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Containers VS VMs: Open a File in VM
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Containers VS VMs: Open a File in Container
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Linux Containers

GNU C Library

GNU Coreutils Applications

Basically zero overhead and 
host-like performances 

VM-like isolation

Lightweight and portable

But can we do better?



Linux Containers
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What if some 
applications use the 
same linux 
distribution or 
libraries?

How to handle 
updates?
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Docker

Docker is an interface to easily 
manage containers 

It can use different containers 
backends (even full 
virtualization)

Handle containers in a onion-like 
structure



Time to get your hads dirty 

Download and install docker:

https://docs.docker.com/install/



Dockerfile(1)

The Dockerfile is a file with which you can specify a docker image.

It is a plaintext file representing a sequence of steps needed to create your image.

Each command creates a “layer” 

• FROM <image>
• Use <image> as base image

• RUN <cmd>
• Run the command <cmd>

• CMD <cmd>
• Specify the command to run your application



Docker: build and run a container

• Build a container
• docker build -t <container name> <Dockerfile path>

• Run a container
• docker run <container name>

Hello world Example



Host

Docker EXPOSE

Docker

Container

• EXPOSE <port>

• docker -p    
<host_ip>:<host_port> 

:<container_port>/    
<protocol>

• iptables?



Dockerfile(2)

• COPY <host src> <container dst>
• Copy a file/folder from host <host src> to container <container dst>

• EXPOSE <port>/<protocol>
• Expose the container port <port> to docker

Hello world v2 Example
Echo Server Example



Container

Docker Volumes

Volumes are a way to mount host folders in container ones

/

etc bin var

... ...

Host

/home/user/website



Docker Volumes

• docker -v <host_path>:<container_path>
• Mount <host_path> host folder into <container_path> container folder

Hello world v3 Example
Python webserver Example

• Docker volumes are way more complex than this. But for now this is 
enough



Docker CLI isnt enough

Docker CLI interface is amazing! 

Manage lifecycle of container with a bunch of batch scripts? 

Maybe there is a better way



Docker Compose

With Docker Compose you can define and control an entire architecture
with one yaml file

• Services
• Volumes
• Networks
• Connections
• Dependencies
• ...



YAML

YAML is a human readable serialization language, easier than XML and JSON. 

• field: value
• - for list elements
• indentation spaces for objects

That's all



YAML: Example

XML JSON YAML



YAML: Example 2



Docker Compose

• version: <docker-compose-version>

• services:

• service-name:

• image: <docker-image>

• build: <path-to-dockerfile>

• ports:

• <host-port>:<container-port>

• ...

• volumes:

• <host-path>:<container-path>

• ...

• environment:

• ENV_VAR=value

• ...

• deploy:

• replicas: <number_of_replicas>

• ....

Works only in 
“swarm” mode



Docker Compose CLI

• Uses the file “docker-compose.yml” by default, you can specify a 
different yaml file with -f

• docker-compose up
• Starts all the containers

• docker-compose stop
• Stops all the containers

• docker-compose build
• Builds all the containers that use the “build” keyword

• You can start the containers in detached mode with -d
• You can add the flag --compatibility to use “swarm” features 



Docker internal DNS

• Docker SDN (Software Defined Network) has its own DNS resolver

• You can use the container name to resolve its ip

• If you scale a container (with docker-compose scale o replicas) the 
internal DNS will round-robin all the containers
• Do NOT use this as redundancy but always use a proper reverse proxy



Docker

Let's build a LEMP stack
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linux-nginx-php-mysql



Docker

Let's build a LEMP stack: Webserver

Webserver



Let's build a LEMP stack: Webserver

https://hub.docker.com/_/nginx

Default configuration file location: /etc/nginx/conf.d/default.conf



OT: nginx

nginx (pronounced “Engine-X”) is an high performance

• Web Server
• Reverse Proxy
• Load Balancer
• HTTP Cache
• ...

Very easy to configure and manage. Used by 30% of the websites worldwide



OT: nginx basic webserver

server {

listen <port>;

location <regex> {

root <path>;

}

location <regex> {

root <path>;

}

}

server {

listen 80;

location / {

root /var/www;

location /images/ {

root /data/images;

}

}



OT: nginx basic reverse proxy

upstream <name> {

server host1:port;

server host2:port;

....

}

server {

listen <port>

location <regex> {

proxy_pass <proto>://<name>

}

} 

upstream revhttp {

server http-1:8080;

server http-2:8080;

}

server {

listen 80

location / {

proxy_pass http://revhttp; 

}

} 



Let's build a LEMP stack: PHP
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OT: Why php-fpm?

Apache php_mod php-fpm reverse proxy

PHP execute in the same machine of the 
webserver

PHP execute in a different machine than 
the webserver

PHP interpreter is always loaded PHP interpreter is loaded only for php 
content

Scale websever = scale php Scale webserver only or php only (or both)

Apache is slow php-fpm is webserver agnostic

Webserver

PHP Server

PHP Server



How php-fpm with nginx?
server {

listen 80;
location / {

root /website;
location ~ \.php$ {

try_files $uri =404;
fastcgi_split_path_info ^(.+\.php)(/.+)$;
fastcgi_pass php:9000;
fastcgi_index index.php;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param PATH_INFO $fastcgi_path_info;

}
}

}

Assuming php-fpm running on port 9000 of host “php”

fastcgi_pass beheaves like proxy_pass it accepts both an host or an upstream



Let's build a LEMP stack: PHP Load Balancer
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You just need to scale the php container and add a couple of lines to the webserver configuration



Let's build a LEMP stack: HTTP Load Balancer
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...

Scale the webserver container, add another container just for the HTTP reverse proxy and expose 
its port to the host.



Let's build a LEMP stack: MySQL Server
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Let's build a LEMP stack: MySQL Server

php:7-fpm does not have mysqli installed:
• Create your own container with a Dockerfile

• Start from php:7-fpm
• Execute docker-php-ext-install mysqli
• Use this image in your docker-compose (with “build”)

Use the mysql image mysql:5.7
• set the environment variable MYSQL_ROOT_PASSWORD


