


Docker Deep Dive
Zero to Docker in a single book

2020 Edition

Nigel Poulton @nigelpoulton



About this edition

This edition was published in May 2020.

In producing this edition, I've gone through every page and every example to make sure everything 
is up-to-date with the latest versions of Docker and the latest trends in the cloud-native ecosystem.

Important updates include: 

- The Compose specification (announced April 2020).

- Using TLS to secure client-daemon communications added to chapter 5.

- Simplified Installing Docker chapter. Too much space was wasted on this topic in 
previous editions.

Finally, I was able to reduce the cost of the paperback edition by shortening the book 
from ~400 pages to ~250 pages. I achieved this by reducing the font size to a more 
professional size that I already use in The Kubernetes Book (previous editions used a 
very large font). I also removed duplicate content and chapters that related to Docker 
Enterprise Edition which is no longer a strategic focus. The resulting book is shorter, 
sharper, and easier to navigate and consume!

Enjoy the book!

(c)c) 2020 Nigel Poulton
All typos are mine. Or should that be typo's... ;-)



Education is about inspiring and creating opportunities. I hope this book, and my video training 
courses, inspire you and create lots of opportunities!

A huge thanks to my wife and daughters for putting up with me. It can't be easy living with a geek 
who wants to mess about with Docker and Kubernetes every hour of the day. I'm also grateful to 

my younger brother who manages the operational aspects of everything I do --- he also proof-read 
the manuscript, so we share the blame for any typos ;-).

Thank you, as well, to everyone who watches my training videos at pluralsight.com, acloud.guru, 
and udemy.com. I love connecting with you and appreciate all the feedback you give --- keep it 

coming, it's what inspired me to write this book. 

Finally, I love to connect. You can reach me at nigelpoulton.com, Twitter, LinkedIn, YouTube, and 
many other places where I spend too much time talking about tech.

@nigelpoulton



About the author

Nigel is a techoholic who spends his life creating books, training videos, and online hands-on 
training. He's the author of best-selling books on Docker and Kubernetes, as well as the most 
popular online training videos on the same topics (pluralsight.com. acloud.guru, and udemy.com). 
He's also a Docker Captain. Prior to all of this, Nigel held various senior infrastructure roles at 
large enterprises (mainly banks).

When he's not playing with technology, he's dreaming about it. When he's not dreaming about it, 
he's reading and watching scifi. He wishes he lived in the future so he could explore space-time, the 
universe, and tons of other mind-blowing stuff. He likes cars, football, food, and bees (yes, that's 
the fuzzy insect and not a typo). He has a fabulous wife and three fabulous children.

Feel free to connect via: 

• Twitter (@nigelpoulton)

• LinkedIn (https://www.linkedin.com/in/nigelpoulton/)

• nigelpoulton.com

• YouTube: Nigel Poulton - KubeTrainer



Contents

0: About the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Why should I read this book or care about Doer? . . . . . . . . . . . . . . . . . . . . . . . . . . 1
What if I’m not a developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Should I buy the book if I’ve already wated your video training courses? . . . . . . . . . . . . . . 1
How the book is organized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Editions of the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Having problems geing the latest updates on your Kindle? . . . . . . . . . . . . . . . . . . . . . 3
e paperba edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Leave a review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part 1: e big picture stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1: Containers from 30,000 feet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
e bad old days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Hello VMware! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
VMwarts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Hello Containers! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Linux containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Hello Doer! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Windows containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Windows containers vs Linux containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
What about Mac containers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
What about Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2: Doer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Doer - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Doer, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
e Doer tenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
e Open Container Initiative (OCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3: Installing Doer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Doer Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Windows pre-reqs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



CONTENTS

Installing Doer Desktop on Windows 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Installing Doer Desktop on Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Installing Doer on Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Installing Doer on Windows Server 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Play with Doer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4: e big picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
e Ops Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Aaing to running containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

e Dev Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Part 2: e tenical stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5: e Doer Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Doer Engine - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Doer Engine - e Deep Dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Geing rid of LXC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Geing rid of the monolithic Doer daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
e influence of the Open Container Initiative (OCI) . . . . . . . . . . . . . . . . . . . . . . . 36
runc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
containerd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Starting a new container (example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
One huge benefit of this model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
What’s this shim all about? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
How it’s implemented on Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
What’s the point of the daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Securing client and daemon communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6: Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Doer images - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Doer images - e deep dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Images and containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Images are usually small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Pulling images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Image naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Image registries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Image naming and tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Images with multiple tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Filtering the output of docker image ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Searing Doer Hub from the CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Images and layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Sharing image layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Pulling images by digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A lile bit more about image hashes (digests) . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Multi-aritecture images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Deleting Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Images - e commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7: Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Doer containers - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Doer containers - e deep dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Containers vs VMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
e VM tax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Running containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Cheing that Doer is running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Starting a simple container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Container processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Container lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Stopping containers gracefully . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Self-healing containers with restart policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Web server example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Inspecting containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Tidying up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Containers - e commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8: Containerizing an app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Containerizing an app - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Containerizing an app - e deep dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Containerize a single-container app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Moving to production withMulti-stage Builds . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A few best practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Containerizing an app - e commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9: Deploying Apps with Doer Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Deploying apps with Compose - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Deploying apps with Compose - e Deep Dive . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Compose baground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Installing Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Compose files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Deploying an app with Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Managing an app with Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Deploying apps with Compose - e commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10: Doer Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Doer Swarm - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



CONTENTS

Doer Swarm - e Deep Dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Swarm primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Build a secure Swarm cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Swarm manager high availability (HA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Swarm services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Viewing and inspecting services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Replicated vs global services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Scaling a service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Removing a service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Rolling updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Baing up Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Doer Swarm - e Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

11: Doer Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Doer Networking - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Doer Networking - e Deep Dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

e theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Single-host bridge networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Multi-host overlay networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Connecting to existing networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Service discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Ingress load balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Doer Networking - e Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

12: Doer overlay networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Doer overlay networking - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Doer overlay networking - e deep dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Build and test a Doer overlay network in Swarm mode . . . . . . . . . . . . . . . . . . . . . 176
Test the overlay network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
e theory of how it all works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Doer overlay networking - e commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

13: Volumes and persistent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Volumes and persistent data - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Volumes and persistent data - e Deep Dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Containers and non-persistent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Containers and persistent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Demonstrating volumes with containers and services . . . . . . . . . . . . . . . . . . . . . . . 193
Sharing storage across cluster nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Volumes and persistent data - e Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

14: Deploying apps with Doer Stas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Deploying apps with Doer Stas - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



Deploying apps with Doer Stas - e Deep Dive . . . . . . . . . . . . . . . . . . . . . . . . . 199
Overview of the sample app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Looking closer at the sta file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Deploying the app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Managing the app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Deploying apps with Doer Stas - e Commands . . . . . . . . . . . . . . . . . . . . . . . . . 216
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

15: Security in Doer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Security in Doer - e TLDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Security in Doer - e deep dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Linux security tenologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Doer platform security tenologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Doer Secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

16: What next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Practice makes perfect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Video training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Get involved with the community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Feedba and connecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238





0: About the book
is is a book about Doer, no prior knowledge required. In fact, the moo of the book is Zero to Doer in a
single book.

So, if you’re involved in the development and operations of cloud-native microservices apps and need to learn
Doer, or if you want to be involved in that stuff, this book is dedicated to you.

In fact, Book Authority (featured on CNN, Forbes) rated this as the best Doer book of all time!

Best Doer book of all time - winner

Why should I read this book or care about Docker?

Doer is here and there’s no point hiding. In fact, if you want the best jobs working on the best tenologies,
you need to know Doer and containers.

What if I’m not a developer

If you think Doer is just for developers, prepare to have your world turned upside-down.

Most applications, even the funky cloud-native microservices ones, need high-performance production-grade
infrastructure to run on. If you think traditional developers are going to take care of that, think again. To cut
a long story short, if you want to thrive in the modern cloud-first world, you need to know Doer. But don’t
stress, this book will give you all the skills you need.

Should I buy the book if I’ve already watched your video
training courses?

e oice is yours, but I normally recommend people wat my videos and read my books. And no, it’s not to
make me ri. Learning via different mediums is a proven way to learn fast. So, I recommend you read my books,
wat my videos, and get as mu hands-on experience as possible.



2 0: About the book

Also, if you like my video courses¹ you’ll probably like the book. If you don’t like my video courses you probably
won’t like the book.

If you haven’t wated my video courses, you should! ey’re fast-paced, lots of fun, and get rave reviews.

How the book is organized

I’ve divided the book into two sections:

1. e big picture stuff
2. e tenical stuff

e big picture stuff section covers things like:

• What is Doer
• Why do we have containers
• What do things like “cloud-native” and “microservices” mean…

It’s the kind of stuff that you need to know if you want a good rounded knowledge of Doer and containers.

e tenical stuff section is where you’ll find everything you need to start working with Doer. It gets into
the detail of images, containers, and the increasingly important topic of orestration. It even cover’s the stuff
that enterprises love — TLS, image signing, high-availability, baups, and more.

Ea apter covers theory and includes plenty of commands and examples.

Most of the apters in the tenical stuff section are divided into three parts:

• e TLDR
• e Deep Dive
• e Commands

e TLDR gives you two or three paragraphs that you can use to explain the topic at the coffee maine. ey’re 
also a great way to remind yourself what something is about.

e Deep Dive explains how things work and gives examples.

e Commands lists all the relevant commands in an easy to read list with brief reminders of what ea one does. I 

think you’ll love that format.

¹https://app.pluralsight.com/library/search?q=nigel+poulton

https://app.pluralsight.com/library/search?q=nigel+poulton
https://app.pluralsight.com/library/search?q=nigel+poulton


3

Editions of the book

Doer and the cloud-native ecosystem is developing at a warp speed. As a result, I’m commied to updating
the book every year!**

If that sounds a bit excessive, welcome to the new normal.

We no-longer live in a world where a 1-year old book on a tenology like Doer is valuable. at makes my
life as an author really hard, but I’m not going to argue with the truth.

Don’t worry though, your investment in this book is safe.

If you buy the paperba copy from Amazon.com, you get the Kindle version for a couple of bus through the
Kindle MatBook seme. is is an Amazon service that’s only available on Amazon.com and is a bit buggy. If
you bought the paperba and can’t see how to get your Kindle version through MatBook, you need to contact
Kindle support — I can’t help you with this :-(

e Kindle and Leanpub versions get all updates free of arge!

at’s the best I can currently do!

Having problems getting the latest updates on your Kindle?

It’s come to my aention that Kindle doesn’t always download the latest version of the book. To fix this:

Go to hp://amzn.to/2l53jdg

Under Quick Solutions (on the le) select Digital Purchases. Sear for your purase of Doer Deep Dive
kindle edition and select Content and Devices. Your purase should show up in the list with a buon that says
“Update Available”. Cli that buon. Delete your old version on your Kindle and download the new one.

If this doesn’t work, contact Kindle support and they’ll resolve the issue for you. hps://kdp.amazon.com/en_-
US/self-publishing/contact-us/.

The paperback edition

I’m a huge fan of ink and paper. As a result, this book is available as a high-quality, full-color, paperba edition
via Amazon. None of this bla-and-white nonsense. I think you’ll love it.

Leave a review

Last but not least… be a legend and write a qui review on Amazon. You can even do this if you bought the
book on Leanpub.



4 0: About the book

at’s everything. Let’s get roing with Doer!



Part 1: The big picture stuff





1: Containers from 30,000 feet
Containers are definitely a thing.

In this apter we’ll get into things like; why we have containers, what they do for us, and where we can use
them.

The bad old days

Applications are at the heart of businesses. If applications break, businesses break. Sometimes they even go bust.
ese statements get truer every day!

Most applications run on servers. In the past we could only run one application per server. e open-systems
world of Windows and Linux just didn’t have the tenologies to safely and securely run multiple applications
on the same server.

As a result, the story went something like this… Every time the business needed a new application, the IT
department would buy a new server. Most of the time nobody knew the performance requirements of the new
application, forcing the IT department to make guesses when oosing the model and size of the server to buy.

As a result, IT did the only thing it could do — it bought big fast servers that cost a lot of money. Aer all, the
last thing anyone wanted, including the business, was under-powered servers unable to execute transactions and
potentially losing customers and revenue. So, IT bought big. is resulted in over-powered servers operating as
low as 5-10% of their potential capacity. A tragic waste of company capital and environmental resources!

Hello VMware!

Amid all of this, VMware, Inc. gave the world a gi — the virtual maine (VM). And almost overnight, the
world anged into a mu beer place. We finally had a tenology that allowed us to safely and securely run
multiple business applications on a single server. Cue wild celebrations!

is was a game anger. IT departments no longer needed to procure a brand-new oversized server every time
the business needed a new application. More oen than not, they could run new apps on existing servers that
were siing around with spare capacity.

All of a sudden, we could squeeze massive amounts of value out of existing corporate assets, resulting in a lot
more bang for the company’s bu ($).

VMwarts

But… and there’s always a but! As great as VMs are, they’re far from perfect!

e fact that every VM requires its own dedicated operating system (OS) is amajor flaw. Every OS consumes CPU,
RAM and other resources that could otherwise be used to power more applications. Every OS needs pating
and monitoring. And in some cases, every OS requires a license. All of this results in wasted time and resources.

e VMmodel has other allenges too. VMs are slow to boot, and portability isn’t great —migrating and moving
VM workloads between hypervisors and cloud platforms is harder than it needs to be.



8 1: Containers from 30,000 feet

Hello Containers!

For a long time, the big web-scale players, like Google, have been using container tenologies to address the
shortcomings of the VM model.

In the container model, the container is roughly analogous to the VM. A major difference is that containers do
not require their own full-blown OS. In fact, all containers on a single host share the host’s OS. is frees up
huge amounts of system resources su as CPU, RAM, and storage. It also reduces potential licensing costs and
reduces the overhead of OS pating and other maintenance. Net result: savings on the time, resource, and capital
fronts.

Containers are also fast to start and ultra-portable. Moving container workloads from your laptop, to the cloud,
and then to VMs or bare metal in your data center is a breeze.

Linux containers

Modern containers started in the Linux world and are the product of an immense amount of work from a wide
variety of people over a long period of time. Just as one example, Google LLC has contributed many container-
related tenologies to the Linux kernel. Without these, and other contributions, we wouldn’t have modern
containers today.

Some of the major tenologies that enabled the massive growth of containers in recent years include; kernel
namespaces, control groups, union filesystems, and of course Doer. To re-emphasize what was said earlier
— the modern container ecosystem is deeply indebted to the many individuals and organizations that laid the
strong foundations that we currently build on. ank you!

Despite all of this, containers remained complex and outside of the rea of most organizations. It wasn’t until
Doer came along that containers were effectively democratized and accessible to the masses.

Note:ere are many operating system virtualization tenologies similar to containers that pre-
date Doer and modern containers. Some even date ba to System/360 on the Mainframe. BSD
Jails and Solaris Zones are some other well-known examples of Unix-type container tenologies.
However, in this book we are restricting our conversation to modern containers made popular by
Doer.

Hello Docker!

We’ll talk about Doer in a bit more detail in the next apter. But for now, it’s enough to say that Doer was
the magic that made Linux containers usable for mere mortals. Put another way, Doer, Inc. made containers
simple!

Windows containers

Over the past few years, Microso Corp. has worked extremely hard to bring Doer and container tenologies
to the Windows platform.



9

At the time of writing,Windows containers are available on theWindows desktop andWindows Server platforms
(certain versions of Windows 10 and later, and Windows Server 2016 and later). In aieving this, Microso has
worked closely with Doer, Inc. and the open-source community.

e core Windows kernel tenologies required to implement containers are collectively referred to asWindows
Containers. e user-space tooling to work with theseWindows Containers can be Doer.is makes the Doer
experience onWindows almost exactly the same as Doer on Linux.is way developers and sysadmins familiar
with the Doer toolset from the Linux platform can feel at home using Windows containers.

is revision of the book includes a mix of Linux and Windows examples.

Windows containers vs Linux containers

It’s vital to understand that a running container shares the kernel of the host maine it is running on. is
means that a containerized Windows app will not run on a Linux-based Doer host, and vice-versa —Windows
containers require aWindows host, and Linux containers require a Linux host. Only… it’s not always that simple.

It is possible to run Linux containers on Windows maines. For example, Doer Desktop running on Windows
has two modes — “Windows containers” and “Linux containers”. Depending on your version of Doer Desktop,
Linux container run either inside a lightweight Hyper-V VM or using the Windows Subsystem for Linux (WSL).
e WSL option is newer and the strategic option for the future as it doesn’t require a Hyper-V VM and offers
beer performance and compatibility.

What about Mac containers?

ere is currently no su thing as Mac containers.

However, you can run Linux containers on your Mac using Doer Desktop. is works by seamlessly running
your containers inside of a lightweight Linux VM on your Mac. It’s extremely popular with developers, who can
easily develop and test Linux containers on their Mac.

What about Kubernetes

Kubernetes is an open-source project out of Google that has quily emerged as the de facto orestrator of
containerized apps. at’s just a fancy way of saying Kubernetes is the most popular tool for deploying and
managing containerized apps.

Note: A containerized app is an application running as a container.

At the time of writing, Kubernetes uses Doer as its default container runtime — the low-level tenology that
pulls images and starts and stops containers. However, Kubernetes has a pluggable container runtime interface
(CRI) that makes it easy to swap-out Doer for a different container runtime. In the future, Doer might be
replaced by containerd as the default container runtime in Kubernetes. More on containerd later in the book,
but for now it’s enough to know that containerd is the small specialized part of Doer that does the low-level
tasks of starting and stopping containers.



10 1: Containers from 30,000 feet

e important thing to know about Kubernetes, at this stage, is that it’s a higher-level platform than Doer, and
it currently uses Doer for its low-level container-related operations.

I have the following resources to help you learn Kubernetes:

• e Kubernetes Book
• Geing Started with Kubernetes video course (pluralsight.com)
• Kubernetes 101 video course (udemy.com)

Geing Started with Kubernetes is available at pluralsight.com and Kubernetes 101 is available at udemy.com.

Chapter Summary

We used to live in a world where every time the business wanted a new application we had to buy a brand-new
server. VMware came along and enabled us to drive more value out of new and existing company IT assets. As
good as VMware and the VM model is, it’s not perfect. Following the success of VMware and hypervisors came
a newer more efficient and lightweight virtualization tenology called containers. But containers were initially
hard to implement and were only found in the data centers of web giants that had Linux kernel engineers on
staff. Along came Doer, Inc. and suddenly containers were available to the masses.

Speaking of Doer… let’s go find who, why, and what Doer is!



2: Docker
No book or conversation about containers is complete without talking about Doer. But when we say “Doer”,
we can be referring to either of the following:

1. Doer, Inc. the company
2. Doer the tenology

Docker - The TLDR

Doer is soware that runs on Linux and Windows. It creates, manages, and can even orestrate containers.
e soware is currently built from various tools from theMoby open-source project. Doer, Inc. is the company
that created the tenology and continues to create tenologies and solutions that make it easier to get the code
on your laptop running in the cloud.

at’s the qui version. Let’s dive a bit deeper.

Docker, Inc.

Doer, Inc. is a San Francisco based tenology company founded by Fren-born American developer and
entrepreneur Solomon Hykes. Solomon is no longer at the company.

Figure 2.1 Doer, Inc. logo.

e company started out as a platform as a service (PaaS provider called dotCloud. Behind the scenes, the 
dotCloud platform was built on Linux containers. To help create and manage these containers, they built an 
in-house tool that they eventually ni-named “Doer”. And that’s how the Doer tenology was born!

It’s also interesting to know that the word “Doer” comes from a British expression meaning do worker —
somebody who loads and unloads cargo from ships.



12 2: Doer

In 2013 they got rid of the struggling PaaS side of the business, rebranded the company as “Doer, Inc.”,
and focussed on bringing Doer and containers to the world. ey were immensely successfully in bringing
containers into mainstream IT, but so far they’ve struggled to make a profitable business.

At the time of writing, Doer, Inc. is focussing on their Doer Desktop and Doer Hub products to streamline
the process of geing from source code on a laptop, all the way to a running application in the cloud.

roughout this book we’ll use the term “Doer, Inc.” when referring to Doer the company. All other uses of
the term “Doer” will refer to the tenology.

The Docker technology

When most people talk about Doer, they’re referring to the tenology that runs containers. However, there
are at least three things to be aware of when referring to Doer as a tenology:

1. e runtime
2. e daemon (a.k.a. engine)
3. e orestrator

Figure 2.2 shows the three layers and will be a useful reference as we explain ea component. We’ll get deeper
into ea later in the book.

Figure 2.2 Doer aritecture.

e runtime operates at the lowest level and is responsible for starting and stopping containers (this includes
building all of the OS constructs su as namespaces and cgroups). Doer implements a tiered runtime
aritecture with high-level and low-level runtimes that work together.

e low-level runtime is called runc and is the reference implementation of Open Containers Initiative (OCI)
runtime-spec. Its job is to interface with the underlying OS and start and stop containers. Every running container
on a Doer node has a runc instance managing it.

e higher-level runtime is called containerd. containerd does a lot more than runc. It manages the entire
lifecycle of a container, including pulling images, creating network interfaces, and managing lower-level runc
instances. containerd is pronounced “container-dee’ and is a graduated CNCF project used by Doer and
Kubernetes as a container runtime.



13

A typical Doer installation has a single containerd process (docker-containerd) controlling the runc (docker-
runc) instances associated with ea running container.

e Doer daemon (dockerd) sits above containerd and performs higher-level tasks su as; exposing the
Doer remote API, managing images, managing volumes, managing networks, and more…

A major job of the Doer daemon is to provide an easy-to-use standard interface that abstracts the lower levels.

Doer also has native support for managing clusters of nodes running Doer. ese clusters are called swarms
and the native tenology is called Doer Swarm. Doer Swarm is easy-to-use and many companies are using
it in real-world production. However, most people are oosing to use Kubernetes instead of Doer Swarm.

The Open Container Initiative (OCI)

Earlier in the apter we mentioned the Open Containers Initiative — OCI².

e OCI is a governance council responsible for standardizing the low-level fundamental components of
container infrastructure. In particular it focusses on image format and container runtime (don’t worry if you’re
not comfortable with these terms yet, we’ll cover them in the book).

It’s also true that no discussion of the OCI is complete without mentioning a bit of history. And as with all
accounts of history, the version you get depends on who’s doing the talking. So, this is container history according
to Nigel :-D

From day one, use of Doer grew like crazy. More and more people used it in more and more ways for more
and more things. So, it was inevitable that some parties would get frustrated. is is normal and healthy.

e TLDR of this history according to Nigel is that a company called CoreOS (acquired by Red Hat whi was
then acquired by IBM) didn’t like the way Doer did certain things. So, they created an open standard called
appc³ that defined things like image format and container runtime. ey also created an implementation of the
spec called rkt (pronounced “roet”).

is put the container ecosystem in an awkward position with two competing standards.

Geing ba to the story, this threatened to fracture the ecosystem and present users and customers with a
dilemma. While competition is usually a good thing, competing standards is usually not. ey cause confusion
and slowdown user adoption. Not good for anybody.

With this in mind, everybody did their best to act like adults and came together to form the OCI — a lightweight
agile council to govern container standards.

At the time of writing, the OCI has published two specifications (standards) -

• e image-spec⁴
• e runtime-spec⁵

An analogy that’s oen used when referring to these two standards is rail tras. ese two standards are
like agreeing on standard sizes and properties of rail tras, leaving everyone else free to build beer trains,

²https://www.opencontainers.org
³https://github.com/appc/spec/
⁴https://github.com/opencontainers/image-spec
⁵https://github.com/opencontainers/runtime-spec

https://www.opencontainers.org/
https://github.com/appc/spec/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec
https://www.opencontainers.org/
https://github.com/appc/spec/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec


14 2: Doer

beer carriages, beer signalling systems, beer stations… all safe in the knowledge that they’ll work on the
standardized tras. Nobody wants two competing standards for rail tra sizes!

It’s fair to say that the two OCI specifications have had a major impact on the aritecture and design of the core
Doer product. As of Doer 1.11, the Doer Engine aritecture conforms to the OCI runtime spec.

e OCI is organized under the auspices of the Linux Foundation.

Chapter summary

In this apter, we learned about Doer, Inc. the company, and the Doer tenology.

Doer, Inc. is a tenology company out of San Francisco with an ambition to ange the way we do soware.
ey were arguably the first-movers and instigators of the modern container revolution.

e Doer tenology focuses on running and managing application containers. It runs on Linux andWindows,
can be installed almost anywhere, and is currently the most popular container runtime used by Kubernetes.

e Open Container Initiative (OCI) was instrumental in standardizing the container runtime format and
container image format.



3: Installing Docker
ere are lots of ways and places to install Doer. ere’s Windows, Mac, and Linux. You can install in the
cloud, on premises, and on your laptop. And there are manual installs, scripted installs, wizard-based installs…
ere literally are loads of ways and places to install Doer.

But don’t let that scare you. ey’re all really easy, and a simple sear for “how to install doer on <insert your
oice here>” will reveal up-to-date instructions that are easy to follow. As a result, we won’t waste too mu
space here. We’ll cover the following.

• Doer Desktop installs on
– Windows 10
– Mac

• Server installs on
– Linux
– Windows Server 2019

• Play with Doer

Docker Desktop

Doer Desktop is a paaged product from Doer, Inc. It runs on 64-bit versions of Windows 10 and Mac, and
it’s easy to download and install.

Once the installation is complete, you have a single-engine Doer environment that is great for development
purposes. It includes Doer Compose and you can oose to enable a single-node Kubernetes cluster.

Early versions of Doer Desktop experienced some feature-lag while the product was developed with a stability
first, features second approa. However, the product is now mature and a key tenology in Doer, Inc’s focus
on making it easier to get from the source code on your laptop to running applications in the cloud.

Doer Desktop onWindows 10 can run native Windows containers as well as Linux containers. Doer Desktop
on Mac can only run Linux containers.

Windows pre-reqs

Doer Desktop on Windows requires all of the following:

• 64-bit version of Windows 10 Pro/Enterprise/Education (does not work with Home edition)
• Hardware virtualization support must be enabled in your system’s BIOS
• e Hyper-V and Containers features must be enabled in Windows

e installer can enable the Hyper-V and Containers features, but it’s your responsibility to enable hardware
virtualization in your BIOS (be very careful anging anything in your system’s BIOS).



16 3: Installing Doer

Installing Docker Desktop on Windows 10

Perform a google sear for “install Doer Desktop”. is will take you to the relevant download page where
you can download the installer and follow the instructions. It’s that simple!

At the time of writing, you can oose between the stable channel and the edge channel. e names are
self-explanatory, with the edge channel providing earlier access bleeding-edge features.

Once the installation is complete you may have to manually start Doer Desktop from the Windows Start
menu. It can take a minute for it to start, and you can wat the start progress via the animated whale icon on
the Windows task bar at the boom of the screen.

Once it’s up and running you can open a PowerShell prompt and type some simple docker commands.

$ docker version
Client: Docker Engine - Community
Version: 19.03.8
API version: 1.40
Go version: go1.12.17
Git commit: afacb8b
Built: Wed Mar 11 01:23:10 2020
OS/Arch: windows/amd64
Experimental: true
Server: Docker Engine - Community
Engine:
Version: 19.03.8
API version: 1.40 (minimum version 1.12)
Go version: go1.12.17
Git commit: afacb8b
Built: Wed Mar 11 01:29:16 2020
OS/Arch: linux/amd64
Experimental: true

<Snip>

Notice the output is showing OS/Arch: linux/amd64 for the Server component. is is because a default
installation assumes you’ll be working with Linux containers. It does this by running the Doer daemon inside
of a lightweight Linux Hyper-V VM.

Switing to Windows containers is as simple as right-cliing the Doer whale icon in the Windows
notifications tray and selecting Switch to Windows containers.... You can aieve the same thing from the
command line with the following command (located in the \Program Files\Docker\Docker directory):

C:\Program Files\Docker\Docker> .\dockercli -SwitchDaemon

Be aware that any existing Linux containers will keep running in the baground, but you won’t be able to see
or manage them until you swit ba to Linux containers mode.

You’ll be prompted to enable the Windows Containers feature if it isn’t already enabled.

Run another docker version command and look for the windows/amd64 line in the Server section of the output.



17

C:\> docker version
Client:
<Snip>

Server:
Engine:
Version: 19.03.8
API version: 1.40 (minimum version 1.24)
Go version: go1.12.17
Git commit: afacb8b
Built: Wed Mar 11 01:37:20 2020
OS/Arch: windows/amd64
Experimental: true

You can now run and manage Windows containers (containers running Windows applications).

Congratulations. You now have a working installation of Doer on your Windows 10 maine.

Installing Docker Desktop on Mac

Doer Desktop for Mac is like Doer Desktop on Windows 10 — a paaged product from Doer, Inc with a
simple installer that gets you a single-engine installation of Doer that’s ideal for local development needs. You
can also enable a single-node Kubernetes cluster.

We’ll look at a simple installation in a second, but before doing that it’s worth noting that Doer Desktop on
Mac doesn’t give you the Doer Engine running natively on the Mac OS Darwin kernel. Behind the scenes, the
Doer daemon is running inside a lightweight Linux VM that seamlessly exposes the daemon and API to your
Mac environment. is means you can open a terminal on your Mac and use the regular Doer commands.

Although this works seamlessly on your Mac, don’t forget that it’s Doer on Linux under the hood — so it’s
only going work with Linux-based Doer containers. is is good though, as it’s where most of the container
action is.

Figure 3.1 shows the high-level aritecture for Doer Desktop on Mac.

Figure 3.1

e simplest way to install Doer Desktop on your Mac is perform a google sear for “install Doer Desktop”.
Follow the links to the download page where you can download the installer and follow the instructions. It’s that
simple.

As with Doer Desktop on Windows 10, you can oose the stable channel or the edge channel — the edge
channel providing earlier access bleeding-edge features.



18 3: Installing Doer

Download the installer and follow the step-by-step instructions.

Once the installation is complete you may have to manually start Doer Desktop from the MacOS Launpad.
It can take a minute for it to start, and you can wat the animated Doer whale icon in the status bar at the
top of your screen. Once Doer Desktop is started, the whale will stop being animated. You can cli the whale
icon to manage Doer Desktop.

Open a terminal window and run some regular Doer commands. Try the following.

$ docker version
Client: Docker Engine - Community
Version: 19.03.8
API version: 1.40
Go version: go1.12.17
Git commit: afacb8b
Built: Wed Mar 11 01:21:11 2020
OS/Arch: darwin/amd64
Experimental: true

Server: Docker Engine - Community
Engine:
Version: 19.03.8
API version: 1.40 (minimum version 1.12)
Go version: go1.12.17
Git commit: afacb8b
Built: Wed Mar 11 01:29:16 2020
OS/Arch: linux/amd64
Experimental: true

Notice that the OS/Arch: for the Server component is showing as linux/amd64. is is because the daemon is
running inside of the Linux VM we mentioned earlier. e Client component is a native Mac application and
runs directly on the Mac OS Darwin kernel (OS/Arch: darwin/amd64).

You can now use Doer on your Mac.

Installing Docker on Linux

ere are lots of ways to install Doer on Linux and most of them are easy. e hardest part is usually deciding
whi Linux distro to use.

e internet has lots of guides for installing and working with Doer on many distributions of Linux. In this
section we’ll look at one of the ways to install on Ubuntu Linux 20.04 LTS.e procedure assumes you’ve already
installed Linux and are logged on.

1. Update the apt paage index.



19

$ sudo apt-get update
Get:1 http://eu-west-1.ec2.archive.ubuntu.com/ubuntu focal InRelease [265 kB]
...

2. Install Doer from the official repo.

$ sudo apt-get install docker.io
Reading package lists... Done
Building dependency tree
...

Doer is now installed and you can test by running some commands.

$ sudo docker --version
Docker version 19.03.8, build afacb8b7f0

$ sudo docker info
Server:
Containers: 0
Running: 0
Paused: 0
Stopped: 0
...

Installing Docker on Windows Server 2019

Most of the public cloud platforms offer off-the-shelf copies of Windows Server 2019 with Doer pre-
installed. Simply oose one of these – su as Microso Windows Server 2019 Base with Containers -
ami-0b809eef92577a4f1 on AWS – and you’re good to go.

Installing Doer on other versions of Windows Server 2019 is incredibly easy.

e following procedure assumes you’ve installed Windows Server 2019 and are logged on with administrator
privileges.

1. Install the Doer Provider

Run this command from a PowerShell terminal.

PS C:\> Install-Module DockerMsftProvider -Force
NuGet provider is required to continue
PowerShellGet requires NuGet provider version
<Snip>
Do you want PowerShellGet to install and import the NuGet provider now?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

2. Install Doer



20 3: Installing Doer

PS C:\> Install-Package Docker -ProviderName DockerMsftProvider -Force
WARNING: A restart is required to enable the containers feature. Please restart.
Name Version Source Summary
---- ------- ------ -------
Docker 19.03.5 DockerDefault Contains Docker EE for use with Windows Server.

3. Restart your maine

Congratulations, Doer is now installed and configured to automatically start when the system boots.

Run some commands to verify Doer is working.

PS C:\> docker version
Client: Docker Engine - Enterprise
Version: 19.03.5
API version: 1.40
Go version: go1.12.12
Git commit: 2ee0c57608
Built: 11/13/2019 08:00:16
OS/Arch: windows/amd64
Experimental: false
Server: Docker Engine - Enterprise
Engine:
Version: 19.03.5
API version: 1.40 (minimum version 1.24)
Go version: go1.12.12
Git commit: 2ee0c57608
Built: 11/13/2019 07:58:51
OS/Arch: windows/amd64
Experimental: false

Doer is now installed and you are ready to start using Windows containers.

Play with Docker

Play with Doer (PWD) provides a free-to-use fully functional Doer playground that lasts for 4 hours. You
can add multiple nodes and even cluster them in a swarm.

Sometimes performance can be slow, but for a free-to-use service it is excellent!

Visit hps://labs.play-with-doer.com/

Chapter Summary

You can run Doer almost anywhere and most of the installation methods are simple.

Doer Desktop provides you a single-engine Doer environment on yourMac orWindows 10 laptop. It’s simple
to install, is intended for development activities and even allows you to spin-up a single-node Kubernetes cluster.

Doer can be installed on Windows Server and Linux, with most operating systems having paages that are
simple to install.

Play with Doer is a free 4-hour Doer playground on the internet.



4: The big picture
e aim of this apter is to paint a qui big-picture of what Doer is all about before we dive in deeper in
later apters.

We’ll break this apter into two:

• e Ops perspective
• e Dev perspective

In the Ops Perspective section, we’ll download an image, start a new container, log in to the new container, run
a command inside of it, and then destroy it.

In the Dev Perspective section, we’ll focus more on the app. We’ll clone some app-code from GitHub, inspect a
Doerfile, containerize the app, run it as a container.

ese two sections will give you a good idea of what Doer is all about and how the major components fit
together. It’s recommended that you read both sections to get the dev and the ops perspectives. DevOps
anyone?

Don’t worry if some of the stuff we do here is totally new to you. We’re not trying to make you an expert in this
apter. is is about giving you a feel of things — seing you up so that when we get into the details in later
apters, you have an idea of how the pieces fit together.

If you want to follow along, all you need is a single Doer host with an internet connection. I recommend
Doer Desktop for your Mac orWindows PC. However, the examples will work anywhere that you have Doer
installed. We’ll be showing examples using Linux containers and Windows containers.

If you can’t install soware and don’t have access to a public cloud, another great way to get Doer is Play With
Doer (PWD). is is a web-based Doer playground that you can use for free. Just point your web browser
to hps://labs.play-with-doer.com/ and you’re ready to go (you’ll need a Doer Hub or GitHub account to be
able to login).

As we progress through the apter, we may use the terms “Doer host” and “Doer node” interangeably.
Both refer to the system that you are running Doer on.

The Ops Perspective

When you install Doer, you get two major components:

• the Doer client
• the Doer daemon (sometimes called the “Doer engine”)

e daemon implements the runtime, API and everything else required to run Doer.

In a default Linux installation, the client talks to the daemon via a local IPC/Unix soet at /var/run/docker.sock.
On Windows this happens via a named pipe at npipe:////./pipe/docker_engine. Once installed, you can use
the docker version command to test that the client and daemon (server) are running and talking to ea other.



22 4: e big picture

> docker version
Client: Docker Engine - Community
Version: 19.03.8
API version: 1.40
Go version: go1.12.17
Git commit: afacb8b
Built: Wed Mar 11 01:23:10 2020
OS/Arch: linux/amd64
Experimental: false

Server:
Engine:
Version: 19.03.8
API version: 1.40 (minimum version 1.12)
Go version: go1.12.17
Git commit: afacb8b
Built: Wed Mar 11 01:29:16 2020
OS/Arch: linux/amd64
Experimental: false

containerd:
Version: v1.2.13
...

If you get a response ba from the Client and Server, you’re good to go.

If you are using Linux and get an error response from the Server component, make sure that Doer is up and
running. Also, try the command again with sudo in front of it: sudo docker version. If it works with sudo you
will need to add your user account to the local docker group, or prefix the remainder of the commands in the
book with sudo.

Images

It’s useful to think of a Doer image as an object that contains anOS filesystem, an application, and all application
dependencies. If you work in operations, it’s like a virtual maine template. A virtual maine template is
essentially a stopped virtual maine. In the Doer world, an image is effectively a stopped container. If you’re
a developer, you can think of an image as a class.

Run the docker image ls command on your Doer host.

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE

If you are working from a freshly installed Doer host, or Play With Doer, you will have no images and it will
look like the previous output.

Geing images onto your Doer host is called “pulling”. If you are following along with Linux, pull the
ubuntu:latest image. If you are following along on Windows, pull the mcr.microsoft.com/powershell:lts-
nanoserver-1903 image.



23

$ docker image pull ubuntu:latest
latest: Pulling from library/ubuntu
50aff78429b1: Pull complete
f6d82e297bce: Pull complete
275abb2c8a6f: Pull complete
9f15a39356d6: Pull complete
fc0342a94c89: Pull complete
Digest: sha256:fbaf303...c0ea5d1212
Status: Downloaded newer image for ubuntu:latest

Windows images can be large and take a long time to pull.

Run the docker image ls command again to see the image you just pulled.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest 1d622ef86b13 16 hours ago 73.9MB

We’ll get into the details of where the image is stored and what’s inside of it in later apters. For now,
it’s enough to know that an image contains enough of an operating system (OS), as well as all the code
and dependencies to run whatever application it’s designed for. e ubuntu image that we’ve pulled has
a stripped-down version of the Ubuntu Linux filesystem, including a few of the common Ubuntu utilities.
e mcr.microsoft.com/powershell:lts-nanoserver-1903 image contains a Windows Server Core OS plus
PowerShell.

If you pull an application container su as nginx or mcr.microsoft.com/windows/servercore/iis, you will
get an image that contains some OS, as well as the code to run either NGINX or IIS.

It’s also worth noting that ea image gets its own unique ID. When referencing images, you can refer to them
using either IDs or names. If you’re working with image ID’s, it’s usually enough to type the first few aracters
of the ID — as long as it’s unique, Doer will know whi image you mean.

Containers

Now that we have an image pulled locally, we can use the docker container run command to laun a container
from it.

For Linux:

$ docker container run -it ubuntu:latest /bin/bash
root@6dc20d508db0:/#

For Windows:



24 4: e big picture

> docker container run -it mcr.microsoft.com/powershell:lts-nanoserver-1903 pwsh.exe

PowerShell 7.0.0
Copyright (C) Microsoft Corporation. All rights reserved.
PS C:\>

Look closely at the output from the previous commands. You should notice that the shell prompt has anged in
ea instance. is is because the -it flags swit your shell into the terminal of the container — you are literally
inside of the new container!

Let’s examine that docker container run command.

docker container run tells the Doer daemon to start a new container. e -it flags tell Doer to make the
container interactive and to aa the current shell to the container’s terminal (we’ll get more specific about this
in the apter on containers). Next, the command tells Doer that we want the container to be based on the
ubuntu:latest image (or the mcr.microsoft.com/powershell:lts-nanoserver-1903 image if you’re following
along withWindows). Finally, we tell Doer whi process we want to run inside of the container. For the Linux
example we’re running a Bash shell, for the Windows container we’re running PowerShell.

Run a ps command from inside of the container to list all running processes.

Linux example:

root@6dc20d508db0:/# ps -elf
F S UID PID PPID NI ADDR SZ WCHAN STIME TTY TIME CMD
4 S root 1 0 0 - 4560 - 13:38 pts/0 00:00:00 /bin/bash
0 R root 9 1 0 - 8606 - 13:38 pts/0 00:00:00 ps -elf

Windows example:

PS C:\> ps

NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName
------ ----- ----- ------ -- -- -----------

5 0.90 3.78 0.00 1068 1 CExecSvc
6 0.97 4.12 0.03 1184 1 conhost
6 0.87 2.16 0.00 972 1 csrss
0 0.06 0.01 0.00 0 0 Idle

18 4.38 12.32 0.00 272 1 lsass
54 34.82 65.09 1.27 1212 1 pwsh
9 1.61 4.99 0.00 1020 1 services
4 0.49 1.18 0.00 948 0 smss

14 1.98 6.61 0.00 628 1 svchost
12 2.95 10.02 0.00 752 1 svchost
8 1.83 6.02 0.00 788 1 svchost
7 1.42 4.70 0.00 1040 1 svchost

16 6.12 11.41 0.00 1120 1 svchost
24 3.73 10.38 0.00 1168 1 svchost
15 9.60 18.96 0.00 1376 1 svchost
0 0.16 0.14 0.00 4 0 System
8 1.16 4.12 0.00 1004 1 wininit



25

e Linux container only has two processes:

• PID 1. is is the /bin/bash process that we told the container to run with the docker container run
command.

• PID 9. is is the ps -elf command/process that we ran to list the running processes.

e presence of the ps -elf process in the Linux output can be a bit misleading as it is a short-lived process that
dies as soon as the ps command completes. is means the only long-running process inside of the container is
the /bin/bash process.

e Windows container has a lot more going on. is is an artefact of the way the Windows Operating System
works. However, even though the Windows container has a lot more processes than the Linux container, it is still
a lot less than a regular Windows Server.

