via the root user.

First, as always, we should start out by running general OS and package
updates. On Ubuntu we’ll do this by running:

>> apt-get update

>> apt-get install git-core

>> git --version

Installing GIT - apt-get install git

Telling the GIT to track this folder - git init

Colors – Red color = Files in working directory

Green color = Files in staging / cache Area

Status Check – git status (for checking the tracking of files)

Commit Id’s – generally called as SHAW1 number

Git init: -
To track the particular folder and git will only take care about the files but not
folders For checking whether it is installed or not check the hidden files

>> ls –a (or) ls –al

>> git config –-global user.name “XXnameXX”

>> git config –-global user.email “XXemail IDXX”

>> git add filename (or) .[for adding complete files]

>> git commit –m “message for that task”

>> git commit –am “message for the task”

>> git log - -oneline

>> git show commitid

>> vi .gitignore

 *.html

 *.jpg

 ! filename.html
>> “git add –f filename”
>> “git checkout filename”

Git SERVER:-
Development of the GitHub platform began on October 19, 2007.[55][56]
[57] The site was launched in April 2008 by Tom Preston-Werner, Chris
Wanstrath, P. J. Hyett and Scott Chacon after it had been made available for a
few months prior as a beta release.[58]

Projects on GitHub can be accessed and manipulated using the standard Git
command-line interface and all of the standard Git commands work with it.
GitHub also allows registered and unregistered users to browse public
repositories on the site. Multiple desktop clients and Git plugins have also been
created by GitHub and other third parties that integrate with the platform.

The site provides social networking-like functions such as feeds, followers, wikis
(using wiki software called Gollum) and a social network graph to display how
developers work on their versions ("forks") of a repository and what fork (and
branch within that fork) is newest.

A user must create an account in order to contribute content to the site, but
public repositories can be browsed and downloaded by anyone. With a
registered user account, users are able to have discussions, manage
repositories, submit contributions to others' repositories, and review changes
to code. GitHub began offering unlimited private repositories at no cost in
January 2019 (limited to three contributors per project). Previously, only public
repositories were free.

Installation :-
>> JAVA 8 version need to be installed
>> Terminal should be updated
>> Should have gitbucket .war should be downloaded
>> IP Address should be Reserved and should fix manually
>> Change to Root user - sudo su –root
>> Install the Vim software – apt-get install vim

>> apt–get install software –properties –common
>> apt-get update
>> apt-get install default-jre
>> apt-get install default-jdk
>> add-apt-repository – rppa:webupdsteam/java
>> apt-get update
>> apt-get install oracle-java8-installer
>> java --version
>> Download Gitbucket.war
>> Go to the path were the gutbucket.war file was situated
>> Java –jar gutbucket.war
>> java –jar gutbucket.war --port =8018
>> apt – get install git

Using local Git bucket :-
>> mkdir myproject – Create a directory
>> cd myproject – navigate to directory
>> git init – initialize the git
>> touch tarun – create a file in myproject
>> git status
>> git add tarun
>> git commit –m ‘commit message’
>> git log
>> gibucket – sign In – root/root (username & password)
>> Goto system Adminstration – New user – Create user with credentials – sign
out - sign in with newly created user
>> New repository - Create a repository
>> git remote add origin URL
>> git push –u origin master
>> View the file called “.gitbucket” (hidden folder)
>> Give the command “- tree .gitbucket “ to view the files in the repository

Git Branches:-
Branching, in version control and software configuration management, is the
duplication of an object under version control (such as a source code file or

a directory tree) so that modifications can occur in parallel along
multiple branches.

Branches are also known as trees, streams or codelines. The originating branch
is sometimes called the parent branch, the upstream branch (or
simply upstream, especially if the branches are maintained by different
organizations or individuals), or the backing stream. Child branches are
branches that have a parent; a branch without a parent is referred to as
the trunk or the mainline.

>> git branch
>> git branch newbranchname
>> git checkout branchtochange
>> git merge branchnametomerge
>> git checkout master
>> git branch –D branchname
>> git push origin --delete branchname

Stash Area:-
>> git add .
>> git stash save filename
>> git stash list – To view the stashed files

Play with data in Stash Area
>> Copy + paste = Take a copy from stash area and use it in normally git stash
apply stashID
>> Cut + paste = Move a file from stash and use it normally git stash pop stashID
>> Delete = Remove files from stash Area
>> git stash drop stashID

Creating Version tags:-
>> git tag versionnumber = Creating a version tag
>> git tag = Wrapping the files and pushing into version
>> git push –u myproject versionnumber = Pushing into github
>> git tag –d versionnumber = Remove versions locally

>> git push –u myproject --delete versionnumber = Delete the release in the git
hub
Email Notification

>> Whatever happens in the github will be notified through email

>> Steps to activate email notification

>> Login into Git Hub - myproject – Settings – Notifications – Add - Email
Address

Backup and Restore
>> For taking the backup of the files of the git bucket .It is a hidden folder.
>> ls –a (View hidden files)
>> open the .gitbucket fil
>> There we can see the files which were pushed

CHEF:-

Chef is a company and the name of a configuration management tool written
in Ruby and Erlang. It uses a pure-Ruby, domain-specific language (DSL) for
writing system configuration "recipes". Chef is used to streamline the task of
configuring and maintaining a company's servers.

