A very informal introduction
to Docker

Federico Galatolo

%

docker

Once upon a time...

Database Server

Reverse Proxy

Webserver

And then was the cloud...

Datacenter

IIIIHHHH%%%’III
Webserver

Webserver

OS Architecture

GNU Coreutils Applications

GNU o)

GNU C Library

Linux ‘ Kernel

Hardware

GNU Coreutils Applications

VM Architecture

GNU C Library

Virtual Hardware

GNU Coreutils Hypervisor

GNU C Library

Kernel

Hardware

VMs Architecture

GNU Coreutils Applications GNU Coreutils Applications GNU Coreutils Applications

GNU C Library GNU C Library GNU C Library

Virtual Hardware Virtual Hardware Virtual Hardware

Hypervisor

Too much overhead

GNU Coreutils Applications

Linux Containers

GNU C Library

\Y dardware

GNU Coreutils Aypervisor

3NU C Library

Kernel

Hardware

Linux Container

GNU Coreutils Applications

GNU C Library

Linux Containers Architecture

GNU Coreutils Applications GNU Coreutils Applications

GNU C Library GNU C Library

Linux Containers Interface

Kernel

Hardware

Containers VS VMs: Open a File in VM

Application Open a File

GNU C Library open(file)

Virtual Hardware Virtual HD Location

Hypervisor Locate Virt. HD file and offset

GNU C Library open(virt_hd_file)

Virtual Hardware HD Location

Containers VS VMs: Open a File in Container

Application

GNU C Library

Linux Containers Interface

Kernel

Hardware

Open a File

open(file)

open(container_file)

HD Block

HD Location

Linux Containers

Basically zero overhead and
host-like performances

GNU Coreutils Applications

VM-like isolation

GNU C Library

Lightweight and portable

But can we do better?

Linux Containers

GNU Coreutils

Application

GNU C Library

What if some
applications use the
same linux
distribution or
libraries?

How to handle
updates?

Wouldn't be nice if ...?

Distribution V2 Distribution V2

Application 1 Application 2

Docker

Docker is an interface to easily
Docker .
, — manage containers
llbcontalnerJ
Y \ J Y
ibvirt systemd- R .
{1 i][o][F’} It can use different containers
. ' | | backends (even full
Linux kernel virtualization)
cgroups namespaces Netlink
SELinux Neftfilter
capabilities AppArmor Handle containers in a onion-like

structure

Time to get your hads dirty

Download and install docker:

Flous) https://docs.docker.com/install/

Dockerfile(1)

The Dockerfile is a file with which you can specify a docker image.

It is a plaintext file representing a sequence of steps needed to create your image.

Each command creates a “layer”

* FROM <image>
e Use <image> as base image
* RUN <cmd>

e Run the command <cmd>
e CMD <cmd>

e Specify the command to run your application

Docker: build and run a container

e Build a container

e docker build -t <container name> <Dockerfile path>
* Run a container

e docker run <container name>

Hello world Example

Docker EXPOSE

Host

Docker

Container

)

)

EXPOSE <port>

docker -p
<host_ip>:<host_port>
:<container_port>/
<protocol>

iptables?

Dockerfile(2)

* COPY <host src> <container dst>
* Copy a file/folder from host <host src> to container <container dst>

* EXPOSE <port>/<protocol>

* Expose the container port <port> to docker

Hello world v2 Example
Echo Server Example

Docker Volumes

Volumes are a way to mount host folders in container ones

Container

/home/user/website

Docker Volumes

* docker -v <host_path>:<container_path>
* Mount <host_path> host folder into <container_path> container folder

* Docker volumes are way more complex than this. But for now this is
enough

Hello world v3 Example
Python webserver Example

Docker CLI isnt enough

Docker CLI interface is amazing!
Manage lifecycle of container with a bunch of batch scripts?

Maybe there is a better way

Docker Compose

With Docker Compose you can define and control an entire architecture
with one yaml file

* Services

* Volumes

* Networks

* Connections
* Dependencies

YAML

YAML is a human readable serialization language, easier than XML and JSON.

 field: value
e -for list elements
* indentation spaces for objects

That's all

YAML: Example

{
<root= "todo": [
<todo> {
<name=Docker lecture</name= "name": "Docker lecture",
<done>false</done=> vdone": false
</todo> },
<todo=> {
<name>Docker slides</name= "name": "Docker slides",
<done>true</done> "done": true
</todo=> ¥
</root>]
kL

XML JSON

todo:

- hame:
done:
- hame:
done:

Docker lecture
false

Docker slides
true

YAML

YAML: Example 2

{

"phd-students”: [
{
"federico": {
"nmame": "Federico Galatolo",
"job": "PhD Student",
"skills": [
"linux",
"python"”
]
T
}I‘
{
"manilo": {
"mame": "Manilo Monaco",
"job": "Developer",
"skills": [
"matlab",
"python"”

phd-students:
- federico:
name: Federico Galatolo
job: PhD Student
skills:
- linux
- python
- manilo:
name: Manilo Monaco
job: Developer
skills:
- matlab
- python

Docker Compose

» version: <docker-compose-version>

* services:

* service-name:

image: <docker-image>
build: <path-to-dockerfile>
ports:

* <host-port>:<container-port>
volumes:

* <host-path>:<container-path>
environment:

« ENV_VAR=value
deploy:

* replicas: <number_of replicas>

Works only in
“swarm” mode

Docker Compose CLI

* Uses the file “docker-compose.yml|” by default, you can specify a
different yaml file with -f

* docker-compose up
e Starts all the containers

* docker-compose stop
 Stops all the containers

* docker-compose build
 Builds all the containers that use the “build” keyword

* You can start the containers in detached mode with -d
* You can add the flag --compatibility to use “swarm” features

Docker internal DNS

* Docker SDN (Software Defined Network) has its own DNS resolver
* You can use the container name to resolve its ip

* If you scale a container (with docker-compose scale o replicas) the
internal DNS will round-robin all the containers

* Do NOT use this as redundancy but always use a proper reverse proxy

Let's build a LEMP stack

Docker

4—>‘4—>

Webserver

Load . Load

PHP Server

—

Balancer

Balancer .
/Database
=) =) =)

Webserver PHP Server

linux-nginx-php-mysq|

Let's build a LEMP stack: Webserver

Docker

‘

Webserver

Let's build a LEMP stack: Webserver

NGiNX

https://hub.docker.com/ /nginx

Default configuration file location: /etc/nginx/conf.d/default.conf

OT: nginx
nginx (pronounced “Engine-X") is an high performance
* Web Server
* Reverse Proxy

e Load Balancer
e HTTP Cache

Very easy to configure and manage. Used by 30% of the websites worldwide

OT: nginx basic webserver

server {
' server {
listen <port>;
' listen 80;
location <regex> {
location / {

root <path>;

)

location <regex> {

root /var/www;
location /images/ {

root <path>; root /data/images;

OT: nginx basic reverse proxy

upstream <name> {

S
S

erver hostl:port;
erver host2:port;

server {
listen <port>
location <regex> {

}

}

proxy_pass <proto>://<name>

upstream revhttp {
server http-1:8080;
server http-2:8080;

}

server {
listen 80
location / {
proxy_pass http://revhttp;

}
}

Let's build a LEMP stack: PHP

Docker

‘ ‘

Webserver PHP Server

php-fpm

OT: Why php-fpm?

PHP execute in the same machine of the PHP execute in a different machine than

webserver the webserver

PHP interpreter is always loaded PHP interpreter is loaded only for php
content

Scale websever = scale php Scale webserver only or php only (or both)

Apache is slow php-fpm is webserver agnostic

/ PHP Server

PHP Server

Webserver

How php-fpm with nginx?

server {
listen 80;
location / {
root /website;
location ~ \.phpS {
try_files Suri =404;
fastcgi_split_path_info A(.+\.php)(/.+)S;
fastcgi_pass php:9000;
fastcgi_index index.php;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME Sdocument_rootSfastcgi_script_name;
fastcgi_param PATH_INFO Sfastcgi_path_info;

Assuming php-fpm running on port 9000 of host “php”

fastcgi_pass beheaves like proxy pass it accepts both an host or an upstream

Let's build a LEMP stack: PHP Load Balancer

‘

PHP Server

) 3 load -
Balancer .

‘

PHP Server

Docker

Webserver

You just need to scale the php container and add a couple of lines to the webserver configuration

Let's build a LEMP stack: HTTP Load Balancer

4—>‘

PHP Server

4—>‘

PHP Server

Docker

4—>‘4—>

Webserver

4—>‘4—>

Webserver

— Load

Load

Balancer Balancer

Scale the webserver container, add another container just for the HTTP reverse proxy and expose
its port to the host.

Let's build a LEMP stack: MySQL Server

Docker

Webserver PHP Server
Load . Load

—

Balancer) ‘
/Database
) =))

Webserver PHP Server

Balancer

Let's build a LEMP stack: MySQL Server

php:7-fpm does not have mysqli installed:
* Create your own container with a Dockerfile
e Start from php:7-fpm
* Execute docker-php-ext-install mysqli
e Use this image in your docker-compose (with “build”)

Use the mysqgl image mysql:5.7
* set the environment variable MYSQL _ROOT_PASSWORD