Press Ctrl-PQ to exit the container without terminating it. is will land your shell ba at the terminal of your
Doer host. You can verify this by looking at your shell prompt.

Now that you are ba at the shell prompt of your Doer host, run the ps command again.

Notice how many more processes are running on your Doer host compared to the container you just ran.
Windows containers run far fewer processes than Windows hosts, and Linux containers run far less than Linux
hosts.

In a previous step, you pressed Ctrl-PQ to exit from the container. Doing this from inside of a container will exit
you from the container without killing it. You can see all running containers on your system using the docker
container ls command.

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
6dc20d508db0 ubuntu:latest "/bin/bash" 7 mins Up 7 min vigilant_borg

e output above shows a single running container. is is the container that you created earlier. e presence
of the container in this output proves that it’s still running. You can also see that it was created 7 minutes ago
and has been running for 7 minutes.

Attaching to running containers

You can aa your shell to the terminal of a running container with the docker container exec command. As
the container from the previous steps is still running, let’s make a new connection to it.

Linux example:

is example references a container called “vigilant_borg”. e name of your container will be different, so
remember to substitute “vigilant_borg” with the name or ID of the container running on your Doer host.

$ docker container exec -it vigilant_borg bash
root@6dc20d508db0:/#

Windows example:

is example references a container called “pensive_hamilton”. e name of your container will be different, so
remember to substitute “pensive_hamilton” with the name or ID of the container running on your Doer host.



26 4: e big picture

> docker container exec -it pensive_hamilton pwsh.exe

PowerShell 7.0.0
Copyright (C) Microsoft Corporation. All rights reserved.
PS C:\>

Notice that your shell prompt has anged again. You are logged into the container again.

e format of the docker container exec command is: docker container exec <options> <container-name
or container-id> <command/app>. In our examples, we used the -it options to aa our shell to the container’s
shell.We referenced the container by name, and told it to run the bash shell (PowerShell in theWindows example).
We could easily have referenced the container by its hex ID.

Exit the container again by pressing Ctrl-PQ.

Your shell prompt should be ba to your Doer host.

Run the docker container ls command again to verify that your container is still running.

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
6dc20d508db0 ubuntu:latest "/bin/bash" 9 mins Up 9 min vigilant_borg

Stop the container and kill it using the docker container stop and docker container rm commands. Remember
to substitute the names/IDs of your own containers.

$ docker container stop vigilant_borg
vigilant_borg

$ docker container rm vigilant_borg
vigilant_borg

Verify that the container was successfully deleted by running the docker container ls command with the -a
flag. Adding -a tells Doer to list all containers, even those in the stopped state.

$ docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

You’ve just pulled a Doer image, started a container from it, aaed to it, executed a command inside it, 
stopped it, and deleted it.

The Dev Perspective

Containers are all about the apps.

In this section, we’ll clone an app from a Git repo, inspect its Doerfile, containerize it, and run it as a container.

e Linux app can be cloned from: hps://github.com/nigelpoulton/psweb.git

e Windows app can be cloned from: hps://github.com/nigelpoulton/win-web.git



27

e rest of this section will focus on the Linux NGINX example. However, both examples are containerizing
simpleweb apps, so the process is the same.Where there are differences in theWindows examplewewill highlight
them to help you follow along.

Run all of the following commands from a terminal on your Doer host.

Clone the repo locally. is will pull the application code to your local Doer host ready for you to containerize
it.

Be sure to substitute the following repo with the Windows repo if you are following along with the Windows
example.

$ git clone https://github.com/nigelpoulton/psweb.git
Cloning into 'psweb'...
remote: Counting objects: 15, done.
remote: Compressing objects: 100% (11/11), done.
remote: Total 15 (delta 2), reused 15 (delta 2), pack-reused 0
Unpacking objects: 100% (15/15), done.
Checking connectivity... done.

Change directory into the cloned repo’s directory and list its contents.

$ cd psweb
$ ls -l
total 40
-rw-r--r--@ 1 ubuntu ubuntu 338 24 Apr 19:29 Dockerfile
-rw-r--r--@ 1 ubuntu ubuntu 396 24 Apr 19:32 README.md
-rw-r--r--@ 1 ubuntu ubuntu 341 24 Apr 19:29 app.js
-rw-r--r-- 1 ubuntu ubuntu 216 24 Apr 19:29 circle.yml
-rw-r--r--@ 1 ubuntu ubuntu 377 24 Apr 19:36 package.json
drwxr-xr-x 4 ubuntu ubuntu 128 24 Apr 19:29 test
drwxr-xr-x 3 ubuntu ubuntu 96 24 Apr 19:29 views

e Linux example is a simple nodejs web app.eWindows example is an IIS server running some static HTML.

Both Git repos contain a file called Dockerfile. is is a plain-text document that tells Doer how to build an
app and dependencies into a Doer image.

List the contents of the Doerfile.

$ cat Dockerfile

FROM alpine
LABEL maintainer="nigelpoulton@hotmail.com"
RUN apk add --update nodejs nodejs-npm
COPY . /src
WORKDIR /src
RUN npm install
EXPOSE 8080
ENTRYPOINT ["node", "./app.js"]



28 4: e big picture

e contents of the Doerfile in the Windows example are different. However, this isn’t important at this stage.
For now, it’s enough to understand that ea line represents an instruction that Doer uses to build an image.

At this point we have pulled some application code from a remote Git repo. We also have a Doerfile containing
instructions on how to build the app into a Doer image.

Use the docker image build command to create a new image using the instructions in the Doerfile. is
example creates a new Doer image called test:latest.

e command is the same for the Linux and Windows examples, and be sure to run it from within the directory
containing the app code and Doerfile.

$ docker image build -t test:latest .

Sending build context to Docker daemon 74.75kB
Step 1/8 : FROM alpine
latest: Pulling from library/alpine
88286f41530e: Pull complete
Digest: sha256:f006ecbb824...0c103f4820a417d
Status: Downloaded newer image for alpine:latest
---> 76da55c8019d
<Snip>
Successfully built f154cb3ddbd4
Successfully tagged test:latest

Note: It may take a long time for the build to finish in the Windows example. is is because of
the image being pulled is several gigabytes in size.

Once the build is complete, e to make sure that the new test:latest image exists on your host.

$ docker image ls
REPO TAG IMAGE ID CREATED SIZE
test latest f154cb3ddbd4 1 minute ago 81.5MB
...

You have a newly-built Doer image with the app and dependencies inside.

Run a container from the image and test the app.

Linux example:

$ docker container run -d \
--name web1 \
--publish 8080:8080 \
test:latest

Open a web browser and navigate to the DNS name or IP address of the Doer host that you are running the
container from, and point it to port 8080. You will see the following web page.



29

If you are following along with Doer for Windows or Doer for Mac, you will be able to use localhost:8080
or 127.0.0.1:8080. If you’re following along on Play With Doer, you will be able to cli the 8080 hyperlink
above the terminal screen.

Figure 4.1

Windows example:

> docker container run -d \
--name web1 \
--publish 8080:80 \
test:latest

Open a web browser and navigate to the DNS name or IP address of the Doer host that you are running the
container from, and point it to port 8080. You will see the following web page.

e same rules apply if you’re following along with Doer Desktop or Play With Doer.

Figure 4.2

Well done. You’ve taken some application code from a remote Git repo and built it into a Doer image. You then
ran a container from it. We call this “containerizing an app”.



30 4: e big picture

Chapter Summary

In the Ops section of the apter you downloaded a Doer image, launed a container from it, logged into the
container, executed a command inside of it, and then stopped and deleted the container.

In the Dev section, you containerized a simple application by pulling some source code fromGitHub and building
it into an image using instructions in a Doerfile. You then ran the containerized app.

is big picture view should help you with the up-coming apters where we will dig deeper into images and
containers.



Part 2: The technical stuff





5: The Docker Engine
In this apter, we’ll take a qui look under the hood of the Doer Engine.

You can use Doer without understanding any of the things we’ll cover in this apter. So, feel free to skip it.
However, to be a real master of anything, you need to understand what’s going on under the hood. So, to be a
real Doer master, you need to know the stuff in this apter.

is will be a theory-based apter with no hands-on exercises.

As this apter is part of the tenical section of the book, we’re going to employ the three-tiered approa
where we split the apter into three sections:

• e TLDR: Two or three qui paragraphs that you can read while standing in line for a coffee
• e deep dive:e really long bit where we get into the detail
• e commands: A qui recap of the commands we learned

Let’s go and learn about the Doer Engine!

Docker Engine - The TLDR

e Doer engine is the core soware that runs and manages containers. We oen refer to it simply as Doer.
If you know a thing or two about VMware, it might be useful to think of it as being like ESXi.

e Doer engine is modular in design and built from many small specialised tools. Where possible, these are
based on open standards su as those maintained by the Open Container Initiative (OCI).

In many ways, the Doer Engine is like a car engine — both are modular and created by connecting many small
specialized parts:

• A car engine is made from many specialized parts that work together to make a car drive — intake
manifolds, throle body, cylinders, spark plugs, exhaust manifolds etc.

• e Doer Engine is made from many specialized tools that work together to create and run containers
— APIs, execution driver, runtimes, shims etc.

At the time of writing, themajor components that make up the Doer engine are; theDoer daemon, containerd,
runc, and various plugins su as networking and storage. Together, these create and run containers.

Figure 5.1 shows a high-level view.



34 5: e Doer Engine

Figure 5.1

roughout the book we’ll refer to runc and containerd with lower-case “r” and “c”. is means sentences
starting with either runc or containerd will not start with a capital leer. is is intentional and not a mistake.

Docker Engine - The Deep Dive

When Doer was first released, the Doer engine had two major components:

• e Doer daemon (hereaer referred to as just “the daemon”)
• LXC

e Doer daemon was a monolithic binary. It contained all of the code for the Doer client, the Doer API,
the container runtime, image builds, and mu more.

LXC provided the daemon with access to the fundamental building-blos of containers that existed in the Linux
kernel. ings like namespaces and control groups (cgroups).

Figure 5.2. shows how the daemon, LXC, and the OS, interacted in older versions of Doer.

Figure 5.2 Original Doer aritecture



35

Getting rid of LXC

e reliance on LXC was an issue from the start.

First up, LXC is Linux-specific. is was a problem for a project that had aspirations of being multi-platform.

Second up, being reliant on an external tool for something so core to the project was a huge risk that could hinder
development.

As a result, Doer. Inc. developed their own tool called libcontainer as a replacement for LXC. e goal of
libcontainer was to be a platform-agnostic tool that provided Doer with access to the fundamental container
building-blos that exist in the host kernel.

Libcontainer replaced LXC as the default execution driver in Doer 0.9.

Getting rid of the monolithic Docker daemon

Over time, the monolithic nature of the Doer daemon became more and more problematic:

1. It’s hard to innovate on
2. It got slower
3. It wasn’t what the ecosystem wanted

Doer, Inc. was aware of these allenges and began a huge effort to break apart the monolithic daemon and
modularize it. e aim of this work was to break out as mu of the functionality as possible from the daemon,
and re-implement it in smaller specialized tools. ese specialized tools can be swapped out, as well as easily
re-used by third parties to build other tools. is plan follows the tried-and-tested Unix philosophy of building
small specialized tools that can be pieced together into larger tools.

is work of breaking apart and re-factoring the Doer engine has seen all of the container execution and
container runtime code entirely removed from the daemon and refactored into small, specialized tools.

Figure 5.3 shows a high-level view of the current Doer engine aritecture with brief descriptions.



36 5: e Doer Engine

Figure 5.3

The influence of the Open Container Initiative (OCI)

While Doer, Inc. was breaking the daemon apart and refactoring code, the OCI⁶ was in the process of defining
two container-related specifications (a.k.a. standards):

1. Image spec⁷
2. Container runtime spec⁸

Both specifications were released as version 1.0 in July 2017 and we shouldn’t see too mu ange, as stability
is the name of the game here. e latest image spec is v1.0.1 released in November 2017. e latest runtime spec
is v1.0.2 released Mar 2020.

Doer, Inc. was heavily involved in creating these specifications and contributed a lot of code.

As of Doer 1.11 (early 2016), the Doer engine implements the OCI specifications as closely as possible. For
example, the Doer daemon no longer contains any container runtime code — all container runtime code is
implemented in a separate OCI-compliant layer. By default, Doer uses runc for this. runc is the reference
implementation of the OCI container-runtime-spec. is is the runc container runtime layer in Figure 5.3.

As well as this, the containerd component of the Doer Engine makes sure Doer images are presented to runc
as valid OCI bundles.

⁶https://www.opencontainers.org/
⁷https://github.com/opencontainers/image-spec
⁸https://github.com/opencontainers/runtime-spec

https://www.opencontainers.org/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec
https://www.opencontainers.org/
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec


37

runc

As previously mentioned, runc is the reference implementation of the OCI container-runtime-spec. Doer, Inc.
was heavily involved in defining the spec and developing runc.

If you strip everything else away, runc is a small, lightweight CLI wrapper for libcontainer (remember that
libcontainer originally replaced LXC as the interface layer with the host OS in the early Doer aritecture).

runc has a single purpose in life — create containers. And it’s damn good at it. And fast! But as it’s a CLI wrapper,
it’s effectively a standalone container runtime tool.is means you can download and build the binary, and you’ll
have everything you need to build and play with runc (OCI) containers. But it’s bare bones and very low-level,
meaning you’ll have none of the riness that you get with the full-blown Doer engine.

We sometimes call the layer that runc operates at, “the OCI layer”. See Figure 5.3.

You can see runc release information at:

• hps://github.com/opencontainers/runc/releases

containerd

As part of the effort to strip functionality out of the Doer daemon, all of the container execution logic was
ripped out and refactored into a new tool called containerd (pronounced container-dee). Its sole purpose in life
was to manage container lifecycle operations — start | stop | pause | rm....

containerd is available as a daemon for Linux and Windows, and Doer has been using it on Linux since the
1.11 release. In the Doer engine sta, containerd sits between the daemon and runc at the OCI layer.

As previously stated, containerd was originally intended to be small, lightweight, and designed for a single task
in life — container lifecycle operations. However, over time it has braned out and taken on more functionality.
ings like image pulls, volumes and networks.

One of the reasons for adding more functionality is to make it easier to use in other projects. For example, in
projects like Kubernetes, it was beneficial for containerd to do additional things like push and pull images. For
these reasons, containerd now does a lot more than simple container lifecycle management. However, all the extra
functionality is modular and optional, meaning you can pi and oose whi bits you want. So, it’s possible to
include containerd in projects su as Kubernetes, but only to take the pieces your project needs.

containerd was developed by Doer, Inc. and donated to the Cloud Native Computing Foundation (CNCF). At
the time of writing, containerd is a fully graduated CNCF project, meaning it’s stable and considered ready for
production. You can see the latest releases here:

• hps://github.com/containerd/containerd/releases

Starting a new container (example)

Now that we have a view of the big picture, and some of the history, let’s walk through the process of creating
a new container.

e most common way of starting containers is using the Doer CLI. e following docker container run
command will start a simple new container based on the alpine:latest image.



38 5: e Doer Engine

$ docker container run --name ctr1 -it alpine:latest sh

When you type commands like this into the Doer CLI, the Doer client converts them into the appropriate
API payload and POSTs them to the API endpoint exposed by the Doer daemon.

e API is implemented in the daemon and can be exposed over a local soet or the network. On Linux the
soet is /var/run/docker.sock and on Windows it’s \pipe\docker_engine.

Once the daemon receives the command to create a new container, it makes a call to containerd. Remember that
the daemon no-longer contains any code to create containers!

e daemon communicates with containerd via a CRUD-style API over gRPC⁹.

Despite its name, containerd cannot actually create containers. It uses runc to do that. It converts the required
Doer image into an OCI bundle and tells runc to use this to create a new container.

runc interfaces with the OS kernel to pull together all of the constructs necessary to create a container
(namespaces, cgroups etc.). e container process is started as a ild-process of runc, and as soon as it is started
runc will exit.

Voila! e container is now started.

e process is summarized in Figure 5.4.

Figure 5.4

⁹https://grpc.io/

https://grpc.io/
https://grpc.io/


39

One huge benefit of this model

Having all of the logic and code to start and manage containers removed from the daemon means that the entire
container runtime is decoupled from the Doer daemon. We sometimes call this “daemonless containers”, and
it makes it possible to perform maintenance and upgrades on the Doer daemon without impacting running
containers!

In the old model, where all of container runtime logic was implemented in the daemon, starting and stopping
the daemon would kill all running containers on the host. is was a huge problem in production environments
— especially when you consider how frequently new versions of Doer are released! Every daemon upgrade
would kill all containers on that host — not good!

Fortunately, this is no longer a problem.

What’s this shim all about?

Some of the diagrams in the apter have shown a shim component.

e shim is integral to the implementation of daemonless containers (what we just mentioned about decoupling
running containers from the daemon for things like daemon upgrades).

We mentioned earlier that containerd uses runc to create new containers. In fact, it forks a new instance of runc
for every container it creates. However, once ea container is created, the parent runc process exits. is means
we can run hundreds of containers without having to run hundreds of runc instances.

Once a container’s parent runc process exits, the associated containerd-shim process becomes the container’s
parent. Some of the responsibilities the shim performs as a container’s parent include:

• Keeping any STDIN and STDOUT streams open so that when the daemon is restarted, the container
doesn’t terminate due to pipes being closed etc.

• Reports the container’s exit status ba to the daemon.

How it’s implemented on Linux

On a Linux system, the components we’ve discussed are implemented as separate binaries as follows:

• dockerd (the Doer daemon)
• docker-containerd (containerd)
• docker-containerd-shim (shim)
• docker-runc (runc)

You can see all of these on a Linux system by running a ps command on the Doer host. Obviously, some of
them will only be present when the system has running containers.

What’s the point of the daemon

With all of the execution and runtime code stripped out of the daemon you might be asking the question: “what
is le in the daemon?”.

Obviously, the answer to this question will ange over time as more and more functionality is stripped out
and modularized. However, at the time of writing, some of the major functionality that still exists in the
daemon includes; image management, image builds, the REST API, authentication, security, core networking,
and orestration.



40 5: e Doer Engine

Securing client and daemon communication

Let’s finish the apter by looking at how to secure the daemon over the network.

Doer implements a client-server model.

• e client component implements the CLI
• e server (daemon) component implements the functionality, including the public-facing REST API

e client is called docker (docker.exe on Windows) and the daemon is called dockerd (dockerd.exe on
Windows). A default installation puts them on the same host and configures them to communicate over a local
IPC soet:

• /var/run/docker.sock on Linux
• //./pipe/docker_engine on Windows

It’s also possible to configure them to communicate over the network. By default, network communication occur
over an unsecured HTTP soet on port 2375/tcp.

Figure 5.5

An insecure configuration like this might be suitable for labs, but it’s unacceptable for anything else.

TLS to the rescue!

Doer lets you force the client and daemon to only accept network connections that are secured with TLS. is
is recommended for production environments, even if all traffic is traversing trusted internal networks.

You can secure both the client and the daemon. Securing the client forces the client to only connect to Doer
daemons with certificates signed by a trusted Certificate Authority (CA). Securing the daemon forces the daemon
to only accept connections from clients presenting certificates from a trusted CA. A combination of both modes
offers the most security.

We’ll use a simple lab environment to walk through the process of configuring Doer for daemon mode and
client mode TLS.



41

Lab setup

We’ll use the lab setup shown in Figure 5.6 for the remainder of the examples. Your lab will look different, but
it’s vital that the client and daemon can resolve ea other by name.

Figure 5.6 Sample lab setup

e high-level process will be as follows:

1. Configure a CA and certificates
2. Create a CA
3. Create and sign keys for the Daemon
4. Create and sign keys for the Client
5. Distribute keys
6. Configure Doer to use TLS
7. Configure daemon mode
8. Configure client mode

Create a CA (self-signed certs)

You only need to complete this step if you are following along in a lab and don’t already have a CA. Also, the CA
we’re building here is to help demonstrate how to configure Doer, we’re not aempting to build something
production-grade.

Run the following commands from the CA node in the lab.

1. Create a new private key for the CA.

You’ll set a passphrase as part of the operation. Don’t forget it!



42 5: e Doer Engine

$ openssl genrsa -aes256 -out ca-key.pem 4096

Generating RSA private key, 4096 bit long modulus
...............................................++
..++
e is 65537 (0x10001)
Enter pass phrase for ca-key.pem:
Verifying - Enter pass phrase for ca-key.pem:

You’ll have a new file in your current directory called ca-key.pem. is is the CA’s private key.
2. Use the CA’s private key to generate a public key (certificate).

You’ll need to enter the passphrase from the previous step. Hopefully you haven’t forgoen it ;-)

$ openssl req -new -x509 -days 730 -key ca-key.pem -sha256 -out ca.pem

is has added a second file to your working directory called ca.pem. is is the CA’s public key, a.k.a.
“certificate”.

You now have two files in your current directory: ca-key.pem and ca.pem. ese are the CA’s key-pair and form
the identity of the CA. At this point, the CA is ready to use.

Create a key-pair for the daemon

In this step, we’ll generate a new key-pair for the Doer daemon on node3. It’s a four-step process:

1. Create the private key
2. Create the signing request
3. Add IP addresses and make it valid for server authorization
4. Generate the certificate

Let’s do it.

Run these commands from the CA (node2).

1. Create the private key for the daemon.

$ openssl genrsa -out daemon-key.pem 4096
<Snip>

is has created a new file in your working directory called daemon-key.pem. is is the private key for
the daemon node.

2. Create a certificate signing request (CSR) for the CA to create and sign a certificate for the daemon. Be
sure to use the correct DNS name for your daemon node. e example uses node3.



43

$ openssl req -subj "/CN=node3" \
-sha256 -new -key daemon-key.pem -out daemon.csr

You now have a fourth file in your working directory. is one is the CSR and it is called daemon.csr.
3. Add required aributes to the certificate.

is step creates a file that tells the CA to add a couple of extended aributes to the daemon’s certificate
when it signs it. ese add the daemon’s DNS name and IP address, as well as configure the certificate to
be valid for server authentication.

Create a new file called extfile.cnf with the following values. e example uses the DNS name and IP
of the daemon node in the lab from Figure 5.6. e values in your environment might be different.

subjectAltName = DNS:node3,IP:10.0.0.12
extendedKeyUsage = serverAuth

4. Generate the certificate.

is step uses the CSR file, CA keys, and the extfile.cnf file to sign and configure the daemon’s
certificate. It will output the daemon’s public key (certificate) as a new file called daemon-cert.pem

$ openssl x509 -req -days 730 -sha256 \
-in daemon.csr -CA ca.pem -CAkey ca-key.pem \
-CAcreateserial -out daemon-cert.pem -extfile extfile.cnf

At this point, you have a working CA, as well as a key-pair for node3 that can be used to secure the Doer
daemon.

Delete the CSR and extfile.cnf before moving on.

$ rm daemon.csr extfile.cnf

Create a key-pair for the client

e next steps will repeat what we just did for the node3, but this time we’ll do it for node1 whi will run the
Doer client.

Run all commands from the CA (node2).

1. Create a private key for node1.

is will generate a new file in your working directory called client-key.pem.

$ openssl genrsa -out client-key.pem 4096

2. Create a CSR. Be sure to use the correct DNS name of the node that will be your secure Doer client. e
example uses node1.

$ openssl req -subj '/CN=node1' -new -key client-key.pem -out client.csr

is will create a new file in your current directory called client.csr.
3. Create a file called extfile.cnf and populate it with the following value. is will make the certificate

valid for client authentication.



44 5: e Doer Engine

extendedKeyUsage = clientAuth

4. Create the certificate for node1 using the CSR, the CA’s public and private keys, and the extfile.cnf
file. is will create the client’s signed public key as a new file in your current directory called
client-cert.pem.

$ openssl x509 -req -days 730 -sha256 \
-in client.csr -CA ca.pem -CAkey ca-key.pem \
-CAcreateserial -out client-cert.pem -extfile extfile.cnf

Delete the CSR and extfile.cnf files, as these are no longer needed.

$ rm client.csr extfile.cnf

At this point you should have the following 7 files in your working directory:

ca-key.pem << CA private key
ca.pem << CA public key (cert)
ca.srl << Tracks serial numbers
client-cert.pem << client public key (Cert)
client-key.pem << client private key
daemon-cert.pem << daemon public key (cert)
daemon-key.pem << daemon private key

Before moving on, you should remove write permission from the private keys and make them only readable to 
you and other accounts that are members of your group.

$ chmod 0400 ca-key.pem client-key.pem daemon-key.pem

You should also remove write access to the public key certificates.

$ chmod -v 0444 ca.pem client-cert.pem daemon-cert.pem

Distribute keys

Now that you’ve got all of the required keys and certificates, you need to distribute them to the client and daemon 
nodes as follows:

• ca.pem, daemon-cert.pem, and daemon-key.pem from the CA to the node3 (the daemon node).
• ca.pem, client-cert.pem, and client-key.pem from the CA to node1 (the client node).

ere are various ways to copy files between nodes and these can vary between systems. e important thing to
know is that Doer requires the copied files to have the following names and locations:

• daemon-cert.pem –>∼/.doer/cert.pem



45

• daemon-key.pem –>∼/.doer/key.pem
• client-cert.pem –>∼/.doer/cert.pem
• client-key.pem –>∼/.doer/key.pem

You may have to create the ∼/.docker hidden directory on the daemon and client nodes. You may also have
to ange permissions on the .docker directory to enable the copy — chmod 777 .docker will work, but is not
secure.

If you’ve been following, the lab now looks like Figure 5.7

Figure 5.7 Updated lab with keys

e presence of the CA’s public key (ca.pem) on the client and daemon nodes is what tells them to trust the
certificates signed by the CA.

With the certificates in place, it’s time to configure Doer so that the client and daemon use TLS.

Configure Docker for TLS

As previously mentioned, Doer has two TLS modes:

• daemon mode
• client mode

Daemon mode forces the daemon only to allow connections from clients with a valid certificate. Client mode
tells the client only to connect with daemons that have a valid certificate.

We’ll configure the daemon process on node1 for daemon mode, and test it. Aer that, we’ll configure the client
process on node2 for client mode, and test that.

Configuring the Docker daemon for TLS

Securing the daemon is as simple as seing a few daemon flags in the daemon.json configuration file:



46 5: e Doer Engine

• tlsverify enables TLS verification
• tlscacert tells the daemon whi CA to trust
• tlscert tells Doer where the daemon’s certificate is located
• tlskey tells Doer where the daemon’s private key is located
• hosts tells Doer whi soets to bind the daemon on

We’ll configure these in the platform-independent daemon.json configuration file. is is found in /etc/docker/
on Linux, and C:\ProgramData\Docker\config\ on Windows.

Perform all of the following operations on the node that will run your secure Doer daemon (node3 in the
example lab).

Edit the daemon.json file and add the following lines. It assumes a user called ubuntu, yours may be different.

{
"hosts": ["tcp://node3:2376"],
"tls": true,
"tlsverify": true,
"tlscacert": "/home/ubuntu/.docker/ca.pem",
"tlscert": "/home/ubuntu/.docker/cert.pem",
"tlskey": "/home/ubuntu/.docker/key.pem"

}

Warning! Linux systems running systemd don’t allow you to use the “hosts” option in daemon.json. Instead,
you have to specify it in a systemd override file. You may be able to do this with the sudo systemctl edit
docker command. is will open a new file called /etc/systemd/system/docker.service.d/override.conf in
an editor. Add the following three lines and save the file.

[Service]
ExecStart=
ExecStart=/usr/bin/dockerd -H tcp://node3:2376

Now that the TLS and host options are set, you need to restart Doer.

Once Doer has restarted, you can e that the new hosts value is in effect by inspecting the output of a ps
command.

$ ps -elf | grep dockerd
4 S root ... /usr/bin/dockerd -H tcp://node3:2376

e presence of “-H tcp://node3:2376” in the command output is evidence the daemon is listening on the
network. Port 2376 is the standard port for Doer using TLS. 2375 is the default unsecured port.

At this point, running a command su as docker version from node1 won’t work. is is because the daemon
is configured to listen on the network, but the Doer client is still trying use the local IPC soet. Try the
command again, but this time adding the -H tcp://node3:2376 flag.



47

$ docker -H tcp://node3:2376 version
Client:
Version: 19.03.8
API version: 1.40
<Snip>
Get http://daemon:2376/v1.35/version: net/http: HTTP/1.x transport connection broken:
malformed HTTP response "\x15\x03\x01\x00\x02\x02".
* Are you trying to connect to a TLS-enabled daemon without TLS?

e command looks beer, but it’s still not working. is is because the daemon is rejecting all connections from
unauthenticated clients.

Congratulations. e Doer daemon is configured to listen on the network and is rejecting connections from
unauthenticated clients.

Let’s configure the Doer client on node1 to use TLS.

Configuring the Docker client for TLS

In this section, you’ll configure the Doer client on node1 for two things:

• To connect to a remote daemon over the network
• To sign all docker commands

Run all of the following from the node that will run your secure Doer client (node1 in the example lab).

Export the following environment variable to configure the client to connect to the remote daemon over the
network. e client must be able to connect to the daemon by name for this to work.

export DOCKER_HOST=tcp://node3:2376

Try the following command.

$ docker version
Client:
Version: 19.03.8
<Snip>
Get http://daemon:2376/v1.35/version: net/http: HTTP/1.x transport connection broken:
malformed HTTP response "\x15\x03\x01\x00\x02\x02".
* Are you trying to connect to a TLS-enabled daemon without TLS?

e Doer client is now sending commands to the remote daemon across the network without you having to
explicitly specify the -H tcp://node3:2376 flag. However, you still need to configure the client to sign commands.

Export one more environment variable to tell the Doer client to sign all commands with its certificate.

export DOCKER_TLS_VERIFY=1

Run the docker version command again.



48 5: e Doer Engine

$ docker version
Client:
Version: 19.03.8
<Snip>
Server:
Engine:
Version: 19.03.8
API version: 1.40 (minimum version 1.12)
Go version: go1.12.17
Git commit: afacb8b
Built: Wed Mar 11 01:29:16 2020
OS/Arch: linux/amd64
Experimental: true

Congratulations. e client is successfully talking to the remote daemon over a secure network connection. e
final configuration of the lab is shown in Figure 5.8

Figure 5.8

A couple of final points before we do a qui recap.

1. is last example works because you copied the clients TLS keys to the folder that Doer expects them
to be in. is is a hidden folder in your user’s home directory called .docker. You also gave the keys the
default filenames that Doer expects (ca.pem, cert.pem, and key.pem). You can specify a different folder
by exporting DOCKER_CERT_PATH.

2. You will probably want to make the environment variables (DOCKER_HOST and DOCKER_TLS_VERIFY) more
permanent fixtures of your environment.

Chapter summary

e Doer engine is modular in design and based heavily on open-standards from the OCI.

e Doer daemon implements the Doer API whi is currently a ri, versioned, HTTP API that has
developed alongside the rest of the Doer project.

Container execution is handled by containerd. containerd was wrien by Doer, Inc. and contributed to the
CNCF. You can think of it as a container supervisor that handles container lifecycle operations. It is small and



49

lightweight and can be used by other projects and third-party tools. For example, it’s becoming the most common
container runtime in Kubernetes.

containerd needs to talk to an OCI-compliant container runtime to actually create containers. By default, Doer
uses runc as its default container runtime. runc is the de facto implementation of the OCI runtime-spec and
expects to start containers from OCI-compliant bundles. containerd talks to runc and ensures Doer images are
presented to runc as OCI-compliant bundles.

runc can be used as a standalone CLI tool to create containers. It’s based on code from libcontainer, and can also
be used by other projects and third-party tools.

ere is still a lot of functionality implemented in the Doer daemon. More of this may be broken out over time.
Functionality currently still inside of the Doer daemon includes, but is not limited to; the Doer API, image
management, authentication, security features and core networking.





6: Images
In this apter we’ll dive deep into Doer images. e aim of the game is to give you a solid understanding of
what Doer images are, how to perform basic operations, and how they work under-the-hood.

We’ll see how to build new images with our own applications inside of them in a later apter.

We’ll split this apter into the usual three parts:

• e TLDR
• e deep dive
• e commands

Docker images - The TLDR

A Doer image is a unit of paaging that contains everything required for an application to run. is includes;
application code, application dependencies, and OS constructs. If you have an application’s Doer image, the
only other thing you need to run that application is a computer running Doer.

If you’re a former VM admin, you can think of Doer images as similar to VM templates. A VM template is
like a stopped VM — a Doer image is like a stopped container. If you’re a developer you can think of them as
similar to classes.

You get Doer images by pulling them from an image registry. e most common registry is Doer Hub¹⁰, but
others exist. e pull operation downloads the image to your local Doer host where Doer can use it to start
one or more containers.

Images are made up of multiple layers that are staed on top of ea other and represented as a single object.
Inside of the image is a cut-down operating system (OS) and all of the files and dependencies required to run
an application. Because containers are intended to be fast and lightweight, images tend to be small (Microso
images tend to be huge).

Congrats! You now have half a clue what a Doer image is :-D Now it’s time to blow your mind!

Docker images - The deep dive

We’ve mentioned a couple of times already that images are like stopped containers (or classes if you’re a
developer). In fact, you can stop a container and create a new image from it. With this in mind, images are
considered build-time constructs, whereas containers are run-time constructs.

¹⁰https://hub.docker.com

https://hub.docker.com/
https://hub.docker.com/


52 6: Images

Figure 6.1

Images and containers

Figure 6.1 shows high-level view of the relationship between images and containers. We use the docker
container run and docker service create commands to start one or more containers from a single image.
Once you’ve started a container from an image, the two constructs become dependent on ea other and you
cannot delete the image until the last container using it has been stopped and destroyed. Aempting to delete an
image without stopping and destroying all containers using it will result in an error.

Images are usually small

e whole purpose of a container is to run a single application or service. is means it only needs the code
and dependencies of the app/service it is running — it does not need anything else. is results in small images
stripped of all non-essential parts.

For example, Doer images do not ship with 6 different shells for you to oose from. In fact, many application
images ship without a shell – if the application doesn’t need a shell to run it doesn’t need to be included in
the image. General purpose images su as busybox and Ubuntu ship with a shell, but when you paage your
business applications for production, you will probably paage them without a shell.

Image also don’t contain a kernel — all containers running on a Doer host share access to the host’s kernel. For
these reasons, we sometimes say images contain just enough operating system (usually just OS-related files and
filesystem objects).

Note: Hyper-V containers run a single container inside of a dedicated lightweight VM. e
container leverages the kernel of the OS running inside the VM.

e official Alpine Linux Doer image is about 5MB in size and is an extreme example of how small Doer
images can be. at’s not a typo! It really is about 5 megabytes! Some images are even smaller, however, a more
typical example might be something like the official Ubuntu Doer image whi is currently about 40MB. ese
are clearly stripped of most non-essential parts!

Windows-based images tend to be a lot bigger than Linux-based images because of the way that the Windows
OS works. It’s not uncommon for Windows images to be several gigabytes and take a long time to pull.

Pulling images

A cleanly installed Doer host has no images in its local repository.

e local image repository on a Linux-basedDoer host is usually located at /var/lib/docker/<storage-driver>.
OnWindows-based Doer hosts this is C:\ProgramData\docker\windowsfilter. If you’re using Doer on your
Mac or PC with Doer Desktop, everything runs inside of a VM.

You can use the following command to e if your Doer host has any images in its local repository.



53

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE

e process of geing images onto a Doer host is called pulling. So, if you want the latest Busybox image on
your Doer host, you’d have to pull it. Use the following commands to pull some images and then e their
sizes.

If you are following along on Linux and haven’t added your user account to the local docker Unix
group, you may need to add sudo to the beginning of all the following commands.

Linux example:

$ docker image pull redis:latest
latest: Pulling from library/ubuntu
latest: Pulling from library/redis
54fec2fa59d0: Already exists
9c94e11103d9: Pull complete
04ab1bfc453f: Pull complete
5f71e6b94d83: Pull complete
2729a8234dd5: Pull complete
2683d7f17745: Pull complete
Digest: sha256:157a9...ad7d28c0f9f
Status: Downloaded newer image for redis:latest
docker.io/library/redis:latest

$ docker image pull alpine:latest
latest: Pulling from library/alpine
cbdbe7a5bc2a: Pull complete
Digest: sha256:9a839e63dad54c3a6d1834e29692c8492d93f90c59c978c1ed79109ea4fb9a54
Status: Downloaded newer image for alpine:latest
docker.io/library/alpine:latest

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest f70734b6a266 40 hours ago 5.61MB
redis latest a4d3716dbb72 45 hours ago 98.3MB

Windows example:



54 6: Images

> docker image pull mcr.microsoft.com/powershell:latest
latest: Pulling from powershell
5b663e3b9104: Pull complete
9018627900ee: Pull complete
133ab280ee0f: Pull complete
084853899645: Pull complete
399a2a3857ed: Pull complete
6c1c6d29a559: Pull complete
d1495ba41b1c: Pull complete
190bd9d6eb96: Pull complete
7c239384fec8: Pull complete
21aee845547a: Pull complete
f951bda9026b: Pull complete
Digest: sha256:fbc9555...123f3bd7
Status: Downloaded newer image for mcr.microsoft.com/powershell:latest
mcr.microsoft.com/powershell:latest

> docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
mcr.microsoft.com/powershell latest 73175ce91dff 2 days ago 495MB
mcr.microsoft.com/.../iis latest 6e5c6561c432 3 days ago 5.05GB

As you can see, the images just pulled are now present in the Doer host’s local repository. You can also see that
the Windows images are a lot larger and comprise many more layers.

Image naming

As part of ea command, we had to specify whi image to pull. Let’s take a minute to look at image naming.
To do that we need a bit of baground on how images are stored.

Image registries

We store images in centralised places called image registries. is makes it easy to share and access them.

e most common registry is Doer Hub (hps://hub.doer.com). Other registries exist, including 3rd party
registries and secure on-premises registries. However, the Doer client is opinionated and defaults to using
Doer Hub. We’ll be using Doer Hub for the rest of the book.

e output of the following command is snipped, but you can see that Doer is configured to use https://
index.docker.io/v1/as its default registry when pushing and pulling images (this actually redirects to v2).



55

$ docker info
Server:
Containers: 22
...
containerd version: 7ad184331fa3e55e52b890ea95e65ba581ae3429
runc version: dc9208a3303feef5b3839f4323d9beb36df0a9dd
Docker Root Dir: /var/lib/docker
...
Registry: https://index.docker.io/v1/
...

Image registries contain one or more image repositories. In turn, image repositories contain one or more images.
at might be a bit confusing, so Figure 6.2 shows a picture of an image registry with 3 repositories, and ea
repository has one or more images.

Figure 6.2

Official and unofficial repositories

Doer Hub has the concept of official repositories and unofficial repositories.

As the name suggests, official repositories are the home to images that have been veed and curated by Doer,
Inc. is means they should contain up-to-date, high-quality code, that is secure, well-documented, and in-line
with best practices.

Unofficial repositories can be like the wild-west — you should not assume they are safe, well-documented or built
according to best practices. at’s not saying everything in unofficial repositories is bad. ere’s some excellent
stuff in unofficial repositories. You just need to be very careful before trusting code from them. To be honest, you
should always be careful when trusting soware from the internet — even images from official repositories.

Most of the popular applications and base operating systems have their own official repositories on Doer Hub.
ey’re easy to spot because they live at the top level of the Doer Hub namespace. e following list contains
a few of the official repositories, and shows their URLs that exist at the top-level of the Doer Hub namespace:



56 6: Images

• nginx: hps://hub.doer.com/_/nginx/
• busybox: hps://hub.doer.com/_/busybox/
• redis: hps://hub.doer.com/_/redis/
• mongo: hps://hub.doer.com/_/mongo/

On the other hand, my own personal images live in the wild west of unofficial repositories and should not be
trusted. Here are some examples of images in my repositories:

• nigelpoulton/tu-demo — hps://hub.doer.com/r/nigelpoulton/tu-demo/
• nigelpoulton/pluralsight-doer-ci — hps://hub.doer.com/r/nigelpoulton/pluralsight-doer-ci/

Not only are images in my repositories not veed, not kept up-to-date, not secure, and not well documented…
they also don’t live at the top-level of the Doer Hub namespace. My repositories all live within the
nigelpoulton second-level namespace.

You’ll probably notice that the Microso images we’ve used do not exist at the top-level of the Doer Hub
namespace. At the time of writing, they exist under the official mcr.microsoft.com second-level namespace.
is is due to legal reasons requiring them to be hosted outside of Doer Hub. However, they are integrated into
the Doer Hub namespace to make the experience of pulling them as seamless as possible.

Aer all of that, we can finally look at how we address images on the Doer command line.

Image naming and tagging

Addressing images from official repositories is as simple as providing the repository name and tag separated by
a colon (:). e format for docker image pull, when working with an image from an official repository is:

$ docker image pull <repository>:<tag>

In the Linux examples from earlier, we pulled an Alpine and a Redis image with the following two commands:

$ docker image pull alpine:latest and docker image pull redis:latest

ese two commands pull the images tagged as “latest” from the top-level “alpine” and “redis” repositories.

e following examples show how to pull various different images from official repositories:

$ docker image pull mongo:4.2.6
//This will pull the image tagged as `4.2.6` from the official `mongo` repository.

$ docker image pull busybox:latest
//This will pull the image tagged as `latest` from the official `busybox` repository.

$ docker image pull alpine
//This will pull the image tagged as `latest` from the official `alpine` repository.

A couple of points about those commands.

First, if you do not specify an image tag aer the repository name, Doer will assume you are referring to the
image tagged as latest. If the repository doesn’t have an image tagged as latest the command will fail.



57

Second, the latest tag doesn’t have any magical powers. Just because an image is tagged as latest does not
guarantee it is the most recent image in a repository. For example, the most recent image in the alpine repository
is usually tagged as edge. Moral of the story — take care when using the latest tag.

Pulling images from an unofficial repository is essentially the same — you just need to prepend the repository
name with a Doer Hub username or organization name. e following example shows how to pull the v2
image from the tu-demo repository owned by a not-to-be-trusted person whose Doer Hub account name is
nigelpoulton.