The user writes "recipes" that describe how Chef manages server applications
and utilities (such as Apache HTTP Server, MySQL, or Hadoop) and how they are
to be configured. These recipes (which can be grouped together as a
"cookbook" for easier management) describe a series of resources that should
be in a particular state: packages that should be installed, services that should
be running, or files that should be written. These various resources can be
configured to specific versions of software to run and can ensure that software
is installed in the correct order based on dependencies.

Chef can run in client/server mode, or in a standalone configuration named
"chef-solo". In client/server mode, the Chef client sends various attributes

about the node to the Chef server. The server uses Elasticsearch to index these
attributes and provides an API for clients to query this information. Chef recipes

can query these attributes and use the resulting data to help configure the
node.

Chef-server installation:-
>> hostname -f
>> cd ~
wget https://opscode-omnibus-
packages.s3.amazonaws.com/ubuntu/12.04/x86_64/chef-server_11.0.10-
1.ubuntu.12.04_amd64.deb
>> sudo dpkg -i chef-server*
>> sudo chef-server-ctl reconfigure
>> https://server_domain_or_IP
>> Default Username: admin
>> Default Password: p@ssw0rd1
>> mkdir -p ~/chef-repo/.chef
>> https://server_domain_or_IP
>> #chef-manage-ctl reconfigure
>> #chef-server-ctl user-create student student student "student@pivotal.com"
"redhat" -f student.pem
>> #chef-server-ctl org-create myorg "pivotalsoft" -a student -f myorg-
validator.pem
>> #chef-server-ctl restart (for restart)
>> #chef-server-ctl start (for start)
>> #chef-server-ctl stop (for stop)

chef node installation:-
>> updat ip & hostadd
>> #dpkg -i chef-client.....
>> mkdir -p /etc/chef
copy both .pem files
>> cd /etc/chef
>> vi client.rb
log_level :info
log_location STDOUT
chef_server_url 'https://chefserver.pivotal.com/organizations/myorg'

validation_client_name 'myorg-validator'
validation_key '/etc/chef/myorg-validator.pem'
client_key '/etc/chef/student.pem'
trusted_certs_dir '/etc/chef/trusted_certs'

>> knife ssl fetch -s https://chefserver.pivotal.com
>> knife ssl check -s https://chefserver.pivotal.com
>> useradd rishi
>> passwd rishi
>> usermod -aG sudo rishi
>> apt-get install ssh
>> ssh-keygen

Chef workstation installation:-
>> update ip and host address
>> dpkg -i chef-work.......
>> cd /root/chef-repo/.chef
copy both .pem files into .chef folder
>> ls
>> vi knife.rb
log_level :info
log_location STDOUT
node_name 'student'
client_key '/root/chef-repo/.chef/student.pem'
validation_client_name 'myorg-validator'
validation_key '/root/chef-repo/.chef/myorg-validator.pem'
chef_server_url 'https://chefserver.pivotal.com/organizations/myorg
cookbook_path ['/root/chef-repo/cookbooks']
>> knife ssl fetch / knife ssl fetch -s https://chefserver.pivotal.com
>> knife ssl check / knfie ssl check -s https://chefserver.pivotal.com
>> knife bootstrap 192.168.0.221 --ssh-user rishi --sudo --identity-file
~/.ssh/id_rsa --node-name chefnode.pivotal.com
#knife node list

Chef cookbooks:-

Writing cookbooks/recipes
sample cookbooks:-
>> chef generate cookbook sample_file
>> vi /chef/cookbook/sample_file/recipes/default.rb
 file "/tmp/test.txt" do
 owner "root"
 group "root"
mode "0644"
content "haiii this is test file"
action :create
end
>> knife cookbook upload sample_file
>> knife node run_list add chefnode.pivotal.com sample_file
>> go to chefnode add type "chef-client"
Creates the sysadmin group and users:-
users_manage 'sysadmin' do
 group_id 2300
 action [:create]
end

Creates the testgroup group, and users
users_manage 'testgroup' do
 group_id 3000
 action [:create]
 data_bag 'test_home_dir'
end

