
A very informal introduction
to Docker

Federico Galatolo

Once upon a time...

Reverse Proxy

Webserver

Webserver

Database Server

Datacenter

And then was the cloud...

Database
Webserver

Webserver

OS Architecture

Hardware

Kernel

GNU C Library

GNU Coreutils Applications

Linux Kernel

GNU C Library

GNU Coreutils

GNU

VM Architecture

Virtual Hardware

Applications

Kernel

GNU C Library

GNU Coreutils

Hardware

Kernel

GNU C Library

GNU Coreutils Hypervisor

VMs Architecture

Virtual Hardware

Applications

Kernel

GNU C Library

GNU Coreutils

Hypervisor

Virtual Hardware

Applications

Kernel

GNU C Library

GNU Coreutils

Virtual Hardware

Applications

Kernel

GNU C Library

GNU Coreutils

Too much overhead

Linux Containers

Virtual Hardware

Applications

Kernel

GNU C Library

GNU Coreutils

Hardware

Kernel

GNU C Library

GNU Coreutils Hypervisor

Linux Container

GNU C Library

GNU Coreutils Applications

Linux Containers Architecture

GNU C Library

GNU Coreutils Applications

Kernel

Hardware

Linux Containers Interface

GNU C Library

GNU Coreutils Applications

Containers VS VMs: Open a File in VM

Virtual Hardware

Application

Kernel

GNU C Library

GNU C Library

Hypervisor

Kernel

Virtual Hardware

Open a File

open(file)

HD Block

Virtual HD Location

Locate Virt. HD file and offset

open(virt_hd_file)

HD Block

HD Location

Containers VS VMs: Open a File in Container

Application

Linux Containers Interface

GNU C Library

Kernel

Hardware

Open a File

open(file)

open(container_file)

HD Block

HD Location

Linux Containers

GNU C Library

GNU Coreutils Applications

Basically zero overhead and
host-like performances

VM-like isolation

Lightweight and portable

But can we do better?

Linux Containers

GNU C Library

GNU Coreutils Linux Distribution

Library Library Library

Application

What if some
applications use the
same linux
distribution or
libraries?

How to handle
updates?

DistributionDistribution V2

Wouldn't be nice if ...?

Libraries

Application 1

DistributionDistribution V2

Libraries

Application 2

Docker

Docker is an interface to easily
manage containers

It can use different containers
backends (even full
virtualization)

Handle containers in a onion-like
structure

Time to get your hads dirty

Download and install docker:

https://docs.docker.com/install/

Dockerfile(1)

The Dockerfile is a file with which you can specify a docker image.

It is a plaintext file representing a sequence of steps needed to create your image.

Each command creates a “layer”

• FROM <image>
• Use <image> as base image

• RUN <cmd>
• Run the command <cmd>

• CMD <cmd>
• Specify the command to run your application

Docker: build and run a container

• Build a container
• docker build -t <container name> <Dockerfile path>

• Run a container
• docker run <container name>

Hello world Example

Host

Docker EXPOSE

Docker

Container

• EXPOSE <port>

• docker -p
<host_ip>:<host_port>

:<container_port>/
<protocol>

• iptables?

Dockerfile(2)

• COPY <host src> <container dst>
• Copy a file/folder from host <host src> to container <container dst>

• EXPOSE <port>/<protocol>
• Expose the container port <port> to docker

Hello world v2 Example
Echo Server Example

Container

Docker Volumes

Volumes are a way to mount host folders in container ones

/

etc bin var

... ...

Host

/home/user/website

Docker Volumes

• docker -v <host_path>:<container_path>
• Mount <host_path> host folder into <container_path> container folder

Hello world v3 Example
Python webserver Example

• Docker volumes are way more complex than this. But for now this is
enough

Docker CLI isnt enough

Docker CLI interface is amazing!

Manage lifecycle of container with a bunch of batch scripts?

Maybe there is a better way

Docker Compose

With Docker Compose you can define and control an entire architecture
with one yaml file

• Services
• Volumes
• Networks
• Connections
• Dependencies
• ...

YAML

YAML is a human readable serialization language, easier than XML and JSON.