$ docker image pull nigelpoulton/tu-demo:v2
//This will pull the image tagged as `v2`
//from the `tu-demo` repository within the `nigelpoulton` namespace

In our earlier Windows example, we pulled the PowerShell image with the following command:

> docker image pull mcr.microsoft.com/powershell:latest

is pulls the image tagged as latest from the mcr.microsoft.com/powershell repository.

If you want to pull images from 3rd party registries (not Doer Hub), you need to prepend the repository
name with the DNS name of the registry. For example, the following command pulls the 3.1.5 image from the
google-containers/git-sync repo on the Google Container Registry (gcr.io).

$ docker image pull gcr.io/google-containers/git-sync:v3.1.5
v3.1.5: Pulling from google-containers/git-sync
597de8ba0c30: Pull complete
b263d8e943d1: Pull complete
a20ed723abc0: Pull complete
49535c7e3a51: Pull complete
4a20d0825f07: Pull complete
Digest: sha256:f38673f25b8...b5f8f63c4da7cc6
Status: Downloaded newer image for gcr.io/google-containers/git-sync:v3.1.5
gcr.io/google-containers/git-sync:v3.1.5

Notice how the pull experience is exactly the same from Doer Hub and the Google Container Registry.

Images with multiple tags

One final word about image tags… A single image can have as many tags as you want. is is because tags are
arbitrary alpha-numeric values that are stored as metadata alongside the image. Let’s look at an example.

Pull all of the images in a repository by adding the -a flag to the docker image pull command. en run docker
image ls to look at the images pulled.

It’s probably not a good idea to pull all images from an mcr.microsoft.com repository because Microso images
can be so large. Also, if the repository you are pulling contains images for multiple aritectures and platforms,
su as Linux andWindows, the command is likely to fail. We recommend you use the command and repository
in the following example.



58 6: Images

$ docker image pull -a nigelpoulton/tu-demo
latest: Pulling from nigelpoulton/tu-demo
aad63a933944: Pull complete
f229563217f5: Pull complete
<Snip>>
Digest: sha256:c9f8e18822...6cbb9a74cf
v1: Pulling from nigelpoulton/tu-demo
aad63a933944: Already exists
f229563217f5: Already exists
<Snip>
fc669453c5af: Pull complete
Digest: sha256:674cb03444...f8598e4d2a
v2: Pulling from nigelpoulton/tu-demo
Digest: sha256:c9f8e18822...6cbb9a74cf
Status: Downloaded newer image for nigelpoulton/tu-demo
docker.io/nigelpoulton/tu-demo

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
nigelpoulton/tu-demo latest d5e1e48cf932 2 weeks ago 104MB
nigelpoulton/tu-demo v2 d5e1e48cf932 2 weeks ago 104MB
nigelpoulton/tu-demo v1 6852022de69d 2 weeks ago 104MB

A couple of things about what just happened:

First. e command pulled three images from the nigelpoulton/tu-demo repository: latest, v1, and v2.

Second. Look closely at the IMAGE ID  column in the output of the docker image ls  command. You’ll see that 
two of the IDs mat. is is because two of the tags refer to the same image. Put another way… one of the 
images has two tags. If you look closely, you’ll see that the v2 and latest tags have the same IMAGE ID. is 
means they’re two tags of the same image.

is is a perfect example of the warning issued earlier about the latest tag. In this example, the latest tag 
refers to the same image as the v2 tag. is means it’s pointing to the older of the two images! Moral of the story, 
latest is an arbitrary tag and is not guaranteed to point to the newest image in a repository!

Filtering the output of docker image ls

Doer provides the --filter flag to filter the list of images returned by docker image ls.

e following example will only return dangling images.

$ docker image ls --filter dangling=true
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 4fd34165afe0 7 days ago 14.5MB

A dangling image is an image that is no longer tagged, and appears in listings as <none>:<none>. A common
way they occur is when building a new image giving it a tag that already exists. When this happens, Doer will
build the new image, notice that an existing image already has the same tag, remove the tag from the existing
image and give it to the new image.



59

Consider this example, you build a new application image based on alpine:3.4 and tag it as dodge:challenger.
en you update the image to use alpine:3.5 instead of alpine:3.4. When you build the new image, the
operation will create a new image tagged as dodge:challenger and remove the tags from the old image. e old
image will become a dangling image.

You can delete all dangling images on a system with the docker image prune command. If you add the -a flag,
Doer will also remove all unused images (those not in use by any containers).

Doer currently supports the following filters:

• dangling:Accepts true or false, and returns only dangling images (true), or non-dangling images (false).
• before: Requires an image name or ID as argument, and returns all images created before it.
• since: Same as above, but returns images created aer the specified image.
• label: Filters images based on the presence of a label or label and value. e docker image ls command
does not display labels in its output.

For all other filtering you can use reference.

Here’s an example using reference to display only images tagged as “latest”.

$ docker image ls --filter=reference="*:latest"
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest f70734b6a266 3 days ago 5.61MB
redis latest a4d3716dbb72 3 days ago 98.3MB
busybox latest be5888e67be6 12 days ago 1.22MB

You can also use the --format flag to format output using Go templates. For example, the following command
will only return the size property of images on a Doer host.

$ docker image ls --format "{{.Size}}"
5.61MB
98.3MB
1.22MB

Use the following command to return all images, but only display repo, tag and size.

$ docker image ls --format "{{.Repository}}: {{.Tag}}: {{.Size}}"
alpine: latest: 5.61MB
redis: latest: 98.3MB
busybox: latest: 1.22MB

If you need more powerful filtering, you can always use the tools provided by your OS and shell su as grep
and awk.

Searching Docker Hub from the CLI

e docker search command lets you sear Doer Hub from the CLI. is has limited value as you can only
paern-mat against strings in the “NAME” field. However, you can filter output based on any of the returned
columns.

In its simplest form, it seares for all repos containing a certain string in the “NAME” field. For example, the
following command seares for all repos with “nigelpoulton” in the “NAME” field.



60 6: Images

$ docker search nigelpoulton
NAME DESCRIPTION STARS AUTOMATED
nigelpoulton/pluralsight.. Web app used in... 22 [OK]
nigelpoulton/tu-demo 12
nigelpoulton/k8sbook Kubernetes Book web app 2
nigelpoulton/workshop101 Kubernetes 101 Workshop 0
<Snip>

e “NAME” field is the repository name. is includes the Doer ID, or organization name, for unofficial
repositories. For example, the following command will list all repositories that include the string “alpine” in the
name.

$ docker search alpine
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
alpine A minimal Docker.. 6386 [OK]
mhart/alpine-node Minimal Node.js.. 465
anapsix/alpine-java Oracle Java 8... 442 [OK]
<Snip>

Notice how some of the repositories returned are official and some are unofficial. You can use --filter
"is-official=true" so that only official repos are displayed.

$ docker search alpine --filter "is-official=true"
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
alpine A minimal Docker.. 6386 [OK]

You can do the same again, but this time only show repos with automated builds.

$ docker search alpine --filter "is-automated=true"
NAME DESCRIPTION OFFICIAL AUTOMATED
anapsix/alpine-java Oracle Java 8 (and 7).. [OK]
frolvlad/alpine-glibc Alpine Docker image.. [OK]
alpine/git A simple git container.. [OK] \

<Snip>

One last thing about docker search. By default, Doer will only display 25 lines of results. However, you can
use the --limit flag to increase that to a maximum of 100.

Images and layers

A Doer image is just a bun of loosely-connected read-only layers, with ea layer comprising one or more
files. is is shown in Figure 6.3.



61

Figure 6.3

Doer takes care of staing these layers and representing them as a single unified object.

ere are a few ways to see and inspect the layers that make up an image. In fact, we saw one earlier when
pulling images. e following example looks closer at an image pull operation.

$ docker image pull ubuntu:latest
latest: Pulling from library/ubuntu
952132ac251a: Pull complete
82659f8f1b76: Pull complete
c19118ca682d: Pull complete
8296858250fe: Pull complete
24e0251a0e2c: Pull complete
Digest: sha256:f4691c96e6bbaa99d...28ae95a60369c506dd6e6f6ab
Status: Downloaded newer image for ubuntu:latest
docker.io/ubuntu:latest

Ea line in the output above that ends with “Pull complete” represents a layer in the image that was pulled. As
we can see, this image has 5 layers. Figure 6.4 shows this in picture form with layer IDs.

Figure 6.4



62 6: Images

Another way to see the layers of an image is to inspect the image with the docker image inspect command.
e following example inspects the same ubuntu:latest image.

$ docker image inspect ubuntu:latest
[

{
"Id": "sha256:bd3d4369ae.......fa2645f5699037d7d8c6b415a10",
"RepoTags": [

"ubuntu:latest"

<Snip>

"RootFS": {
"Type": "layers",
"Layers": [

"sha256:c8a75145fc...894129005e461a43875a094b93412",
"sha256:c6f2b330b6...7214ed6aac305dd03f70b95cdc610",
"sha256:055757a193...3a9565d78962c7f368d5ac5984998",
"sha256:4837348061...12695f548406ea77feb5074e195e3",
"sha256:0cad5e07ba...4bae4cfc66b376265e16c32a0aae9"

]
}

}
]

e trimmed output shows 5 layers again. Only this time they’re shown using their SHA256 hashes.

e docker image inspect command is a great way to see the details of an image.

e docker history command is another way of inspecting an image and seeing layer data. However, it shows
the build history of an image and is not a strict list of layers in the final image. For example, some Doerfile
instructions (“ENV”, “EXPOSE”, “CMD”, and “ENTRYPOINT”) add metadata to the image and do not result in
permanent layers being created.

All Doer images start with a base layer, and as anges are made and new content is added, new layers are
added on top.

Consider the following oversimplified example of building a simple Python application. You might have a
corporate policy that all applications are based on the official Ubuntu 20:04 image. is would be your image’s
base layer. If you then add the Python paage, this will be added as a second layer on top of the base layer. If
you later add source code files, these will be added as additional layers. Your final image would have three layers
as shown in Figure 6.5 (remember this is an over-simplified example for demonstration purposes).



63

Figure 6.5

It’s important to understand that as additional layers are added, the image is always the combination of all layers
staed in the order they were added. Take a simple example of two layers as shown in Figure 6.6. Ea layer has
3 files, but the overall image has 6 files as it is the combination of both layers.

Figure 6.6

Note: We’ve shown the image layers in Figure 6.6 in a slightly different way to previous figures.
is is just to make showing the files easier.

In the slightly more complex example of the three-layer image in Figure 6.7, the overall image only presents 6 files
in the unified view.is is because File 7 in the top layer is an updated version of File 5 directly below (inline).
In this situation, the file in the higher layer obscures the file directly below it. is allows updated versions of
files to be added as new layers to the image.



64 6: Images

Figure 6.7

Doer employs a storage driver that is responsible for staing layers and presenting them as a single unified
filesystem/image. Examples of storage drivers on Linux include AUFS, overlay2, devicemapper, btrfs and zfs.
As their names suggest, ea one is based on a Linux filesystem or blo-device tenology, and ea has its own
unique performance aracteristics. e only driver supported by Doer on Windows is windowsfilter, whi
implements layering and CoW on top of NTFS.

No maer whi storage driver is used, the user experience is the same.

Figure 6.8 shows the same 3-layer image as it will appear to the system. I.e. all three layers staed and merged,
giving a single unified view.

Figure 6.8

Sharing image layers

Multiple images can, and do, share layers. is leads to efficiencies in space and performance.

Let’s take a second look at the docker image pull command with the -a flag that we ran previously to pull all
tagged images in the nigelpoulton/tu-demo repository.



65

$ docker image pull -a nigelpoulton/tu-demo
latest: Pulling from nigelpoulton/tu-demo
aad63a933944: Pull complete
f229563217f5: Pull complete
<Snip>>
Digest: sha256:c9f8e18822...6cbb9a74cf

v1: Pulling from nigelpoulton/tu-demo
aad63a933944: Already exists
f229563217f5: Already exists
<Snip>
fc669453c5af: Pull complete
Digest: sha256:674cb03444...f8598e4d2a

v2: Pulling from nigelpoulton/tu-demo
Digest: sha256:c9f8e18822...6cbb9a74cf
Status: Downloaded newer image for nigelpoulton/tu-demo
docker.io/nigelpoulton/tu-demo

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
nigelpoulton/tu-demo latest d5e1e48cf932 2 weeks ago 104MB
nigelpoulton/tu-demo v2 d5e1e48cf932 2 weeks ago 104MB
nigelpoulton/tu-demo v1 6852022de69d 2 weeks ago 104MB

Notice the lines ending in Already exists.

ese lines tell us that Doer is smart enough to recognize when it’s being asked to pull an image layer that it
already has a local copy of. In this example, Doer pulled the image tagged as latest first. en, when it pulled
the v1 and v2 images, it noticed that it already had some of the layers that make up those images. is happens
because the three images in this repository are almost identical, and therefore share many layers. In fact, the only
difference between v1 and v2 is the top layer.

As mentioned previously, Doer on Linux supports many storage drivers. Ea is free to implement image
layering, layer sharing, and copy-on-write (CoW) behaviour in its own way. However, the overall result and user
experience is essentially the same. Although Windows only supports a single storage driver, that driver provides
the same experience as Linux.

Pulling images by digest

So far, we’ve shown you how to pull images using their name (tag). is is by far the most common method, but
it has a problem — tags are mutable! is means it’s possible to accidentally tag an image with the wrong tag
(name). Sometimes, it’s even possible to tag an image with the same tag as an existing, but different, image. is
can cause problems!

As an example, imagine you’ve got an image called golftrack:1.5 and it has a known bug. You pull the image,
apply a fix, and push the updated image ba to its repository using the same tag.

Take a moment to consider what happened there… You have an image called golftrack:1.5 that has a bug. at
image is being used by containers in your production environment. You create a new version of the image that
includes a fix. en comes the mistake… you build and push the fixed image ba to its repository with the same



66 6: Images

tag as the vulnerable image!. is overwrites the original image and leaves you without a great way of knowing
whi of your production containers are using the vulnerable image and whi are using the fixed image — they
both have the same tag!

is is where image digests come to the rescue.

Doer 1.10 introduced a content addressable storage model. As part of this model, all images get a cryptographic
content hash. For the purposes of this discussion, we’ll refer to this hash as the digest. As the digest is a hash
of the contents of the image, it’s impossible to ange the contents of the image without creating a new unique
digest. Put another way, you cannot ange the content of an image and keep the old digest. is means digests
are immutable and provide a solution to the problem we just talked about.

Every time you pull an image, the docker image pull command includes the image’s digest as part of the
information returned. You can also view the digests of images in your Doer host’s local repository by adding
the --digests flag to the docker image ls command. ese are both shown in the following example.

$ docker image pull alpine
Using default tag: latest
latest: Pulling from library/alpine
cbdbe7a5bc2a: Pull complete
Digest: sha256:9a839e63da...9ea4fb9a54
Status: Downloaded newer image for alpine:latest
docker.io/library/alpine:latest

$ docker image ls --digests alpine
REPOSITORY TAG DIGEST IMAGE ID CREATED SIZE
alpine latest sha256:9a839e63da...9ea4fb9a54 f70734b6a266 2 days ago 5.61MB

e snipped output above shows the digest for the alpine image as -

sha256:9a839e63da...9ea4fb9a54

Now that we know the digest of the image, we can use it when pulling the image again. is will ensure that we
get exactly the image we expect!

At the time of writing, there is no native Doer command that will retrieve the digest of an image from a remote
registry su as Doer Hub. is means the only way to determine the digest of an image is to pull it by tag and
then make a note of its digest. is may ange in the future.

e following example deletes the alpine:latest image from your Doer host and then shows how to pull
it again using its digest instead of its tag. e actual digest is truncated in the book so that it fits on one line.
Substitute this for the real digest of the version you pulled on your own system.



67

$ docker image rm alpine:latest
Untagged: alpine:latest
Untagged: alpine@sha256:c0537...7c0a7726c88e2bb7584dc96
Deleted: sha256:02674b9cb179d...abff0c2bf5ceca5bad72cd9
Deleted: sha256:e154057080f40...3823bab1be5b86926c6f860

$ docker image pull alpine@sha256:9a839e63da...9ea4fb9a54
sha256:9a839e63da...9ea4fb9a54: Pulling from library/alpine
cbdbe7a5bc2a: Pull complete
Digest: sha256:9a839e63da...9ea4fb9a54
Status: Downloaded newer image for alpine@sha256:9a839e63da...9ea4fb9a54
docker.io/library/alpine@sha256:9a839e63da...9ea4fb9a54

A little bit more about image hashes (digests)

Since Doer version 1.10, an image is a very loose collection of independent layers.

In some ways, the image itself is just a configuration file that lists the layers and some metadata.

e layers are where the data lives (files and code etc.). Ea layer is fully independent, and has no concept of
being part of an overall bigger image.

Ea image is identified by a crypto ID that is a hash of the config file. Ea layer is identified by a crypto ID
that is a hash of the layer content. we call these “content hashes”.

is means that anging the contents of the image, or any of its layers, will cause the associated crypto hashes
to ange. As a result, images and layers are immutable, and we can easily identify any anges made to either.

So far, things are prey simple. But they’re about to get a bit more complicated.

When we push and pull images, we compress their layers to save network bandwidth as well as storage space
in the image registry. is is great, but compressed content looks different to uncompressed content. As a result,
content hashes no longer mat aer push or pull operations.

is presents various problems. For example, Doer Hub verifies every pushed layer to make sure it wasn’t
tampered with en route. To do this, it runs a hash against the layer content and es it against the hash that
was sent. As the layer was compressed (anged) the hash verification will fail.

To get around this, ea layer also gets something called a distribution hash. is is a hash of the compressed
version of the layer and is included with every layer pushed or pulled to a registry. is can then be used to
verify that the layer arrived without being tampered with.

As well as providing a cryptographically verifiable way to verify image and layer integrity, it also avoids ID
collisions that could occur if image and layer IDs were randomly generated.

Multi-architecture images

One of the best things about Doer is its simplicity. However, as tenologies grow, things get more complex.is
happened for Doer when it started supporting multiple different platforms and aritectures su as Windows
and Linux, on variations of ARM, x64, PowerPC, and s390x. All of a sudden, popular images had versions for
different platforms and aritectures. As developers and operators, we had to make sure we were pulling the
correct version for the platform and aritecture we were using. is broke the smooth Doer experience.



68 6: Images

Note:We’re using the term “aritecture” to refer to CPU aritecture su as x64 and ARM. We
use the term “platform” to refer to either the OS (Linux or Windows) or the combination of OS
and aritecture.

Multi-aritecture images to the rescue!

Fortunately, Doer and Doer Hub have a sli way of supporting multi-ar images. is means a single
image, su as golang:latest, can have an image for Linux on x64, Linux on PowerPC, Windows x64, Linux
on different versions of ARM, and more. To be clear, we’re talking about a single image tag supporting multiple
platforms and aritectures. We’ll see it in action in a second, but it means you can run a simple docker image
pull goloang:latest from any platform or aritecture and Doer will pull the correct image for your platform
and aritecture.

To make this happen, the Registry API supports two important constructs:

• manifest lists
• manifests

e manifest list is exactly what it sounds like: a list of aritectures supported by a particular image tag. Ea
supported aritecture then has its own *manifest detailing the layers that make it up.

Figure 6.9 uses the official golang image as an example. On the le is the manifest list with entries for ea
aritecture the image supports. e arrows show that ea entry in the manifest list points to a manifest
containing image config and layer data.

Figure 6.9

Let’s look at the theory before seeing it in action.

Assume you are running Doer on a Raspberry Pi (Linux running on ARM aritecture). When you pull an
image, your Doer client makes the relevant calls to the Doer Registry API exposed by Doer Hub. If a
manifest list exists for the image, it will be parsed to see if an entry exists for Linux on ARM. If an ARM entry



69

exists, the manifest for that image is retrieved and parsed for the crypto ID’s of the layers that make up the
image. Ea layer is then pulled from Doer Hub.

e following examples show how this works by starting a new container from the official golang image and
running the go version command inside the container. e output of the go version command shows the
version of Go as well as the platform and CPU aritecture of the container/host. e thing to note, is that both
examples use the exact same docker container run command. We do not have to tell Doer that we need the
Linux x64 or Windows x64 versions of the image. We just run normal commands and let Doer take care of
geing the right image for the platform and aritecture we are running!

Linux on x64 example:

$ docker container run --rm golang go version
<Snip>
go version go1.14.2 linux/amd64

Windows on x64 example:

> docker container run --rm golang go version
<Snip>
go version go1.14.2 windows/amd64

e Windows Golang image is currently over 5GB in size and may take a long time to download.

e ‘doer manifest’ command lets you inspect the manifest list of any image on Doer Hub. e following
example inspects the manifest list on Doer Hub for the golang image. You can see that Linux and Windows
are supported on various CPU aritectures. You can run the same command without the grep filter to see the
full JSON manifest list.

$ docker manifest inspect golang | grep 'architecture\|os'
"architecture": "amd64",
"os": "linux"
"architecture": "arm",
"os": "linux",
"architecture": "arm64",
"os": "linux",
"architecture": "386",
"os": "linux"
"architecture": "ppc64le",
"os": "linux"
"architecture": "s390x",
"os": "linux"
"architecture": "amd64",
"os": "windows",
"os.version": "10.0.14393.3630"
"architecture": "amd64",
"os": "windows",
"os.version": "10.0.17763.1158"



70 6: Images

All official images have manifest lists.

You can create your own builds for different platforms and aritectures with docker buildx and then use docker
manifest create to create your own manifest lists.

e following command builds an image for ARMv7 called myimage:arm-v7 from the contents of the current
directory. It’s based on code in the code in https://github.com/nigelpoulton/psweb.

$ docker buildx build --platform linux/arm/v7 -t myimage:arm-v7 .
[+] Building 44.4s (10/10) FINISHED \

=> [internal] load build definition from Dockerfile 0.1s
=> => transferring dockerfile: 424B 0.0s
<Snip>
=> exporting to image 3.2s
=> => exporting layers 3.2s
=> => writing image sha256:61cc82bdaa... 0.0s
=> => naming to docker.io/library/myimage:arm-v7 0.0s

e beauty of the command is that you don’t have to run it from an ARMv7 Doer node. In fact, the example
shown was ran on Linux on x64 hardware.

At the time of writing, buildx is an experimental feature and requires experimental=true seing in your
∼/.docker/config.json file as follows.

{
"experimental": true

}

Deleting Images

When you no longer need an image on your Doer host, you can delete it with the docker image rm command.
rm is short for remove.

Deleting an image will remove the image and all of its layers from your Doer host. is means it will no longer
show up in docker image ls commands and all directories on the Doer host containing the layer data will
be deleted. However, if an image layer is shared by more than one image, that layer will not be deleted until all
images that reference it have been deleted.

Delete the images pulled in the previous steps with the docker image rm command. e following example
deletes an image by its ID, this might be different on your system.

$ docker image rm 02674b9cb179
Untagged: alpine@sha256:c0537ff6a5218...c0a7726c88e2bb7584dc96
Deleted: sha256:02674b9cb179d57...31ba0abff0c2bf5ceca5bad72cd9
Deleted: sha256:e154057080f4063...2a0d13823bab1be5b86926c6f860

You can list multiple images on the same command by separating them with whitespace like the following.

$ docker image rm f70734b6a266 a4d3716dbb72



71

If the image you are trying to delete is in use by a running container you will not be able to delete it. Stop and
delete any containers before trying the delete operation again.

A handy shortcut for deleting all images on a Doer host is to run the docker image rm command and pass it
a list of all image IDs on the system by calling docker image ls with the -q flag. is is shown next.

If you are following along on a Windows system, this will only work in a PowerShell terminal. It will not work
on a CMD prompt.

$ docker image rm $(docker image ls -q) -f

To understand how this works, download a couple of images and then run docker image ls -q.

$ docker image pull alpine
Using default tag: latest
latest: Pulling from library/alpine
e110a4a17941: Pull complete
Digest: sha256:3dcdb92d7432d5...3626d99b889d0626de158f73a
Status: Downloaded newer image for alpine:latest

$ docker image pull ubuntu
Using default tag: latest
latest: Pulling from library/ubuntu
952132ac251a: Pull complete
82659f8f1b76: Pull complete
c19118ca682d: Pull complete
8296858250fe: Pull complete
24e0251a0e2c: Pull complete
Digest: sha256:f4691c96e6bba...128ae95a60369c506dd6e6f6ab
Status: Downloaded newer image for ubuntu:latest

$ docker image ls -q
bd3d4369aebc
4e38e38c8ce0

See how docker image ls -q returns a list containing just the image IDs of all images pulled locally on the
system. Passing this list to docker image rm will delete all images on the system as shown next.

$ docker image rm $(docker image ls -q) -f
Untagged: ubuntu:latest
Untagged: ubuntu@sha256:f4691c9...2128ae95a60369c506dd6e6f6ab
Deleted: sha256:bd3d4369aebc494...fa2645f5699037d7d8c6b415a10
Deleted: sha256:cd10a3b73e247dd...c3a71fcf5b6c2bb28d4f2e5360b
Deleted: sha256:4d4de39110cd250...28bfe816393d0f2e0dae82c363a
Deleted: sha256:6a89826eba8d895...cb0d7dba1ef62409f037c6e608b
Deleted: sha256:33efada9158c32d...195aa12859239d35e7fe9566056
Deleted: sha256:c8a75145fcc4e1a...4129005e461a43875a094b93412
Untagged: alpine:latest
Untagged: alpine@sha256:3dcdb92...313626d99b889d0626de158f73a
Deleted: sha256:4e38e38c8ce0b8d...6225e13b0bfe8cfa2321aec4bba



72 6: Images

Deleted: sha256:4fe15f8d0ae69e1...eeeeebb265cd2e328e15c6a869f

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE

Let’s remind ourselves of the major commands we use to work with Doer images.

Images - The commands

• docker image pull is the command to download images. We pull images from repositories inside of
remote registries. By default, images will be pulled from repositories on Doer Hub. is command
will pull the image tagged as latest from the alpine repository on Doer Hub: docker image pull
alpine:latest.

• docker image ls lists all of the images stored in your Doer host’s local image cae. To see the SHA256
digests of images add the --digests flag.

• docker image inspect is a thing of beauty! It gives you all of the glorious details of an image — layer
data and metadata.

• docker manifest inspect allows you to inspect the manifest list of any image stored on Doer Hub.
is will show the manifest list for the redis image: docker manifest inspect redis.

• docker buildx is a Doer CLI plugin that extends the Doer CLI to support multi-ar builds.
• docker image rm is the command to delete images.is command shows how to delete the alpine:latest
image — docker image rm alpine:latest. You cannot delete an image that is associated with a container
in the running (Up) or stopped (Exited) states.

Chapter summary

In this apter, we learned about Doer images. We learned that they contain everything needed to run an
application. is includes; just enough OS, source code files, and dependencies. In some ways, images are like
virtual maine templates and are used to start containers. Under the hood they are made up of one or more
read-only layers, that when staed together, make up the overall image.

We used the docker image pull command to pull some images into our Doer host’s local registry.

We covered image naming, official and unofficial repos, layering, sharing, and crypto IDs.

We looked at how Doer supports multi-aritecture and multi-platform images, and we finished off by looking
at some of the most common commands used to work with images.

In the next apter we’ll take a similar tour of containers — the runtime sibling of images.



7: Containers
Now that we know a bit about images, it’s time to get into containers. As this is a book about Doer, we’ll
be talking specifically about Doer containers. However, Doer implements the image and container specs
published by the Open Container Initiative (OCI) at hps://www.opencontainers.org. is means a lot of what
you learn here will apply to other container runtimes that are OCI compliant. Also, the things you’ll learn will
help you if you need to learn and use Kubernetes.

We’ll split this apter into the usual three parts:

• e TLDR
• e deep dive
• e commands

Docker containers - The TLDR

A container is the runtime instance of an image. In the same way that you can start a virtual maine (VM) from
a virtual maine template, you start one or more containers from a single image. e big difference between a
VM and a container is that containers are faster and more lightweight — instead of running a full-blown OS like
a VM, containers share the OS/kernel with the host they’re running on. It’s also common for containers to be
based on minimalist images that only include soware and dependencies required by the application.

Figure 7.1 shows a single Doer image being used to start multiple Doer containers.

Figure 7.1

e simplest way to start a container is with the docker container run command. e command can take a
lot of arguments, but in its most basic form you tell it an image to use and a app to run: docker container run
<image> <app>. e following command will start an Ubuntu Linux container running the Bash shell as its app.

$ docker container run -it ubuntu /bin/bash

You can use the following command to start a Windows container running the PowerShell app.

> docker container run -it mcr.microsoft.com/powershell:nanoserver pwsh.exe



74 7: Containers

In ea of the examples, the -it flags will connect your current terminal window to the container’s shell.

Containers run until the app they are executing exits. In the previous examples, the Linux container will exit
when the Bash shell exits, and the Windows container will exit when the PowerShell process terminates.

A simple way to demonstrate this is to start a new container and tell it to run the sleep command for 10 seconds.
e container will start, seize your terminal for 10 seconds, then exit.e following is a simpleway to demonstrate
this on a Linux Doer host.

$ docker container run -it alpine:latest sleep 10

You can do the same with a Windows container with the following command.

> docker container run microsoft/powershell:nanoserver pwsh -c "Start-Sleep -s 10"

You can manually stop a running container with the docker container stop command. You can then restart
it with docker container start. To get rid of a container forever, you have to explicitly delete it with docker
container rm.

at’s the elevator pit! Now let’s get into the detail…

Docker containers - The deep dive

efirst things we’ll cover here are the fundamental differences between a container and a VM. It’s mainly theory
at this point, but it’s important stuff.

Heads-up: As the author, I’m going to say this before we go any further. A lot of us are passionate
about the things we do and the skills we have. You remember big Unix people resisting the rise
of Linux. You might also remember people resisting VMware in the early days. In both cases
resistance was futile. In this section I’m going to highlight what I consider some of the advantages
the container model has over the VMmodel. But I’m guessing a lot of you will be VM experts with
a lot invested in the VM ecosystem. I’m also guessing that one or two of you might want to fight
me over some of the things I say. So let me be clear… I’m a big guy and I’d beat you down in hand-
to-hand combat :-D Just kidding. However, I’m not trying to destroy your empire or call your baby
ugly. Containers and VMs will run side-by-side for many years to come.

Here we go.

Containers vs VMs

Containers and VMs both need a host to run on. is can be anything from your laptop, a bare metal server in
your data center, all the way up to an instance in the public cloud. In fact, many cloud services now offer the
ability to run containers on ephemeral serverless ba-ends. Don’t worry if that sounds like teno-babble, it just
means that the ba-end is so highly virtualized that the concept of a host or node no longer has any meaning —
your container simply runs, and you don’t need to care about the how or where.



75

Anyway… let’s assume a requirement where your business has a single physical server that needs to run 4
business applications.

In the VM model, the physical server is powered on and the hypervisor boots (we’re skipping the BIOS and
bootloader code etc.). Once booted, the hypervisor lays claim to all physical resources on the system su as
CPU, RAM, storage, and NICs. It then carves these hardware resources into virtual versions that look smell and
feel exactly like the real thing. It then paages them into a soware construct called a virtual maine (VM). We
take those VMs and install an operating system and application on ea one.

Assuming the scenario of a single physical server that needs to run 4 business applications, we’d create 4 VMs,
install 4 operating systems, and then install the 4 applications. When it’s all done it looks a bit like Figure 7.2.

Figure 7.2

ings are a bit different in the container model.

e server is powered on and the OS boots. In the Doer world this can be Linux, or a modern version of
Windows that supports the container primitives in its kernel. Similar to the VMmodel, the OS claims all hardware
resources. On top of the OS, we install a container engine su as Doer. e container engine then takes OS
resources su as the process tree, the filesystem, and the network sta, and carves them into isolated constructs
called containers. Ea container looks smells and feels just like a real OS. Inside of ea container we run an
application.

If we assume the same scenario of a single physical server needing to run 4 business applications, we’d carve the
OS into 4 containers and run a single application inside ea. is is shown in Figure 7.3.



76 7: Containers

Figure 7.3

At a high level, hypervisors perform hardware virtualization— they carve up physical hardware resources into
virtual versions called VMs. On the other hand, containers performOS virtualization— they carve OS resources
into virtual versions called containers.

The VM tax

Let’s build on what we just covered and drill into one of the problems with the hypervisor model.

We started out with a single physical server and the requirement to run 4 business applications. In both models
we installed either an OS or a hypervisor (a specialised OS that is highly tuned for VMs). So far, the models are
almost identical. But this is where the similarities stop.

e VM model carves low-level hardware resources into VMs. Ea VM is a soware construct containing
virtual CPUs, virtual RAM, virtual disks etc. As su, every VM needs its own OS to claim, initialize, and manage
all of those virtual resources. And sadly, every OS comes with its own set of baggage and overheads. For example,
every OS consumes a slice of CPU, a slice of RAM, a slice of storage etc. Some need their own licenses, as well
as people and infrastructure to pat and upgrade them. Ea OS also presents a sizable aa surface. We oen
refer to all of this as the OS tax, or VM tax — every OS you install consumes resources!

e container model has a single OS/kernel running on the host. It’s possible to run tens or hundreds of containers
on a single host with every container sharing that single OS/kernel. at means a single OS consuming CPU,
RAM, and storage. A single OS that needs licensing. A single OS that needs updating and pating. And a single
OS kernel presenting an aa surface. All in all, a single OS tax bill!

at might not seem a lot in our example of a single server running 4 business applications. But when you start
talking about hundreds or thousands of apps, it becomes a game-anger.

Another thing to consider is application start times. As a container isn’t a full-blown OS, it starts mu faster
than a VM. Remember, there’s no kernel inside of a container that needs locating, decompressing, and initializing
— not to mention all of the hardware enumerating and initializing associated with a normal kernel bootstrap.
None of that is neededwhen starting a container.e single shared kernel, running on the host maine, is already
started. Net result, containers can start in less than a second. e only thing that has an impact on container start
time is the time it takes to start the application it’s running.



77

is all amounts to the container model being leaner and more efficient than the VM model. You can pa more
applications onto less resources, start them faster, and pay less in licensing and admin costs, as well as present
less of an aa surface to the dark side. What’s not to like⁉

Well, one thing that’s not so great about the container model is security. Out of the box, containers are less secure
and provide less workload isolation than VMs. Tenologies exist to secure containers and lo them down, but
at the time of writing, some of them are prohibitively complex.

With the theory out of the way, let’s play around with some containers.

Running containers

To follow alongwith these examples, you’ll need aworkingDoer host. If you don’t already have it, I recommend
installing Doer Desktop on your Mac or PC (just google “Doer Desktop” and follow the simple next, next,
next installation).

We’ll show examples for Linux and Windows containers. However, if you’re running Doer Desktop on
Windows 10, you can follow along with the Linux examples by running Doer Desktop in Linux containers
mode.

Checking that Docker is running

e first thing I always do when I log on to a Doer host is e that Doer is running.

$ docker version
Client: Docker Engine - Community
Version: 19.03.8
API version: 1.40
OS/Arch: darwin/amd64
Experimental: true

Server: Docker Engine - Community
Engine:
Version: 19.03.8
API version: 1.40 (minimum version 1.12)
OS/Arch: linux/amd64
Experimental: true
<Snip>

As long as you get a response ba in the Client and Server you should be good to go. If you get an error code
in the Server section, there’s a good ance that the Doer daemon (server) isn’t running, or that your user
account doesn’t have permission to access it.

If you’re on a Linux maine and your user account doesn’t have permission to access the daemon, you need
to make sure it’s a member of the local docker Unix group. If it isn’t, you can add it with usermod -aG docker
<user> and then you’ll have to logout and log ba in to your shell for the anges to take effect.

If your user account is already a member of the local docker group, the problemmight be that the Doer daemon
isn’t running. To e the status of the Doer daemon, run one of the following commands depending on your
Doer host’s operating system.

Linux systems not using Systemd.



78 7: Containers

$ service docker status
docker start/running, process 29393

Linux systems using Systemd.

$ systemctl is-active docker
active

Windows systems (run from a PowerShell terminal).

> Get-Service docker

Status Name DisplayName
------ ---- -----------
Running Docker Docker Engine

If the Doer daemon is running, you’re fine to continue.

Starting a simple container

If you’re using Doer Desktop, you can follow along with the Linux or Windows examples. Just make sure that
Doer Desktop is set to the correct mode.

e simplest way to start a container is with the docker container run command.

e following command starts a simple container that will run a containerized version of Ubuntu Linux.

$ docker container run -it ubuntu:latest /bin/bash
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
d51af753c3d3: Pull complete
fc878cd0a91c: Pull complete
6154df8ff988: Pull complete
fee5db0ff82f: Pull complete
Digest: sha256:747d2dbbaaee995098c9792d99bd333c6783ce56150d1b11e333bbceed5c54d7
Status: Downloaded newer image for ubuntu:latest
root@50949b614477:/#

e following is a Windows example that starts a container running PowerShell (pwsh.exe).



79

> docker container run -it mcr.microsoft.com/powershell:nanoserver pwsh.exe
docker container run -it mcr.microsoft.com/powershell:nanoserver pwsh.exe
Unable to find image 'mcr.microsoft.com/powershell:nanoserver' locally
nanoserver: Pulling from powershell
0fe89239909b: Pull complete
2c9371eb1f40: Pull complete
<Snip>
806da439b031: Pull complete
Digest: sha256:cefdb984d9...ad3ab2079a
Status: Downloaded newer image for mcr.microsoft.com/powershell:nanoserver

PowerShell 7.0.0
Copyright (c) Microsoft Corporation. All rights reserved.
PS C:\>

Let’s take a closer look at the command.

docker container run tells Doer to run a new container. e -it flags make the container interactive and
aa it to your terminal. ubuntu:latest or mcr.microsoft.com/powershell:nanoserver tell Doer whi
image to start the container from. Finally, /bin/bash and pwsh.exe are the respective applications ea container
will run.

When you hit Return, the Doer client paaged up the command and POSTed it to the API server running
on the Doer daemon. e Doer daemon accepted the command and seared the Doer host’s local image
repository to see if it already had a copy of the requested image. In the examples cited, it didn’t, so it went to
Doer Hub to see if it could find it there. It found it, pulled it locally, and stored it in its local cae.

Note: In a standard, out-of-the-box Linux installation, the Doer daemon implements the Doer
Remote API on a local IPC/Unix soet at /var/run/docker.sock. On Windows, it listens on a
named pipe at npipe:////./pipe/docker_engine. It’s possible to configure the Doer daemon to
listen on the network. e default non-TLS network port for Doer is 2375, the default TLS port
is 2376.

Once the image was pulled, the daemon instructed containerd and runc to create and start the container.

If you’re following along, your terminal is now aaed to the container — look closely and you’ll see that your
shell prompt has anged. In the Linux example cited, the shell prompt has anged to root@50949b614477:/#.
e long number aer the @ is the first 12 aracters of the container’s unique ID. In the Windows example it
anged to PS C:\>.

Try executing some basic commands inside of the container. You might notice that some of them don’t work.is
is because the images are optimized to be lightweight. As a result, they don’t have all of the normal commands
and paages installed. e following example shows a couple of commands — one succeeds and the other one
fails.



80 7: Containers

root@50949b614477:/# ls -l
total 64
lrwxrwxrwx 1 root root 7 Apr 23 11:06 bin -> usr/bin
drwxr-xr-x 2 root root 4096 Apr 15 11:09 boot
drwxr-xr-x 5 root root 360 Apr 27 17:24 dev
drwxr-xr-x 1 root root 4096 Apr 27 17:24 etc
drwxr-xr-x 2 root root 4096 Apr 15 11:09 home
lrwxrwxrwx 1 root root 7 Apr 23 11:06 lib -> usr/lib
<Snip>

root@50949b614477:/# ping nigelpoulton.com
bash: ping: command not found

As you can see, the ping utility is not included as part of the official Ubuntu image.

Container processes

When we started the Ubuntu container in the previous section, we told it to run the Bash shell (/bin/bash). is
makes the Bash shell the one and only process running inside of the container. You can see this by running
ps -elf from inside the container.

root@50949b614477:/# ps -elf
F S UID PID PPID NI ADDR SZ WCHAN STIME TTY TIME CMD
4 S root 1 0 0 - 4558 wait 00:47 ? 00:00:00 /bin/bash
0 R root 11 1 0 - 8604 - 00:52 ? 00:00:00 ps -elf

e first process in the list, with PID 1, is the Bash shell we told the container to run. e second process is the 
ps -elf command we ran to produce the list. is is a short-lived process that exits as soon as the output is 
displayed. Long story short, this container is running a single process — /bin/bash.

Note: Windows containers are slightly different and tend to run quite a few baground processes.

If you’re logged on to the container and type exit, you’ll terminate the Bash process and the container will 
exit (terminate). is is because a container cannot exist without its designated main process. is is true of 
Linux and Windows containers — killing the main process in the container will kill the container.

Press Ctrl-PQ to exit the container without terminating its main process. Doing this will place you ba in 
the shell of your Doer host and leave the container running in the baground. You can use the docker 
container ls command to view the list of running containers on your system.

$ docker container ls
CNTNR ID IMAGE COMMAND CREATED STATUS NAMES
509...74 ubuntu:latest /bin/bash 6 mins Up 6mins sick_montalcini

It’s important to understand that this container is still running and you can re-aa your terminal to it with 
the docker container exec command.



81

$ docker container exec -it 50949b614477 bash
root@50949b614477:/#

e command to re-aa to the Windows Nano Server PowerShell container would be docker container exec
-it <container-name-or-ID> pwsh.exe.

As you can see, the shell prompt has anged ba to the container. If you run the ps -elf command again you
will now see two Bash or PowerShell processes. is is because the docker container exec command created
a new Bash or PowerShell process and aaed to that. is means typing exit in this shell will not terminate
the container, because the original Bash or PowerShell process will continue running.

Type exit to leave the container and verify it’s still running with a docker container ls. It will still be running.

If you are following along with the examples, you should stop and delete the container with the following two
commands (you will need to substitute the ID of your container).

$ docker container stop 50949b614477
50949b614477

$ docker container rm 50949b614477
50949b614477

e containers started in the previous examples will no longer be present on your system.

Container lifecycle

In this section, we’ll look at the lifecycle of a container — from birth, through work and vacations, to eventual
death.