Creates the nfsgroup group, and users
users_manage 'nfsgroup' do
 group_id 4000
 action [:create]
 data_bag 'test_home_dir'
 manage_nfs_home_dirs false
end

>> knife cookbook upload users
>> knife node run_list add chefnode.pivotal.com sample_file
>> go to chefnode add type "chef-client"
recipe for apache server:-

>> chef generate cookbook apache
 service['apache2'] is defined in the apache2_default_install resource but other
resources are currently unable to reference it. To work around this issue,
define the following helper in your cookbook:
service 'apache2' do
 extend Apache2::Cookbook::Helpers
 service_name lazy { apache_platform_service_name }
 supports restart: true, status: true, reload: true
 action :nothing
end

apache2_install 'default_install'
apache2_module 'headers'
apache2_module 'ssl'

apache2_default_site 'foo' do
 default_site_name 'my_site'
 template_cookbook 'my_cookbook'
 port '443'
 template_source 'my_site.conf.erb'
 action :enable
end
>> knife cookbook upload sample_file
>> knife node run_list add chefnode.pivotal.com apache
>> go to chefnode add type "chef-client"

Chef roles:-
>> knife role bulk delete REGE
>> knife role create ROLE_NAME (options)

>> knife role create role1
>> knife role edit ROLE_NAME

{
 "name": "role1",
 "default_attributes": {
 },
 "json_class": "Chef::Role",
 "run_list": ["recipe[cookbook_name::recipe_name]",
 "role[role_name]"
],
 "description": "",
 "chef_type": "role",
 "override_attributes": {
 }
}
>> knife role show ROLE_NAME
>> knife cookbook upload recipe
>> knife node run_list add chefnode.pivotal.com apache

To uninstall:-
>> chef-server-ctl uninstall
>> chef-manage-ctl cleanse
>> opscode-analytics-ctl uninstall
>> opscode-reporting-ctl uninstall
>> dpkg -P chefdk
>> rpm -qa *chef*
>> yum remove <package>
>> dpkg --list | grep chef # or dpkg --status chef
>> dpkg -P chef
>> sudo rm -rf /opt/chef
>> sudo rm -rf /etc/chef

Maven:-

Maven is a build automation tool used primarily for Java projects. Maven can
also be used to build and manage projects written in C#, Ruby, Scala, and other
languages. The Maven project is hosted by the Apache Software Foundation,
where it was formerly part of the Jakarta Project.
Maven addresses two aspects of building software: how software is built, and
its dependencies. Unlike earlier tools like Apache Ant, it uses conventions for
the build procedure, and only exceptions need to be written down. An XML file
describes the software project being built, its dependencies on other external
modules and components, the build order, directories, and required plug-ins. It
comes with pre-defined targets for performing certain well-defined tasks such
as compilation of code and its packaging. Maven dynamically
downloads Java libraries and Maven plug-ins from one or more repositories
such as the Maven 2 Central Repository, and stores them in a local cache. This
local cache of downloaded artifacts can also be updated with artifacts created
by local projects. Public repositories can also be updated.
Maven is built using a plugin-based architecture that allows it to make use of
any application controllable through standard input.

Maven installation:-
>> sudo apt-get update -y
>> sudo apt-get upgrade -y
>> add-apt-repository ppa:webupd8team/java
>> apt-get update -y
>> apt-get install oracle-java8-installer
>> java -version
>> wget http://www-eu.apache.org/dist/maven/maven-
3/3.3.9/binaries/apache-maven-3.3.9-bin.tar.gz
>> tar -xvzf apache-maven-3.3.9-bin.tar.gz
>> mv apache-maven-3.3.9 maven
>> nano /etc/profile.d/mavenenv.sh
export M2_HOME=/opt/maven
export PATH=${M2_HOME}/bin:${PATH}
>> chmod +x /etc/profile.d/mavenenv.sh
>> source /etc/profile.d/mavenenv.sh
>> tar -xvf apache-maven -C /opt/

>> vi /etc/profile.d/apache-maven.sh
export JAVA_HOME=/usr/lib/jvm/java-8-oracle
export M2_HOME=/opt/apache-maven
export MAVEN_HOME=/opt/apache-maven
export PATH=${M2_HOME}/bin:${PATH}
>> apt-get install maven
>> mvn --version
>> mvn archetype:generate
>> 1352
groupid:pivotal
architect:sample
Y
>> tree sample
>> mvn validate
>> mvn compile
>> mvn test
>> mvn package
>> tree sample
>> root@ubuntu:/home/student# mvn --help
Options:
 -am,--also-make If project list is specified, also
 build projects required by the
 list
 -amd,--also-make-dependents If project list is specified, also
 build projects that depend on
 projects on the list
 -B,--batch-mode Run in non-interactive (batch)
 mode
 -b,--builder <arg> The id of the build strategy to
 use.
 -C,--strict-checksums Fail the build if checksums don't
 match
 -c,--lax-checksums Warn if checksums don't match
 -cpu,--check-plugin-updates Ineffective, only kept for