• field: value
• - for list elements
• indentation spaces for objects

That's all

YAML: Example

XML JSON YAML

YAML: Example 2

Docker Compose

• version: <docker-compose-version>

• services:

• service-name:

• image: <docker-image>

• build: <path-to-dockerfile>

• ports:

• <host-port>:<container-port>

• ...

• volumes:

• <host-path>:<container-path>

• ...

• environment:

• ENV_VAR=value

• ...

• deploy:

• replicas: <number_of_replicas>

•

Works only in
“swarm” mode

Docker Compose CLI

• Uses the file “docker-compose.yml” by default, you can specify a
different yaml file with -f

• docker-compose up
• Starts all the containers

• docker-compose stop
• Stops all the containers

• docker-compose build
• Builds all the containers that use the “build” keyword

• You can start the containers in detached mode with -d
• You can add the flag --compatibility to use “swarm” features

Docker internal DNS

• Docker SDN (Software Defined Network) has its own DNS resolver

• You can use the container name to resolve its ip

• If you scale a container (with docker-compose scale o replicas) the
internal DNS will round-robin all the containers
• Do NOT use this as redundancy but always use a proper reverse proxy

Docker

Let's build a LEMP stack

Webserver

Webserver

PHP Server

Database

Load
Balancer

Load
Balancer

PHP Server

...

...

linux-nginx-php-mysql

Docker

Let's build a LEMP stack: Webserver

Webserver

Let's build a LEMP stack: Webserver

https://hub.docker.com/_/nginx

Default configuration file location: /etc/nginx/conf.d/default.conf

OT: nginx

nginx (pronounced “Engine-X”) is an high performance

• Web Server
• Reverse Proxy
• Load Balancer
• HTTP Cache
• ...

Very easy to configure and manage. Used by 30% of the websites worldwide

OT: nginx basic webserver

server {

listen <port>;

location <regex> {

root <path>;

}

location <regex> {

root <path>;

}

}

server {

listen 80;

location / {

root /var/www;

location /images/ {

root /data/images;

}

}

OT: nginx basic reverse proxy

upstream <name> {

server host1:port;

server host2:port;

....

}

server {

listen <port>

location <regex> {

proxy_pass <proto>://<name>

}

}

upstream revhttp {

server http-1:8080;

server http-2:8080;

}

server {

listen 80

location / {

proxy_pass http://revhttp;

}

}

Let's build a LEMP stack: PHP

Docker

Webserver PHP Server

php-fpm

OT: Why php-fpm?

Apache php_mod php-fpm reverse proxy

PHP execute in the same machine of the
webserver

PHP execute in a different machine than
the webserver

PHP interpreter is always loaded PHP interpreter is loaded only for php
content

Scale websever = scale php Scale webserver only or php only (or both)

Apache is slow php-fpm is webserver agnostic

Webserver

PHP Server

PHP Server

How php-fpm with nginx?
server {

listen 80;
location / {

root /website;
location ~ \.php$ {

try_files $uri =404;
fastcgi_split_path_info ^(.+\.php)(/.+)$;
fastcgi_pass php:9000;
fastcgi_index index.php;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param PATH_INFO $fastcgi_path_info;

}
}

}

Assuming php-fpm running on port 9000 of host “php”

fastcgi_pass beheaves like proxy_pass it accepts both an host or an upstream

Let's build a LEMP stack: PHP Load Balancer

Docker

Webserver

PHP Server
Load

Balancer

PHP Server

...

You just need to scale the php container and add a couple of lines to the webserver configuration

Let's build a LEMP stack: HTTP Load Balancer

Docker

Webserver

Webserver

PHP Server

Load
Balancer

Load
Balancer

PHP Server

...

...

Scale the webserver container, add another container just for the HTTP reverse proxy and expose
its port to the host.

Let's build a LEMP stack: MySQL Server

Docker

Webserver

Webserver

PHP Server

Database

Load
Balancer

Load
Balancer

PHP Server

...

...

Let's build a LEMP stack: MySQL Server

php:7-fpm does not have mysqli installed:
• Create your own container with a Dockerfile

• Start from php:7-fpm
• Execute docker-php-ext-install mysqli
• Use this image in your docker-compose (with “build”)

Use the mysql image mysql:5.7
• set the environment variable MYSQL_ROOT_PASSWORD