We’ve already seen how to start containers with the docker container run command. Let’s start another one so
we can walk it through its entire lifecycle. e following examples will be from a Linux Doer host running an
Ubuntu container. However, all of the examples will work with theWindows PowerShell container from previous
examples — obviously you’ll have to substitute Linux commands with their equivalent Windows commands.

As previously mentioned, if you’re running Doer Desktop on a Windows 10 Pro laptop, you can run in Linux
containers mode and follow along with all of the Linux examples.

$ docker container run --name percy -it ubuntu:latest /bin/bash
root@9cb2d2fd1d65:/#

at’s the container created, and we named it “percy” for persistent.

Now let’s put it to work by writing some data to it.

e following procedure writes some text to a new file in the /tmp directory and verifies the operation succeeded.
Be sure to run these commands from within the container you just started.



82 7: Containers

root@9cb2d2fd1d65:/# cd tmp

root@9cb2d2fd1d65:/tmp# ls -l
total 0

root@9cb2d2fd1d65:/tmp# echo "Sunderland is the greatest football team in the world" > newfile

root@9cb2d2fd1d65:/tmp# ls -l
total 4
-rw-r--r-- 1 root root 14 Apr 27 11:22 newfile

root@9cb2d2fd1d65:/tmp# cat newfile
Sunderland is the greatest football team in the world

Press Ctrl-PQ to exit the container without killing it.

Now use the docker container stop command to stop the container and put in on vacation.

$ docker container stop percy
percy

You can use the container’s name or ID with the docker container stop command. e format is docker 
container stop <container-id or container-name>.

Now run a docker container ls command to list all running containers.

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

e container is not listed in the output above because it’s in the stopped state. Run the same command again, 
only this time add the -a flag to show all containers, including those that are stopped.

$ docker container ls -a
CNTNR ID IMAGE COMMAND CREATED STATUS NAMES
9cb...65 ubuntu:latest /bin/bash 4 mins Exited (0) percy

Now we can see the container showing as Exited (0). Stopping a container is like stopping a virtual maine. 
Although it’s not currently running, its entire configuration and contents still exist on the local filesystem of the 
Doer host. is means it can be restarted at any time.

Let’s use the docker container start command to bring it ba from vacation.



83

$ docker container start percy
percy

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
9cb2d2fd1d65 ubuntu:latest "/bin/bash" 4 mins Up 3 secs percy

e stopped container is now restarted. Time to verify that the file we created earlier still exists. Connect to the
restarted container with the docker container exec command.

$ docker container exec -it percy bash
root@9cb2d2fd1d65:/#

Your shell prompt will ange to show that you are now operating within the namespace of the container.

Verify the file you created earlier is still there and contains the data you wrote to it.

root@9cb2d2fd1d65:/# cd tmp
root@9cb2d2fd1d65:/# ls -l
-rw-r--r-- 1 root root 14 Sep 13 04:22 newfile

root@9cb2d2fd1d65:/# cat newfile
Sunderland is the greatest football team in the world

As if by magic, the file you created is still there and the data it contains is exactly how you le it. is proves
that stopping a container does not destroy the container or the data inside of it.

While this example illustrates the persistent nature of containers, it’s important you understand two things:

1. e data created in this example is stored on the Doer hosts local filesystem. If the Doer host fails,
the data will be lost.

2. Containers are designed to be immutable objects and it’s not a good practice to write data to them.

For these reasons, Doer provides volumes that exist separately from the container, but can be mounted into the
container at runtime.

At this stage of your journey, this was an effective example of a container lifecycle, and you’d be hard pressed
to draw a major difference between the lifecycle of a container and a VM.

Now let’s kill the container and delete it from the system.

You can delete a running container with a single command, by passing the -f flag to docker container rm.
However, it’s considered a best practice to take the two-step approa of stopping the container first and then
deleting it. is gives the application/process running in the container a fightingance of stopping cleanly. More
on this in a second.

e next example will stop the percy container, delete it, and verify the operation. If your terminal is still aaed
to the percy container, you’ll need to get ba to your Doer host’s terminal by typing Ctrl-PQ.



84 7: Containers

$ docker container stop percy
percy

$ docker container rm percy
percy

$ docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

e container is now deleted — literally wiped off the face of the planet. If it was a good container, it becomes a
serverless function in the aerlife. If it was a naughty container, it becomes a dumb terminal :-D

To summarize the lifecycle of a container… You can stop, start, pause, and restart a container as many times as
you want. It’s not until you explicitly delete a container that you run a ance of losing its data. Even then, if
you’re storing data outside the container in a volume, that data’s going to persist even aer the container has
gone.

Let’s quily mention why we recommended a two-stage approa of stopping the container before deleting it.

Stopping containers gracefully

Most containers in the Linux world will run a single process. ings are a bit different with Windows containers,
but they still run a single main application process and the following rules apply.

In the previous example, the container was running the /bin/bash app. When you kill a running container with
docker container rm <container> -f, the container is killed without warning. e procedure is quite violent
— a bit like sneaking up behind the container and shooting it in the ba of the head. You’re literally giving the
container, and the app it’s running, no ance to complete any operation and gracefully exit.

However, the docker container stop command is far more polite — like pointing a gun to the containers head
and saying “you’ve got 10 seconds to say any final words”. It gives the process inside of the container a heads-up
that it’s about to be stopped, giving it a ance to get things in order before the end comes. Once the it completes,
you can then delete the container with docker container rm.

e magic behind the scenes here can be explained with Linux/POSIX signals. docker container stop sends a
SIGTERM signal to the main application process inside the container (PID 1). As we said, this gives the process
a ance to clean things up and gracefully shut itself down. If it doesn’t exit within 10 seconds, it will receive a
SIGKILL. is is effectively the bullet to the head. But hey, it got 10 seconds to sort itself out first.

docker container rm <container> -f doesn’t bother asking nicely with a SIGTERM, it goes straight to the
SIGKILL.

Self-healing containers with restart policies

It’s oen a good idea to run containers with a restart policy. is is a form of self-healing that enables Doer to
automatically restart them aer certain events or failures have occurred.

Restart policies are applied per-container, and can be configured imperatively on the command line as part of
docker-container run commands, or declaratively in YAML files for use with higher-level tools su as Doer
Swarm, Doer Compose, and Kubernetes.

At the time of writing, the following restart policies exist:



85

• always
• unless-stopped
• on-failed

e always policy is the simplest. It always restarts a stopped container unless it has been explicitly stopped,
su as via a docker container stop command. An easy way to demonstrate this is to start a new interactive
container, with the --restart always policy, and tell it to run a shell process. When the container starts you will
be aaed to its shell. Typing exit from the shell will kill the container’s PID 1 process and kill the container.
However, Doer will automatically restart it because it has the --restart always policy. If you issue a docker
container ls command, you’ll see that the container’s uptime is less than the time since it was created. Let’s
put it to the test.

If you’re following a long with Windows containers, substitute the docker container run command
in the example with this one: docker container run --name neversaydie -it --restart always
mcr.microsoft.com/powershell:nanoserver.

$ docker container run --name neversaydie -it --restart always alpine sh
/#

Wait a few seconds before typing the exit command.

Once you’ve exited the container and are ba at your normal shell prompt, e the container’s status.

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS NAME
0901afb84439 alpine "sh" 35 seconds ago Up 9 seconds neversaydie

See how the container was created 35 seconds ago, but has only been up for 9 seconds. is is because the exit
command killed it and Doer restarted it. Be aware that Doer has restarted the same container and not created
a new one. In fact, if you inspect it with docker container inspect you can see the restartCount has been
incremented.

An interesting feature of the --restart always policy is that if you stop a container with docker container
stop and the restart the Doer daemon, the container will be restarted. To be clear… you start a new container
with the --restart always policy and then stop it with the docker container stop command. At this point
the container is in the Stopped (Exited) state. However, if you restart the Doer daemon, the container will
be automatically restarted when the daemon comes ba up. You need to be aware of this.

e main difference between the always and unless-stopped policies is that containers with the --restart
unless-stopped policy will not be restarted when the daemon restarts if they were in the Stopped (Exited)
state. at might be a confusing sentence, so let’s walk through an example.

We’ll create two new containers. One called “always” with the --restart always policy, and one called “unless-
stopped” with the --restart unless-stopped policy. We’ll stop them both with the docker container stop
command and then restart Doer. e “always” container will restart, but the “unless-stopped” container will
not.

1. Create the two new containers



86 7: Containers

$ docker container run -d --name always \
--restart always \
alpine sleep 1d

$ docker container run -d --name unless-stopped \
--restart unless-stopped \
alpine sleep 1d

$ docker container ls
CONTAINER ID IMAGE COMMAND STATUS NAMES
3142bd91ecc4 alpine "sleep 1d" Up 2 secs unless-stopped
4f1b431ac729 alpine "sleep 1d" Up 17 secs always

We now have two containers running. One called “always” and one called “unless-stopped”.

1. Stop both containers

$ docker container stop always unless-stopped

$ docker container ls -a
CONTAINER ID IMAGE STATUS NAMES
3142bd91ecc4 alpine Exited (137) 3 seconds ago unless-stopped
4f1b431ac729 alpine Exited (137) 3 seconds ago always

2. Restart Doer.

e process for restarting Doer is different on different Operating Systems. is example shows how to stop
Doer on Linux hosts running systemd. To restart Doer on Windows Server 2016 use restart-service
Docker.

$ systemlctl restart docker

1. Once Doer has restarted, you can e the status of the containers.

$ docker container ls -a
CONTAINER CREATED STATUS NAMES
314..cc4 2 minutes ago Exited (137) 2 minutes ago unless-stopped
4f1..729 2 minutes ago Up 9 seconds always

Notice that the “always” container (started with the --restart always policy) has been restarted, but the “unless-
stopped” container (started with the --restart unless-stopped policy) has not.

e on-failure policy will restart a container if it exits with a non-zero exit code. It will also restart containers
when the Doer daemon restarts, even containers that were in the stopped state.

If you are working with Doer Compose or Doer Stas, you can apply the restart policy to a service object
as follows. We’ll talk more about these tenologies later in the book.



87

version: "3"
services:

myservice:
<Snip>
restart_policy:

condition: always | unless-stopped | on-failure

Web server example

So far, we’ve seen how to start a simple container and interact with it. We’ve also seen how to stop, restart and
delete containers. Now let’s take a look at a Linux-based web server example.

In this example, we’ll start a new container from an image I use in a few of my Pluralsight video courses¹¹. e
image runs a simple web server on port 8080.

You can use the docker container stop and docker container rm commands to clean up any existing containers
on your system. en run the following command to start a new web server container.

$ docker container run -d --name webserver -p 80:8080 \
nigelpoulton/pluralsight-docker-ci

Unable to find image 'nigelpoulton/pluralsight-docker-ci:latest' locally
latest: Pulling from nigelpoulton/pluralsight-docker-ci
a3ed95caeb02: Pull complete
3b231ed5aa2f: Pull complete
7e4f9cd54d46: Pull complete
929432235e51: Pull complete
6899ef41c594: Pull complete
0b38fccd0dab: Pull complete
Digest: sha256:7a6b0125fe7893e70dc63b2...9b12a28e2c38bd8d3d
Status: Downloaded newer image for nigelpoulton/plur...docker-ci:latest 
6efa1838cd51b92a4817e0e7483d103bf72a7ba7ffb5855080128d85043fef21

Notice that your shell prompt hasn’t anged. is is because this container was started in the baground with 
the -d flag. Starting a container like this doesn’t aa it to your terminal.

Let’s take a look at some of the other arguments in the command.

We know docker container run starts a new container. However, this time we give it the -d flag instead of -it. 
-d stands for daemon mode, and tells the container to run in the baground. You can’t use the -d and -it flags 
in the same command.

Aer that, the command names the container “webserver”. e -p flag maps port 80 on the Doer host to port 
8080 inside the container. is means that traffic hiing the Doer host on port 80 will be directed to port 8080 
inside of the container. It just so happens that the image we’re using for this container defines a web service that 
listens on port 8080. is means the container will come up running a web server listening on port 8080.

Finally, the command tells the container to base itself on the nigelpoulton/pluralsight-docker-ci image. is 
image contains a node.js webserver and all dependencies. It is maintained approximately once per year, so 
will contain vulnerabilities!

¹¹https://www.pluralsight.com/search?q=nigel%20poulton%20docker&categories=all

https://www.pluralsight.com/search?q=nigel%20poulton%20docker&categories=all
https://www.pluralsight.com/search?q=nigel%20poulton%20docker&categories=all


88 7: Containers

Once the container is running, a docker container ls command will show the container as running and the
ports that are mapped. It’s important to know that port mappings are expressed as host-port:container-port.

$ docker container ls
CONTAINER ID COMMAND STATUS PORTS NAMES
6efa1838cd51 /bin/sh -c... Up 2 mins 0.0.0.0:80->8080/tcp webserver

Some of the columns have been removed from the output to help with readability.

Now that the container is running and ports are mapped, you can connect to the it by pointing a web browser at
the IP address or DNS name of the Doer host on port 80. Figure 7.4 shows the web page that is being served
up by the container.

Figure 7.4

e same docker container stop, docker container pause, docker container start, and docker container
rm commands can be used on the container.

Inspecting containers

In the previous web server example, you might have noticed that we didn’t specify an app for the container when
we issued the docker container run command. Yet the container ran a web service. How did this happen?

When building a Doer image, you can embed an instruction that lists the default app for any containers that
use the image. You can see this for any image by running a docker image inspect.



89

$ docker image inspect nigelpoulton/pluralsight-docker-ci

[
{

"Id": "sha256:07e574331ce3768f30305519...49214bf3020ee69bba1",
"RepoTags": [

"nigelpoulton/pluralsight-docker-ci:latest"

<Snip>

],
"Cmd": [

"/bin/sh",
"-c",
"#(nop) CMD [\"/bin/sh\" \"-c\" \"cd /src \u0026\u0026 node ./app.js\"]"

],
<Snip>

e output is snipped to make it easier to find the information we’re interested in.

e entries aer Cmd show the command/app that the container will run unless you override it with a different
one when you laun the container with docker container run. If you remove all of the shell escapes in the
example, you get the following command /bin/sh -c "cd /src && node ./app.js". at’s the default app a
container based on this image will run. Feel free to inspect some more images, sometimes the default app is listed
as Entrypoint instead of Cmd.

It’s common to build images with default commands like this, as it makes starting containers easier. It also forces
a default behavior and is a form of self documentation — i.e. you can inspect the image and know what app it’s
designed to run.

at’s us done for the examples in this apter. Let’s see a qui way to tidy our system up.

Tidying up

Let’s look at the simplest and quiest way to get rid of every running container on your Doer host. Be
warned though, the procedure will forcibly destroy all containers without giving them a ance to clean up.
is should never be performed on production systems or systems running important containers.

Run the following command from the shell of your Doer host to delete all containers.

$ docker container rm $(docker container ls -aq) -f
6efa1838cd51

In this example, there was only a single container running, so only one was deleted (6efa1838cd51). However,
the command works the same way as the docker image rm $(docker image ls -q) command we used in
the previous apter to delete all images on a single Doer host. We already know the docker container rm
command deletes containers. Passing it $(docker container ls -aq) as an argument, effectively passes it the
ID of every container on the system. e -f flag forces the operation so that even containers in the running
state will be destroyed. Net result… all containers, running or stopped, will be destroyed and removed from the
system.

e above command will work in a PowerShell terminal on a Windows Doer host.



90 7: Containers

Containers - The commands

• docker container run is the command used to start new containers. In its simplest form, it accepts
an image and a command as arguments. e image is used to create the container and the command is
the application the container will run when it starts. is example will start an Ubuntu container in the
foreground, and tell it to run the Bash shell: docker container run -it ubuntu /bin/bash.

• Ctrl-PQ will deta your shell from the terminal of a container and leave the container running (UP) in
the baground.

• docker container ls lists all containers in the running (UP) state. If you add the -a flag you will also
see containers in the stopped (Exited) state.

• docker container exec runs a new process inside of a running container. It’s useful for aaing the
shell of your Doer host to a terminal inside of a running container. is command will start a new Bash
shell inside of a running container and connect to it: docker container exec -it <container-name or
container-id> bash. For this to work, the image used to create the container must include the Bash shell.

• docker container stop will stop a running container and put it in the Exited (0) state. It does this by
issuing a SIGTERM to the process with PID 1 inside of the container. If the process has not cleaned up and
stopped within 10 seconds, a SIGKILL will be issued to forcibly stop the container. docker container
stop accepts container IDs and container names as arguments.

• docker container start will restart a stopped (Exited) container. You can give docker container
start the name or ID of a container.

• docker container rm will delete a stopped container. You can specify containers by name or ID. It is
recommended that you stop a container with the docker container stop command before deleting it
with docker container rm.

• docker container inspect will show you detailed configuration and runtime information about a
container. It accepts container names and container IDs as its main argument.

Chapter summary

In this apter, we compared and contrasted the container and VM models. We looked at the OS tax problem
inherent in the VM model, and saw how the container model can bring huge advantages in mu the same way
as the VM model brought huge advantages over the physical server model.

We saw how to use the docker container run command to start a couple of simple containers, and we saw the
difference between interactive containers in the foreground versus containers running in the baground.

We know that killing the PID 1 process inside of a container will kill the container. And we’ve seen how to start,
stop, and delete containers.

We finished the apter using the docker container inspect command to view detailed container metadata.

So far so good!



8: Containerizing an app
Doer is all about taking applications and running them in containers.

e process of taking an application and configuring it to run as a container is called “containerizing”.

In this apter, we’ll walk through the process of containerizing a simple Linux-based web application. If you
don’t have a Linux Doer environment to follow along with, you can use Play With Doer for free. Just point
your web browser to hps://play-with-doer.com and spin up some Linux Doer nodes. It’s my favourite way
to spin up Doer and do testing!

We’ll split this apter into the usual three parts:

• e TLDR
• e deep dive
• e commands

Let’s containerize an app!

Containerizing an app - The TLDR

Containers are all about making apps simple to build, ship, and run.

e process of containerizing an app looks like this:

1. Start with your application code and dependencies
2. Create a Doerfile that describes your app, its dependencies, and how to run it
3. Feed the Doerfile into the docker image build command
4. Push the new image to a registry (optional)
5. Run container from the image

Once your app is containerized (made into a container image), you’re ready to share it and run it as a container.

Figure 8.1 shows the process in picture form.



92 8: Containerizing an app

Figure 8.1 - Basic flow of containerizing an app

Containerizing an app - The deep dive

We’ll break up this Deep Dive section of the apter as follows:

• Containerize a single-container app
• Moving to Production with multi-stage builds
• A few best practices

Containerize a single-container app

e rest of this apter walks through the process of containerizing a simple Node.js web app.

We’ll complete the following high-level steps:

• Clone the repo to get the app code
• Inspect the Doerfile
• Containerize the app
• Run the app
• Test the app
• Look a bit closer
• Move to production withMulti-stage Builds
• A few best practices

e example in this apter is of a single-container app. e next apter will include a slightly more complex
multi-container app, and we’ll move on to an even more complicated app in the apter on Doer Stas.



93

Getting the application code

e application used in this example is available on GitHub at:

• hps://github.com/nigelpoulton/psweb.git

Clone the sample app from GitHub.

$ git clone https://github.com/nigelpoulton/psweb.git

Cloning into 'psweb'...
remote: Counting objects: 15, done.
remote: Compressing objects: 100% (11/11), done.
remote: Total 15 (delta 2), reused 15 (delta 2), pack-reused 0
Unpacking objects: 100% (15/15), done.
Checking connectivity... done.

e clone operation creates a new directory called psweb. Change directory into psweb and list its contents.

$ cd psweb

$ ls -l
total 28
-rw-r--r-- 1 root root 341 Sep 29 16:26 app.js
-rw-r--r-- 1 root root 216 Sep 29 16:26 circle.yml
-rw-r--r-- 1 root root 338 Sep 29 16:26 Dockerfile
-rw-r--r-- 1 root root 421 Sep 29 16:26 package.json
-rw-r--r-- 1 root root 370 Sep 29 16:26 README.md
drwxr-xr-x 2 root root 4096 Sep 29 16:26 test
drwxr-xr-x 2 root root 4096 Sep 29 16:26 views

is directory contains all of the application source code, as well as subdirectories for views and unit tests. Feel
free to look at the files — the app is extremely simple. We won’t be using the unit tests in this apter.

Now that we have the app code, let’s look at its Doerfile.

Inspecting the Dockerfile

A Doerfile is the starting point for creating a container image — it describes an application and tells Doer
how to build it into an image.

e directory containing the application and dependencies is referred to as the build context. It’s a common
practice to keep your Doerfile in the root directory of the build context. It’s also important that Doerfile
starts with a capital “D” and is all one word. “doerfile” and “Doer file” are not valid.

Let’s look at the contents of the Doerfile.



94 8: Containerizing an app

$ cat Dockerfile

FROM alpine
LABEL maintainer="nigelpoulton@hotmail.com"
RUN apk add --update nodejs nodejs-npm
COPY . /src
WORKDIR /src
RUN npm install
EXPOSE 8080
ENTRYPOINT ["node", "./app.js"]

Do not underestimate the impact of the Doerfile as a form of documentation. It’s a great document for bridging
the gap between dev and ops. It also has the power to speed up on-boarding of new developers etc.is is because
the file accurately describes the application and its dependencies in an easy-to-read format. You should treat it
like you treat source code and e it into a version control system.

At a high-level, the example Doerfile says: Start with the alpine image, make a note that “nigelpoul-
ton@hotmail.com” is the maintainer, install Node.js and NPM, copy everything in the build context to the /src
directory in the image, set the working directory as /src, install dependencies, document the app’s network port,
and set app.js as the default application to run.

Let’s look at it in a bit more detail.

All Doerfiles start with the FROM instruction. is will be the base layer of the image, and the rest of the app
will be added on top as additional layers. is particular application is a Linux app, so it’s important that the
FROM instruction refers to a Linux-based image. If you’re containerizing a Windows application, you’ll need to
specify the appropriate Windows base image - su as mcr.microsoft.com/dotnet/core/aspnet.

At this point in the Doerfile, the image has a single layer as showing in Figure 8.2.

Figure 8.2

Next, the Doerfile creates a LABEL that specifies “nigelpoulton@hotmail.com” as the maintainer of the image.
Labels are simple key-value pairs and are an excellent way of adding custommetadata to an image. It’s considered
a best practice to list a maintainer of an image so that other potential users have a point of contact when working
with it.

e RUN apk add --update nodejs nodejs-npm instruction uses the Alpine apk paage manager to install
nodejs and nodejs-npm into the image. It creates a new image layer directly above the Alpine base layer, and
installs the paages in this layer. At this point in the Doerfile, the image looks like Figure 8.3.



95

Figure 8.3

e COPY . /src instruction creates another new layer and copies in the application and dependency files from
the build context. At this point in the Doerfile, the image has three layers as shown in Figure 8.4.

Figure 8.4

Next, the Doerfile uses the WORKDIR instruction to set the working directory inside the image filesystem for the
rest of the instructions in the file. is instruction does not create a new image layer.

en the RUN npm install instruction creates a new layer and uses npm to install application dependencies
listed in the package.json file in the build context. It runs within the context of the WORKDIR set in the previous
instruction, and installs the dependencies into the newly created layer. At this point in the Doerfile the image
has four layers as shown in Figure 8.5.

Figure 8.5

e application exposes a web service on TCP port 8080, so the Doerfile documents this with the EXPOSE 8080
instruction. is is added as image metadata and not an image layer.



96 8: Containerizing an app

Finally, the ENTRYPOINT instruction is used to set the main application that the image (container) should run. is
is also added as metadata and not an image layer.

Containerize the app/build the image

Now that we understand how it works, let’s build it!

e following command will build a new image called web:latest. e period (.) at the end of the command
tells Doer to use the shell’s current working directory as the build context.

Be sure to include the trailing period (.) and be sure to run the command from the psweb directory that contains
the Doerfile and application code.

$ docker image build -t web:latest .

Sending build context to Docker daemon 76.29kB
Step 1/8 : FROM alpine
latest: Pulling from library/alpine
ff3a5c916c92: Pull complete
Digest: sha256:7df6db5aa6...0bedab9b8df6b1c0
Status: Downloaded newer image for alpine:latest
---> 76da55c8019d
<Snip>
Step 8/8 : ENTRYPOINT node ./app.js
---> Running in 13977a4f3b21
---> fc69fdc4c18e
Removing intermediate container 13977a4f3b21
Successfully built fc69fdc4c18e
Successfully tagged web:latest

Che that the image exists in your Doer host’s local repository.

$ docker image ls
REPO TAG IMAGE ID CREATED SIZE
web latest fc69fdc4c18e 10 seconds ago 81.5MB

Congratulations, the app is containerized!

You can use the docker image inspect web:latest command to verify the configuration of the image. It will
list all of the seings that were configured from the Doerfile. Look out for the list of image layers and the
Entrypoint command.

Pushing images

Once you’ve created an image, it’s a good idea to store it in an image registry to keep it safe and make it available
to others. Doer Hub is the most common public image registry, and it’s the default push location for docker
image push commands.

In order to push an image to Doer Hub, you need to login with your Doer ID. You also need to tag the image
appropriately.



97

Let’s log in to Doer Hub and push the newly created image.

In the following example’s you will need to substitute my Doer ID with your own. So any time you see
“nigelpoulton”, swap it out for your Doer ID (Doer Hub username).

$ docker login
Login with **your** Docker ID to push and pull images from Docker Hub...
Username: nigelpoulton
Password:
Login Succeeded

Before you can push an image, you need to tag it in a special way.is is because Doer needs all of the following
information when pushing an image:

• Registry
• Repository
• Tag

Doer is opinionated, so by default it pushes images to Doer Hub. You can push to other registries, but you
have to explicitly set the registry URL as part of the docker image push command.

e previous docker image ls output shows the image is tagged as web:latest. is translates to a repository
called web and an image tagged as latest. As a result, docker image push will try and push the image to a
repository called web on Doer Hub. However, I don’t have access to the web repository, all of my images live
in the nigelpoulton second-level namespace. is means I need to re-tag the image to include my Doer ID.
Remember to substitute your own Doer ID.

$ docker image tag web:latest nigelpoulton/web:latest

e format of the command is docker image tag <current-tag> <new-tag> and it adds an additional tag, it
does not overwrite the original.

Another image listing shows the image now has two tags, one of whi includes my Doer ID.

$ docker image ls
REPO TAG IMAGE ID CREATED SIZE
web latest fc69fdc4c18e 10 secs ago 64.4MB
nigelpoulton/web latest fc69fdc4c18e 10 secs ago 64.4MB

Now we can push it to Doer Hub. You can’t push images to repos in my Doer Hub namespace, you will have
to tag the image to use your own.



98 8: Containerizing an app

$ docker image push nigelpoulton/web:latest
The push refers to repository [docker.io/nigelpoulton/web]
2444b4ec39ad: Pushed
ed8142d2affb: Pushed
d77e2754766d: Pushed
cd7100a72410: Mounted from library/alpine
latest: digest: sha256:68c2dea730...f8cf7478 size: 1160

Figure 8.6 shows how Doer determined the push location.

Figure 8.6

Now that the image is pushed to a registry, you can access it from anywhere with an internet connection. You 
can also grant other people access to pull it and push anges.

e examples in the rest of the apter will use the shorter of the two image tags (web:latest).

Run the app

e containerized application is a web server that listens on TCP port 8080. You can verify this in the app.js file 
in the build context you cloned from GitHub.

e following command will start a new container called c1 based on the web:latest image you just created. It 
maps port 80 on the Doer host, to port 8080 inside the container. is means that you’ll be able to point a web 
browser at the DNS name or IP address of the Doer host running the container and access the app.

Note: If your host is already running a service on port 80, you can specify a different port as part
of the docker container run command. For example, to map the app to port 5000 on the Doer
host, use the -p 5000:8080 flag.

$ docker container run -d --name c1 \
-p 80:8080 \
web:latest

e -d flag runs the container in the baground, and the -p 80:8080 flag maps port 80 on the host to port 8080
inside the running container.

Che that the container is running and verify the port mapping.



99

$ docker container ls

ID IMAGE COMMAND STATUS PORTS NAMES
49.. web:latest "node ./app.js" UP 6 secs 0.0.0.0:80->8080/tcp c1

e output above is snipped for readability, but shows that the app container is running. Note that port 80 is
mapped, on all host interfaces (0.0.0.0:80).

Test the app

Open a web browser and point it to the DNS name or IP address of the host that the container is running on.
You’ll see the web page shown in Figure 8.7. If you’re using Doer Desktop or another tenology that runs the
container on your local maine. you can use localhost as the DNS name.

Figure 8.7

If the test does not work, try the following:

1. Make sure that the container is up and running with the docker container ls command. e container
name is c1 and you should see the port mapping as 0.0.0.0:80->8080/tcp.

2. Che that firewall and other network security seings are not bloing traffic to port 80 on the Doer
host.

3. Retry the command specifying a high numbered port on the Doer host (may be -p 5000:8080).

Congratulations, the application is containerized and running!

Looking a bit closer

Now that the application is containerized, let’s take a closer look at how some of the mainery works.

e docker image build command parses the Doerfile one-line-at-a-time starting from the top.

Comment lines start with the # aracter.

All non-comment lines are Instructions and take the format INSTRUCTION argument. Instruction names are not
case sensitive, but it’s normal practice to write them in UPPERCASE. is makes reading the Doerfile easier.



100 8: Containerizing an app

Some instructions create new layers, whereas others just add metadata to the image config file.

Examples of instructions that create new layers are FROM, RUN, and COPY. Examples that create metadata include
EXPOSE, WORKDIR, ENV, and ENTRYPOINT. e basic premise is this — if an instruction is adding content su as
files and programs to the image, it will create a new layer. If it is adding instructions on how to build the image
and run the application, it will create metadata.

You can view the instructions that were used to build the image with the docker image history command.

$ docker image history web:latest

IMAGE CREATED BY SIZE
fc6..18e /bin/sh -c #(nop) ENTRYPOINT ["node" "./a... 0B
334..bf0 /bin/sh -c #(nop) EXPOSE 8080/tcp 0B
b27..eae /bin/sh -c npm install 14.1MB
932..749 /bin/sh -c #(nop) WORKDIR /src 0B
052..2dc /bin/sh -c #(nop) COPY dir:2a6ed1703749e80... 22.5kB
c1d..81f /bin/sh -c apk add --update nodejs nodejs-npm 46.1MB
336..b92 /bin/sh -c #(nop) LABEL maintainer=nigelp... 0B
3fd..f02 /bin/sh -c #(nop) CMD ["/bin/sh"] 0B
<missing> /bin/sh -c #(nop) ADD file:093f0723fa46f6c... 4.15MB

Two things from the output above are worth noting.

First. Ea line corresponds to an instruction in the Doerfile (starting from the boom and working up). e
CREATED BY column even lists the exact Doerfile instruction that was executed.

Second. Only 4 of the lines displayed in the output create new layers (the ones with non-zero values in the
SIZE column). ese correspond to the FROM, RUN, and COPY instructions in the Doerfile. Although the other
instructions might look like they create layers, they actually create metadata instead of layers. e reason that
the docker image history output makes it looks like all instructions create layers is an artefact of the way builds
and image layering used to work.

Use the docker image inspect command to confirm that only 4 layers were created.

$ docker image inspect web:latest

<Snip>
},
"RootFS": {

"Type": "layers",
"Layers": [

"sha256:cd7100...1882bd56d263e02b6215",
"sha256:b3f88e...cae0e290980576e24885",
"sha256:3cfa21...cc819ef5e3246ec4fe16",
"sha256:4408b4...d52c731ba0b205392567"

]
},

It is considered a good practice to use images from official repositories with the FROM instruction. is is because
their content has been veed and they are qui to release new versions when vulnerabilities are fixed. It is also



101

a good idea to start from (FROM) small images as this keeps images small and reduces aa surface and potential
vulnerabilities.

You can view the output of the docker image build command to see the general process for building an image.
As the following snippet shows, the basic process is: spin up a temporary container > run the Dockerfile
instruction inside of that container > save the results as a new image layer > remove the temporary
container.

Step 3/8 : RUN apk add --update nodejs nodejs-npm
---> Running in e690ddca785f << Run inside of temp container
fetch http://dl-cdn...APKINDEX.tar.gz
fetch http://dl-cdn...APKINDEX.tar.gz
(1/10) Installing ca-certificates (20171114-r0)
<Snip>
OK: 61 MiB in 21 packages
---> c1d31d36b81f << Create new layer
Removing intermediate container << Remove temp container
Step 4/8 : COPY . /src

Moving to production with Multi-stage Builds

When it comes to Doer images, big is bad!

Big means slow. Big means hard to work with. And big means more potential vulnerabilities and possibly a
bigger aa surface!

For these reasons, Doer images should be small. e aim of the game is to only ship production images with
the stuff needed to run your app in production.

e problem is… keeping images small was hard work.

For example, the way you write your Doerfiles has a huge impact on the size of your images. A common
example is that every RUN instruction adds a new layer. As a result, it’s usually considered a best practice to
include multiple commands as part of a single RUN instruction — all glued together with double-ampersands
(&&) and baslash (\) line-breaks. While this isn’t roet science, it requires time and discipline.

Another issue is that we don’t clean up aer ourselves. We’ll RUN a command against an image that pulls some
build-time tools, and we’ll leave all those tools in the image when we ship it to production. Not ideal!

Multi-stage builds to the rescue!

Multi-stage builds are all about optimizing builds without adding complexity. And they deliver on the promise!

Here’s the high-level…

Multi-stage builds have a single Doerfile containing multiple FROM instructions. Ea FROM instruction is a
new build stage that can easily COPY artefacts from previous stages.

Let’s look at an example!

is example app is available at hps://github.com/nigelpoulton/atsea-sample-shop-app.git and the Doerfile is
in the app directory. It’s a Linux-based application so, will only work on a Linux Doer host. It’s also quite old,
so don’t deploy it to an important system, and be sure to delete it as soon as you’re finished.

e Doerfile is shown below:



102 8: Containerizing an app

FROM node:latest AS storefront
WORKDIR /usr/src/atsea/app/react-app
COPY react-app .
RUN npm install
RUN npm run build

FROM maven:latest AS appserver
WORKDIR /usr/src/atsea
COPY pom.xml .
RUN mvn -B -f pom.xml -s /usr/share/maven/ref/settings-docker.xml dependency:resolve
COPY . .
RUN mvn -B -s /usr/share/maven/ref/settings-docker.xml package -DskipTests

FROM java:8-jdk-alpine AS production
RUN adduser -Dh /home/gordon gordon
WORKDIR /static
COPY --from=storefront /usr/src/atsea/app/react-app/build/ .
WORKDIR /app
COPY --from=appserver /usr/src/atsea/target/AtSea-0.0.1-SNAPSHOT.jar .
ENTRYPOINT ["java", "-jar", "/app/AtSea-0.0.1-SNAPSHOT.jar"]
CMD ["--spring.profiles.active=postgres"]

e first thing to note is that the Doerfile has three FROM instructions. Ea of these constitutes a distinct 
build stage. Internally, they’re numbered from the top starting at 0. However, we’ve also given ea stage a 
friendly name.

• Stage 0 is called storefront
• Stage 1 is called appserver
• Stage 2 is called production

e storefront stage pulls the node:latest image whi is over 900MB in size. It sets the working directory, 
copies in some app code, and uses two RUN instructions to perform some npm magic. is adds three layers and 
considerable size. e resulting image is an even bigger than the base node:latest image as it contains lots of 
build stuff and not very mu app code.

e appserver stage pulls the maven:latest image whi is over 500MB in size. It adds four layers of content 
via two COPY instructions and two RUN instructions. is produces another very large image with lots of build 
tools and very lile actual production code.

e production stage starts by pulling the java:8-jdk-alpine image. is image is approximately 150MB -
considerably smaller than the node and maven images used by the previous build stages. It adds a user, sets the 
working directory, and copies in some app code from the image produced by the storefront stage. Aer that, 
it sets a different working directory and copies in the application code from the image produced by the 
appserver stage. Finally, it sets the main application for the image to run when it’s started as a container.

An important thing to note, is that COPY --from instructions are used to only copy production-related 
application code from the images built by the previous stages. ey do not copy build artefacts that are not 
needed for production.

It’s also important to note that we only need a single Doerfile, and no extra arguments are needed for the 
docker image build command!



103

Speaking of whi… let’s build it.

Clone the repo.

$ git clone https://github.com/nigelpoulton/atsea-sample-shop-app.git

Cloning into 'atsea-sample-shop-app'...
remote: Counting objects: 632, done.
remote: Total 632 (delta 0), reused 0 (delta 0), pack-reused 632
Receiving objects: 100% (632/632), 7.23 MiB | 1.88 MiB/s, done.
Resolving deltas: 100% (195/195), done.
Checking connectivity... done.

Change directory into the app folder of the cloned repo and verify that the Doerfile exists.

$ cd atsea-sample-shop-app/app

$ ls -l
total 24
-rw-r--r-- 1 root root 682 Oct 1 22:03 Dockerfile
-rw-r--r-- 1 root root 4365 Oct 1 22:03 pom.xml
drwxr-xr-x 4 root root 4096 Oct 1 22:03 react-app
drwxr-xr-x 4 root root 4096 Oct 1 22:03 src

Perform the build (this may take several minutes to complete as some of the images that are pulled are large).

$ docker image build -t multi:stage .

Sending build context to Docker daemon 3.658MB
Step 1/19 : FROM node:latest AS storefront
latest: Pulling from library/node
aa18ad1a0d33: Pull complete
15a33158a136: Pull complete
<Snip>
Step 19/19 : CMD --spring.profiles.active=postgres
---> Running in b4df9850f7ed
---> 3dc0d5e6223e
Removing intermediate container b4df9850f7ed
Successfully built 3dc0d5e6223e
Successfully tagged multi:stage

Note: e multi:stage tag used in the example above is arbitrary. You can tag your images
according to your own requirements and standards — there is no requirement to tag multi-stage
builds the way we did in this example.

Run a docker image ls to see the list of images pulled and created by the build operation.



104 8: Containerizing an app

$ docker image ls

REPO TAG IMAGE ID CREATED SIZE
node latest a5a6a9c32877 5 days ago 941MB
<none> <none> d2ab20c11203 9 mins ago 1.11GB
maven latest 45d27d110099 9 days ago 508MB
<none> <none> fa26694f57cb 7 mins ago 649MB
java 8-jdk-alpine 3fd9dd82815c 7 months ago 145MB
multi stage 3dc0d5e6223e 1 min ago 210MB

e top line in the output above shows the node:latest image pulled by the storefront stage. e image below 
is the image produced by that stage (created by adding the code and running the npm install and build operations). 
Both are very large images with lots of build junk included.

e 3rd and 4th lines are the images pulled and produced by the appserver stage. ese are both large and 
contain lots of builds tools.

e last line is the multi:stage image built by the final build stage in the Doerfile (stage2/production). You can 
see that this is significantly smaller than the images pulled and produced by the previous stages. is is because 
it’s based off the mu smaller java:8-jdk-alpine image and has only added the production-related app files 
from the previous stages.

e net result is a small production image created by a single Doerfile, a normal docker image build command, 
and zero additional scripting!

Multi-stage builds were new with Doer 17.05 and are an excellent feature for building small production-worthy 
images.

A few best practices

Let’s list a few best practices before closing out the apter. is list is not intended to be exhaustive.

Leverage the build cache

e build process used by Doer has the concept of a cae that it uses to speed-up the build process. e best 
way to see the impact of the cae is to build a new image on a clean Doer host, then repeat the same build 
immediately aer. e first build will pull images and take time building layers. e second build will complete 
almost instantaneously. is is because artefacts from the first build, su as layers, are caed and leveraged 
by later builds.

As we know, the docker image build process iterates through a Doerfile one-line-at-a-time starting from the 
top. For ea instruction, Doer looks to see if it already has an image layer for that instruction in its cae. If 
it does, this is a cae hit and it uses that layer. If it doesn’t, this is a cae miss and it builds a new layer from 
the instruction. Geing cae hits can hugely speed up the build process.

Let’s look a lile closer.

We’ll use this example Doerfile to provide a qui walk-through:



105

FROM alpine
RUN apk add --update nodejs nodejs-npm
COPY . /src
WORKDIR /src
RUN npm install
EXPOSE 8080
ENTRYPOINT ["node", "./app.js"]

e first instruction tells Doer to use the alpine:latest image as its base image. If this image already exists
on the host, the build will move on to the next instruction. If the image does not exist, it is pulled from Doer
Hub (index.doer.io).

e next instruction (RUN apk...) runs a command to update paage lists and install nodejs and nodejs-npm.
Before performing the instruction, Doer es its build cae for a layer that was built from the same base
image, as well as using the same instruction it is currently being asked to execute. In this case, it’s looking
for a layer that was built directly on top of alpine:latest by executing the RUN apk add --update nodejs
nodejs-npm instruction.

If it finds a layer, it skips the instruction, links to that existing layer, and continues the build with the cae in tact.
If it does not find a layer, it invalidates the cae and builds the layer. is operation of invalidating the cae
invalidates it for the remainder of the build. is means all subsequent Doerfile instructions are completed in
full without aempting to reference the build cae.

Let’s assume that Doer already had a layer for this instruction in the cae (a cae hit). And let’s assume the
ID of that layer was AAA.

e next instruction copies some code into the image (COPY . /src). Because the previous instruction resulted
in a cae hit, Doer now es to see if it has a caed layer that was built from the AAA layer with the COPY
. /src command. If it does, it links to the layer and proceeds to the next instruction. If it does not, it builds the
layer and invalidates the cae for the rest of the build.

Let’s assume that Doer already has a layer for this instruction in the cae (a cae hit). And let’s assume the
ID of that layer is BBB.

is process continues for the rest of the Doerfile.

It’s important to understand a few more things.

Firstly, as soon as any instruction results in a cae-miss (no layer was found for that instruction), the cae is
no longer used for the rest of the entire build. is has an important impact on how you write your Doerfiles.
Try and write them in a way that places instructions that are likely to invalidate the cae towards the end of
the Doerfile. is means that a cae-miss will not occur until later stages of the build - allowing the build to
benefit as mu as possible from the cae.

You can force the build process to ignore the entire cae by passing the --no-cache=true flag to the docker
image build command.

It is also important to understand that the COPY and ADD instructions include steps to ensure that the content
being copied into the image has not anged since the last build. For example, it’s possible that the COPY . /src
instruction in the Doerfile has not anged since the previous, but… the contents of the directory being copied
into the image haveanged!