 backward compatibility
 -D,--define <arg> Define a system property
 -e,--errors Produce execution error messages
 -emp,--encrypt-master-password <arg> Encrypt master security password
 -ep,--encrypt-password <arg> Encrypt server password
 -f,--file <arg> Force the use of an alternate POM
 file (or directory with pom.xml).
 -fae,--fail-at-end Only fail the build afterwards;
 allow all non-impacted builds to
 continue
 -ff,--fail-fast Stop at first failure in
 reactorized builds
 -fn,--fail-never NEVER fail the build, regardless
 of project result
 -gs,--global-settings <arg> Alternate path for the global
 settings file
 -gt,--global-toolchains <arg> Alternate path for the global
 toolchains file
 -h,--help Display help information
 -l,--log-file <arg> Log file where all build output
 will go.
 -llr,--legacy-local-repository Use Maven 2 Legacy Local
 Repository behaviour, ie no use of
 _remote.repositories. Can also be
 activated by using
 -Dmaven.legacyLocalRepo=true
 -N,--non-recursive Do not recurse into sub-projects
 -npr,--no-plugin-registry Ineffective, only kept for
 backward compatibility
 -npu,--no-plugin-updates Ineffective, only kept for
 backward compatibility
 -nsu,--no-snapshot-updates Suppress SNAPSHOT updates
 -o,--offline Work offline
 -P,--activate-profiles <arg> Comma-delimited list of profiles

 to activate
 -pl,--projects <arg> Comma-delimited list of specified
 reactor projects to build instead
 of all projects. A project can be
 specified by [groupId]:artifactId
 or by its relative path.
 -q,--quiet Quiet output - only show errors
 -rf,--resume-from <arg> Resume reactor from specified
 project
 -s,--settings <arg> Alternate path for the user
 settings file
 -t,--toolchains <arg> Alternate path for the user
 toolchains file
 -T,--threads <arg> Thread count, for instance 2.0C
 where C is core multiplied
 -U,--update-snapshots Forces a check for missing
 releases and updated snapshots on
 remote repositories
 -up,--update-plugins Ineffective, only kept for
 backward compatibility
 -v,--version Display version information
 -V,--show-version Display version information
 WITHOUT stopping build
 -X,--debug Produce execution debug output

Docker :-
Docker is a tool designed to make it easier to create, deploy, and run
applications by using containers. Containers allow a developer to package up an

application with all of the parts it needs, such as libraries and other
dependencies, and ship it all out as one package. By doing so, thanks to the
container, the developer can rest assured that the application will run on any
other Linux machine regardless of any customized settings that machine might
have that could differ from the machine used for writing and testing the code.
In a way, Docker is a bit like a virtual machine. But unlike a virtual machine,
rather than creating a whole virtual operating system, Docker allows
applications to use the same Linux kernel as the system that they're running on
and only requires applications be shipped with things not already running on
the host computer. This gives a significant performance boost and reduces the
size of the application.
And importantly, Docker is open source. This means that anyone can contribute
to Docker and extend it to meet their own needs if they need additional
features that aren't available out of the box.

>> Install Java on
ubuntu Server

>> sudo apt-get update -y
>> sudo apt-get upgrade -y

>> add-apt-repository ppa:webupd8team/java
>> apt-get update -y
>> apt-get install oracle-java8-installer
>> java -version
>> sudo apt update
>> sudo apt-key adv --keyserver hkp://ha.pool.skskeyservers.
net:80 --recv-keys
58118E89F3A912897C070ADBF76221572C52609D
>> sudo apt-add-repository "deb
https://apt.dockerproject.org/repo ubuntu-xenial main"
>> sudo apt update
>> sudo apt install docker-engine
>> sudo systemctl start docker
>> docker images
>> docker pull ubuntu
>> root@ubuntu:/home/student# docker --help
Options:
 --config string Location of client config files (default
 "/root/.docker")
 -D, --debug Enable debug mode
 --help Print usage
 -H, --host list Daemon socket(s) to connect to
 -l, --log-level string Set the logging level
 ("debug"|"info"|"warn"|"error"|"fatal")
 (default "info")
 --tls Use TLS; implied by --tlsverify
 --tlscacert string Trust certs signed only by this CA (default
 "/root/.docker/ca.pem")
 --tlscert string Path to TLS certificate file (default
 "/root/.docker/cert.pem")
 --tlskey string Path to TLS key file (default
 "/root/.docker/key.pem")
 --tlsverify Use TLS and verify the remote
 -v, --version Print version information and quit

Management Commands:
 container Manage containers
 image Manage images
 network Manage networks
 node Manage Swarm nodes
 plugin Manage plugins
 secret Manage Docker secrets
 service Manage services
 stack Manage Docker stacks
 swarm Manage Swarm
 system Manage Docker
 volume Manage volumes

Commands:
 attach Attach local standard input, output, and error streams to a running
container
 build Build an image from a Dockerfile
 commit Create a new image from a container's changes
 cp Copy files/folders between a container and the local filesystem
 create Create a new container
 diff Inspect changes to files or directories on a container's filesystem
 events Get real time events from the server
 exec Run a command in a running container
 export Export a container's filesystem as a tar archive
 history Show the history of an image
 images List images
 import Import the contents from a tarball to create a filesystem image
 info Display system-wide information
 inspect Return low-level information on Docker objects
 kill Kill one or more running containers
 load Load an image from a tar archive or STDIN
 login Log in to a Docker registry
 logout Log out from a Docker registry

 logs Fetch the logs of a container
 pause Pause all processes within one or more containers
 port List port mappings or a specific mapping for the container
 ps List containers
 pull Pull an image or a repository from a registry
 push Push an image or a repository to a registry
 rename Rename a container
 restart Restart one or more containers
 rm Remove one or more containers
 rmi Remove one or more images
 run Run a command in a new container
 save Save one or more images to a tar archive (streamed to STDOUT by
default)
 search Search the Docker Hub for images
 start Start one or more stopped containers
 stats Display a live stream of container(s) resource usage statistics
 stop Stop one or more running containers
 tag Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
 top Display the running processes of a container
 unpause Unpause all processes within one or more containers
 update Update configuration of one or more containers
 version Show the Docker version information
 wait Block until one or more containers stop, then print their exit codes

To run Images:-
>> docker images
>> docker run -ti --rm ubuntu /bin/bash\
>> docker ps
>> docker ps –a
>> docker run -ti ubuntu /bin/bash
>> docker ps
>> docker ps –a
>> docker exec -ti <container id> /bin/bash
>> docker run -ti --name “ubuntu18” --hostname ”pivotal”
ubuntu /bin/bash

>> docker start <container id>
>> docker stop <container id>
>> docker rm <container id>
>> docker image rm <image id)
Gitbucket Configuration on Docker:-
Need to maintain gitbucket.war file and Dockerfile in /root
Dir.
>> vi Dockerfile
From java:latest
MAITAINER student@pivotal.com
LABEL evn=production
ENV apparea /data/app
Run mkdir -p $apparea
ADD ./gitbucket.war $apparea
WORKDIR $apparea
CMD ["java","-jar","gitbucket.war"]
:wq!
>> docker build –t pivotal/git . (to build Dockerfile)
>> docker images
>> docker run -d -p 80:8080 pivotal/git (to port forwarding)
>> ifconfig
Open Firefox and give 192.168.0.151:80 to launch gitbucket
server

Jenkins Configuration on Docker:-
Need to maintain gitbucket.war file and Dockerfile in /root
Dir.
>> vi Dockerfile
From java:latest
MAITAINER student@pivotal.com
LABEL evn=production
ENV apparea /data/app
Run mkdir -p $apparea
ADD ./jenkins.war $apparea

WORKDIR $apparea
CMD ["java","-jar","jenkins.war"]
:wq!
>> docker build –t pivotal/git . (to build Dockerfile)
>> docker images
>> docker run -d -p 80:8080 pivotal/jenkins (to port forwarding)
>> ifconfig
Open Firefox and give 192.168.0.151:80 to launch gitbucket
server

Apache tomcat server:-
Download apache-tomcat app from internet
#tar -xvf apache-tomcat -C /opt/
#cd /opt/apache-tomcat/bin
#./startup.sh
#firefox &
http://192.168.149.159:8080
set user Path--------------
#vi /opt/apache-tomcat/conf/tomcat-users.xml
<role rolename="manager-gui"/>
<user username="student" password="redhat" roles="manager-gui"/>
</tomcat-users>
:wq!
http://192.168.149.159:8080

open manager app and deploy .war files
ex: http://192.168.159.149:8080/sampleweb/

Install Apache Tomcat 8:-
>> apt-get update
>> apt-get install default-jdk
>> groupadd tomcat
>> useradd -s /bin/false -g tomcat -d /opt/tomcat tomcat
>> cd /tmp
>> curl -O http://apache.mirrors.ionfish.org/tomcat/tomcat-
8/v8.5.5/bin/apache-tomcat-8.5.5.tar.gz
>> mkdir /opt/tomcat
>> tar xzvf apache-tomcat-8*tar.gz -C /opt/tomcat --strip-components=1
>> /opt/tomcat
>> chgrp -R tomcat /opt/tomcat
>> chmod -R g+r conf
>> chmod g+x conf