To protect against this, Doer performs a esum against ea file being copied, and compares that to a
esum of the same file in the caed layer. If the esums do not mat, the cae is invalidated and a new
layer is built.



106 8: Containerizing an app

Squash the image

Squashing an image isn’t really a best practice as it has pros and cons.

At a high level, Doer follows the normal process to build an image, but then adds an additional step that
squashes everything into a single layer.

Squashing can be good in situations where images are starting to have a lot of layers and this isn’t ideal. An
example might be when creating a new base image that you want to build other images from in the future — this
base is mu beer as a single-layer image.

On the negative side, squashed images do not share image layers. is can result in storage inefficiencies and
larger push and pull operations.

Add the --squash flag to the docker image build command if you want to create a squashed image.

Figure 8.8 shows some of the inefficiencies that come with squashed images. Both images are exactly the same
except for the fact that one is squashed and the other is not. e non-squashed image shares layers with other
images on the host (saving disk space) but the squashed image does not. e squashed image will also need to
send every byte to Doer Hub on a docker image push command, whereas the non-squashed image only needs
to send unique layers.

Figure 8.8 - Squashed images vs non-squashed images

Use no-install-recommends

If you are building Linux images, and using the apt paagemanager, you should use the no-install-recommends
flag with the apt-get install command. is makes sure that apt only installs main dependencies (paages in
the Depends field) and not recommended or suggested paages.is can greatly reduce the number of unwanted
paages that are downloaded into your images.



107

Containerizing an app - The commands

• docker image build is the command that reads a Doerfile and containerizes an application. e -t flag
tags the image, and the -f flag lets you specify the name and location of the Doerfile. With the -f flag,
it is possible to use a Doerfile with an arbitrary name and in an arbitrary location. e build context is
where your application files exist, and this can be a directory on your local Doer host or a remote Git
repo.

• e FROM instruction in a Doerfile specifies the base image for the new image you will build. It is usually
the first instruction in a Doerfile and a best-practice is to use images from official repos on this line.

• e RUN instruction in a Doerfile allows you to run commands inside the image. Ea RUN instruction
creates a single new layer.

• e COPY instruction in a Doerfile adds files into the image as a new layer. It is common to use the COPY
instruction to copy your application code into an image.

• e EXPOSE instruction in a Doerfile documents the network port that the application uses.
• e ENTRYPOINT instruction in a Doerfile sets the default application to run when the image is started
as a container.

• Other Doerfile instructions include LABEL, ENV, ONBUILD, HEALTHCHECK, CMD and more…

Chapter summary

In this apter, we learned how to containerize an application.

We pulled some application code from a remote Git repo. e repo included the application code, as well as a 
Doerfile containing instructions on how to build the application into an image. We learned the basics of how 
Doerfiles work, and fed one into a docker image build command to create a new image.

Once the image was created, we started a container from it and tested it with a web browser.

Aer that, we saw how multi-stage builds give us a simple way to build and ship smaller images to our production 
environments.

We also learned that the Doerfile is a great tool for documenting an app. As su, it can speed-up the on-
boarding of new developers and bridge the divide between developers and operations staff. With this in mind, 
treat it like code and e it in and out of a source control system.

Although the example cited was a Linux-based example, the process for containerizing Windows apps is the 
same: Start with your app code, create a Doerfile describing the app, build the image with docker image 
build. Job done!





9: Deploying Apps with Docker Compose
In this apter, we’ll look at how to deploy multi-container applications using Doer Compose.

Doer Compose and Doer Stas are very similar. In this apter we’ll focus on Doer Compose, whi
deploys and manages multi-container applications on Doer nodes running in single-engine mode. In a later
apter, we’ll focus on Doer Stas. Stas deploy and manage multi-container apps on Doer nodes running
in swarm mode.

We’ll split this apter into the usual three parts:

• e TLDR
• e deep dive
• e commands

Deploying apps with Compose - The TLDR

Modern cloud-native apps are made of multiple smaller services that interact to form a useful app. We call this
paern “microservices”. A simple example might be an app with the following seven services:

• Web front-end
• Ordering
• Catalog
• Ba-end database
• Logging
• Authentication
• Authorization

Get all of these working together, and you have a useful application.

Deploying and managing lots of small microservices like these can be hard. is is whereDoer Compose comes
in to play.

Instead of gluing ea microservice together with scripts and long docker commands, Doer Compose lets you
describe an entire app in a single declarative configuration file, and deploy it with a single command.

Once the app is deployed, you canmanage its entire lifecycle with a simple set of commands. You can even store
and manage the configuration file in a version control system.

at’s the basics. Let’s dig deeper.



110 9: Deploying Apps with Doer Compose

Deploying apps with Compose - The Deep Dive

We’ll divide the Deep Dive section as follows:

• Compose baground
• Installing Compose
• Compose files
• Deploying an app with Compose
• Managing an app with Compose

Compose background

In the beginning was Fig. Fig was a powerful tool, created by a company called Orard, and it was the best way 
to manage multi-container Doer apps. It was a Python tool that sat on top of Doer, and let you define entire 
multi-container apps in a single YAML file. You could then deploy and manage the lifecycle of the app with the 
fig command-line tool.

Behind the scenes, Fig would read the YAML file and use Doer to deploy and manage the app via the Doer 
API. It was a good thing.

In fact, it was so good, that Doer, Inc. acquired Orard and re-branded Fig as Doer Compose. e command-
line tool was renamed from fig to docker-compose, and continues to be an external tool that gets bolted on 
top of the Doer Engine. Even though it’s never been fully integrated into the Doer Engine, it’s always been 
popular and widely used.

As things stand today, Compose is still an external Python binary that you have to install on a Doer host. You 
define multi-container (microservices) apps in a YAML file, pass the YAML file to the docker-compose command 
line, and Compose deploys it via the Doer API. However, April 2020 saw the announcement of the Compose 
Specification¹². is is aimed at creating an open standard for defining multi-container cloud-native apps. e 
ultimate aim being to greatly simplify the code-to-cloud process.

e specification will be community-led and separate from the docker-compose implementation from Doer, 
Inc. is helps maintain beer governance and clearer lines of demarcation. However, we should expect Doer 
to implement the fill spec in docker-compose.

e spec itself is a great document to learn the details.

Time to see it in action.

Installing Compose

Doer Compose is available on multiple platforms. In this section we’ll demonstrate some of the ways to install 
it on Windows, Mac, and Linux. More installation methods exist, but the ones we show here will get you started.

Installing Compose on Windows 10

Doer Compose is included as part of the standard Doer Desktop installation on Windows 10. So, if you’ve 
got Doer Desktop on your Windows 10 PC, you’ve got Doer Compose.

Use the following command to e that Compose is installed. You can run this command from a PowerShell 
or CMD terminal.

¹²https://github.com/compose-spec/compose-spec

https://github.com/compose-spec/compose-spec
https://github.com/compose-spec/compose-spec
https://github.com/compose-spec/compose-spec


111

> docker-compose --version
docker-compose version 1.25.5, build 8a1c60f6

See Chapter 3: Installing Doer if you need more information on installing Doer Desktop on Windows 10.

Installing Compose on Mac

As with Windows 10, Doer Compose is installed as part of Doer Desktop for Mac. So, if you have Doer
Desktop on your Mac, you have Doer Compose.

Run the following command in a terminal window to verify you have Doer Compose.

$ docker-compose --version
docker-compose version 1.25.5, build 8a1c60f6

See Chapter 3: Installing Doer if you need more information on installing Doer Desktop.

Installing Compose on Windows Server

Doer Compose is installed on Windows Server as a separate binary. To use it, you will need an up-to-date
installation of Doer on your Windows Server.

Run the following commands from an elevated PowerShell terminal (run-as Administrator).

PS C:\> [Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12

For readability, the following command uses batis () to escape carriage returns and wrap the command
over multiple lines. It installs version 1.25.5 of Docker Compose. You can install any version
listed here: https://github.com/docker/compose/releases by replacing the 1.25.5‘ in the URL with the
version you want to install.

PS C:\> Invoke-WebRequest `
"https://github.com/docker/compose/releases/download/1.25.5/docker-compose-Windows-x86_64.exe" `
-UseBasicParsing `
-OutFile $Env:ProgramFiles\Docker\docker-compose.exe

Writing web request
Writing request stream... (Number of bytes written: 5260755)

Use the docker-compose --version command to verify the installation.

> docker-compose --version
docker-compose version 1.25.5, build 01110ad01

Compose is now installed. As long as your Windows Server maine has an up-to-date installation of the Doer
Engine, you’re ready to go.



112 9: Deploying Apps with Doer Compose

Installing Compose on Linux

Installing Doer Compose on Linux is a two-step process. First, you download the binary using the curl
command. en you make it executable using chmod.

For Doer Compose to work on Linux, you’ll need a working version of the Doer Engine.

e following command will download version 1.25.5 of Doer Compose and copy it to /usr/bin/local. You
can e the releases page on GitHub¹³ for the latest version and replace the 1.25.5 in the URL with the version
you want to install.

e command may wrap over multiple lines in the book. If you run the command on a single line you will need
to remove any baslashes (\).

$ sudo curl -L \
"https://github.com/docker/compose/releases/download/1.25.5/docker-compose-$(uname -s)-$(uname -m)" \
-o /usr/local/bin/docker-compose

% Total % Received Time Time Time Current
Total Spent Left Speed

100 617 0 617 0 --:--:-- --:--:-- --:--:-- 1047
100 8280k 100 8280k 0 0:00:03 0:00:03 --:--:-- 4069k

Now that you’ve downloaded the docker-compose binary, use the following chmod command to make it
executable.

$ sudo chmod +x /usr/local/bin/docker-compose

Verify the installation and e the version.

$ docker-compose --version
docker-compose version 1.25.5, build 1110ad01

You’re ready to use Doer Compose on Linux.

You can also use pip to install Compose from its Python paage. But I don’t want to waste valuable pages
showing every possible installation method. Enough is enough, time to move on.

Compose files

Compose uses YAML files to define multi-service applications. YAML is a subset of JSON, so you can also use
JSON. However, all the examples in this apter will be YAML.

e default name for a Compose YAML file is docker-compose.yml. However, you can use the -f flag to specify
custom filenames.

e following example shows a very simple Compose file that defines a small Flask app with two microservices
(web-fe and redis). e app is a simple web server that counts the number of visits to a web page and stores the
value in Redis. We’ll call the app counter-app and use it as the example application for the rest of the apter.

¹³https://github.com/docker/compose/releases

https://github.com/docker/compose/releases
https://github.com/docker/compose/releases


113

version: "3.8"
services:

web-fe:
build: .
command: python app.py
ports:

- target: 5000
published: 5000

networks:
- counter-net

volumes:
- type: volume
source: counter-vol
target: /code

redis:
image: "redis:alpine"
networks:

counter-net:

networks:
counter-net:

volumes:
counter-vol:

We’ll skip through the basics of the file before taking a closer look.

e first thing to note is that the file has 4 top-level keys:

• version
• services
• networks
• volumes

Other top-level keys exist, su as secrets and configs, but we’re not looking at those right now.

e version key is mandatory, and it’s always the first line at the root of the file. is defines the version of the
Compose file format (basically the API). You should normally use the latest version.

It’s important to note that the versions key does not define the version of Doer Compose or the Doer
Engine. For information regarding compatibility between versions of the Doer Engine, Doer Compose, and
the Compose file format, google “Compose file versions and upgrading”.

For the remainder of this apter we’ll be using version 3 or higher of the Compose file format.

e top-level services key is where you define the different application microservices. is example defines two
services; a web front-end called web-fe, and an in-memory database called redis. Compose will deploy ea of
these services as its own container.

e top-level networks key tells Doer to create new networks. By default, Compose will create bridge
networks. ese are single-host networks that can only connect containers on the same Doer host. However,
you can use the driver property to specify different network types.

e following code can be used in your Compose file to create a new overlay network called over-net that allows
standalone containers to connect to it (attachable).



114 9: Deploying Apps with Doer Compose

networks:
over-net:
driver: overlay
attachable: true

e top-level volumes key is where you tell Doer to create new volumes.

Our specific Compose file

e example file we’ve listed uses the Compose version 3.8 file format, defines two services, defines a network
called counter-net, and defines a volume called counter-vol.

Most of the detail is in the services section, so let’s take a closer look at that.

e services section has two second-level keys:

• web-fe
• redis

Ea of these defines a service (container) in the app. It’s important to understand that Compose will deploy ea
of these as a container, and it will use the name of the keys as part of the container names. In our example, we’ve
defined two keys; web-fe and redis. is means Compose will deploy two containers, one will have web-fe in
its name and the other will have redis.

Within the definition of the web-fe service, we give Doer the following instructions:

• build: . is tells Doer to build a new image using the instructions in the Dockerfile in the current
directory (.). e newly built image will be used in a later step to create the container for this service.

• command: python app.py is tells Doer to run a Python app called app.py as the main app in the
container. e app.py file must exist in the image, and the image must contain Python. e Doerfile
takes care of both of these requirements.

• ports: Tells Doer to map port 5000 inside the container (-target) to port 5000 on the host (published).
is means that traffic sent to the Doer host on port 5000 will be directed to port 5000 on the container.
e app inside the container listens on port 5000.

• networks: Tells Doer whi network to aa the service’s container to. e network should already
exist, or be defined in the networks top-level key. If it’s an overlay network, it will need to have
the attachable flag so that standalone containers can be aaed to it (Compose deploys standalone
containers instead of Doer Services).

• volumes: Tells Doer to mount the counter-vol volume (source:) to /code (target:) inside the
container. e counter-vol volume needs to already exist, or be defined in the volumes top-level key
at the boom of the file.

In summary, Compose will instruct Doer to deploy a single standalone container for the web-fe service. It
will be based on an image built from a Doerfile in the same directory as the Compose file. is image will be
started as a container and run app.py as its main app. It will expose itself on port 5000 on the host, aa to the
counter-net network, and mount a volume to /code.



115

Note: Tenically speaking, we don’t need the command: python app.py option.is is because the
application’s Doerfile already defines python app.py as the default app for the image. However,
we’re showing it here so you know how it works. You can also use Compose to override CMD
instructions set in Doerfiles.

e definition of the redis service is simpler:

• image: redis:alpine is tells Doer to start a standalone container called redis based on the
redis:alpine image. is image will be pulled from Doer Hub.

• networks: e redis container will be aaed to the counter-net network.

As both services will be deployed onto the same counter-net network, they will be able to resolve ea other
by name. is is important as the application is configured to communicate with the redis service by name.

Now that we understand how the Compose file works, let’s deploy it!

Deploying an app with Compose

In this section, we’ll deploy the app defined in the Compose file from the previous section. To do this, you’ll need
the following 4 files from hps://github.com/nigelpoulton/counter-app:

• Doerfile
• app.py
• requirements.txt
• doer-compose.yml

Clone the Git repo locally.

$ git clone https://github.com/nigelpoulton/counter-app.git

Cloning into 'counter-app'...
remote: Counting objects: 9, done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 9 (delta 1), reused 5 (delta 0), pack-reused 0
Unpacking objects: 100% (9/9), done.
Checking connectivity... done.

Cloning the repo will create a new sub-directory called counter-app. is will contain all of the required files
and will be considered your build context. Compose will also use the name of the directory (counter-app) as the
project name. We’ll see this later, but Compose will prepend all resource names with counter-app_.

Change into the counter-app directory and e the files are present.



116 9: Deploying Apps with Doer Compose

$ cd counter-app
$ ls
app.py docker-compose.yml Dockerfile requirements.txt ...

Let’s quily describe ea file:

• app.py is the application code (a Python Flask app)
• docker-compose.yml is the Doer Compose file that describes how Doer should build and deploy the
app

• Dockerfile describes how to build the image for the web-fe service
• requirements.txt lists the Python paages required for the app

Feel free to inspect the contents of ea file.

e app.py file is obviously the core of the application. But docker-compose.yml is the glue that stis all the
application microservices together.

Let’s use Compose to bring the app up. You must run the all of the following commands from within the
counter-app directory that you just cloned from GitHub.

$ docker-compose up &

[1] 1635
Creating network "counter-app_counter-net" with the default driver
Creating volume "counter-app_counter-vol" with default driver
Pulling redis (redis:alpine)...
alpine: Pulling from library/redis
1160f4abea84: Pull complete
a8c53d69ca3a: Pull complete
<Snip>
web-fe_1 | * Debugger PIN: 313-791-729

It’ll take a few seconds for the app to come up, and the output can be quite verbose. You may also have to hit the
Return key when the deployment completes.

We’ll step through what happened in a second, but first let’s talk about the docker-compose command.

docker-compose up is the most common way to bring up a Compose app (we’re calling a multi-container app
defined in a Compose file a Compose app). It builds or pulls all required images, creates all required networks
and volumes, and starts all required containers.

By default, docker-compose up expects the name of the Compose file to docker-compose.yml. If your Compose
file has a different name, you need to specify it with the -f flag.e following example will deploy an application
from a Compose file called prod-equus-bass.yml

$ docker-compose -f prod-equus-bass.yml up

It’s also common to use the -d flag to bring the app up in the baground. For example:



117

docker-compose up -d

--OR--

docker-compose -f prod-equus-bass.yml up -d

Our example brought the app up in the foreground (we didn’t use the -d flag), but we used the & to give us the
terminal window ba. is forces Compose to output all messages to the terminal window, and we’ll refer ba
to these messages later.

Now that the app is built and running, we can use normal docker commands to view the images, containers,
networks, and volumes that Compose created.

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
counter-app_web-fe latest 96..6ff9e 3 minutes ago 95.9MB
python alpine 01..17a02 2 weeks ago 85.5MB
redis alpine ed..c83de 5 weeks ago 26.9MB

We can see that three images were either built or pulled as part of the deployment.

e counter-app_web-fe:latest image was created by the build: . instruction in the docker-compose.yml
file. is instruction caused Doer to build a new image using the Doerfile in the same directory. It contains
the application code for the Python Flask web app, and was built from the python:alpine image. See the contents
of the Dockerfile for more information.

FROM python:alpine << Base image
ADD . /code << Copy app into image
WORKDIR /code << Set working directory
RUN pip install -r requirements.txt << Install requirements
CMD ["python", "app.py"] << Set the default app

I’ve added comments to the end of ea line to help explain. ey must be removed before deploying the app.

Notice how Compose has named the newly built image as a combination of the project name (counter-app), and
the resource name as specified in the Compose file (web-fe). All resources deployed by Compose will follow this
naming convention.

e redis:alpine image was pulled from Doer Hub by the image: "redis:alpine" instruction in the
.Services.redis section of the Compose file.

e following container listing shows two running containers. e name of ea is prefixed with the name of
the project (name of the build context directory). Also, ea one has a numeric suffix that indicates the instance
number — this is because Compose allows for scaling.



118 9: Deploying Apps with Doer Compose

$ docker container ls
ID COMMAND STATUS PORTS NAMES
84.. "python app.py" Up 2 mins 0.0.0.0:5000->5000/tcp counter-app_web-fe_1
eb.. "docker-entrypoint.s…" Up 2 mins 6379/tcp counter-app_redis_1

e counter-app_web-fe container is running the application’s web front end. is is running the app.py code
and is mapped to port 5000 on all interfaces on the Doer host. We’ll connect to this in just a second.

e following network and volume listings show the counter-app_counter-net network and counter-app_-
counter-vol volume.

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
b4c1976d7c27 bridge bridge local
33ff702253b3 counter-app_counter-net bridge local
<Snip>

$ docker volume ls
DRIVER VOLUME NAME
<Snip>
local counter-app_counter-vol

With the application successfully deployed, you can point a web browser at your Doer host on port 5000 and
see the application in all its glory.

Prey impressive ;-)

Hiing your browser’s refresh buon will cause the counter to increment. Have a look at the app (app.py) to see
how the counter data is stored in the Redis ba-end.

If you brought the application up using the &, you will be able to see the HTTP 200 response codes being logged
in the terminal window. ese indicate successful requests, and you’ll see one for ea time you load the web
page.



119

web-fe_1 | 172.20.0.1 - - [29/Apr/2020 10:15:27] "GET / HTTP/1.1" 200 -
web-fe_1 | 172.20.0.1 - - [29/Apr/2020 10:15:28] "GET / HTTP/1.1" 200 -

Congratulations. You’ve successfully deployed a multi-container application using Doer Compose!

Managing an app with Compose

In this section, you’ll see how to start, stop, delete, and get the status of applications being managed by Doer
Compose. You’ll also see how the volume we’re using can be used to directly inject updates to the app’s web
front-end.

As the application is already up, let’s see how to bring it down. To do this, replace the up sub-command with
down.

$ docker-compose down
1. Stopping counter-app_redis_1 ...
2. Stopping counter-app_web-fe_1 ...
3. redis_1 | 1:signal-handler Received SIGTERM scheduling shutdown...
4. redis_1 | 1:M 09 Jan 11:16:00.456 # User requested shutdown...
5. redis_1 | 1:M 09 Jan 11:16:00.456 * Saving the final RDB snap...
6. redis_1 | 1:M 09 Jan 11:16:00.463 * DB saved on disk
7. Stopping counter-app_redis_1 ... done
8. counter-app_redis_1 exited with code 0
9. Stopping counter-app_web-fe_1 ... done
10. Removing counter-app_redis_1 ... done
11. Removing counter-app_web-fe_1 ... done
12. Removing network counter-app_counter-net
13. [1]+ Done docker-compose up

As you initially started the app with the &, it’s running in the foreground. is means you get verbose output to
the terminal, giving you an excellent insight into how things work. Let’s step through what ea line is telling
us.

Lines 1 and 2 are stopping the two services. ese are the web-fe and redis services defined in the Compose file.

Line 3 shows that the stop instruction sends a SIGTERM signal. is is sent to the PID 1 process in ea container.
Lines 4-6 show the Redis container gracefully handling the signal and shuing itself down. Lines 7 and 8 report
the success of the stop operation.

Line 9 shows the web-fe service successfully stopping.

Lines 10 and 11 show the stopped services being removed.

Line 12 shows the counter-net network being removed, and line 13 shows the docker-compose up process
exiting.

It’s important to note that the counter-vol volume was not deleted. is is because volumes are intended to be
long-term persistent data stores. As su, their lifecycle is entirely decoupled from the applications they serve.
Running a docker volume ls will show that the volume is still present on the system. If you’d wrien any data
to the volume, that data would still exist.

Also, any images that were built or pulled as part of the docker-compose up operation will still be present on
the system. is means future deployments of the app will be faster.



120 9: Deploying Apps with Doer Compose

Let’s look at a few other docker-compose sub-commands.

Use the following command to bring the app up again, but this time in the baground.

$ docker-compose up -d
Creating network "counter-app_counter-net" with the default driver
Creating counter-app_redis_1 ... done
Creating counter-app_web-fe_1 ... done

See how the app started mu faster this time — the counter-vol volume already exists, and all images already
exist on the Doer host.

Show the current state of the app with the docker-compose ps command.

$ docker-compose ps
Name Command State Ports
-----------------------------------------------------------------------------------
counter-app_redis_1 docker-entrypoint.sh redis.. Up 6379/tcp
counter-app_web-fe_1 python app.py Up 0.0.0.0:5000->5000/tcp

You can see both containers, the commands they are running, their current state, and the network ports they are
listening on.

Use docker-compose top to list the processes running inside of ea service (container).

$ docker-compose top
counter-app_redis_1
PID USER TIME COMMAND
----------------------------------
19643 999 0:01 redis-server

counter-app_web-fe_1
PID USER TIME COMMAND
--------------------------------------------------------
19679 root 0:00 python app.py
19788 root 0:01 /usr/local/bin/python /code/app.py

e PID numbers returned are the PID numbers as seen from the Doer host (not from within the containers).

Use the docker-compose stop command to stop the app without deleting its resources. en show the status of
the app with docker-compose ps.



121

$ docker-compose stop
Stopping counter-app_web-fe_1 ... done
Stopping counter-app_redis_1 ... done

$ docker-compose ps
Name Command State
----------------------------------------------------------
counter-app_redis_1 docker-entrypoint.sh redis Exit 0
counter-app_web-fe_1 python app.py Exit 0

As you can see, stopping a Compose app does not remove the application definition from the system. It just stops
the app’s containers. You can verify this with the docker container ls -a command.

You can delete a stopped Compose app with docker-compose rm. is will delete the containers and networks
the app is using, but it will not delete volumes or images. Nor will it delete the application source code in your
project’s build context directory (app.py, Dockerfile, requirements.txt, and docker-compose.yml).

Restart the app with the docker-compose restart command.

$ docker-compose restart
Restarting counter-app_web-fe_1 ... done
Restarting counter-app_redis_1 ... done

Verify the operation.

$ docker-compose ps
Name Command State Ports

-----------------------------------------------------------------------------------
counter-app_redis_1 docker-entrypoint.sh redis Up 6379/tcp
counter-app_web-fe_1 python app.py Up 0.0.0.0:5000->5000/tcp

Use the docker-compose down command to stop and delete the app with a single command.

$ docker-compose down
Stopping counter-app_redis_1 ... done
Stopping counter-app_web-fe_1 ... done
Removing counter-app_redis_1 ... done
Removing counter-app_web-fe_1 ... done
Removing network counter-app_counter-net

e app is now deleted. Only its images, volumes, and source code remain.

Let’s deploy the app one last time and see a lile more about how the volume works.



122 9: Deploying Apps with Doer Compose

$ docker-compose up -d
Creating network "counter-app_counter-net" with the default driver
Creating counter-app_redis_1 ... done
Creating counter-app_web-fe_1 ... done

If you look in the Compose file, you’ll see that it defines a volume called counter-vol and mounts it in to the
web-fe container at /code.

services:
web-fe:
<Snip>
volumes:

- type: volume
source: counter-vol
target: /code

<Snip>
volumes:

counter-vol:

e first time you deployed the app, Compose eed to see if a volume called counter-vol already existed.
It did not, so Compose created it. You can see it with the docker volume ls command, and you can get more
detailed information with docker volume inspect counter-app_counter-vol.

$ docker volume ls
RIVER VOLUME NAME
local counter-app_counter-vol

It’s also worth knowing that Compose builds networks and volumes before deploying services. is makes sense,
as networks and volumes are lower-level infrastructure objects that are consumed by services (containers). e
following snippet shows Compose creating the network and volume as its first two tasks (even before building
and pulling images).

$ docker-compose up -d

Creating network "counter-app_counter-net" with the default driver
Creating volume "counter-app_counter-vol" with default driver
Pulling redis (redis:alpine)...
<Snip>

If we take another look at the service definition for web-fe, we’ll see that it’s mounting the counter-app volume
into the service’s container at /code. We can also see from the Doerfile that /code is where the app is installed
and executed from. Net result, the app code resides on a Doer volume. See Figure 9.2.



123

Figure 9.2

is all means we can make anges to files in the volume, from the outside of the container, and have them
reflected immediately in the app. Let’s see how that works.

e next few steps will walk you through the following process. We’ll update the contents of app.py in the
project’s working directory on the Doer host. We’ll copy the updated app.py to the volume on the Doer
host. We’ll refresh the app’s web page to see the updated text. is will work because whatever you write to the
volume on the Doer host will immediately appear in the volume mounted in the container.

Note:e following will not work if you are using Doer Desktop on a Mac or Windows 10 PC.
is is because Doer Desktop runs Doer inside of a lightweight VM and volumes exist inside
the VM.

Use your favourite text editor to edit the app.py file in the projects working directory. We’ll use vim in the
example.

$ vim ~/counter-app/app.py

Change text between the double quote marks (“”) on line 22. e line starts with return "What's up...". Enter
any text you like, as long as it’s within the double-quote marks, and save your anges.

Now that you’ve updated the app, you need to copy it into the volume on the Doer host. Ea Doer volume
is exposed at a location within the Doer host’s filesystem, as well as a mount point in one or more containers.
Use the following docker volume inspect command to find where the volume is exposed on the Doer host.

$ docker volume inspect counter-app_counter-vol | grep Mount

"Mountpoint": "/var/lib/docker/volumes/counter-app_counter-vol/_data",

Copy the updated app file to the volume’s mount point on your Doer host (remember that this will not work on
Doer Desktop). As soon as you perform the copy operation, the updated file will appear in the /code directory
in the web-fe container. e operation will overwrite the existing /code/app.py file in the container.



124 9: Deploying Apps with Doer Compose

$ cp ~/counter-app/app.py \
/var/lib/docker/volumes/counter-app_counter-vol/_data/app.py

e updated app file is now on the container. Connect to the app to see your ange. You can do this by pointing
your web browser to the IP of your Doer host on port 5000.

Figure 9.3 shows the updated app.

Obviously you wouldn’t do an update operation like this in production, but it’s a real time-saver in development.

Congratulations. You’ve deployed and managed a simple multi-container app using Doer Compose.

Before reminding ourselves of the major docker-compose commands, it’s important to understand that this was
a very simple example. Doer Compose is capable of deploying and managing far more complex applications.

Deploying apps with Compose - The commands

• docker-compose up is the command to deploy a Compose app. It expects the Compose file to be called
docker-compose.yml or docker-compose.yaml, but you can specify a custom filename with the -f flag.
It’s common to start the app in the baground with the -d flag.

• docker-compose stop will stop all of the containers in a Compose app without deleting them from the
system. e app can be easily restarted with docker-compose restart.

• docker-compose rm will delete a stopped Compose app. It will delete containers and networks, but it will
not delete volumes and images.

• docker-compose restart will restart a Compose app that has been stopped with docker-compose stop.
If you have made anges to your Compose app since stopping it, these anges will not appear in the
restarted app. You will need to re-deploy the app to get the anges.

• docker-compose ps will list ea container in the Compose app. It shows current state, the command
ea one is running, and network ports.

• docker-compose down will stop and delete a running Compose app. It deletes containers and networks,
but not volumes and images.



125

Chapter Summary

In this apter, you learned how to deploy and manage a multi-container application using Doer Compose.

Doer Compose is a Python application that you install on top of the Doer Engine. It lets you define multi-
container apps in a single declarative configuration file and deploy it with a single command.

Compose files can be YAML or JSON, and they define all of the containers, networks, volumes, and secrets that
an application requires. You then feed the file to the docker-compose command line tool, and Compose uses
Doer to deploy it.

Once the app is deployed, you can manage its entire lifecycle using the many docker-compose sub-commands.

You also saw how volumes have a separate lifecycle to the rest of the app, and can be used to mount anges
directly into containers.

Doer Compose is popular with developers, and the Compose file is an excellent source of application
documentation — it defies all the services that make up the app, the images they use, ports they expose, networks
and volumes they use, and mu more. As su, it can help bridge the gap between dev and ops. You should also
treat your Compose files as if they were code. is means, among other things, storing them in source control
repos.





10: Docker Swarm
Now that we know how to install Doer, pull images, and work with containers, the next thing we need is a
way to work with things at scale. at’s where Doer Swarm comes into play.

As usual, we’ll split this apter into the usual three parts:

• e TLDR
• e deep dive
• e commands

Docker Swarm - The TLDR

Doer Swarm is two main things:

1. An enterprise-grade secure cluster of Doer hosts
2. An engine for orestrating microservices apps

On the clustering front, Swarm groups one or more Doer nodes and lets you manage them as a cluster. Out-
of-the-box, you get an encrypted distributed cluster store, encrypted networks, mutual TLS, secure cluster join
tokens, and a PKI that makes managing and rotating certificates a breeze. You can even non-disruptively add
and remove nodes. It’s a beautiful thing.

While we cover some aspects of Swarm security in this apter, we go a lot deeper in Chapter 15.

On the orestration front, Swarm exposes a ri API that allows you to deploy and manage complex
microservices apps with ease. You can define your apps in declarative manifest files and deploy them to the
Swarm with native Doer commands. You can even perform rolling updates, rollbas, and scaling operations.
Again, all with simple commands.

Doer Swarm competes directly with Kubernetes — they both orestrate containerized applications. While it’s
true that Kubernetes has more momentum and a more active community and ecosystem, Doer Swarm is an
excellent tenology and a lot easier to configure and deploy. It’s an excellent tenology for small-to-medium
businesses and application deployments.

Docker Swarm - The Deep Dive

We’ll split the deep dive part of this apter as follows:

• Swarm primer
• Build a secure swarm cluster
• Deploy some swarm services
• Troubleshooting



128 10: Doer Swarm

Swarm primer

On the clustering front, a swarm consists of one or more Doer nodes. ese can be physical servers, VMs,
Raspberry Pi’s, or cloud instances. e only requirement is that all nodes have Doer installed and can
communicate over reliable networks.

Nodes are configured as managers or workers. Managers look aer the control plane of the cluster, meaning
things like the state of the cluster and dispating tasks to workers. Workers accept tasks from managers and
execute them.

e configuration and state of the swarm is held in a distributed etcd database located on all managers. It’s kept
in memory and is extremely up-to-date. But the best thing about it is that it requires zero configuration — it’s
installed as part of the swarm and just takes care of itself.

Something that’s game anging on the clustering front is the approa to security. TLS is so tightly integrated
that it’s impossible to build a swarm without it. In today’s security conscious world, things like this deserve
all the plaudits they get. Swarm uses TLS to encrypt communications, authenticate nodes, and authorize roles.
Automatic key rotation is also thrown in as the icing on the cake. And the best part… it all happens so smoothly
that you don’t even know it’s there.

On the application orestration front, the atomic unit of seduling on a swarm is the service. is is a new
object in the API, introduced along with swarm, and is a higher level construct that wraps some advanced
features around containers. ese include scaling, rolling updates, and simple rollbas. It’s useful to think of a
service as an enhanced container.

A high-level view of a swarm is shown in Figure 10.1.

Figure 10.1 High-level swarm

at’s enough of a primer. Let’s get our hands dirty with some examples.

Build a secure Swarm cluster

In this section, we’ll build a secure swarm cluster with three manager nodes and three worker nodes. You can
use a different lab with different numbers of managers and workers, and with different names and IPs, but the
examples that follow will use the values in Figure 10.2.



129

Figure 10.2

e nodes can be virtual maines, physical servers, cloud instances, or Raspberry Pi systems. e only
requirements are that they have Doer installed and can communicate over a reliable network. It’s also beneficial
if name resolution is configured — it makes it easier to identify nodes in command outputs and helps when
troubleshooting.

On the networking front, you need the following ports open on routers and firewalls between nodes:

• 2377/tcp: for secure client-to-swarm communication
• 7946/tcp and udp: for control plane gossip
• 4789/udp: for VXLAN-based overlay networks

Doer Desktop forMac andWindows only supports a single Doer node. You can initialize a single-node swarm
and follow along with most of the examples. Alternatively, you can try Play with Doer at hps://labs.play-
with-doer.com.

Once you’ve satisfied the pre-requisites, you can go ahead and build a swarm.

e process of building a swarm is called initializing a swarm, and the high-level process is this: Initialize the
first manager node > Join additional manager nodes > Join worker nodes > Done.

Initializing a new swarm

Doer nodes that are not part of a swarm are said to be in single-engine mode. Once they’re added to a swarm
they’re automatically swited into swarm mode.

Running docker swarm init on a Doer host in single-engine mode will swit that node into swarm mode,
create a new swarm, and make the node the first manager of the swarm.

Additional nodes can then be joined to the swarm as workers and managers. Joining a Doer host to an existing
swarm swites them into swarm mode as part of the operation.

e following steps will put mgr1 into swarm mode and initialize a new swarm. It will then join wrk1, wrk2,
and wrk3 as worker nodes — automatically puing them into swarm mode as part of the process. Finally, it will
add mgr2 and mgr3 as additional managers and swit them into swarm mode. At the end of the procedure all
6 nodes will be in swarm mode and operating as part of the same swarm.

is example will use the IP addresses and DNS names of the nodes shown in Figure 10.2. Yours may be different.



130 10: Doer Swarm

1. Log on to mgr1 and initialize a new swarm (don’t forget to use batis instead of baslashes if you’re
following along with Windows in a PowerShell terminal).

$ docker swarm init \
--advertise-addr 10.0.0.1:2377 \
--listen-addr 10.0.0.1:2377

Swarm initialized: current node (d21lyz...c79qzkx) is now a manager.

e command can be broken down as follows:
• docker swarm init:is tells Doer to initialize a new swarm andmake this node the first manager.
It also enables swarm mode on the node.

• --advertise-addr: As the name suggests, this is the swarm API endpoint that will be advertised to
other nodes in the swarm. It will usually be one of the node’s IP addresses, but can be an external
load-balancer address. It’s an optional flag unless you want to specify a load-balancer or specific IP
address on a node with multiple interfaces.

• --listen-addr: is is the IP address that the node will accept swarm traffic on. If not explicitly
set, it defaults to the same value as --advertise-addr. If --advertise-addr is a load-balancer, you
must use --listen-addr to specify a local IP or interface for swarm traffic.

I recommend you be specific and always use both flags.

e default port that swarm mode operates on is 2377. is is customizable, but it’s convention to use 
2377/tcp for secured (HTTPS) client-to-swarm connections.

2. List the nodes in the swarm.

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
d21...qzkx * mgr1 Ready Active Leader

Notice that mgr1 is currently the only node in the swarm, and is listed as the Leader. We’ll come ba to
this in a second.

3. From mgr1 run the docker swarm join-token command to extract the commands and tokens required
to add new workers and managers to the swarm.

$ docker swarm join-token worker
To add a manager to this swarm, run the following command:

docker swarm join \
--token SWMTKN-1-0uahebax...c87tu8dx2c \
10.0.0.1:2377

$ docker swarm join-token manager
To add a manager to this swarm, run the following command:

docker swarm join \
--token SWMTKN-1-0uahebax...ue4hv6ps3p \
10.0.0.1:2377

Notice that the commands to join a worker and a manager are identical apart from the join tokens
(SWMTKN...). is means that whether a node joins as a worker or a manager depends entirely on whi
token you use when joining it. You should ensure that your join tokens are kept secure, as they’re the
only thing required to join a node to a swarm!

4. Log on to wrk1 and join it to the swarm using the docker swarm join command with the worker join
token.



131

$ docker swarm join \
--token SWMTKN-1-0uahebax...c87tu8dx2c \
10.0.0.1:2377 \
--advertise-addr 10.0.0.4:2377 \
--listen-addr 10.0.0.4:2377

This node joined a swarm as a worker.

e --advertise-addr, and --listen-addr flags optional. I’ve added them as I consider it best practice
to be as specific as possible when it comes to network configuration.

5. Repeat the previous step onwrk2 andwrk3 so that they join the swarm asworkers. If you’re specifying the
--advertise-addr and --listen-addr flags, make sure you usewrk2 andwrk3’s respective IP addresses.

6. Log on to mgr2 and join it to the swarm as a manager using the docker swarm join command with the
manager join token.

$ docker swarm join \
--token SWMTKN-1-0uahebax...ue4hv6ps3p \
10.0.0.1:2377 \
--advertise-addr 10.0.0.2:2377 \
--listen-addr 10.0.0.2:2377

This node joined a swarm as a manager.

7. Repeat the previous step on mgr3, remembering to use mgr3’s IP address for the advertise-addr and
--listen-addr flags.

8. List the nodes in the swarm by running docker node ls from any of the manager nodes in the swarm.

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
0g4rl...babl8 * mgr2 Ready Active Reachable
2xlti...l0nyp mgr3 Ready Active Reachable
8yv0b...wmr67 wrk1 Ready Active
9mzwf...e4m4n wrk3 Ready Active
d21ly...9qzkx mgr1 Ready Active Leader
e62gf...l5wt6 wrk2 Ready Active

Congratulations. You’ve just created a 6-node swarm with 3 managers and 3 workers. As part of the process, the
Doer Engine on ea node was automatically put into swarm mode and the swarm was automatically secured
with TLS.

If you look in the MANAGER STATUS column you’ll see the three manager nodes are showing as either “Reaable”
or “Leader”. We’ll learn more about leaders shortly. Nodes with nothing in the MANAGER STATUS column are
workers. Also note the asterisk (*) aer the ID on the line showing mgr2. is tells you whi node you are
logged on to and executing commands from. In this instance the command was issued frommgr2.

Note: It’s a pain to specify the --advertise-addr and --listen-addr flags every time you join a
node to the swarm. However, it can be a mu bigger pain if you get the network configuration
of your swarm wrong. Also, manually adding nodes to a swarm is unlikely to be a daily task, so
it’s worth the extra up-front effort to use the flags. It’s your oice though. In lab environments or
nodes with only a single IP you probably don’t need to use them.

Now that you have a swarm up and running, let’s take a look at manager high availability (HA).



132 10: Doer Swarm

Swarmmanager high availability (HA)

So far, we’ve added three manager nodes to a swarm. Why three? And how do they work together?

Swarm managers have native support for high availability (HA). is means one or more can fail, and the
survivors will keep the swarm running.

Tenically speaking, swarm implements a form of active-passive multi-manager HA. is means that although
you have multiple managers, only one of them is active at any given moment. is active manager is called the
“leader”, and the leader is the only one that will ever issue live commands against the swarm. So, it’s only ever
the leader that anges the config, or issues tasks to workers. If a follower manager (passive) receives commands
for the swarm, it proxies them across to the leader.

is process is shown in Figure 10.3. Step 1 is the command coming in to a manager from a remote Doer
client. Step 2 is the non-leader manager receiving the command and proxying it to the leader. Step 3 is the leader
executing the command on the swarm.

Figure 10.3

If you look closely at Figure 10.3, you’ll notice that managers are either leaders or followers. is is Ra
terminology, because swarm uses an implementation of the Ra consensus algorithm¹⁴ to maintain a consistent
cluster state across multiple highly available managers.

On the topic of HA, the following two best practices apply:

1. Deploy an odd number of managers.
2. Don’t deploy too many managers (3 or 5 is recommended)

Having an odd number of managers reduces the ances of split-brain conditions. For example, if you had 4
managers and the network partitioned, you could be le with two managers on ea side of the partition. is
is known as a split brain — ea side knows there used to be 4 but can now only see 2. But crucially, neither
side has any way of knowing if the other two are still alive and whether it holds a majority (quorum). A swarm
cluster continues to operate during split-brain conditions, but you are no longer able to alter the configuration
or add and manage application workloads.