>> chown -R tomcat webapps/ work/ temp/ logs/
>> update-java-alternatives -l
>> /usr/lib/jvm/java-1.8.0-openjdk-amd64/jre
>> nano /etc/systemd/system/tomcat.service
[Unit]
Description=Apache Tomcat Web Application Container
After=network.target

[Service]
Type=forking

Environment=JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64/jre
Environment=CATALINA_PID=/opt/tomcat/temp/tomcat.pid
Environment=CATALINA_HOME=/opt/tomcat
Environment=CATALINA_BASE=/opt/tomcat
Environment='CATALINA_OPTS=-Xms512M -Xmx1024M -server -XX:
+UseParallelGC'
Environment='JAVA_OPTS=-Djava.awt.headless=true
-Djava.security.egd=file:/dev/./urandom'

ExecStart=/opt/tomcat/bin/startup.sh
ExecStop=/opt/tomcat/bin/shutdown.sh

User=tomcat
Group=tomcat
UMask=0007
RestartSec=10
Restart=always

[Install]
WantedBy=multi-user.target

>> systemctl daemon-reload
>> systemctl start tomcat

>> systemctl status tomcat
>> ufw allow 8080
>> http://server_domain_or_IP:8080
>> systemctl enable tomcat
>> nano /opt/tomcat/conf/tomcat-users.xml
<tomcat-users . . .>
 <user username="admin" password="password" roles="manager-gui,admin-
gui"/>
</tomcat-users>
>> nano /opt/tomcat/webapps/manager/META-INF/context.xml
>> nano /opt/tomcat/webapps/host-manager/META-INF/context.xml
>> systemctl restart tomcat
>> http://server_domain_or_IP:8080

http://server_domain_or_IP:8080/manager/html

Uploading Gitbucket and Jenkins:-

>> go to Tomcat manager
>> click on deploy option
>> context path /gitbucket
>> war or Directory URL /opt/gitbucket.war
>> deploy
open Gitbucket from Applications

Jenkins :-

>> go to Tomcat manager
>> click on deploy option
>> context path /jenkins
>> war or Directory URL /opt/jenkins.war

>> deploy
open Gitbucket from Applications

Jenkins:-
Jenkins is a self-contained, open source automation server which can be used to
automate all sorts of tasks related to building, testing, and delivering or
deploying software.

Jenkins can be installed through native system packages, Docker, or even run
standalone by any machine with a Java Runtime Environment (JRE) installed.

In Continuous Integration after a code commit, the software is built and tested
immediately. In a large project with many developers, commits are made many
times during a day. With each commit code is built and tested. If the test is
passed, build is tested for deployment. If deployment is a success, the code is
pushed to production. This commit, build, test, and deploy is a continuous
process and hence the name continuous integration/deployment.

Jenkins Plugins:-
By default, Jenkins comes with a limited set of features. If you want to integrate
your Jenkins installation with version control tools like Git, then you need to

install plugins related to Git. In fact, for integration with tools like Maven you
need to install respective plugins in your Jenkins.

Jenkins installation and configuration:-

Configure tomcat server and Maven
>> Download Jenkins.war and gitbucket.war files
>> Deploy Jenkins.war and gitbucket.war to Tomcat server
>> Open jekins console and gitbucket console through firefox
Jenkins Plug in management:-
>> Manage Jenkins Manage plugins Available
>> type your required package name
>> install without restart.

Compile Maven code:-
>> Go to Jenkins Dashboard
>> New item item name
>> Select Maven project ok

>>

Description GitBucket Url Source code management
>> Gitbucket url
>> Delete workspace before build starts
>> Build Pom.xml location goal command<compile>
>> save.

Test Maven code (CB):-
>> Go to Jenkins Dashboard
 >> New item
>> item name

 >> Select Maven project >> ok

Integrate Maven code in Jenkins:-
>> Go to Jenkins Dashboard
>> New item item name
>> Select Maven project ok
 >> Comment
>> git url
>> Build whenever a SNAPSHOT dependency is built
>> Delete workspace before build starts
>> Set root pom path
>> set branches path
>> apply ok
>> click on build icon

Package Maven code (CB):-
>> Go to Jenkins Dashboard
>> New item >> item name
>> Select Maven project >> ok
>> Description
>> git url
>> Build whenever a SNAPSHOT dependency is built
>> Delete workspace before build starts
>> Set root pom path
>> Goal package
>> set branches >> path >> apply >> save >> build now.

Automation with Piepline View:-
1st step
>> Go to Maven_compile configuration
>> Build triggers
>> Build after other projects are built
>> Maven_integration
>> Apply >> save.
2nd step
 >> Go to Maven_test configuration
>> Build triggers
>> Build after other projects are built
>> Maven_compile
>> Apply >> save.
3rd step
 >> Go to Maven_Package configuration
>> Build triggers
>> Build after other projects are built
>> Maven_test

>> Apply >> save

Pipeline Installation:-
1st Step
>> Manage Jenkins
>> Manage plugins
>> Available <type build pipeline package name>
>> install without restart.
2nd step
>> Jenkins Dashboard
>> New view
>> Name
>> build pipeline view
>> apply >> save.
3rd Step
>> View configure Upstream / downstream config
>> Select >> Maven_integration >> Apply >> ok.

Fully Automation in Jenkins:-
1st Step
 >> Go to Jenkins user configure
>> Add new Token and copy
>> Apply Save.
2nd step
>> Go to Gitbucket
>> Account Settings
>> Service hooks Add payroll url(Jenkins url)
>> Past the Token >> tick on Push >> save.
3rd step
>> Go to Jenkins
>> Maven_integaration
>> Configure
>> Build Triggers
>> Build when a change is pushed to Gitbucket >> apply >> save.
4th step
 >> Go to Terminal Push new code to Gitbucket server.

Continues Deploy:-

1st step
>> Go to Jenkins Dashboard
>> Manage Jenkins
>> Manage Plugins >> Available >> Deploy to container
>> install without restart >> ok.
2nd step
 >> Go to Jenkins Dashboard
>> Maven_Package Configure
>> Post-build Actions
>> Deploy war/ear to container >> war/ear files=**/*.war
>> Context path=/sampleweb >> credentials
>> Tomcat Url Apply Save.
3rd Step
 >> Go to Terminal push some new code to Gitbucket than see the changes in
firefox.

Jenkins Backup and Restore:-

1st step
>> Go to Jenkins Dashboard

>> Manage Jenkins
>> Manage Plugins >> Available
>> Backup Plugin >> install without restart >> ok.
2nd step
>> Go to Jenkins Dashboard
>> Manage Jenkins
>> Backup manager
>> Setup >> Backup directory >> Format >> save.
3rd step
>> Go to Jenkins Dashboard
>> Manage Jenkins
>> Backup manager
>> Backup Hudson configuration >> Ok.
4th step
>> Go to Jenkins Dashboard
>> Manage Jenkins
>> Backup manager

>> Restore Hudson configuration >> Launch Restore.

Ansible:-
Ansible is a radically simple IT automation system. It handles configuration

management, application deployment, cloud provisioning, ad-hoc task

execution, network automation, and multi-node orchestration. Ansible makes

complex changes like zero-downtime rolling updates with load balancers easy.

 Minimal in nature. Management systems should not impose additional
dependencies on the environment.[16]

 Consistent. With Ansible one should be able to create consistent
environments.

 Secure. Ansible does not deploy agents to nodes.
Only OpenSSH and Python are required on the managed nodes.[16][12]

 Highly reliable. When carefully written, an Ansible playbook can
be idempotent, to prevent unexpected side-effects on the managed systems.
[18] It is entirely possible to have a poorly written playbook that is not
idempotent.

 Minimal learning required. Playbooks use an easy and descriptive
language based on YAML and Jinja templates.

 Control machines have to be a Linux/Unix host (for example, Red Hat
Enterprise Linux, Debian, CentOS, macOS, BSD, Ubuntu[11]), and Python 2.7
or 3.5 is required.[3

Ansible Installation:-

Configure in System 1,System2 and System3 :-

>> set ip address and hostaddress
>> install ssh
>> install epel-release packages
>> install yum packages
>> sudo yum localinstall --nogpgcheck
https://download1.rpmfusion.org/free/el/rpmfusion-free-release-7.noarch.rpm
>> sudo yum localinstall --nogpgcheck
https://download1.rpmfusion.org/nonfree/el/rpmfusion-nonfree-release-
7.noarch.rpm
>> sudo yum localinstall --nogpgcheck
http://dl.fedoraproject.org/pub/epel/7/x86_64/Packages/e/epel-release-7-
11.noarch.rpm
>> sudo yum localinstall --nogpgcheck
http://rpms.famillecollet.com/enterprise/remi-release-7.rpm
>> sudo rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org
sudo rpm -Uvh http://www.elrepo.org/elrepo-release-7.0-
3.el7.elrepo.noarch.rpm
>> sudo yum localinstall --nogpgcheck
http://repo.webtatic.com/yum/el7/webtatic-release.rpm
>> yum update
>> yum clean all
>> yum install ansible
ssh-key has to setup on both the nodes

Ansible server talks to managed nodes using ssh

Default location of inventory: /etc/ansible/hosts

add hosts to /etc/ansible/hosts

and configure password less authentication

Generate ssh keys and setup password less authentication between server and
clients

perform jobs either using ansible commnad line or playbooks.