¹⁴https://raft.github.io/

https://raft.github.io/
https://raft.github.io/


133

However, if you have 3 or 5 managers and the same network partition occurs, it is impossible to have an equal
number of managers on both sides of the partition. is means that one side aieves quorum and full cluster
management services remain available. e example on the right side of Figure 10.4 shows a partitioned cluster
where the le side of the split knows it has a majority of managers.

Figure 10.4

As with all consensus algorithms, more participants means more time required to aieve consensus. It’s like
deciding where to eat — it’s always quier and easier for 3 people to make a qui decision than it is for 33!
With this in mind, it’s a best practice to have either 3 or 5 managers for HA. 7 might work, but it’s generally
accepted that 3 or 5 is optimal. You definitely don’t want more than 7, as the time taken to aieve consensus
will be longer.

A final word of caution regarding manager HA. While it’s obviously a good practice to spread your managers
across availability zones within your network, you need to make sure the networks connecting them are reliable,
as network partitions can be a difficult to troubleshoot and resolve.is means, at the time of writing, the nirvana
of hosting your active production applications and infrastructure across multiple cloud providers su as AWS
and Azure is a bit of a daydream. Take the time and effort to ensure your managers and workers are connected
via reliable high-speed networks.

Built-in Swarm security

Swarm clusters have a ton of built-in security that’s configured out-of-the-box with sensible defaults — CA
seings, join tokens, mutual TLS, encrypted cluster store, encrypted networks, cryptographic node ID’s and
more. See Chapter 15: Security in Doer for a detailed look at these.

Locking a Swarm

Despite all of this built-in native security, restarting an older manager or restoring an old baup has the potential
to compromise the cluster. Old managers re-joining a swarm automatically decrypt and gain access to the Ra log



134 10: Doer Swarm

time-series database — this can pose security concerns. Restoring old baups can also wipe the current swarm
configuration.

To prevent situations like these, Doer allows you to lo a swarmwith the Autolo feature.is forces restarted
managers to present the cluster unlo key before being admied ba into the cluster.

It’s possible to apply a lo directly to a new swarm by passing the --autolock flag to the docker swarm init
command. However, we’ve already built a swarm, so we’ll lo our existing swarm with the docker swarm
update command.

Run the following command from a swarm manager.

$ docker swarm update --autolock=true
Swarm updated.
To unlock a swarm manager after it restarts, run the `docker swarm unlock` command and
provide the following key:

SWMKEY-1-5+ICW2kRxPxZrVyBDWzBkzZdSd0Yc7Cl2o4Uuf9NPU4

Please remember to store this key in a password manager, since without it you will not be able
to restart the manager.

Be sure to keep the unlo key in a secure place. You can always e your current swarm unlo key with the
docker swarm unlock-key command.

Restart one of your manager nodes to see if it automatically re-joins the cluster. You may need to prepend the
command with sudo.

$ service docker restart

Try and list the nodes in the swarm.

$ docker node ls
Error response from daemon: Swarm is encrypted and needs to be unlocked before it can be used.

Although the Doer service has restarted on the manager, it has not been allowed to re-join the swarm. You
can prove this even further by running the docker node ls command on another manager node. e restarted
manager will show as down and unreachable.

Use the docker swarm unlock command to unlo the swarm for the restarted manager. You’ll need to run this
command on the restarted manager, and you’ll need to provide the unlo key.

$ docker swarm unlock
Please enter unlock key: <enter your key>

e node will be allowed to re-join the swarm and will show as ready and reachable if you run another docker
node ls.

Loing your swarm and protecting the unlo key is recommended for production environments.

Now that you’ve got our swarm built and understand the infrastructure concepts of leaders and manager HA,
let’s move on to the application aspect of services.



135

Swarm services

Everything we do in this section of the apter gets improved on by Doer Stas in Chapter 14. However, it’s
important that you learn the concepts here so that you’re prepared for Chapter 14.

Like we said in the swarm primer… services are a new construct introduced with Doer 1.12, and they only
apply to swarm mode.

Services let us specify most of the familiar container options, su as name, port mappings, aaing to networks,
and images. But they add important cloud-native features, including desired state and automatic reconciliation.
For example, swarm services allow us to declaratively define a desired state for an application that we can apply
to the swarm and let the swarm take care of deploying it and managing it.

Let’s look at a qui example. Assume you have an app with a web front-end. You have an image for the
web server, and testing has shown that you need 5 instances to handle normal daily traffic. You translate this
requirement into a single service declaring the image to use, and that the service should always have 5 running
replicas. You issue that to the swarm as your desired state, and the swarm takes care of ensuring there are always
5 instances of the web server running.

We’ll see some of the other things that can be declared as part of a service in a minute, but before we do that,
let’s see one way to create what we just described.

You can create services in one of two ways:

1. Imperatively on the command line with docker service create
2. Declaratively with a sta file

We’ll look at sta files in a later apter. For now we’ll focus on the imperative method.

Note:e command to create a new service is the same on Windows. However, the image used in
this example is a Linux image and will not work on Windows. You can substitute the image for a
Windows web server image and the command will work. Remember, if you are typing Windows
commands from a PowerShell terminal you will need to use the bati (‘) to indicate continuation
on the next line.

$ docker service create --name web-fe \
-p 8080:8080 \
--replicas 5 \
nigelpoulton/pluralsight-docker-ci

z7ovearqmruwk0u2vc5o7ql0p

Notice that many of the familiar docker container run arguments are the same. In the example, we specified
--name and -p whi work the same for standalone containers as well as services.

Let’s review the command and output.

We used docker service create to tell Doer we are declaring a new service, and we used the --name flag
to name it web-fe. We told Doer to map port 8080 on every node in the swarm to 8080 inside of ea service
replica. Next, we used the --replicas flag to tell Doer there should always be 5 replicas of this service. Finally,



136 10: Doer Swarm

we told Doer whi image to use for the replicas — it’s important to understand that all service replicas use
the same image and config!

Aer we hit Return, the command was sent to a manager node, and the manager acting as leader instantiated
5 replicas across the swarm — remember that swarm managers also act as workers. Ea worker or manager
that received a work task pulled the image and started a container listening on port 8080. e swarm leader also
ensured a copy of the service’s desired state was stored on the cluster and replicated to every manager.

But this isn’t the end. All services are constantly monitored by the swarm — the swarm runs a baground
reconciliation loop that constantly compares the observed state of the service with the desired state. If the two
states mat, the world is a happy place and no further action is needed. If they don’t mat, swarm takes actions
to bring observed state into line with desired state.

As an example, if a worker hosting one of the 5web-fe replicas fails, the observed state of theweb-fe service will
drop from 5 replicas to 4. is will no longer mat the desired state of 5, so the swarm will start a new web-fe
replica to bring the observed state ba in line with desired state. is behavior is a key tenet of cloud-native
applications and allows the service to self-heal in the event of node failures and the likes.

Viewing and inspecting services

You can use the docker service ls command to see a list of all services running on a swarm.

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
z7o...uw web-fe replicated 5/5 nigel...ci:latest *:8080->8080/tcp

e output shows a single running service as well as some basic information about state. Among other things,
you can see the name of the service and that 5 out of the 5 desired replicas are in the running state. If you run
this command soon aer deploying the service it might not show all tasks/replicas as running. is is oen due
to the time it takes to pull the image on ea node.

You can use the docker service ps command to see a list of service replicas and the state of ea.

$ docker service ps web-fe
ID NAME IMAGE NODE DESIRED CURRENT
817...f6z web-fe.1 nigelpoulton/... mgr2 Running Running 2 mins
a1d...mzn web-fe.2 nigelpoulton/... wrk1 Running Running 2 mins
cc0...ar0 web-fe.3 nigelpoulton/... wrk2 Running Running 2 mins
6f0...azu web-fe.4 nigelpoulton/... mgr3 Running Running 2 mins
dyl...p3e web-fe.5 nigelpoulton/... mgr1 Running Running 2 mins

e format of the command is docker service ps <service-name or service-id>. e output displays ea
replica (container) on its own line, shows whi node in the swarm it’s executing on, and shows desired state 
and the current observed state.

For detailed information about a service, use the docker service inspect command.



137

$ docker service inspect --pretty web-fe
ID: z7ovearqmruwk0u2vc5o7ql0p
Name: web-fe
Service Mode: Replicated
Replicas: 5
Placement:
UpdateConfig:
Parallelism: 1
On failure: pause
Monitoring Period: 5s
Max failure ratio: 0
Update order: stop-first
RollbackConfig:
Parallelism: 1
On failure: pause
Monitoring Period: 5s
Max failure ratio: 0
Rollback order: stop-first
ContainerSpec:
Image: nigelpoulton/pluralsight-docker-ci:latest@sha256:7a6b01...d8d3d
init: false
Resources:
Endpoint Mode: vip
Ports:
PublishedPort = 8080
Protocol = tcp
TargetPort = 8080
PublishMode = ingress

e example above uses the --pretty flag to limit the output to the most interesting items printed in an easy-
to-read format. Leaving off the --pretty flag will give a more verbose output. I highly recommend you read
through the output of docker inspect commands as they’re a great source of information and a great way to
learn what’s going on under the hood.

We’ll come ba to some of these outputs later.

Replicated vs global services

e default replication mode of a service is replicated. is deploys a desired number of replicas and distributes
them as evenly as possible across the cluster.

e other mode is global, whi runs a single replica on every node in the swarm.

To deploy a global service you need to pass the --mode global flag to the docker service create command.

Scaling a service

Another powerful feature of services is the ability to easily scale them up and down.

Let’s assume business is booming and we’re seeing double the amount of traffic hiing the web front-end.
Fortunately, scaling the web-fe service is as simple as running the docker service scale command.



138 10: Doer Swarm

$ docker service scale web-fe=10
web-fe scaled to 10
overall progress: 10 out of 10 tasks
1/10: running
2/10: running
3/10: running
4/10: running
5/10: running
6/10: running
7/10: running
8/10: running
9/10: running
10/10: running
verify: Service converged

is command will scale the number of service replicas from 5 to 10. In the baground it’s updating the service’s
desired state from 5 to 10. Run another docker service ls command to verify the operation was successful.

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
z7o...uw web-fe replicated 10/10 nigel...ci:latest *:8080->8080/tcp

Running a docker service ps command will show that the service replicas are balanced across all nodes in the
swarm evenly.

$ docker service ps web-fe
ID NAME IMAGE NODE DESIRED CURRENT
nwf...tpn web-fe.1 nigelpoulton/... mgr1 Running Running 7 mins
yb0...e3e web-fe.2 nigelpoulton/... wrk3 Running Running 7 mins
mos...gf6 web-fe.3 nigelpoulton/... wrk2 Running Running 7 mins
utn...6ak web-fe.4 nigelpoulton/... wrk3 Running Running 7 mins
2ge...fyy web-fe.5 nigelpoulton/... mgr3 Running Running 7 mins
64y...m49 web-fe.6 igelpoulton/... wrk3 Running Running about a min
ild...51s web-fe.7 nigelpoulton/... mgr1 Running Running about a min
vah...rjf web-fe.8 nigelpoulton/... wrk2 Running Running about a mins
xe7...fvu web-fe.9 nigelpoulton/... mgr2 Running Running 45 seconds ago
l7k...jkv web-fe.10 nigelpoulton/... mgr2 Running Running 46 seconds ago

Behind the scenes, swarm runs a seduling algorithm called “spread” that aempts to balance replicas as evenly
as possible across the nodes in the swarm. At the time of writing, this amounts to running an equal number of
replicas on ea node without taking into consideration things like CPU load etc.

Run another docker service scale command to bring the number ba down from 10 to 5.



139

$ docker service scale web-fe=5
web-fe scaled to 5
overall progress: 5 out of 5 tasks
1/5: running
2/5: running
3/5: running
4/5: running
5/5: running
verify: Service converged

Now that you know how to scale a service, let’s see how to remove one.

Removing a service

Removing a service is simple — may be too simple.

e following docker service rm command will delete the service deployed earlier.

$ docker service rm web-fe
web-fe

Confirm it’s gone with the docker service ls command.

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS

Be careful using the docker service rm command as it deletes all service replicas without asking for
confirmation.

Now that the service is deleted from the system, let’s look at how to push rolling updates to one.

Rolling updates

Pushing updates to deployed applications is a fact of life. And for the longest time it was really painful. I’ve lost
more than enough weekends to major application updates, and I’ve no intention of doing it again.

Well… thanks to Doer services, pushing updates to well-designed microservices apps is easy.

To see this, we’re going to deploy a new service. But before we do that, we’re going to create a new overlay
network for the service. is isn’t necessary, but I want you to see how it is done and how to aa the service
to it.

$ docker network create -d overlay uber-net
43wfp6pzea470et4d57udn9ws

is creates a new overlay network called “uber-net” that we’ll use for the service we’re about to create. An
overlay network creates a new layer 2 network that we can place containers on, and all containers on it will be
able to communicate. is works even if all of the swarm nodes are on different underlying networks. Basically,



140 10: Doer Swarm

the overlay network creates a new layer 2 container network on top of potentially multiple different underlying
networks.

Figure 10.5 shows four swarm nodes on two underlay networks connected by a layer 3 router.e overlay network
spans all 4 swarm nodes creating a single flat layer 2 network for containers to use.

Figure 10.5

Run a docker network ls to verify that the network created properly and is visible on the Doer host.

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
<Snip>
43wfp6pzea47 uber-net overlay swarm

e uber-net network was successfully created with the swarm scope and is currently only visible on manager
nodes in the swarm. It will be dynamically extended to worker nodes when they run workloads configured on
the network.

Let’s create a new service and aa it to the network.

$ docker service create --name uber-svc \
--network uber-net \
-p 80:80 --replicas 12 \
nigelpoulton/tu-demo:v1

dhbtgvqrg2q4sg07ttfuhg8nz
overall progress: 12 out of 12 tasks
1/12: running
2/12: running
<Snip>
12/12: running
verify: Service converged

Let’s see what we just declared with that docker service create command.



141

e first thing we did was name the service and then use the --network flag to tell it to place all replicas on the
new uber-net network. We then exposed port 80 across the entire swarm and mapped it to port 80 inside of ea
of the 12 replicas we asked it to run. Finally, we told it to base all replicas on the nigelpoulton/tu-demo:v1 image.

Run a docker service ls and a docker service ps command to verify the state of the new service.

$ docker service ls
ID NAME REPLICAS IMAGE
dhbtgvqrg2q4 uber-svc 12/12 nigelpoulton/tu-demo:v1

$ docker service ps uber-svc
ID NAME IMAGE NODE DESIRED CURRENT STATE
0v...7e5 uber-svc.1 nigelpoulton/...:v1 wrk3 Running Running 1 min
bh...wa0 uber-svc.2 nigelpoulton/...:v1 wrk2 Running Running 1 min
23...u97 uber-svc.3 nigelpoulton/...:v1 wrk2 Running Running 1 min
82...5y1 uber-svc.4 nigelpoulton/...:v1 mgr2 Running Running 1 min
c3...gny uber-svc.5 nigelpoulton/...:v1 wrk3 Running Running 1 min
e6...3u0 uber-svc.6 nigelpoulton/...:v1 wrk1 Running Running 1 min
78...r7z uber-svc.7 nigelpoulton/...:v1 wrk1 Running Running 1 min
2m...kdz uber-svc.8 nigelpoulton/...:v1 mgr3 Running Running 1 min
b9...k7w uber-svc.9 nigelpoulton/...:v1 mgr3 Running Running 1 min
ag...v16 uber-svc.10 nigelpoulton/...:v1 mgr2 Running Running 1 min
e6...dfk uber-svc.11 nigelpoulton/...:v1 mgr1 Running Running 1 min
e2...k1j uber-svc.12 nigelpoulton/...:v1 mgr1 Running Running 1 min

Passing the service the -p 80:80 flag will ensure that a swarm-wide mapping is created that maps all traffic,
coming in to any node in the swarm on port 80, through to port 80 inside of any service replica.

is mode of publishing a port on every node in the swarm — even nodes not running service replicas — is
called ingress mode and is the default. e alternative mode is host mode whi only publishes the service on
swarm nodes running replicas. Publishing a service in host mode requires the long-form syntax and looks like
the following:

$ docker service create --name uber-svc \
--network uber-net \
--publish published=80,target=80,mode=host \
--replicas 12 \
nigelpoulton/tu-demo:v1

Open a web browser and point it to the IP address of any of the nodes in the swarm on port 80 to see the service
running.



142 10: Doer Swarm

Figure 10.6

As you can see, it’s a simple voting application that will register votes for either “football” or “soccer”. Feel free
to point your web browser to other nodes in the swarm. You’ll be able to rea the web service from any node
because the -p 80:80 flag creates an ingress mode mapping on every swarm node. is is true even on nodes
that are not running a replica for the service — every node gets a mapping and can therefore redirect your
request to a node that is running the service.

Let’s now assume that this particular vote has come to an end and your company wants to run a new poll. A
new container image has been created for the new poll and has been added to the same Doer Hub repository,
but this one is tagged as v2 instead of v1.

Let’s also assume that you’ve been tasked with pushing the updated image to the swarm in a staged manner —
2 replicas at a time with a 20 second delay between ea. You can use the following docker service update
command to accomplish this.

$ docker service update \
--image nigelpoulton/tu-demo:v2 \
--update-parallelism 2 \
--update-delay 20s uber-svc

overall progress: 4 out of 12 tasks
1/12: running
2/12: running
3/12: running
4/12: running
5/12: starting
6/12: ready
<Snip>
12/12:

Let’s review the command. docker service update lets us make updates to running services by updating the
service’s desired state. is example specifies a new version of the image, tagged as v2 instead of v1. It also



143

specified the --update-parallelism and --update-delay flags to make sure that the new image was pushed to
2 replicas at a time with a 20 second cool-off period in between ea set of two. Finally, it instructs the swarm to
make the anges to the uber-svc service.

If you run a docker service ps uber-svc while the update is in progress, some of the replicas will be at v2
while some will still be at v1. If you give the operation enough time to complete (4 minutes), all replicas will
eventually rea the new desired state of using the v2 image.

$ docker service ps uber-svc
ID NAME IMAGE NODE DESIRED CURRENT STATE
7z...nys uber-svc.1 nigel...v2 mgr2 Running Running 13 secs
0v...7e5 \_uber-svc.1 nigel...v1 wrk3 Shutdown Shutdown 13 secs
bh...wa0 uber-svc.2 nigel...v1 wrk2 Running Running 1 min
e3...gr2 uber-svc.3 nigel...v2 wrk2 Running Running 13 secs
23...u97 \_uber-svc.3 nigel...v1 wrk2 Shutdown Shutdown 13 secs
82...5y1 uber-svc.4 nigel...v1 mgr2 Running Running 1 min
c3...gny uber-svc.5 nigel...v1 wrk3 Running Running 1 min
e6...3u0 uber-svc.6 nigel...v1 wrk1 Running Running 1 min
78...r7z uber-svc.7 nigel...v1 wrk1 Running Running 1 min
2m...kdz uber-svc.8 nigel...v1 mgr3 Running Running 1 min
b9...k7w uber-svc.9 nigel...v1 mgr3 Running Running 1 min
ag...v16 uber-svc.10 nigel...v1 mgr2 Running Running 1 min
e6...dfk uber-svc.11 nigel...v1 mgr1 Running Running 1 min
e2...k1j uber-svc.12 nigel...v1 mgr1 Running Running 1 min

You can witness the update happening in real-time by opening a web browser to any node in the swarm and
hiing refresh several times. Some of the requests will be serviced by replicas running the old version and some
will be serviced by replicas running the new version. Aer enough time, all requests will be serviced by replicas
running the updated version of the service.

Congratulations. You’ve just pushed a rolling update to a live containerized application. Remember, Doer Stas
take all of this to the next level in Chapter 14.

If you run a docker inspect --pretty command against the service, you’ll see the update parallelism and
update delay seings are now part of the service definition. is means future updates will automatically use
these seings unless you override them as part of the docker service update command.

$ docker service inspect --pretty uber-svc
ID: mub0dgtc8szm80ez5bs8wlt19
Name: uber-svc
Service Mode: Replicated
Replicas: 12
UpdateStatus:
State: updating
Started: About a minute
Message: update in progress
Placement:
UpdateConfig:
Parallelism: 2
Delay: 20s
On failure: pause



144 10: Doer Swarm

Monitoring Period: 5s
Max failure ratio: 0
Update order: stop-first
RollbackConfig:
Parallelism: 1
On failure: pause
Monitoring Period: 5s
Max failure ratio: 0
Rollback order: stop-first
ContainerSpec:
Image: nigelpoulton/tu-demo:v2@sha256:d3c0d8c9...cf0ef2ba5eb74c
init: false
Resources:
Networks: uber-net
Endpoint Mode: vip
Ports:
PublishedPort = 80
Protocol = tcp
TargetPort = 80
PublishMode = ingress

You should also note a couple of things about the service’s network config. All nodes in the swarm that are
running a replica for the service will have the uber-net overlay network that we created earlier. We can verify
this by running docker network ls on any node running a replica.

You should also note the Networks portion of the docker inspect output. is shows the uber-net network as
well as the swarm-wide 80:80 port mapping.

Troubleshooting

Swarm Service logs can be viewed with the docker service logs command. However, not all logging drivers
support the command.

By default, Doer nodes configure services to use the json-file log driver, but other drivers exist, including:

• journald (only works on Linux hosts running systemd)
• syslog
• splunk
• gelf

json-file and journald are the easiest to configure, and both work with the docker service logs command.
e format of the command is docker service logs <service-name>.

If you’re using 3rd-party logging drivers you should view those logs using the logging platform’s native tools.

e following snippet from a daemon.json configuration file shows a Doer host configured to use syslog.



145

{
"log-driver": "syslog"

}

You can force individual services to use a different driver by passing the --log-driver and --log-opts flags to
the docker service create command. ese will override anything set in daemon.json.

Service logs work on the premise that your application is running as PID 1 in its container and sending logs to
STDOUT and errors to STDERR. e logging driver forwards these “logs” to the locations configured via the logging
driver.

e following docker service logs command shows the logs for all replicas in the svc1 service that experienced
a couple of failures starting a replica.

$ docker service logs svc1
svc1.1.zhc3cjeti9d4@wrk-2 | [emerg] 1#1: host not found...
svc1.1.zhc3cjeti9d4@wrk-2 | nginx: [emerg] host not found..
svc1.1.6m1nmbzmwh2d@wrk-2 | [emerg] 1#1: host not found...
svc1.1.6m1nmbzmwh2d@wrk-2 | nginx: [emerg] host not found..
svc1.1.1tmya243m5um@mgr-1 | 10.255.0.2 "GET / HTTP/1.1" 302

e output is trimmed to fit the page, but you can see that logs from all three service replicas are shown (the two
that failed and the one that’s running). Ea line starts with the name of the replica, whi includes the service
name, replica number, replica ID, and name of host that it’s seduled on. Following that is the log output.

It’s hard to tell because it’s trimmed to fit the book, but it looks like the first two replicas failed because they were
trying to connect to another service that was still starting (a sort of race condition when dependent services are
starting).

You can follow the logs (--follow), tail them (--tail), and get extra details (--details).

Backing up Swarm

Baing up a swarm will baup the control plane objects required to recover the swarm in the event of a
catastrophic failure of corruption. Recovering a swarm from a baup is an extremely rare scenario. However,
business critical environments should always be prepared for worst-case scenarios.

You might be asking why baups are necessary if the control plane is already replicated and highly-available
(HA). To answer that question, consider the scenario where a malicious actor deletes all of the Secrets on a
swarm. HA cannot help in this scenario as the Secrets will be deleted from the cluster store that is automatically
replicated to all manager nodes. In this scenario the highly-available replicated cluster store works against you —
quily propagating the delete operation. In this scenario you can either recreate the deleted objects from copies
kept in a source code repo, or you can aempt to recover your swarm from a recent baup.

Managing your swarm and applications declaratively is a great way to prevent the need to recover from a
baup. For example, storing configuration objects outside of the swarm in a source code repository will enable
you to redeploy things like networks, services, secrets and other objects. However, managing your environment
declaratively and strictly using source control repos requires discipline.

Anyway, let’s see how to baup a swarm.



146 10: Doer Swarm

Swarm configuration and state is stored in /var/lib/docker/swarm on every manager node. e configuration
includes; Ra log keys, overlay networks, Secrets, Configs, Services, and more. A swarm baup is a copy of all
the files in this directory.

As the contents of this directory are replicated to all managers, you can, and should, perform baups from
multiple managers. However, as you have to stop the Doer daemon on the node you are baing up, it’s a good
idea to perform the baup from non-leader managers. is is because stopping Doer on the leader will initiate
a leader election. You should also perform the baup at a quiet time for the business, as stopping a manager can
increase the risk of the swarm losing quorum if another manager fails during the baup.

e procedure we’re about to follow is designed for demonstration purposes and you’ll need to tweak it for
your production environment. It also creates a couple of swarm objects so that a later step can prove the restore
operation worked.

Warning: e following operation carries risks. You should also ensure you perform test baup
and restore operations regularly and test the outcomes.

e following commands will create the following two objects so you can prove the restore operation:

• An overlay network called “Unimatrix-01”
• A Secret called “missing drones” containing the text “Seven of Nine”

$ docker network create -d overlay Unimatrix-01
w9l904ff73e7stly0gnztsud7

$ printf "Seven of Nine" | docker secret create missing_drones -
i8oj3b2lid27t5202uycw37lg

Let’s perform the swarm baup.

1. Stop Doer on a non-leader swarm manager.

If you have any containers or service tasks running on the node, this action may stop them.

$ service docker stop

2. Baup the Swarm config.

is example uses the Linux tar utility to perform the file copy that will be the baup. Feel free to use a
different tool.

$ tar -czvf swarm.bkp /var/lib/docker/swarm/
tar: Removing leading `/' from member names
/var/lib/docker/swarm/
/var/lib/docker/swarm/docker-state.json
/var/lib/docker/swarm/state.json
<Snip>

3. Verify the baup file exists.



147

$ ls -l
-rw-r--r-- 1 root root 450727 May 4 14:06 swarm.bkp

In the real world you should store and rotate this baup in accordance with any corporate baup policies.

At this point, the swarm is baed up and you can restart Doer on the node.
4. Restart Doer.

$ service docker restart

Now that you have a baup, let’s perform a test restore. e steps in this procedure demonstrate the operation.
Performing a restore in the real world may be slightly different, but the overall process will be similar.

Note: You do not have to perform a restore operation if your swarm is still running and you only
wish to add a new manager node. In this situation just add a new manager. A swarm restore is
only for situations where the swarm is corrupted or otherwise lost and you cannot recover services
from copies of config files stored in a source code repo.

We’ll use the swarm.bkp file from earlier to restore the swarm. All swarm nodes must have their Doer
daemon stopped and the contents of their /var/lib/docker/swarm directories deleted.

e following must also be true for a recovery operation to work:

1. You can only restore to a node running the same version of Doer the baup was performed on
2. You can only restore to a node with the same IP address as the node the baup was performed on

Perform the following tasks from the swarm manager node that you wish to recover. Remember that Doer
must be stopped and the contents of /var/lib/docker/swarm must be deleted.

1. Restore the Swarm configuration from baup.

In this example, we’ll restore from a zipped tar file called swarm.bkp. Restoring to the root directory
is required with this command as it will include the full path to the original files as part of the extract
operation. is may be different in your environment.

$ tar -zxvf swarm.bkp -C /

2. Start Doer. e method for starting Doer can vary between environments.

$ service docker start

3. Initialize a new Swarm cluster.

Remember, you are not recovering a manager and adding it ba to a working cluster. is operation is
to recover a failed swarm that has no surviving managers. e --force-new-cluster flag tells Doer
to create a new cluster using the configuration stored in /var/lib/docker/swarm/ that you recovered in
step 1.



148 10: Doer Swarm

$ docker swarm init --force-new-cluster
Swarm initialized: current node (jhsg...3l9h) is now a manager.

4. Che that the network and service were recovered as part of the operation.

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
z21s5v82by8q Unimatrix-01 overlay swarm

$ docker secret ls
ID NAME DRIVER
i8oj3b2lid27t5202uycw37lg missing_drones

Congratulations. e Swarm is recovered.
5. Add new manager and worker nodes and take fresh baups.

Remember, test this procedure regularly and thoroughly. You do not want it to fail when you need it most!

Docker Swarm - The Commands

• docker swarm init is the command to create a new swarm. e node that you run the command on
becomes the first manager and is swited to run in swarm mode.

• docker swarm join-token reveals the commands and tokens needed to join workers and managers to
existing swarms. To expose the command to join a new manager, use the docker swarm join-token
manager command. To get the command to join a worker, use the docker swarm join-token worker
command.

• docker node ls lists all nodes in the swarm including whi are managers and whi is the leader.
• docker service create is the command to create a new service.
• docker service ls lists running services in the swarm and gives basic info on the state of the service
and any replicas it’s running.

• docker service ps <service> gives more detailed information about individual service replicas.
• docker service inspect gives very detailed information on a service. It accepts the --pretty flag to
limit the information returned to the most important information.

• docker service scale lets you scale the number of replicas in a service up and down.
• docker service update lets you update many of the properties of a running service.
• docker service logs lets you view the logs of a service.
• docker service rm is the command to delete a service from the swarm. Use it with caution as it deletes
all service replicas without asking for confirmation.

Chapter summary

Doer Swarm is Doer’s native tenology for managing clusters of Doer nodes and deploying andmanaging
cloud-native applications. It is similar to Kubernetes.

At its core, Swarm has a secure clustering component, and an orestration component.



149

e secure clustering component is enterprise-grade and offers a wealth of security and HA features that are
automatically configured and extremely simple to modify.

e orestration component allows you to deploy and manage cloud-native microservices applications in a
simple declarative manner.

We’ll dig deeper into deploying cloud-native microservices apps in a declarative manner in Chapter 14.





11: Docker Networking
It’s always the network!
Any time there’s a an infrastructure problem, we always blame the network. Part of the reason is that networks 
are at the center of everything — no network, no app!

In the early days of Doer, networking was hard — really hard. ese days, it’s almost a pleasure ;-)
In this apter, we’ll look at the fundamentals of Doer networking. ings like the Container Network Model 
(CNM) and libnetwork. We’ll also get our hands dirty building some networks.

As usual, we’ll split the apter into three parts:

• e TLDR
• e deep dive
• e commands

Docker Networking - The TLDR

Doer runs applications inside of containers, and applications need to communicate over lots of different
networks. is means Doer needs strong networking capabilities.

Fortunately, Doer has solutions for container-to-container networks, as well as connecting to existing networks
and VLANs. e laer is important for containerized apps that interact with functions and services on external
systems su as VM’s and physical servers.

Doer networking is based on an open-source pluggable aritecture called the Container Network Model
(CNM). libnetwork is Doer’s real-world implementation of the CNM, and it provides all of Doer’s core
networking capabilities. Drivers plug in to libnetwork to provide specific network topologies.

To create a smooth out-of-the-box experience, Doer ships with a set of native drivers that deal with the most
common networking requirements. ese include single-host bridge networks, multi-host overlays, and options
for plugging into existing VLANs. Ecosystem partners can extend things further by providing their own drivers.

Last but not least, libnetwork provides a native service discovery and basic container load balancing solution.

at’s this big picture. Let’s get into the detail.

Docker Networking - The Deep Dive

We’ll organize this section of the apter as follows:

• e theory
• Single-host bridge networks
• Multi-host overlay networks
• Connecting to existing networks
• Service Discovery
• Ingress networking



152 11: Doer Networking

The theory

At the highest level, Doer networking comprises three major components:

• e Container Network Model (CNM)
• libnetwork
• Drivers

e CNM is the design specification. It outlines the fundamental building blos of a Doer network.

libnetwork is a real-world implementation of the CNM, and is used by Doer. It’s wrien in Go, and implements
the core components outlined in the CNM.

Drivers extend the model by implementing specific network topologies su as VXLAN overlay networks.

Figure 11.1 shows how they fit together at a very high level.

Figure 11.1

Let’s look a bit closer at ea.

The Container Network Model (CNM)

Everything starts with a design.

e design guide for Doer networking is the CNM. It outlines the fundamental building blos of a Doer
network, and you can read the full spec here: hps://github.com/doer/libnetwork/blob/master/docs/design.md

I recommend reading the entire spec, but at a high level, it defines three major building blos:

• Sandboxes
• Endpoints
• Networks

A sandbox is an isolated network sta. It includes; Ethernet interfaces, ports, routing tables, and DNS config.

Endpoints are virtual network interfaces (E.g. veth). Like normal network interfaces, they’re responsible for
making connections. In the case of the CNM, it’s the job of the endpoint to connect a sandbox to a network.



153

Networks are a soware implementation of an swit (802.1d bridge). As su, they group together and isolate
a collection of endpoints that need to communicate.

Figure 11.2 shows the three components and how they connect.

Figure 11.2 e Container Network Model (CNM)

e atomic unit of seduling in a Doer environment is the container, and as the name suggests, the Container
Network Model is all about providing networking to containers. Figure 11.3 shows how CNM components relate
to containers — sandboxes are placed inside of containers to provide network connectivity.

Figure 11.3

Container A has a single interface (endpoint) and is connected to Network A. Container B has two interfaces
(endpoints) and is connected to Network A and Network B. e two containers will be able to communicate
because they are both connected to Network A. However, the two endpoints in Container B cannot communicate
with ea other without the assistance of a layer 3 router.

It’s also important to understand that endpoints behave like regular network adapters, meaning they can only
be connected to a single network. erefore, if a container needs connecting to multiple networks, it will need
multiple endpoints.

Figure 11.4 extends the diagram again, this time adding a Doer host. Although Container A and Container B
are running on the same host, their network stas are completely isolated at the OS-level via the sandboxes.



154 11: Doer Networking

Figure 11.4

Libnetwork

e CNM is the design doc, and libnetwork is the canonical implementation. It’s open-source, wrien in Go,
cross-platform (Linux and Windows), and used by Doer.

In the early days of Doer, all the networking code existed inside the daemon. is was a nightmare — the
daemon became bloated, and it didn’t follow the Unix principle of building modular tools that can work on
their own, but also be easily composed into other projects. As a result, it all got ripped out and refactored into
an external library called libnetwork based on the principles of the CNM. Nowadays, all of the core Doer
networking code lives in libnetwork.

As you’d expect, it implements all three of the components defined in the CNM. It also implements native
service discovery, ingress-based container load balancing, and the network control plane and management plane
functionality.

Drivers

If libnetwork implements the control plane and management plane functions, then drivers implement the data
plane. For example, connectivity and isolation is all handled by drivers. So is the actual creation of networks. e
relationship is shown in Figure 11.5.



155

Figure 11.5

Doer ships with several built-in drivers, known as native drivers or local drivers. On Linux they include; bridge,
overlay, and macvlan. On Windows they include; nat, overlay, transparent, and l2bridge. We’ll see how to
use some of them later in the apter.

3rd-parties can also write Doer network drivers known as remote drivers or plugins. Weave Net is a popular
example and can be downloaded from Doer Hub.

Ea driver is in arge of the actual creation and management of all resources on the networks it is responsible
for. For example, an overlay network called “prod-fe-cuda” will be owned and managed by the overlay driver.
is means the overlay driver will be invoked for the creation, management, and deletion of all resources on
that network.

In order to meet the demands of complex highly-fluid environments, libnetwork allowsmultiple network drivers
to be active at the same time. is means your Doer environment can sport a wide range of heterogeneous
networks.

Single-host bridge networks

e simplest type of Doer network is the single-host bridge network.

e name tells us two things:

• Single-host tells us it only exists on a single Doer host and can only connect containers that are on the
same host.

• Bridge tells us that it’s an implementation of an 802.1d bridge (layer 2 swit).

Doer on Linux creates single-host bridge networkswith the built-in bridge driver, whereas Doer onWindows
creates them using the built-in nat driver. For all intents and purposes, they work the same.

Figure 11.6 shows two Doer hosts with identical local bridge networks called “mynet”. Even though the
networks are identical, they are independent isolated networks. is means the containers in the picture cannot
communicate directly because they are on different networks.



156 11: Doer Networking

Figure 11.6

Every Doer host gets a default single-host bridge network. On Linux it’s called “bridge”, and on Windows it’s
called “nat” (yes, those are the same names as the drivers used to create them). By default, this is the network
that all new containers will be connected to unless you override it on the command line with the --network flag.

e following listing shows the output of a docker network ls command on newly installed Linux andWindows
Doer hosts. e output is trimmed so that it only shows the default network on ea host. Notice how the name
of the network is the same as the driver that was used to create it — this is a coincidence and not a requirement.

//Linux
$ docker network ls
NETWORK ID NAME DRIVER SCOPE
333e184cd343 bridge bridge local

//Windows
> docker network ls
NETWORK ID NAME DRIVER SCOPE
095d4090fa32 nat nat local

e docker network inspect command is a treasure trove of great information. I highly recommended reading
through its output if you’re interested in low-level detail.

docker network inspect bridge
[

{
"Name": "bridge", << Will be nat on Windows
"Id": "333e184...d9e55",
"Created": "2018-01-15T20:43:02.566345779Z",
"Scope": "local",
"Driver": "bridge", << Will be nat on Windows
"EnableIPv6": false,
"IPAM": {

"Driver": "default",
"Options": null,
"Config": [

{



157

"Subnet": "172.17.0.0/16"
}

]
},
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {

"Network": ""
},
<Snip>

}
]

Doer networks built with the bridge driver on Linux hosts are based on the bale-hardened linux bridge
tenology that has existed in the Linux kernel for nearly 20 years. is means they’re high performance and
extremely stable. It also means you can inspect them using standard Linux utilities. For example.

$ ip link show docker0
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc...

link/ether 02:42:af:f9:eb:4f brd ff:ff:ff:ff:ff:ff

e default “bridge” network, on all Linux-based Doer hosts, maps to an underlying Linux bridge in the kernel
called “doer0”. We can see this from the output of docker network inspect.

$ docker network inspect bridge | grep bridge.name
"com.docker.network.bridge.name": "docker0",

e relationship betweenDoer’s default “bridge” network and the “doer0” bridge in the Linux kernel is shown
in Figure 11.7.

Figure 11.7

Figure 11.8 extends the diagram by adding containers at the top that plug into the “bridge” network. e “bridge”
network maps to the “doer0” Linux bridge in the host’s kernel, whi can be mapped ba to an Ethernet
interface on the host via port mappings.



158 11: Doer Networking

Figure 11.8

Let’s use the docker network create command to create a new single-host bridge network called “localnet”.

//Linux
$ docker network create -d bridge localnet

//Windows
> docker network create -d nat localnet

e new network is created and will appear in the output of any future docker network ls commands. If you
are using Linux, you will also have a new Linux bridge created in the kernel.

Let’s use the Linux brctl tool to look at the Linux bridges currently on the system. You may have to manually
install the brctl binary using apt-get install bridge-utils, or the equivalent for your Linux distro.

$ brctl show
bridge name bridge id STP enabled interfaces
docker0 8000.0242aff9eb4f no
br-20c2e8ae4bbb 8000.02429636237c no

e output shows two bridges. e first line is the “doer0” bridge that we already know about. is relates
to the default “bridge” network in Doer. e second bridge (br-20c2e8ae4bbb) relates to the new localnet
Doer bridge network. Neither of them have spanning tree enabled, and neither have any devices connected
(interfaces column).

At this point, the bridge configuration on the host looks like Figure 11.9.



159

Figure 11.9

Let’s create a new container and aa it to the new localnet bridge network. If you’re following along
on Windows, you should substitute “alpine sleep 1d” with “mcr.microsoft.com/powershell:nanoserver
pwsh.exe -Command Start-Sleep 86400”.

$ docker container run -d --name c1 \
--network localnet \
alpine sleep 1d

is container will now be on the localnet network. You can confirm this with a docker network inspect.

$ docker network inspect localnet --format '{{json .Containers}}'
{

"4edcbd...842c3aa": {
"Name": "c1",
"EndpointID": "43a13b...3219b8c13",
"MacAddress": "02:42:ac:14:00:02",
"IPv4Address": "172.20.0.2/16",
"IPv6Address": ""
}

},

e output shows that the new “c1” container is on the localnet bridge/nat network.

It you run the Linux brctl show command again, you’ll see c1’s interface aaed to the br-20c2e8ae4bbb
bridge.

$ brctl show
bridge name bridge id STP enabled interfaces
br-20c2e8ae4bbb 8000.02429636237c no vethe792ac0
docker0 8000.0242aff9eb4f no

is is shown in Figure 11.10.



160 11: Doer Networking

Figure 11.10

If we add another new container to the same network, it should be able to ping the “c1” container by name.is is
because all new containers are automatically registered with the embedded Doer DNS service, enabling them
to resolve the names of all other containers on the same network.

Beware: e default bridge network on Linux does not support name resolution via the Doer
DNS service. All other user-defined bridge networks do. e following demo will work because
the container is on the user-defined localnet network.

Let’s test it.

1. Create a new interactive container called “c2” and put it on the same localnet network as “c1”.

//Linux
$ docker container run -it --name c2 \
--network localnet \
alpine sh

//Windows
> docker container run -it --name c2 `
--network localnet `
mcr.microsoft.com/powershell:nanoserver

Your terminal will swit into the “c2” container.
2. From within the “c2” container, ping the “c1” container by name.

> ping c1
Pinging c1 [172.26.137.130] with 32 bytes of data:
Reply from 172.26.137.130: bytes=32 time=1ms TTL=128
Reply from 172.26.137.130: bytes=32 time=1ms TTL=128
Control-C

It works! is is because the c2 container is running a local DNS resolver that forwards requests to an
internal Doer DNS server. is DNS server maintains mappings for all containers started with the
--name or --net-alias flag.

Try running some network-related commands while you’re still logged on to the container. It’s a great way
of learning more about how Doer container networking works. e following snippet shows the ipconfig
command ran from inside the “c2” Windows container previously created. You can Ctrl+P+Q out of the container
and run another docker network inspect localnet command to mat the IP addresses.



161

PS C:\> ipconfig
Windows IP Configuration
Ethernet adapter Ethernet:

Connection-specific DNS Suffix . :
Link-local IPv6 Address . . . . . : fe80::14d1:10c8:f3dc:2eb3%4
IPv4 Address. . . . . . . . . . . : 172.26.135.0
Subnet Mask . . . . . . . . . . . : 255.255.240.0
Default Gateway . . . . . . . . . : 172.26.128.1

So far, we’ve said that containers on bridge networks can only communicate with other containers on the same
network. However, you can get around this using port mappings.