Ansible command line:-

>> ansible all -m ping
>> ansible all -a "touch /tmp/hello"
>> ansible webservers -m ping

Ansible playbooks:-

playbook for file copying

- hosts: all
 become_user: root

 tasks:
 - name: Copy file with owner and permissions
 copy:
 src: /root/playfile
 dest: /tmp
 owner: root
 group: root
 mode: '0644'

>> ansible-playbook apache.yml --check
>> ansible-playbook filename
Web palybook:-

- hosts: all
 become_user: root

 tasks:

 - name: 1. Install Latest Version of HTTP/Apache
 yum: name=httpd state=present

 - name: 2. start httpd service
 service: name=httpd state=started enabled=yes

 - name: 3. copy the standard index.html file
 copy: src=/tmp/index.html dest=/var/www/html/index.html mode=0664

 - name: 4. Add apache iptable rule
 command: /sbin/iptables -I INPUT 1 -p tcp --dport http -j ACCEPT -m comment
--commnet "Apache on port 80"

 - name: 5. Save iptable rule
 command: iptables-save

>> ansible-playbook apache.yml --check
>> ansible-playbook filename

users playbook:-

- hosts: all
 become_user: root

 tasks:

 # this task creates groups
 - name: add a group
 group:
 name={{ item }}

 state=present
 with_items:
 - demogrp
 - demogrp1
 tags: add_new_grp
 # this task creates users
 - name: add a user
 user:
 name={{ item }}
 state=present
 password="redhat"
 shell=/bin/bash
 with_items:
 - demouser1
 - demouser2
 - demouser3
 tags: add_new_user
 # this tasks is to delete the users
 - name: delete several users
 user:
 name={{ item }}
 state=absent
 with_items:
 - demouser1
 tags: remove_user
 # this task is to delete the groups
 - name: delete groups
 group:
 name={{ item }}
 state=absent
 with_items:
 - demogrp
 - demogrp1
 tags: remove_group

>> ansible-playbook apache.yml --check
>> ansible-playbook user.yml --list-tags
>> ansible-playbook user.ymo --tags add_net_user

- name: Patch Windows systems against Meltdown and Spectre
 hosts: "{{ target_hosts | default('all') }}"

 vars:
 reboot_after_update: no
 registry_keys:
 - path: HKLM:\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management
 name: FeatureSettingsOverride
 data: 0
 type: dword

 - path: HKLM:\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management
 name: FeatureSettingsOverrideMask
 data: 3
 type: dword

 # https://support.microsoft.com/en-us/help/4072699
 - path:
HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\QualityCompat
 name: cadca5fe-87d3-4b96-b7fb-a231484277cc
 type: dword
 data: '0x00000000'

 tasks:
 - name: Install security updates
 win_updates:
 category_names:

 - SecurityUpdates
 notify: reboot windows system

 - name: Enable kernel protections
 win_regedit:
 path: "{{ item.path }}"
 name: "{{ item.name }}"
 data: "{{ item.data }}"
 type: "{{ item.type }}"
 with_items: "{{ registry_keys }}"

 handlers:
 - name: reboot windows system
 win_reboot:
 shutdown_timeout: 3600
 reboot_timeout: 3600
 when: reboot_after_update
>> ansible-playbook apache.yml --check
>> ansible-playbook user.yml --list-tags
>> ansible-playbook user.ymo --tags add_net_user

	GIT:-
	Install git:-
	>> apt-get update
	>> apt-get install git-core
	>> git --version
	Installing GIT - apt-get install git
	Telling the GIT to track this folder - git init
	Colors – Red color = Files in working directory
	Green color = Files in staging / cache Area
	Status Check – git status (for checking the tracking of files)
	Commit Id’s – generally called as SHAW1 number
	>> ls –a (or) ls –al
	>> git config –-global user.name “XXnameXX”
	>> git config –-global user.email “XXemail IDXX”
	>> git add filename (or) .[for adding complete files]
	>> git commit –m “message for that task”
	>> git commit –am “message for the task”
	>> git log - -oneline
	>> git show commitid
	>> vi .gitignore
	*.html
	*.jpg
	! filename.html

	CHEF:-
	To run Images:-
	In Continuous Integration after a code commit, the software is built and tested immediately. In a large project with many developers, commits are made many times during a day. With each commit code is built and tested. If the test is passed, build is tested for deployment. If deployment is a success, the code is pushed to production. This commit, build, test, and deploy is a continuous process and hence the name continuous integration/deployment.
	
	Jenkins Plugins:-