Port mappings let you map a container to a port on the Doer host. Any traffic hiing the Doer host on the
configured port will be directed to the container. e high-level flow is shown in Figure 11.11

Figure 11.11

In the diagram, the application running in the container is operating on port 80. is is mapped to port 5000 on
the host’s 10.0.0.15 interface. e end result is all traffic hiing the host on 10.0.0.15:5000 being redirected
to the container on port 80.

Let’s walk through an example of mapping port 80 on a container running a web server, to port 5000 on the Doer
host. e example will use NGINX on Linux. If you’re following along on Windows, you’ll need to substitute
nginxwith aWindows-basedweb server image suas mcr.microsoft.com/windows/servercore/iis:nanoserver.

1. Run a new web server container and map port 80 on the container to port 5000 on the Doer host.



162 11: Doer Networking

$ docker container run -d --name web \
--network localnet \
--publish 5000:80 \
nginx

2. Verify the port mapping.

$ docker port web
80/tcp -> 0.0.0.0:5000

is shows that port 80 in the container is mapped to port 5000 on all interfaces on the Doer host.
3. Test the configuration by pointing a web browser to port 5000 on the Doer host. To complete this step,

you’ll need to know the IP or DNS name of your Doer host. If you’re using Doer Desktop on Mac or
Windows, you’ll be able to use localhost:5000 or 127.0.0.1:5000.

Figure 11.12

Any external system can now access the NGINX container running on the localnet bridge network via
a port mapping to TCP port 5000 on the Doer host.

Mapping ports like this works, but it’s clunky and doesn’t scale. For example, only a single container can bind to
any port on the host. is means no other containers on that host will be able to bind to port 5000. is is one of
the reason’s that single-host bridge networks are only useful for local development and very small applications.

Multi-host overlay networks

We’ve got an entire apter dedicated to multi-host overlay networks. So we’ll keep this section short.

Overlay networks are multi-host. ey allow a single network to span multiple hosts so that containers on
different hosts can communicate directly. ey’re ideal for container-to-container communication, including
container-only applications, and they scale well.

Doer provides a native driver for overlay networks. is makes creating them as simple as adding the --d
overlay flag to the docker network create command.



163

Connecting to existing networks

e ability to connect containerized apps to external systems and physical networks is vital. A common example
is a partially containerized app — the containerized parts need a way to communicate with the non-containerized
parts still running on existing physical networks and VLANs.

e built-in MACVLAN driver (transparent on Windows) was created with this in mind. It makes containers first-
class citizens on the existing physical networks by giving ea one its own MAC address and IP addresses. We
show this in Figure 11.13.

Figure 11.13

On the positive side, MACVLAN performance is good as it doesn’t require port mappings or additional bridges —
you connect the container interface through to the hosts interface (or a sub-interface). However, on the negative
side, it requires the host NIC to be in promiscuous mode, whi isn’t always allowed on corporate networks and
public cloud platforms. So MACVLAN is great for your corporate data center networks (assuming your network
team can accommodate promiscuous mode), but it might not work in the public cloud.

Let’s dig a bit deeper with the help of some pictures and a hypothetical example.

Assume we have an existing physical network with two VLANS:

• VLAN 100: 10.0.0.0/24
• VLAN 200: 192.168.3.0/24

Figure 11.14

Next, we add a Doer host and connect it to the network.



164 11: Doer Networking

Figure 11.15

We then have a requirement for a container running on that host to be plumbed into VLAN 100. To do this,
we create a new Doer network with the macvlan driver. However, the macvlan driver needs us to tell it a few
things about the network we’re going to associate it with. ings like:

• Subnet info
• Gateway
• Range of IP’s it can assign to containers
• Whi interface or sub-interface on the host to use

e following command will create a newMACVLAN network called “macvlan100” that will connect containers
to VLAN 100.

$ docker network create -d macvlan \
--subnet=10.0.0.0/24 \
--ip-range=10.0.0.0/25 \
--gateway=10.0.0.1 \
-o parent=eth0.100 \
macvlan100

is will create the “macvlan100” network and the eth0.100 sub-interface. e config now looks like this.



165

Figure 11.16

MACVLAN uses standard Linux sub-interfaces, and you have to tag them with the ID of the VLAN they will
connect to. In this example we’re connecting to VLAN 100, so we tag the sub-interface with .100 (etho.100).

We also used the --ip-range flag to tell the MACVLAN network whi sub-set of IP addresses it can assign to
containers. It’s vital that this range of addresses be reserved for Doer and not in use by other nodes or DHCP
servers, as there is no management plane feature to e for overlapping IP ranges.

e macvlan100 network is ready for containers, so let’s deploy one with the following command.

$ docker container run -d --name mactainer1 \
--network macvlan100 \
alpine sleep 1d

e config now looks like Figure 11.17. But remember, the underlying network (VLAN 100) does not see any
of the MACVLAN magic, it only sees the container with its MAC and IP addresses. And with that in mind, the
“mactainer1” container will be able to ping and communicate with any other systems on VLAN 100. Prey sweet!

Note: If you can’t get this to work, it might be because the host NIC is not in promiscuous mode.
Remember that public cloud platforms don’t usually allow promiscuous mode.



166 11: Doer Networking

Figure 11.17

At this point, we’ve got a MACVLAN network and used it to connect a new container to an existing VLAN.
However, it doesn’t stop there. e Doer MACVLAN driver is built on top of the tried-and-tested Linux kernel
driver with the same name. As su, it supports VLAN trunking. is means we can create multiple MACVLAN
networks and connect containers on the same Doer host to them as shown in Figure 11.18.



167

Figure 11.18

at prey mu covers MACVLAN. Windows offers a similar solution with the transparent driver.

Container and Service logs for troubleshooting

A qui note on troubleshooting connectivity issues before moving on to Service Discovery.

If you think you’re experiencing connectivity issues between containers, it’s worth eing the Doer daemon
logs as well as container logs.

On Windows systems, the daemon logs are stored under ∼AppData\Local\Docker, and you can view them in
the Windows Event Viewer. On Linux, it depends what init system you’re using. If you’re running a systemd,
the logs will go to journald and you can view them with the journalctl -u docker.service command. If
you’re not running systemd you should look under the following locations:

• Ubuntu systems running upstart: /var/log/upstart/docker.log
• RHEL-based systems: /var/log/messages
• Debian: /var/log/daemon.log

You can also tell Doer how verbose you want daemon logging to be. To do this, edit the daemon config file
(daemon.json) so that “debug” is set to “true” and “log-level” is set to one of the following:

• debug e most verbose option
• info e default value and second-most verbose option
• warn ird most verbose option



168 11: Doer Networking

• error Fourth most verbose option
• fatal Least verbose option

e following snippet from a daemon.json enables debugging and sets the level to debug. It will work on all
Doer platforms.

{
<Snip>
"debug":true,
"log-level":"debug",
<Snip>

}

Be sure to restart Doer aer making anges to the file.

at was the daemon logs. What about container logs?

Logs from standalone containers can be viewed with the docker container logs command, and Swarm service
logs can be viewed with the docker service logs command. However, Doer supports lots of logging drivers,
and they don’t all work with the docker logs command.

As well as a driver and configuration for daemon logs, every Doer host has a default logging driver and
configuration for containers. Some of the drivers include:

• json-file (default)
• journald (only works on Linux hosts running systemd)
• syslog
• splunk
• gelf

json-file and journald are probably the easiest to configure, and they both work with the docker logs and
docker service logs commands. e format of the commands is docker logs <container-name> and docker
service logs <service-name>.

If you’re using other logging drivers you can view logs using the 3-rd party platform’s native tools.

e following snippet from a daemon.json shows a Doer host configured to use syslog.

{
"log-driver": "syslog"

}

You can configure an individual container, or service, to start with a particular logging driver with the
--log-driver and --log-opts flags. ese will override anything set in daemon.json.

Container logs work on the premise that your application is running as PID 1 inside the container and sending
logs to STDOUT, and errors to STDERR. e logging driver then forwards these “logs” to the locations configured
via the logging driver.

If your application logs to a file, it’s possible to use a symlink to redirect log-file writes to STDOUT and STDERR.

e following is an example of running the docker logs command against a container called “vantage-db”
configured to use the json-file logging driver.



169

$ docker logs vantage-db
1:C 2 Feb 09:53:22.903 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
1:C 2 Feb 09:53:22.904 # Redis version=4.0.6, bits=64, commit=00000000, modified=0, pid=1
1:C 2 Feb 09:53:22.904 # Warning: no config file specified, using the default config.
1:M 2 Feb 09:53:22.906 * Running mode=standalone, port=6379.
1:M 2 Feb 09:53:22.906 # WARNING: The TCP backlog setting of 511 cannot be enforced because...
1:M 2 Feb 09:53:22.906 # Server initialized
1:M 2 Feb 09:53:22.906 # WARNING overcommit_memory is set to 0!

ere’s a good ance you’ll find network connectivity errors reported in the daemon logs or container logs.

Service discovery

As well as core networking, libnetwork also provides some important network services.

Service discovery allows all containers and Swarm services to locate ea other by name. e only requirement
is that they be on the same network.

Under the hood, this leverages Doer’s embedded DNS server and the DNS resolver in ea container. Figure
11.19 shows container “c1” pinging container “c2” by name. e same principle applies to Swarm Services.

Figure 11.19

Let’s step through the process.

• Step 1:e ping c2 command invokes the local DNS resolver to resolve the name “c2” to an IP address.
All Doer containers have a local DNS resolver.

• Step 2: If the local resolver doesn’t have an IP address for “c2” in its local cae, it initiates a recursive
query to the Doer DNS server. e local resolver is pre-configured to know how to rea the Doer
DNS server.

• Step 3:e Doer DNS server holds name-to-IP mappings for all containers created with the --name or
--net-alias flags. is means it knows the IP address of container “c2”.

• Step 4:e DNS server returns the IP address of “c2” to the local resolver in “c1”. It does this because the
two containers are on the same network — if they were on different networks this would not work.

• Step 5:e ping command issues the ICMP eo request paets to the IP address of “c2”.

Every Swarm service and standalone container started with the --name flag will register its name and IP with
the Doer DNS service. is means all containers and service replicas can use the Doer DNS service to find
ea other.



170 11: Doer Networking

However, service discovery is network-scoped. is means that name resolution only works for containers and
Services on the same network. If two containers are on different networks, they will not be able to resolve ea
other.

One last point on service discovery and name resolution…

It’s possible to configure Swarm services and standalone containers with customized DNS options. For example,
the --dns flag lets you specify a list of custom DNS servers to use in case the embedded Doer DNS server
cannot resolve a query. is is common when querying names of services outside of Doer. You can also use
the --dns-search flag to add custom sear domains for queries against unqualified names (i.e. when the query
is not a fully qualified domain name).

On Linux, these all work by adding entries to the /etc/resolv.conf file inside every container.

e following example will start a new standalone container and add the infamous 8.8.8.8 Google DNS server,
as well as nigelpoulton.com as sear domain to append to unqualified queries.

$ docker container run -it --name c1 \
--dns=8.8.8.8 \
--dns-search=nigelpoulton.com \
alpine sh

Ingress load balancing

Swarm supports two publishing modes that make services accessible outside of the cluster:

• Ingress mode (default)
• Host mode

Services published via ingress mode can be accessed from any node in the Swarm — even nodes not running a
service replica. Services published via host mode can only be accessed by hiing nodes running service replicas.
Figure 11.20 shows the difference between the two modes.



171

Figure 11.20

Ingress mode is the default. is means any time you publish a service with -p or --publish it will default to
ingress mode. To publish a service in host mode you need to use the long format of the --publish flag and add
mode=host. Let’s see an example using host mode.

$ docker service create -d --name svc1 \
--publish published=5000,target=80,mode=host \
nginx

A few notes about the command. docker service create lets you publish a service using either a long form
syntax or short form syntax. e short form looks like this: -p 5000:80 and we’ve seen it a few times already.
However, you cannot publish a service in host mode using short form.

e long form looks like this: --publish published=5000,target=80,mode=host. It’s a comma-separate list with
no whitespace aer ea comma. e options work as follows:

• published=5000 makes the service available externally via port 5000
• target=80 makes sure that external requests to the published port get mapped ba to port 80 on the
service replicas

• mode=hostmakes sure that external requests will only rea the service if they come in via nodes running
a service replica.

Ingress mode is what you’ll normally use.



172 11: Doer Networking

Behind the scenes, ingress mode uses a layer 4 routingmesh called the ServiceMesh or the SwarmMode Service
Mesh. Figure 11.21 shows the basic traffic flow of an external request to a service exposed in ingress mode.

Figure 11.21

Let’s quily walk through the diagram.

1. e command at the top deploys a new Swarm service called “svc1”. It’s aaing the service to the
overnet network and publishing it on port 5000.

2. Publishing a Swarm service like this (--publish published=5000,target=80) will publish it on port 5000
on the ingress network. As all nodes in a Swarm are aaed to the ingress network, this means the port
is published swarm-wide.

3. Logic is implemented on the cluster ensuring that any traffic hiing the ingress network, via any node,
on port 5000 will be routed to the “svc1” service on port 80.

4. At this point, a single replica for the “svc1” service is deployed, and the cluster has a mapping rule that
says “all traffic hiing the ingress network on port 5000 needs routing to a node running a replica for the
“svc1” service”.

5. e red line shows traffic hiing node1 on port 5000 and being routed to the service replica running on
node2 via the ingress network.

It’s vital to know that the incoming traffic could have hit any of the four Swarm nodes on port 5000 and we
would get the same result. is is because the service is published swarm-wide via the ingress network.

It’s also vital to know that if there were multiple replicas running, as shown in Figure 11.22, the traffic would be
balanced across all replicas.



173

Figure 11.22

Docker Networking - The Commands

Doer networking has its own docker network sub-command. e main commands include:

• docker network ls: Lists all networks on the local Doer host.
• docker network create: Creates new Doer networks. By default, it creates them with the nat driver on
Windows and the bridge driver on Linux. You can specify the driver (type of network) with the -d flag.
docker network create -d overlay overnet will create a new overlay network called overnet with the
native Doer overlay driver.

• docker network inspect: Provides detailed configuration information about a Doer network.
• docker network prune: Deletes all unused networks on a Doer host.
• docker network rm: Deletes specific networks on a Doer host.

Chapter Summary

e Container Network Model (CNM) is the master design document for Doer networking and defines the
three major constructs that are used to build Doer networks — sandboxes, endpoints, and networks.

libnetwork is the open-source library, wrien in Go, that implements the CNM. It’s used by Doer and is where
all of the core Doer networking code lives. It also provides Doer’s network control plane and management
plane.

Drivers extend the Doer network sta (libnetwork) by adding code to implement specific network types,
su as bridge networks and overlay networks. Doer ships with several built-in drivers, but you can also use
3rd-party drivers.

Single-host bridge networks are the most basic type of Doer network and are suitable for local development and
very small applications. ey do not scale, and they require port mappings if you want to publish your services
outside of the network. Doer on Linux implements bridge networks using the built-in bridge driver, whereas
Doer on Windows implements them using the built-in nat driver.



174 11: Doer Networking

Overlay networks are all the rage and are excellent container-only multi-host networks. We’ll talk about them
in-depth in the next apter.

e macvlan driver (transparent on Windows) allows you to connect containers to existing physical networks
and VLANs. ey make containers first-class citizens by giving them their own MAC and IP addresses.
Unfortunately, they require promiscuous mode on the host NIC, meaning they won’t work in the public cloud.

Doer also uses libnetwork to implement basic service discovery, as well as a service mesh for container-based
load balancing of ingress traffic.



12: Docker overlay networking
Overlay networks are at the beating heart of many cloud-native microservices apps. In this apter we’ll cover
the fundamentals of native Doer overlay networking.

Doer overlay networking onWindows has feature parity with Linux. is means the examples we’ll use in this
apter will all work on Linux and Windows.

We’ll split this apter into the usual three parts:

• e TLDR
• e deep dive
• e commands

Let’s do some networking magic.

Docker overlay networking - The TLDR

In the real world, it’s vital that containers can communicate with ea other reliably and securely, even when
they’re on different hosts that are on different networks. is is where overlay networking comes in to play. It
allows you to create a flat, secure, layer-2 network, spanning multiple hosts. Containers connect to this and can
communicate directly.

Doer offers native overlay networking that is simple to configure and secure by default.

Behind the scenes, it’s built on top of libnetwork and drivers. libnetwork is the canonical implementation of the
Container Network Model (CNM) and drivers are pluggable components that implement different networking
tenologies and topologies. Doer offers native drivers, including the overlay driver.

Docker overlay networking - The deep dive

In Mar 2015, Doer, Inc. acquired a container networking startup called Soet Plane. Two of the reasons
behind the acquisition were to bring real networking to Doer, and to make container networking simple enough
that even developers could do it.

ey over-aieved on both.

However, hiding behind the simple networking commands are a lot of moving parts. e kind of stuff you need
to understand before doing production deployments and aempting to troubleshoot issues.

e rest of this apter will be broken into two parts:

• Part 1: We’ll build and test a Doer overlay network
• Part 2: We’ll explain the magic that makes it work



176 12: Doer overlay networking

Build and test a Docker overlay network in Swarmmode

For the following examples, we’ll use two Doer hosts, on two separate Layer 2 networks, connected by a router.
See Figure 12.1, and note the different networks that ea node is on.

Figure 12.1

You can follow along with either Linux or Windows Doer hosts. Linux should have at least a 4.4 Linux kernel
(newer is always beer) and Windows should be Windows Server 2016 or later with the latest hotfixes installed.
You can also follow along on your Mac or Windows PC with Doer Desktop. However, you won’t see the full
benefits as they only support a single Doer host.

Build a Swarm

e first thing to do is configure the two hosts into a two-node swarm. is is because swarm mode is a pre-
requisite for overlay networks.

We’ll run the docker swarm init command on node1 to make it a manager, and then we’ll run the docker
swarm join command on node2 to make it a worker. is is not a production-grade setup, but it is enough for a
learning lab. You’re encouraged to test with more managers and workers and expand on the examples.

If you are following along in your own lab, you’ll need to swap the IP addresses and the likes with the correct
values for your environment.

Run the following command on node1.

$ docker swarm init \
--advertise-addr=172.31.1.5 \
--listen-addr=172.31.1.5:2377

Swarm initialized: current node (1ex3...o3px) is now a manager.

Run the next command on node2. You will need to ensure the following ports are enabled on any firewalls:

• 2377/tcp for management plane comms
• 7946/tcp and 7946/udp for control plane comms (SWIM-based gossip)
• 4789/udp for the VXLAN data plane



177

$ docker swarm join \
--token SWMTKN-1-0hz2ec...2vye \
172.31.1.5:2377

This node joined a swarm as a worker.

We now have a two-node Swarm with node1 as a manager and node2 as a worker.

Create a new overlay network

Now let’s create a new overlay network called uber-net.

Run the following command from node1 (manager).

$ docker network create -d overlay uber-net
c740ydi1lm89khn5kd52skrd9

at’s it. You’ve just created a brand-new overlay network that is available to all hosts in the Swarm and has
its control plane encrypted with TLS (AES in GCM mode with keys automatically rotated every 12 hours). If
you want to encrypt the data plane, you just add the -o encrypted flag to the command. However, data plane
encryption isn’t enabled by default because of the performance overhead. It’s highly recommended that you
extensively test performance before enabling data plane encryption. However, if you do enable it, it’s protected
by the same AES in GCM mode with key rotation.

If you’re unsure about terms su as control plane and * data plane*, control plane traffic is cluster management
traffic, whereas data plane traffic is application traffic. By default, Doer overlay networks encrypt cluster
management traffic but not application traffic. You must explicitly enable encryption of application traffic.

You can list all networks on ea node with the docker network ls command.

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
ddac4ff813b7 bridge bridge local
389a7e7e8607 docker_gwbridge bridge local
a09f7e6b2ac6 host host local
ehw16ycy980s ingress overlay swarm
2b26c11d3469 none null local
c740ydi1lm89 uber-net overlay swarm

e output will look more like this on a Windows server:

NETWORK ID NAME DRIVER SCOPE
8iltzv6sbtgc ingress overlay swarm
6545b2a61b6f nat nat local
96d0d737c2ee none null local
nil5ouh44qco uber-net overlay swarm

e newly created network is at the boom of the list called uber-net. e other networks were automatically
created when Doer was installed and when the swarm was initialized.

If you run the docker network ls command on node2, you’ll notice that it can’t see the uber-net network.
is is because new overlay networks are only extended to worker nodes when they are tasked with running a
container on it. is lazy approa to extended overlay networks improves network scalability by reducing the
amount of network gossip.



178 12: Doer overlay networking

Attach a service to the overlay network

Now that you have an overlay network, let’s create a newDoer service and aa it to the network.e example
will create the service with two replicas (containers) so that one runs on node1 and the other runs on node2.
is will automatically extend the uber-net overlay to node2

Run the following commands from node1.

Linux example:

$ docker service create --name test \
--network uber-net \
--replicas 2 \
ubuntu sleep infinity

Windows example:

> docker service create --name test `
--network uber-net `
--replicas 2 `
mcr.microsoft.com\powershell:nanoserver pwsh.exe -Command Start-Sleep 3600

Note:e Windows example uses the bati aracter to split parameters over multiple lines to
make the command more readable. e bati is how PowerShell escapes line feeds.

e command creates a new service called test, aaes it to the uber-net overlay network, and creates two
replicas (containers) based on the image provided. In both examples, you issued a sleep command to the containers
to keep them running and stop them from exiting.

Because we’re running two replicas (containers), and the Swarm has two nodes, one replica will be seduled on
ea node.

Verify the operation with a docker service ps command.

$ docker service ps test
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
77q...rkx test.1 ubuntu node1 Running Running
97v...pa5 test.2 ubuntu node2 Running Running

When Swarm starts a container on an overlay network, it automatically extends that network to the node the
container is running on. is means that the uber-net network is now visible on node2.

Standalone containers that are not part of a swarm service cannot aa to overlay networks unless they have
the attachable=true property. e following command can be used to create an aaable overlay network that
standalone containers can also aa to.

$ docker network create -d overlay --attachable uber-net

Congratulations. You’ve created a new overlay network spanning two nodes on separate physical underlay
networks. You’ve also aaed two containers to it. How easy was that!



179

Test the overlay network

Let’s test the overlay network with the ping command.

As shown in Figure 12.2, we’ve got twoDoer hosts on separate networks, and a single overlay network spanning
both. We’ve got one container connected to the overlay network on ea node. Let’s see if they can ping ea
other.

Figure 12.2

You can run the test by pinging the remote container by name. However, the examples will use IP addresses as
it gives us an excuse to learn how to find a containers IP address.

Run a docker network inspect to see the subnet assigned to the overlay and the IP addresses assigned to the
two containers in the test service.

$ docker network inspect uber-net
[

{
"Name": "uber-net",
"Id": "c740ydi1lm89khn5kd52skrd9",
"Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",
"Options": null,
"Config": [

{
"Subnet": "10.0.0.0/24",
"Gateway": "10.0.0.1"

}
"Containers": {

"Name": "test.1.mfd1kn0qzgosu2f6bhfk5jc2p",
"IPv4Address": "10.0.0.3/24",
<Snip>



180 12: Doer overlay networking

},
"Name": "test.2.m49f4psxp3daixlwfvy73v4j8",
"IPv4Address": "10.0.0.4/24",

},
<Snip>

e output is heavily snipped for readability, but you can see it shows uber-net’s subnet is 10.0.0.0/24.
is doesn’t mat either of the physical underlay networks shown in Figure 12.2 (172.31.1.0/24 and
192.168.1.0/24). You can also see the IP addresses assigned to the two containers.

Run the following two commands on node1 and node2. ese will get the container’s ID’s and confirm the IP
address from the previous command. Be sure to use the container ID’s from your own lab in the second command.

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS NAME
396c8b142a85 ubuntu:latest "sleep infinity" 2 hours ago Up 2 hrs test.1.mfd...

$ docker container inspect \
--format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' 396c8b142a85

10.0.0.3

Run these commands on both nodes to confirm the IP addresses of both containers.

Figure 12.3 shows the configuration so far. Subnet and IP addresses may be different in your lab.

Figure 12.3

As you can see, there is a Layer 2 overlay network spanning both hosts, and ea container has an IP address on
this overlay network. is means the container on node1 will be able to ping the container on node2 using its
10.0.0.4 address. is works despite the fact that both nodes are on different Layer 2 underlay networks.

Let’s prove it.

Log on to the container on node1 and ping the remote container.

To do this on the Linux Ubuntu container you’ll need to install the ping utility. If you’re following along with
the Windows PowerShell example the ping utility is already installed.



181

Remember that the container IDs will be different in your environment.

Linux example:

$ docker container exec -it 396c8b142a85 bash

root@396c8b142a85:/# apt-get update && apt-get install iputils-ping -y
<Snip>
Reading package lists... Done
Building dependency tree
Reading state information... Done
<Snip>
Setting up iputils-ping (3:20190709-3) ...
Processing triggers for libc-bin (2.31-0ubuntu9) ...

root@396c8b142a85:/# ping 10.0.0.4
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=1.06 ms
64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=1.07 ms
64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=1.03 ms
64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=1.26 ms
^C
root@396c8b142a85:/#

Windows example:

> docker container exec -it 1a4f29e5a4b6 pwsh.exe
Windows PowerShell

PS C:\> ping 10.0.0.4
Pinging 10.0.0.4 with 32 bytes of data:
Reply from 10.0.0.4: bytes=32 time=1ms TTL=128
Reply from 10.0.0.4: bytes=32 time<1ms TTL=128
Reply from 10.0.0.4: bytes=32 time=2ms TTL=128
Reply from 10.0.0.4: bytes=32 time=2ms TTL=12
PS C:\>

Congratulations.e container on node1 can ping the container on node2 via the overlay network. If you created
the network with the -o encrypted flag, the exange will have been encrypted.

You can also trace the route of the ping command fromwithin the container.is will report a single hop, proving
that the containers are communicating directly via the overlay network — blissfully unaware of any underlay
networks that are being traversed.

Note: You’ll need to install traceroute for the Linux example to work.

Linux example:



182 12: Doer overlay networking

$ root@396c8b142a85:/# traceroute 10.0.0.4
traceroute to 10.0.0.4 (10.0.0.4), 30 hops max, 60 byte packets
1 test-svc.2.97v...a5.uber-net (10.0.0.4) 1.110ms 1.034ms 1.073ms

Windows example:

PS C:\> tracert 10.0.0.3

Tracing route to test.2.ttcpiv3p...7o4.uber-net [10.0.0.4]
over a maximum of 30 hops:

1 <1 ms <1 ms <1 ms test.2.ttcpiv3p...7o4.uber-net [10.0.0.4]

Trace complete.

So far, you’ve created an overlay network with a single command. You then added containers to it. e containers
were seduled on two hosts that were on two different Layer 2 underlay networks. Once you worked out the
container’s IP addresses, you proved that they could communicate directly via the overlay network.

The theory of how it all works

Now that you’ve seen how easy it is to build and use a secure overlay network, let’s find out how it’s all put
together behind the scenes.

Some of the detail in this section will be specific to Linux. However, the same overall principles apply toWindows.

VXLAN primer

First and foremost, Doer overlay networking uses VXLAN tunnels to create virtual Layer 2 overlay networks.
So, before we go any further, let’s do a qui VXLAN primer.

At the highest level, VXLANs let you create a virtual Layer 2 network on top of an existing Layer 3 infrastructure.
at’s a lot of teno jargon that means you can create a simple network that hides horrifically complex networks
beneath. e example we used earlier created a new 10.0.0.0/24 Layer 2 network on top of a Layer 3 IP network
comprising two Layer 2 networks — 172.31.1.0/24 and 192.168.1.0/24. is is shown in Figure 12.4.



183

Figure 12.4

e beauty of VXLAN is that it’s an encapsulation tenology that existing routers and network infrastructure
just see as regular IP/UDP paets and handle without issue.

To create the virtual Layer 2 overlay network, a VXLAN tunnel is created through the underlying Layer 3 IP
infrastructure. You might hear the term underlay network used to refer to the underlying Layer 3 infrastructure
— the networks that the Doer hosts are connected to.

Ea end of the VXLAN tunnel is terminated by a VXLAN Tunnel Endpoint (VTEP). It’s this VTEP that performs
the encapsulation/de-encapsulation and other magic required to make all of this work. See Figure 12.5.

Figure 12.5

Walk through our two-container example

In the example from earlier, you had two hosts connected via an IP network. Ea host ran a single container,
and you created a single VXLAN overlay network for the containers.



184 12: Doer overlay networking

To accomplish this, a new sandbox (network namespace) was created on ea host. As mentioned in the previous
apter, a sandbox is like a container, but instead of running an application, it runs an isolated network sta —
one that’s sandboxed from the network sta of the host itself.

A virtual swit (a.k.a. virtual bridge) called Br0 is created inside the sandbox. A VTEP is also created with one
end plumbed into the Br0 virtual swit, and the other end plumbed into the host network sta (VTEP). e end
in the host network sta gets an IP address on the underlay network the host is connected to, and is bound to a
UDP soet on port 4789. e two VTEPs on ea host create the overlay via a VXLAN tunnel as seen in Figure
12.6.

Figure 12.6

At this point, the VXLAN overlay is created and ready for use.

Ea container then gets its own virtual Ethernet (veth) adapter that is also plumbed into the local Br0 virtual
swit. e topology now looks like Figure 12.7, and it should be geing easier to see how the two containers
can communicate over the VXLAN overlay network despite their hosts being on two separate networks.



185

Figure 12.7

Communication example

Now that we’ve seen the main plumbing elements, let’s see how the two containers communicate.

Warning!is section gets quite tenical, and it’s not necessary for you to understand all of this
detail for day-to-day operations.

For this example, we’ll call the container on node1 “C1” and the container on node2 “C2”. And let’s assume C1
wants to ping C2 like we did in the practical example earlier in the apter.

Figure 12.8



186 12: Doer overlay networking

C1 creates the ping requests and sets the destination IP address to be the 10.0.0.4 address of C2. It sends the
traffic over its veth interface whi is connected to the Br0 virtual swit. e virtual swit doesn’t know
where to send the paet as it doesn’t have an entry in its MAC address table (ARP table) that corresponds to
the destination IP address. As a result, it floods the paet to all ports. e VTEP interface is connected to Br0
knows how to forward the frame, so responds with its own MAC address. is is a proxy ARP reply and results
in the Br0 swit learning how to forward the paet. As a result, Br0 updates its ARP table, mapping 10.0.0.4
to the MAC address of the local VTEP.

Now that the Br0 swit has learned how to forward traffic to C2, all future paets for C2 will be transmied
directly to the local VTEP interface. e VTEP interface knows about C2 because all newly started containers
have their network details propagated to other nodes in the Swarm using the network’s built-in gossip protocol.

e paet is sent to the VTEP interface, whi encapsulates the frames so they can be sent over the underlay
transport infrastructure. At a fairly high level, this encapsulation includes adding a VXLAN header to the
individual Ethernet frames. e VXLAN header contains the VXLAN network ID (VNID) whi is used to map
frames from VLANs to VXLANs and vice versa. Ea VLAN gets mapped to VNID so that the paet can be
de-encapsulated on the receiving end and forwarded to the correct VLAN. is maintains network isolation.

e encapsulation also wraps the frame in a UDP paet with the IP address of the remote VTEP on node2 in
the destination IP field, as well as the UDP port 4789 soet information. is encapsulation allows the data to be
sent across the underlying networks without the underlying networks having to know anything about VXLAN.

When the paet arrives at node2, the kernel sees that it’s addressed to UDP port 4789. e kernel also knows
that it has a VTEP interface bound to this soet. As a result, it sends the paet to the VTEP, whi reads the
VNID, de-encapsulates the paet, and sends it on to its own local Br0 swit on the VLAN that corresponds the
VNID. From there it is delivered to container C2.

And that… ladies and gents… is how VXLAN tenology is leveraged by native Doer overlay networking.

Hopefully that’s enough to get you started with any potential production Doer deployments. It should also
give you the knowledge required to talk to your networking team about the networking aspects of your Doer
infrastructure. On the topic of talking to your networking team… I recommend you don’t approa them thinking
that you now know everything about VXLAN. If you do that, you’ll probably embarrass yourself ;-)

One final thing. Doer also supports Layer 3 routing within the same overlay network. For example, you can
create an overlay network with two subnets, and Doer will take care of routing between them. e command
to create a network like this could be docker network create --subnet=10.1.1.0/24 --subnet=11.1.1.0/24
-d overlay prod-net. is would result in two virtual swites, Br0 and Br1, being created inside the sandbox,
and routing happens by default.

Docker overlay networking - The commands

• docker network create is the command that we use to create a new container network. e -d flag lets
you specify the driver to use, and the most common driver is the overlay driver. You can also specify
remote drivers from 3rd parties. For overlay networks, the control plane is encrypted by default. Just add
the -o encrypted flag to encrypt the data plane (performance overheads may be incurred).

• docker network ls lists all of the container networks visible to a Doer host. Doer hosts running in
swarm mode only see overlay networks if they are hosting containers aaed to that particular network.
is keeps network-related gossip to a minimum.



187

• docker network inspect shows you detailed information about a particular container network. is
includes scope, driver, IPv4 and IPv4 info, subnet configuration, IP addresses of connected containers**,
*VXLAN network ID, and encryption state.

• docker network rm deletes a network

Chapter Summary

In this apter, we saw how easy it is to create new Doer overlay networks with the docker network create
command. We then learned how they are put together behind the scenes using VXLAN tenology.

We’ve only scrated the surface of what can be done with Doer overlay networking.





13: Volumes and persistent data
Stateful applications that persist data are becoming more and more important in the world of cloud-native and
microservices applications. Doer is an important infrastructure tenology in this space, so we’ll turn our
aention in this apter to investigating how Doer handles applications that write persistent data.

We’ll split the apter into the usual three parts:

• e TLDR
• e deep dive
• e commands

Volumes and persistent data - The TLDR

ere are two main categories of data — persistent and non-persistent.

Persistent is the data you need to keep. ings like; customer records, financial data, resear results, audit logs,
and even some types of application log data. Non-persistent is the data you don’t need to keep.

Both are important, and Doer has solutions for both.

To deal with non-persistent data, every Doer container gets its own non-persistent storage.is is automatically
created for every container and is tightly coupled to the lifecycle of the container. As a result, deleting the
container will delete the storage and any data on it.

To deal with persistent data, a container needs to store it in a volume. Volumes are separate objects that have
their lifecycles decoupled from containers. is means you can create and manage volumes independently, and
they’re not tied to the lifecycle of any container. Net result, you can delete a container that’s using a volume, and
the volume won’t be deleted.

at’s the TLDR. Let’s take a closer look.

Volumes and persistent data - The Deep Dive

ere’s a popular opinion that containers aren’t good for stateful applications that persist data. is was true a
few years ago. However, things are anging, and tenologies now exist that make containers a viable oice
for many stateful applications.

Am I saying containers are the best solution for all stateful applications? No. However, we’re about to see some
of the ways that containers deal with persistent and non-persistent data, and you may find it hard to see many
differences with virtual maines.

We’ll start out with non-persistent data.



190 13: Volumes and persistent data

Containers and non-persistent data

Containers are designed to be immutable. is is just a buzzword that means read-only — it’s a best practice
not to ange the configuration of a container aer it’s deployed. If something breaks or you need to ange
something, you should create a new container with the fixes/updates and deploy it in place of the old container.
You shouldn’t log into a running container and make configuration anges!

However, many applications require a read-write filesystem in order to simply run – they won’t even run on
a read-only filesystem. is means it’s not as simple as making containers entirely read-only. Every Doer
container is created by adding a thin read-write layer on top of the read-only image it’s based on. Figure 13.1
shows two running containers sharing a single read-only image.

Figure 13.1 Ephemeral container storage

e writable container layer exists in the filesystem of the Doer host, and you’ll hear it called various names.
ese include local storage, ephemeral storage, and graphdriver storage. It’s typically located on the Doer host
in these locations:

• Linux Doer hosts: /var/lib/docker/<storage-driver>/...
• Windows Doer hosts: C:\ProgramData\Docker\windowsfilter\...

is thin writable layer is an integral part of a container and enables all read/write operations. If you, or an
application, update files or add new files, they’ll be wrien to this layer. However, it’s tightly coupled to the
container’s lifecycle — it gets created when the container is created and it gets deleted when the container is
deleted. e fact that it’s deleted along with a container means that it’s not an option for important data that you
need to keep (persist).

If your containers don’t create persistent data, this thin writable layer of local storage will be fine and you’re
good to go. However, if your containers need to persist data, you need to read the next section.

One final word before moving to the next section.

is writable layer of local storage is managed on every Doer host by a storage driver (not to be confused with
a volume driver). If you’re running Doer in production on Linux, you’ll need to make sure you mat the right
storage driver with the Linux distribution on your Doer host. Use the following list as a guide:



191

• Red Hat Enterprise Linux: Use the overlay2 driver with modern versions of RHEL running Doer 17.06
or higher. Use the devicemapper driver with older versions. is applies to Oracle Linux and other Red
Hat related upstream and downstream distros.

• Ubuntu: Use the overlay2 or aufs drivers. If you’re using a Linux 4.x kernel or higher you should go
with overlay2.

• SUSE Linux Enterprise Server: Use the btrfs storage driver.
• WindowsWindows only has one driver and it is configured by default.

Containers and persistent data

Volumes are the recommended way to persist data in containers. ere are three major reasons for this:

• Volumes are independent objects that are not tied to the lifecycle of a container
• Volumes can be mapped to specialized external storage systems
• Volumes enable multiple containers on different Doer hosts to access and share the same data

At a high-level, you create a volume, then you create a container and mount the volume into it. e volume is
mounted into a directory in the container’s filesystem, and anything wrien to that directory is stored in the
volume. If you delete the container, the volume and its data will still exist.

Figure 13.2 shows a Doer volume existing outside of the container as a separate object. It is mounted into the
container’s filesystem at /data, and any data wrien to the /data directory will be stored on the volume and
will exist aer the container is deleted.

Figure 13.2 High-level view of volumes and containers

In Figure 13.2, the /data directory is a Doer volume that can either be mapped to an external storage system 
or a directory on the Doer host. Either way, its lifecycle is decoupled from the container. All other directories 
in the container use the thin writable container layer in the local storage area on the Doer host.

e arrow from the volume to the /data directory is shown as a doed line to represent the decoupled relationship 
between volumes and containers.

Creating and managing Docker volumes

Volumes are first-class citizens in Doer. Among other things, this means they are their own object in the API 
and have their own docker volume sub-command.

Use the following command to create a new volume called myvol.



192 13: Volumes and persistent data

$ docker volume create myvol
myvol

By default, Doer creates new volumes with the built-in local driver. As the name suggests, volumes created
with the local driver are only available to containers on the same node as the volume. You can use the -d flag
to specify a different driver.

ird-party volume drivers are available as plugins. ese provide Doer with seamless access external storage
systems su as cloud storage services and on-premises storage systems including SAN or NAS. is is shown in
Figure 13.3.

Figure 13.3 Plugging external storage into Doer

We’ll look at an example with a third-party driver in a later section.

Now that the volume is created, you can see it with the docker volume ls command and inspect it with the
docker volume inspect command.

$ docker volume ls
DRIVER VOLUME NAME
local myvol

$ docker volume inspect myvol
[

{
"CreatedAt": "2020-05-02T17:44:34Z",
"Driver": "local",
"Labels": {},
"Mountpoint": "/var/lib/docker/volumes/myvol/_data",
"Name": "myvol",
"Options": {},
"Scope": "local"

}
]

Notice that the Driver and Scope are both local. is means the volume was created with the local driver and
is only available to containers on this Doer host. e Mountpoint property tells us where in the Doer host’s
filesystem the volume exists.



193

All volumes created with the local driver get their own directory under /var/lib/docker/volumes on Linux,
and C:\ProgramData\Docker\volumes on Windows. is means you can see them in your Doer host’s
filesystem. You can even access them directly from your Doer host, although this is not normally recommended.
We showed an example of this in the apter on Doer Compose — we copied a file directly into a volume’s
directory on the Doer host and the file immediately appeared in the volume inside the container.

Now the volume is created, it can be used by one or more containers. We’ll see usage examples in a minute.

ere are two ways to delete a Doer volume:

• docker volume prune
• docker volume rm

docker volume prune will delete all volumes that are not mounted into a container or service replica, so use
with caution! docker volume rm lets you specify exactly whi volumes you want to delete. Neither command
will delete a volume that is in use by a container or service replica.

As the myvol volume is not in use, delete it with the prune command.

$ docker volume prune

WARNING! This will remove all volumes not used by at least one container.
Are you sure you want to continue? [y/N] y

Deleted Volumes:
myvol
Total reclaimed space: 0B

Congratulations, you’ve created, inspected, and deleted a Doer volume. And you did it all without interacting
with a container. is demonstrates the independent nature of volumes.

At this point, you know all of the commands to create, list, inspect, and delete Doer volumes. However,
it’s also possible to deploy volumes via Doerfiles using the VOLUME instruction. e format is VOLUME
<container-mount-point>. Interestingly, you cannot specify a directory on the host when defining a volume
in a Doerfile. is is because host directories are different depending on what OS your Doer host is running
– it could break your builds if you specified a directory on a Doer host that doesn’t exist. As a result, defining
a volume in a Doerfile requires you to specify host directories at deploy-time.

Demonstrating volumes with containers and services

Let’s see how to use volumes with containers and services.

e examples will be from a system with no pre-existing volumes, and everything we demonstrate applies to
both Linux and Windows.

Use the following command to create a new standalone container that mounts a volume called bizvol.

Linux example:



194 13: Volumes and persistent data

$ docker container run -dit --name voltainer \
--mount source=bizvol,target=/vol \
alpine

Windows example:

Use PowerShell for all Windows examples, and note the use of batis (‘) to split commands across multiple
lines.

> docker container run -dit --name voltainer `
--mount source=bizvol,target=c:\vol `
mcr.microsoft.com/powershell:nanoserver

e command uses the --mount flag to mount a volume called “bizvol” into the container at either /vol or c:\vol.
e command completes successfully despite the fact there is no volume on the system called bizvol. is raises
an interesting point:

• If you specify an existing volume, Doer will use the existing volume
• If you specify a volume that doesn’t exist, Doer will create it for you

In this case, bizvol didn’t exist, so Doer created it and mounted it into the new container. is means you’ll
be able to see it with docker volume ls.

$ docker volume ls
DRIVER VOLUME NAME
local bizvol

Although containers and volumes have separate lifecycle’s, you cannot delete a volume that is in use by a
container. Try it.

$ docker volume rm bizvol
Error response from daemon: remove bizvol: volume is in use - [b44d3f82...dd2029ca]

e volume is brand new, so it doesn’t have any data. Let’s exec onto the container and write some data to it.
e example cited is Linux, if you’re following along on Windows just replace sh with pwsh.exe at the end of
the command. All other commands will work on Linux and Windows.

$ docker container exec -it voltainer sh

/# echo "I promise to write a review of the book on Amazon" > /vol/file1

/# ls -l /vol
total 4
-rw-r--r-- 1 root root 50 Jan 12 13:49 file1

/# cat /vol/file1
I promise to write a review of the book on Amazon

Type exit to return to the shell of your Doer host, and then delete the container with the following command.



195

$ docker container rm voltainer -f
voltainer

Even though the container is deleted, the volume still exists:

$ docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED STATUS

$ docker volume ls
DRIVER VOLUME NAME
local bizvol

Because the volume still exists, you can look at its mount point on the host to e if the data is still there.

Run the following commands from the terminal of your Doer host. e first one will show that the file still
exists, the second will show the contents of the file.

Be sure to use the C:\ProgramData\Docker\volumes\bizvol\_data directory if you’re following along on
Windows. Also, this step won’t work on Doer Desktop for Mac and Windows 10. is is because Doer
Desktop runs Doer inside of a VM and the volume data directories exist inside the VM.

$ ls -l /var/lib/docker/volumes/bizvol/_data/
total 4
-rw-r--r-- 1 root root 50 Jan 12 14:25 file1

$ cat /var/lib/docker/volumes/bizvol/_data/file1
I promise to write a review of the book on Amazon

Great, the volume and data still exists.

It’s even possible to mount the bizvol volume into a new service or container. e following command creates a
new Doer service, called hellcat, and mounts bizvol into the service replica at /vol. You’ll need to be running in
swarmmode for this command to work. If you’re running in single-enginemode you can use a docker container
run command instead.

$ docker service create \
--name hellcat \
--mount source=bizvol,target=/vol \
alpine sleep 1d

overall progress: 1 out of 1 tasks
1/1: running [====================================>]
verify: Service converged

We didn’t specify the --replicas flag, so only a single service replica was deployed. Find whi node in the
Swarm it’s running on.



196 13: Volumes and persistent data

$ docker service ps hellcat
ID NAME NODE DESIRED STATE CURRENT STATE
l3nh... hellcat.1 node1 Running Running 19 seconds ago

In this example, the replica is running on node1. Log on to node1 and get the ID of the service replica container.

node1$ docker container ls
CTR ID IMAGE COMMAND STATUS NAMES
df6..a7b alpine:latest "sleep 1d" Up 25 secs hellcat.1.l3nh...

Notice that the container name is a combination of service-name, replica-number, and replica-ID separated
by periods.

Exec onto the container and e that the data is present in /vol. We’ll use the service replica’s container ID in
the exec example. If you’re following along on Windows, remember to replace sh with pwsh.exe.

node1$ docker container exec -it df6 sh

/# cat /vol/file1
I promise to write a review of the book on Amazon

Excellent, the volume has preserved the original data and made it available to a new container.

I guess it’s time to jump over to Amazon and write that book review :-D

Sharing storage across cluster nodes

Integrating external storage systems with Doermakes it possible to share volumes between cluster nodes.ese
external systems can be cloud storage services or enterprise storage systems in your on-premises data centers. As
an example, a single storage LUN or NFS share can be presented to multiple Doer hosts, allowing it to be used
by containers and service replicas no-maer whi Doer host they’re running on. Figure 13.4 shows a single
external shared volume being presented to two Doer nodes. ese Doer nodes can then make the shared
volume available to either, or both containers.

Figure 13.4



197

Building a setup like this requires a lot of things. You need access to a specialised storage systems and knowledge
of how it works and presents storage. You also need to know how your applications read and write data to the
shared storage. Finally, you need a volumes driver plugin that works with the external storage system.

Doer Hub is the best place to find volume plugins. Login to Doer Hub, select the view to show plugins instead
of containers, and filter results to only show Volume plugins. Once you’ve located the appropriate plugin for
your storage system, you create any configuration files it might need, and install it with docker plugin install.

Once the plugin is registered, you can create new volumes from the storage system using docker volume create
with the -d flag.

e following example installs the Pure Storage Doer volume plugin. is plugin provides access to storage
volumes on either a Pure Storage FlashArray or FlashBlade storage system. Plugins only work with the correct
external storage systems.

1. e Pure Storage plugin requires a configuration file called pure.json in the Doer host’s /etc/pure-
docker-plugin/directory. is file contains the information required for the plugin to locate the
external storage system, authenticate, and access resources.

2. Install the plugin and grant the required permissions.

$ docker plugin install purestorage/docker-plugin:latest --alias pure --grant-all-permissions
Plugin "purestorage/docker-plugin:3.8" is requesting the following privileges:
- network: [host]
- host pid namespace: [true]
- mount: [/etc/pure-docker-plugin/pure.json]
- mount: [/dev]
- mount: [/sys]
- allow-all-devices: [true]
- capabilities: [CAP_SYS_ADMIN CAP_SYS_PTRACE]
Do you grant the above permissions? [y/N] y

1. List the available plugins.

$ docker plugin ls
ID NAME DESCRIPTION ENABLED
6b5e61aefbb3 pure:latest Pure Storage plugin for Docker true

1. Create a new volume with the plugin (you can also do this as part of the container creation process). is
example creates a new 25GB volume called “fastvol” on the registered Pure Storage baend.

$ docker volume create -d pure -o size=25GB fastvol
fastvol

Different storage drivers support different options, but this should be enough to give you a feel for how they
work.



198 13: Volumes and persistent data

Potential data corruption

A major concern with any configuration that shares a single volume among multiple containers is data
corruption.

Assume the following example based on Figure 13.4.

e application running in ctr-1 on node-1 updates some data in the shared volume. However, instead of writing
the update directly to the volume, it holds it in its local buffer for faster recall (this is common in many operating
systems). At this point, the application in ctr-1 thinks the data has been wrien to the volume. However, before
ctr-1 on node-1 flushes its buffers and commits the data to the volume, the app in ctr-2 on node-2 updates the
same data with a different value and commits it directly to the volume. At this point, both applications think
they’ve updated the data in the volume, but in reality only the application in ctr-2 has. A few seconds later, ctr-1
on node-1 flushes the data to the volume, overwriting the anges made by the application in ctr-2. However, the
application in ctr-2 is totally unaware of this! is is one of the ways data corruption happens.

To prevent this, you need to write your applications in a way to avoid things like this.

Volumes and persistent data - The Commands

• docker volume create is the command we use to create new volumes. By default, volumes are created
with the local driver, but you can use the -d flag to specify a different driver.

• docker volume ls will list all volumes on the local Doer host.
• docker volume inspect shows detailed volume information. Use this command to see many interesting
volume properties, including where a volume exists in the Doer host’s filesystem.

• docker volume prune will delete all volumes that are not in use by a container or service replica. Use
with caution!

• docker volume rm deletes specific volumes that are not in use.
• docker plugin install will install new volume plugins from Doer Hub.
• docker plugin ls lists all plugins installed on a Doer host.

Chapter Summary

ere are two main types of data: persistent and non-persistent data. Persistent data is data that you need to keep,
non-persistent is data that you don’t need to keep. By default, all containers get a layer of writable non-persistent
storage that lives and dies with the container — we call this local storage and it’s ideal for non-persistent data.
However, if your containers create data that you need to keep, you should store the data in a Doer volume.

Doer volumes are first-class citizens in the Doer API and managed independently of containers with their
own docker volume sub-command.is means that deleting a container will not delete the volumes it was using.

ird party volume plugins can provide Doer access to specialised external storage systems. ey’re installed
from Doer Hub with the docker plugin install command and are referenced at volume creation time with
the -d command flag.

Volumes are the recommended way to work with persistent data in a Doer environment.



14: Deploying apps with Docker Stacks
Deploying and managing cloud-native microservices applications comprising lots of small integrated services at
scale is hard.

Fortunately, Doer Stas are here to help. ey simplify application management by providing; desired state,
rolling updates, simple, scaling operations, health es, and more! All wrapped in a nice declarative model.
Love it!

Don’t worry if these buzzwords are new to you or sound complicated, you’ll understand them all by the end of
the apter.

We’ll split this apter into the usual three parts:

• e TLDR
• e deep dive
• e commands

Deploying apps with Docker Stacks - The TLDR

Testing and deploying simple apps on your laptop is easy, but that’s for amateurs. Deploying and managing
multi-service apps in real-world production environments… that’s for pro’s!

Fortunately, stas are here to help!. ey let you define complex multi-service apps in a single declarative file.
ey also provide a simple way to deploy the app and manage its entire lifecycle — initial deployment > health
es > scaling > updates > rollbas and more!

e process is simple. Define the desired state of your app in a Compose file, then deploy and manage it with the
docker stack command. at’s it.

e Compose file includes the entire sta of microservices that make up the app. It also includes all of the
volumes, networks, secrets, and other infrastructure the app needs. e docker stack deploy command is used
to deploy the entire app from the single file. Simple.

To accomplish all of this, stas build on top of Doer Swarm, meaning you get all of the security and advanced
features that come with Swarm.

In a nutshell, Doer is great for application development and testing. Doer Stas are great for scale and
production.

Deploying apps with Docker Stacks - The Deep Dive

If you know Doer Compose, you’ll find Doer Stas really easy. In fact, in many ways, stas are what
we always wished Compose was — fully integrated into Doer and able to manage the entire lifecycle of
applications.



200 14: Deploying apps with Doer Stas

Aritecturally speaking, stas are at the top of the Doer application hierary. ey build on top of services,
whi in turn build on top of containers.

We’ll divide this section of the apter as follows:

• Overview of the sample app
• Looking closer at the sta file
• Deploying the app
• Managing the app

Overview of the sample app

For the rest of the apter, we’ll be using the popular AtSea Shop demo app. It lives on GitHub¹⁵ and is open-
sourced under the Apae 2.0 license¹⁶.

We’re using this app because it’s moderately complicated without being too big to list and describe in a book.
Beneath the covers, it’s a cloud-native microservices app that leverages certificates and secrets. e high-level
application aritecture is shown in Figure 14.1.

Figure 14.1 AtSea Shop high level aritecture

As you can see, it comprises 5 Services, 3 networks, 4 secrets, and 3 port mappings. We’ll see ea of these in
detail when we inspect the sta file.

Note:When referring to services in this apter, we’re talking about the Doer service object that
is one or more identical containers managed as a single object on a swarm cluster.

Clone the application’s GitHub repo so that you have all of the application source files on your local maine.

¹⁵https://github.com/dockersamples/atsea-sample-shop-app
¹⁶https://github.com/dockersamples/atsea-sample-shop-app/blob/master/LICENSE

https://github.com/dockersamples/atsea-sample-shop-app
https://github.com/dockersamples/atsea-sample-shop-app/blob/master/LICENSE
https://github.com/dockersamples/atsea-sample-shop-app
https://github.com/dockersamples/atsea-sample-shop-app/blob/master/LICENSE


201

$ git clone https://github.com/dockersamples/atsea-sample-shop-app.git
Cloning into 'atsea-sample-shop-app'...
remote: Enumerating objects: 30, done.
remote: Counting objects: 100% (30/30), done.
remote: Compressing objects: 100% (30/30), done.
remote: Total 672 (delta 20), reused 0 (delta 0), pack-reused 642
Receiving objects: 100% (672/672), 7.29 MiB | 1.46 MiB/s, done.
Resolving deltas: 100% (217/217), done.

e application consists of several directories and source files. Feel free to explore them all. However, we’re going
to focus on the docker-stack.yml file that defines the app and its requirements. We’ll refer to this as the sta
file.

At the highest level, it defines 4 top-level keys.

version:
services:
networks:
secrets:

Version indicates the version of the Compose file format.is has to be 3.0 or higher to workwith stas. Services
is where you define the sta of services that make up the app.Networks lists the required networks, and secrets
defines the secrets the app uses.

If you expand ea top-level key, you’ll see how things map to Figure 14.1. e sta file has five services called
“reverse_proxy”, “database”, “appserver”, “visualizer”, and “payment_gateway”. So does Figure 14.1. e sta
file has three networks called “front-tier”, “ba-tier”, and “payment”. So does Figure 14.1. Finally, the sta file
has four secrets called “postgres_password”, “staging_token”, “revprox_key”, and “revprox_cert”. So does Figure
14.1.

version: "3.2"
services:

reverse_proxy:
database:
appserver:
visualizer:
payment_gateway:

networks:
front-tier:
back-tier:
payment:

secrets:
postgres_password:
staging_token:
revprox_key:
revprox_cert:

It’s important to understand that the sta file captures and defines many of the requirements of the entire
application. As su, it’s self-documenting and a great tool for bridging the gap between dev and ops.

Let’s take a closer look at ea section of the sta file.



202 14: Deploying apps with Doer Stas

Looking closer at the stack file

Sta files are very similar to Compose files. e only requirement is that the version: key specify a value of
“3.0” or higher. See the the Doer docs¹⁷ for the latest information on Compose file versions and compatibility
with your versions of Doer.

One of the first things Doer does when deploying an app from a sta file is create any required networks listed
under the networks key. If the networks don’t already exist, Doer creates them.

Let’s see the networks defined in the sta file.

Networks

networks:
front-tier:
back-tier:
payment:
driver: overlay
driver_opts:

encrypted: 'yes'

e sta file describes three networks; front-tier, back-tier, and payment. By default, they’ll all be created
as overlay networks by the overlay driver. But the payment network is special — it requires an encrypted data
plane.

As mentioned in the apter on overlay networking, the control plane of all overlay networks is encrypted by
default, but you have to explicitly encrypt the data plane. e control plane is for network management traffic
and the data plane is for application traffic. Encrypting the data plane has a potential performance overhead.

To encrypt the data plane, you have two oices:

• Pass the -o encrypted flag to the docker network create command.
• Specify encrypted: 'yes' under driver_opts in the sta file.

e overhead incurred by encrypting the data plane depends on various factors su traffic type and traffic flow.
You should perform extensive testing to understand the performance overhead that encrypting data plane traffic
has on your workload. It’s not uncommon for this to be approximately 10%.

As previously mentioned, all three networks will be created before the secrets and services.

Let’s look at the secrets.

Secrets

Secrets are defined as top-level objects, and the sta file we’re using defines four:

¹⁷https://docs.docker.com/compose/compose-file/

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/


203

secrets:
postgres_password:
external: true

staging_token:
external: true

revprox_key:
external: true

revprox_cert:
external: true

Notice that all four are defined as external. is means that they must already exist before the sta can be
deployed.

It’s possible for secrets to be created on-demand when the application is deployed — just replace external: true
with file: <filename>. However, for this to work, a plaintext file containing the unencrypted value of the secret
must already exist on the host’s filesystem. is has obvious security implications.

We’ll see how to create these secrets when we come to deploy the app. For now, it’s enough to know that the
application defines four secrets that need pre-creating.

Let’s look at ea of the services.

Services

Services are where most of the action happens.

Ea service is a JSON collection (dictionary) that contains a bun of keys. We’ll step through ea one and
explain what ea of the options does.

The reverse_proxy service

As you can see, the reverse_proxy service defines an image, ports, secrets, and networks.

reverse_proxy:
image: dockersamples/atseasampleshopapp_reverse_proxy
ports:
- "80:80"
- "443:443"

secrets:
- source: revprox_cert
target: revprox_cert

- source: revprox_key
target: revprox_key

networks:
- front-tier

e image key is the only mandatory key in the service object. As the name suggests, it defines the Doer image
that will be used to build the replicas for the service. Remember that a service is one or more identical containers.

Doer is opinionated, so unless you specify otherwise, the image will be pulled from Doer Hub. You can
specify images from 3rd-party registries by prepending the image name with the DNS name of the registry’s API
endpoint su as gcr.io for Google’s container registry.



204 14: Deploying apps with Doer Stas

One difference between Doer Stas and Doer Compose is that stas do not support builds. is means all
images have to be built prior to deploying the sta.

e ports key defines two mappings:

• 80:80 maps port 80 across the swarm to port 80 on ea service replica.
• 443:443 maps port 443 across the Swarm to port 443 on ea service replica.

By default, all ports are mapped using ingress mode. is means they’ll be mapped and accessible from every
node in the Swarm— even nodes not running a replica.e alternative is host mode, where ports are only mapped
on swarm nodes running replicas for the service. However, host mode requires you to use the long-form syntax.
For example, mapping port 80 in host mode using the long-form syntax would be like this:

ports:
- target: 80
published: 80
mode: host

e long-form syntax is recommended, as it’s easier to read and more powerful (it supports ingress mode and
host mode). However, it requires at least version 3.2 of the Compose file format.

e secrets key defines two secrets — revprox_cert and revprox_key. ese secrets must already exist on the
swarm and must also be defined in the top-level secrets section of the sta file.

Secrets get mounted into service replicas as a regular file. e name of the file will be whatever you specify
as the target value in the sta file, and the file will appear in the replica under /run/secrets on Linux, and
C:\ProgramData\Docker\secrets on Windows. Linux mounts /run/secrets as an in-memory filesystem, but
Windows does not.

e secrets defined in this service will be mounted in ea service replica as /run/secrets/revprox_cert and
/run/secrets/revprox_key. To mount one of them as /run/secrets/uber_secret you would define it in the
sta file as follows:

secrets:
- source: revprox_cert
target: uber_secret

e networks key ensures that all replicas for the service will be aaed to the front-tier network. e
network specified here must be defined in the networks top-level key, and if it doesn’t already exist, Doer will
create it as an overlay.

The database service

e database service also defines; an image, a network, and a secret. As well as those, it introduces environment
variables and placement constraints.



205

database:
image: dockersamples/atsea_db
environment:
POSTGRES_USER: gordonuser
POSTGRES_DB_PASSWORD_FILE: /run/secrets/postgres_password
POSTGRES_DB: atsea

networks:
- back-tier

secrets:
- postgres_password

deploy:
placement:

constraints:
- 'node.role == worker'

e environment key lets you inject environment variables into services replicas at runtime. is service uses
three environment variables to define a database user, the location of the database password (a secret mounted
into every service replica), and the name of the database.

environment:
POSTGRES_USER: gordonuser
POSTGRES_DB_PASSWORD_FILE: /run/secrets/postgres_password
POSTGRES_DB: atsea

A beer and more secure solution would be to pass all three values in as secrets, as this would avoid documenting
the database name and database user in plaintext variables.

e service also defines a placement constraint under the deploy key. is ensures that replicas for this service
will always run on Swarm worker nodes.

deploy:
placement:
constraints:
- 'node.role == worker'

Placement constraints are a great way of influencing seduling decisions. Swarm currently lets you sedule
against all of the following:

• Node ID. node.id == o2p4kw2uuw2a
• Node name. node.hostname == wrk-12
• Role. node.role != manager
• Engine labels. engine.labels.operatingsystem==ubuntu 16.04
• Custom node labels. node.labels.zone == prod1

Notice that == and != are both supported.

The appserver service

e appserver service uses an image, aaes to three networks, and mounts a secret. It also introduces several
additional features under the deploy key.



206 14: Deploying apps with Doer Stas

appserver:
image: dockersamples/atsea_app
networks:
- front-tier
- back-tier
- payment

deploy:
replicas: 2
update_config:

parallelism: 2
failure_action: rollback

placement:
constraints:
- 'node.role == worker'

restart_policy:
condition: on-failure
delay: 5s
max_attempts: 3
window: 120s

secrets:
- postgres_password

Let’s take a closer look at the new stuff under the deploy key.

First up, services.appserver.deploy.replicas = 2 will set the desired number of replicas for the service to 2.
If omied, the default value is 1.

If you need to ange the number of replicas aer you’ve deployed the service, you should do so declaratively.
is means updating services.appserver.deploy.replicas field in the sta file with the new value, and then
redeploying the sta. We’ll see this later, but re-deploying a sta does not affect services that you haven’t made
a ange to.

services.appserver.deploy.update_config tells Doer how to act when updating the service. For this service,
Doer will update two replicas at-a-time (parallelism) and will perform a ‘rollba’ if it detects the update is
failing. Rolling ba will start new replicas based on the previous definition of the service. e default value for
failure_action is pause, whi will stop further replicas being updated. e other option is continue.

update_config:
parallelism: 2
failure_action: rollback

You specify other options as part of update_config. ese include inserting a delay, a failure monitor period,
and controlling the order of starting updated replicas before terminating older replicas or vice versa.

e services.appserver.deploy.restart-policy object tells Swarm how to restart replicas (containers) if and
when they fail. e policy for this service will restart a replica if it stops with a non-zero exit code (condition:
on-failure). It will try to restart the failed replica 3 times, and wait up to 120 seconds to decide if the restart
worked. It will wait 5 seconds between ea of the three restart aempts.



207

restart_policy:
condition: on-failure
delay: 5s
max_attempts: 3
window: 120s

visualizer

e visualizer service references an image, maps a port, defines an update config, and defines a placement
constraint. It also mounts a volume and defines a custom grace period for container stop operations.

visualizer:
image: dockersamples/visualizer:stable
ports:
- "8001:8080"

stop_grace_period: 1m30s
volumes:
- "/var/run/docker.sock:/var/run/docker.sock"

deploy:
update_config:

failure_action: rollback
placement:

constraints:
- 'node.role == manager'

When Doer stops a container, it issues a SIGTERM to the application process with PID 1 inside the container.
e application then has a 10-second grace period to perform any clean-up operations. If it doesn’t handle the
signal, it will be forcibly terminated aer 10 seconds with a SIGKILL. e stop_grace_period property overrides
this 10 second grace period.

e volumes key is used to mount pre-created volumes and host directories into a service replica. In this case,
it’s mounting /var/run/docker.sock from the Doer host, into /var/run/docker.sock inside of ea service
replica. is means any reads and writes to /var/run/docker.sock in the replica will be passed through to the
same directory in the host.

/var/run/docker.sock happens to be the IPC soet that the Doer daemon exposes all of its API endpoints
on. is means giving a container access to it gives the container the ability to issue commands to the Doer
daemon. is has significant security implications and is not recommended in the real world. Fortunately, this is
just a demo app in a lab environment.

e reason this service requires access to the Doer daemon is because it provides a graphical representation
of services on the Swarm. To do this, it needs to be able to query the Doer daemon on a manager node. To
accomplish this, a placement constraint forces all service replicas onto manager nodes, and the Doer soet is
bind-mounted into ea service replica.

payment_gateway

e payment_gateway service specifies an image, mounts a secret, aaes to a network, defines a partial
deployment strategy, and then imposes a couple of placement constraints.



208 14: Deploying apps with Doer Stas

payment_gateway:
image: dockersamples/atseasampleshopapp_payment_gateway
secrets:
- source: staging_token

target: payment_token
networks:
- payment

deploy:
update_config:

failure_action: rollback
placement:

constraints:
- 'node.role == worker'
- 'node.labels.pcidss == yes'

We’ve seen all of these options before, except for the node.label in the placement constraint. Node labels are
custom-defined labels added to swarm nodes with the docker node update command. As su, they’re only
applicable within the context of the node’s role in the Swarm (you can’t leverage them on standalone containers
or outside of the Swarm).

In this example, the payment_gateway service performs operations that require it to run on a swarm node that
has been hardened to PCI DSS standards. To enable this, you can apply a custom node label to any swarm node
meeting these requirements. We’ll do this when we build the lab to deploy the app.

As this service defines two placement constraints, replicas will only be deployed to nodes that mat both. I.e. a
worker node with the pcidss=yes node label.

Now that we’re finished examining the sta file, you should have a good understanding of the application’s
requirements. As mentioned previously, the sta file is a great piece of application documentation. We know the
application has 5 services, 3 networks, and 4 secrets. We know whi services aa to whi networks, whi
ports need publishing, whi images are required, and we even know that some services need to run on specific
nodes.

Let’s deploy it.

Deploying the app

ere’s a few pre-requisites that need taking care of before deploying the app:

• Swarm mode:We’ll deploy the app as a Doer Sta, and stas require Swarm mode.
• Labels: One of the Swarm worker nodes needs a custom node label.
• Secrets:e app uses secrets whi need pre-creating before it can be deployed.

Building a lab for the sample app

In this section we’ll build a three-node Linux-based Swarm cluster that satisfies all of the application’s pre-reqs.
Once we’re done, the lab will look like this.



209

Figure 14.2 Sample lab

We’ll complete the following three steps:

• Create a new Swarm
• Add a node label
• Create the secrets

Let’s create a new three-node Swarm cluster.

1. Initialize a new Swarm.

Run the following command on the node that you want to be your Swarm manager.

$ docker swarm init
Swarm initialized: current node (lhma...w4nn) is now a manager.
<Snip>

2. Add worker nodes.

Copy the docker swarm join command that displayed in the output of the previous command. Paste it
into the two nodes you want to join as workers.

//Worker 1 (wrk-1)
wrk-1$ docker swarm join --token SWMTKN-1-2hl6...-...3lqg 172.31.40.192:2377
This node joined a swarm as a worker.

//Worker 2 (wrk-2)
wrk-2$ docker swarm join --token SWMTKN-1-2hl6...-...3lqg 172.31.40.192:2377
This node joined a swarm as a worker.

3. Verify that the Swarm is configured with one manager and two workers.

Run this command from the manager node.



210 14: Deploying apps with Doer Stas

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
lhm...4nn * mgr-1 Ready Active Leader
b74...gz3 wrk-1 Ready Active
o9x...um8 wrk-2 Ready Active

e Swarm is now ready.

e payment_gateway service has a set of placement constraints forcing it to only run onworker nodeswith the
pcidss=yes node label. In this step we’ll add that node label to wrk-1.

In the real world you would harden at least one of your Doer nodes to PCI standards before labelling it.
However, this is just a lab, so we’ll skip the hardening step and just add the label to wrk-1.

Run the following commands from the Swarm manager.

1. Add the node label to wrk-1.

$ docker node update --label-add pcidss=yes wrk-1
wrk-1

Node labels only apply within the Swarm.
2. Verify the node label.

$ docker node inspect wrk-1
[
{

"ID": "b74rzajmrimfv7hood6l4lgz3",
"Version": {

"Index": 27
},
"CreatedAt": "2020-05-04T12:06:18.221580486Z",
"UpdatedAt": "2020-05-04T12:08:17.335295528Z",
"Spec": {

"Labels": {
"pcidss": "yes"

},
<Snip>

e wrk-1 worker node is now configured so that it can run replicas for the payment_gateway service.

e application defines four secrets, all of whi need creating before the app can be deployed:

• postgress_password
• staging_token
• revprox_cert
• revprox_key

Run the following commands from the manager node to create them.

1. Create a new key pair.

ree of the secrets will be populated with cryptographic keys. We’ll create the keys in this step and then
place them inside of Doer secrets in the next steps.



211

$ openssl req -newkey rsa:4096 -nodes -sha256 \
-keyout domain.key -x509 -days 365 -out domain.crt

You’ll have two new files in your current directory. We’ll use them in the next step.
2. Create the revprox_cert, revprox_key, and postgress_password secrets.

$ docker secret create revprox_cert domain.crt
cqblzfpyv5cxb5wbvtrbpvrrj

$ docker secret create revprox_key domain.key
jqd1ramk2x7g0s2e9ynhdyl4p

$ docker secret create postgres_password domain.key
njpdklhjcg8noy64aileyod6l

3. Create the staging_token secret.

$ echo staging | docker secret create staging_token -
sqy21qep9w17h04k3600o6qsj

4. List the secrets.

$ docker secret ls
ID NAME DRIVER CREATED UPDATED
njp...d6l postgres_password 47 seconds ago 47 seconds ago
cqb...rrj revprox_cert About a minute ago About a minute ago
jqd...l4p revprox_key About a minute ago About a minute ago
sqy...qsj staging_token 23 seconds ago 23 seconds ago

at’s all of the pre-requisites taken care of. Time to deploy the app!

Deploying the sample app

If you haven’t already done so, clone the app’s GitHub repo to your Swarm manager.

$ git clone https://github.com/dockersamples/atsea-sample-shop-app.git
Cloning into 'atsea-sample-shop-app'...
remote: Enumerating objects: 30, done.
remote: Counting objects: 100% (30/30), done.
remote: Compressing objects: 100% (30/30), done.
remote: Total 672 (delta 20), reused 0 (delta 0), pack-reused 642
Receiving objects: 100% (672/672), 7.29 MiB | 33.19 MiB/s, done.
Resolving deltas: 100% (217/217), done.

$ cd atsea-sample-shop-app

Now that you have the code, you are ready to deploy the app.

Stas are deployed using the docker stack deploy command. In its basic form it accepts two arguments:



212 14: Deploying apps with Doer Stas

• name of the sta file
• name of the sta

e application’s GitHub repository contains a sta file called docker-stack.yml, so we’ll use this as sta file.
We’ll call the sta seastack, though you can oose a different name if you don’t like that.

Run the following commands from within the atsea-sample-shop-app directory on the Swarm manager.

Deploy the sta (app).

$ docker stack deploy -c docker-stack.yml seastack
Creating network seastack_default
Creating network seastack_back-tier
Creating network seastack_front-tier
Creating network seastack_payment
Creating service seastack_database
Creating service seastack_appserver
Creating service seastack_visualizer
Creating service seastack_payment_gateway
Creating service seastack_reverse_proxy

You can run docker network ls and docker service ls commands to see the networks and services that were
deployed as part of the app.

A few things to note from the output of the command.

e networks were created before the services. is is because the services aa to the networks, so need the
networks to be created before they can start.

Doer prepends the name of the sta to every resource it creates. In our example, the sta is called seastack,
meaning all resources are named seastack_<resource>. For example, the payment network is called seastack_-
payment. Resources that were created prior to the deployment, su as secrets, do not get renamed.

Another thing to note is the presence of a network called seastack_default. is isn’t defined in the sta file,
so why was it created? Every service needs to aa to a network, but the visualizer service didn’t specify one.
erefore, Doer created one called seastack_default and aaed it to that. You can verify this by running a
docker network inspect seastack_default command.

You can verify the status of a sta with a couple of commands. docker stack ls lists all stas on the system,
including how many services they have. docker stack ps <stack-name> gives more detailed information about
a particular sta, su as desired state and current state. Let’s see them both.

$ docker stack ls
NAME SERVICES ORCHESTRATOR
seastack 5 Swarm

$ docker stack ps seastack
NAME NODE DESIRED STATE CURRENT STATE
seastack_reverse_proxy.1 wrk-2 Running Running 7 minutes ago
seastack_payment_gateway.1 wrk-1 Running Running 7 minutes ago
seastack_visualizer.1 mgr-1 Running Running 7 minutes ago
seastack_appserver.1 wrk-2 Running Running 7 minutes ago
seastack_database.1 wrk-2 Running Running 7 minutes ago
seastack_appserver.2 wrk-1 Running Running 7 minutes ago



213

e docker stack ps command is a good place to start when troubleshooting services that fail to start. It gives an
overview of every service in the sta, including whi node ea replica is seduled on, current state, desired
state, and error message. e following output shows two failed aempts to start a replica for the reverse_proxy
service on the wrk-2 node.

$ docker stack ps seastack
NAME NODE DESIRED CURRENT ERROR

STATE STATE
reverse_proxy.1 wrk-2 Shutdown Failed "task: non-zero exit (1)"
\_reverse_proxy.1 wrk-2 Shutdown Failed "task: non-zero exit (1)"

For more detailed logs of a particular service you can use the docker service logs command. You pass it either
the service name/ID, or replica ID. If you pass it the service name or ID, you’ll get the logs for all service replicas.
If you pass it a particular replica ID, you’ll only get the logs for that replica.

e following docker service logs command shows the logs for all replicas in the seastack_reverse_proxy
service that had the two failed replicas in the previous output.

$ docker service logs seastack_reverse_proxy
seastack_reverse_proxy.1.zhc3cjeti9d4@wrk-2 | [emerg] 1#1: host not found...
seastack_reverse_proxy.1.6m1nmbzmwh2d@wrk-2 | [emerg] 1#1: host not found...
seastack_reverse_proxy.1.6m1nmbzmwh2d@wrk-2 | nginx: [emerg] host not found..
seastack_reverse_proxy.1.zhc3cjeti9d4@wrk-2 | nginx: [emerg] host not found..
seastack_reverse_proxy.1.1tmya243m5um@mgr-1 | 10.255.0.2 "GET / HTTP/1.1" 302

e output is trimmed to fit the page, but you can see that logs from all three service replicas are shown (the two
that failed and the one that’s running). Ea line starts with the name of the replica, whi includes the service
name, replica number, replica ID, and name of host that it’s seduled on. Following that is the log output.

Note: You might have noticed that all of the replicas in the previous output showed as replica
number 1. is is because Doer created one at a time and only started a new one when the
previous one had failed.

It’s hard to tell because the output is trimmed to fit the book, but it looks like the first two replicas failed because
they were relying on something in another service that was still starting (a sort of race condition when dependent
services are starting).

You can follow the logs (--follow), tail them (--tail), and get extra details (--details).

Now that the sta is up and running, let’s see how to manage it.

Managing the app

We know that a sta is set of related services and infrastructure that gets deployed and managed as a unit. And
while that’s a fancy sentence full of buzzwords, it reminds us that the sta is built from normal Doer resources
— networks, volumes, secrets, services etc. is means we can inspect them with their normal doer commands:
docker network, docker volume, docker secret, docker service…



214 14: Deploying apps with Doer Stas

With this in mind, it’s possible to use the docker service command to manage services that are part of the sta.
A simple example would be using the docker service scale command to increase the number of replicas in
the appserver service. However, this is not the recommended method!

e recommended method is the declarative method, whi uses the sta file as the ultimate source of truth. As
su, all anges to the sta should be made to the sta file, and then the updated sta file should be used to
redeploy the app.

Here’s a qui example of why the imperative method (making anges via the CLI) is bad:

Imagine you have a sta deployed from the docker-stack.yml file that you cloned from GitHub
earlier in the apter. is means you have two replicas of the appserver service. If you use the
docker service scale command to ange that to 4 replicas, the current observed state of the
cluster will be 4 running replicas, but the sta file will still define 2. Admiedly, that doesn’t sound
like the end of the world. However, imagine you then edit the sta file to use a newer image, and
roll it out the recommended way with the docker stack deploy command. As part of this rollout,
the number of appserver replicas in the cluster will be rolled ba to 2, because you never updated
to the sta file to 4 replicas. For this kind of reason, it’s recommended to make all anges to the
application via the sta file, and to manage the sta file in a proper version control system.

Let’s walk through the process of making a couple of declarative anges to the sta.

We’ll make the following anges:

• Increase the number of appserver replicas from 2 to 10
• Increase the stop grace period for the visualizer service to 2 minutes

Edit the docker-stack.yml file and update the following two values:

• .services.appserver.deploy.replicas=10
• .services.visualizer.stop_grace_period=2m

e relevant sections of the sta file will now look like this:

<Snip>
appserver:
image: dockersamples/atsea_app
networks:
- front-tier
- back-tier
- payment

deploy:
replicas: 2 <<Updated value

<Snip>
visualizer:
image: dockersamples/visualizer:stable
ports:
- "8001:8080"

stop_grace_period: 2m <<Updated value
<Snip

Save the file and redeploy the app.



215

$ docker stack deploy -c docker-stack.yml seastack
Updating service seastack_reverse_proxy (id: z4crmmrz7zi83o0721heohsku)
Updating service seastack_database (id: 3vvpkgunetxaatbvyqxfic115)
Updating service seastack_appserver (id: ljht639w33dhv0dmht1q6mueh)
Updating service seastack_visualizer (id: rbwoyuciglre01hsm5fviabjf)
Updating service seastack_payment_gateway (id: w4gsdxfnb5gofwtvmdiooqvxs)

Re-deploying the app like this will only update the anged components.

Run a docker stack ps to see the number of appserver replicas increasing.

$ docker stack ps seastack
NAME NODE DESIRED STATE CURRENT STATE
seastack_visualizer.1 mgr-1 Running Running 1 second ago
seastack_visualizer.1 mgr-1 Shutdown Shutdown 3 seconds ago
seastack_appserver.1 wrk-2 Running Running 24 minutes ago
seastack_appserver.2 wrk-1 Running Running 24 minutes ago
seastack_appserver.3 wrk-2 Running Running 1 second ago
seastack_appserver.4 wrk-1 Running Running 1 second ago
seastack_appserver.5 wrk-2 Running Running 1 second ago
seastack_appserver.6 wrk-1 Running Starting 7 seconds ago
seastack_appserver.7 wrk-2 Running Running 1 second ago
seastack_appserver.8 wrk-1 Running Starting 7 seconds ago
seastack_appserver.9 wrk-2 Running Running 1 second ago
seastack_appserver.10 wrk-1 Running Starting 7 seconds ago

e output has been trimmed so that it fits on the page, and so that only the updated services are shown.

Notice that there are two lines for the visualizer service. One line shows a replica that was shutdown 3 seconds
ago, and the other line shows a replica that has been running for 1 second. is is because the ange we made
to the visualizer service caused Swarm to terminate the existing replica and started a new one with the new
stop_grace_period value.

You can also see that there are now 10 replicas for the appserver service, and that they are in various states in
the “CURRENT STATE” column — some are running whereas others are still starting.

Aer enough time, the cluster will converge so that current observed state mates the new desired state. At that
point, what is deployed and observed on the cluster will exactly mat what is defined in the sta file. is is a
happy place to be :-D

is declarative update paern should be used for all updates to the app/sta. I.e. all anges should be made
declaratively via the sta file, and rolled out using docker stack deploy.

e correct way to delete a sta is with the docker stack rm command. Be warned though! It deletes the sta
without asking for confirmation.



216 14: Deploying apps with Doer Stas

$ docker stack rm seastack
Removing service seastack_appserver
Removing service seastack_database
Removing service seastack_payment_gateway
Removing service seastack_reverse_proxy
Removing service seastack_visualizer
Removing network seastack_front-tier
Removing network seastack_payment
Removing network seastack_default
Removing network seastack_back-tier

Notice that the networks and services were deleted, but the secrets weren’t. is is because the secrets were pre-
created and existed before the sta was deployed. If your sta defines volumes at the top-level, these will not
be deleted by docker stack rm either. is is because volumes are intended as long-term persistent data stores
and exist independent of the lifecycle of containers, services, and stas.

Congratulations. You know how to deploy and manage a multi-service app using Doer Stas.

Deploying apps with Docker Stacks - The Commands

• docker stack deploy is the command for deploying and updating stas of services defined in a sta
file (usually called docker-stack.yml).

• docker stack ls lists all stas on the Swarm, including how many services they have.
• docker stack ps gives detailed information about a deployed sta. It accepts the name of the sta as
its main argument, lists whi node ea replica is running on, and shows desired state and current state.

• docker stack rm deletes a sta from the Swarm. It does not ask for confirmation before deleting the
sta.

Chapter Summary

Stas are the native Doer solution for deploying and managing cloud-native microservices applications with
multiple services. ey’re baked into the Doer engine, and offer a simple declarative interface for deploying
and managing the entire lifecycle of an application.

You start with application code and a set of infrastructure requirements — things like networks, ports, volumes
and secrets. You containerize the application and group together all of the app services and infrastructure
requirements into a single declarative stafile. You set the number of replicas, as well as rolling update and restart
policies. You then take the file and deploy the application from it using the docker stack deploy command.

Future updates to the deployed app should be done declaratively by eing the sta file out of source control,
updating it, re-deploying the app, and eing the sta file ba into source control.

Because the sta file defines things like number of service replicas, you should maintain separate sta files for
ea of your environments, su as dev, test and prod.



15: Security in Docker
Good security is all about layers, and Doer has lots of layers. It supports all the major Linux security
tenologies as well as plenty of its own. And the best thing… many of them are simple and easy to configure.

In this apter, we’ll look at some of the tenologies that can make running containers on Doer very secure.

When we get to the deep dive part of the apter, we’ll divide things into two categories:

• Linux security tenologies
• Doer security tenologies

Large parts of the apter will be specific to Linux. However, the Doer security tenologies section is
platform agnostic and applies equally to Linux and Windows.

Security in Docker - The TLDR

Security is all about layers. Generally speaking, the more layers of security the more secure something is. Well…
Doer offers a lot of security layers. Figure 15.1 shows some of the security-related tenologies we’ll cover in
the apter.

Figure 15.1

Doer on Linux leveragesmost of the common Linux security andworkload isolation tenologies.ese include
namespaces, control groups (cgroups), capabilities, mandatory access control (MAC) systems, and seccomp. For
ea one, Doer implements sensible defaults for a seamless and moderately secure out-of-the-box experience.
However, you can customize ea one to your own specific requirements.



218 15: Security in Doer

Doer itself adds some excellent additional security tenologies. And one of the best things about the Doer
security tenologies is that they’re amazingly simple to use!

Doer Swarm Mode is secure by default. You get all of the following with zero configuration required;
cryptographic node IDs, mutual authentication, automatic CA configuration, automatic certificate rotation,
encrypted cluster store, encrypted networks, and more.

Doer Content Trust (DCT) lets you sign your images and verify the integrity and publisher of images you
consume.

Image security scanning analyses images, detects known vulnerabilities, and provides detailed reports.

Doer secrets are a way to securely share sensitive data and are first-class objects in Doer. ey’re stored in
the encrypted cluster store, encrypted in-flight when delivered to containers, stored in in-memory filesystems
when in use, and operate a least-privilege model.

ere’s a lot more, but the important thing to know is that Doer works with the major Linux security
tenologies as well as providing its own extensive and growing set of security tenologies. While the Linux
security tenologies tend to be complex, the native Doer security tenologies tend to be simple.

Security in Docker - The deep dive

We all know that security is important. We also know that security can be complicated and boring.

When Doer decided to bake security into the platform, it decided to make it simple and easy. ey knew that
if security was hard to configure, people wouldn’t use it. As a result, most of the security tenologies offered by
the Doer platform are simple to use. ey also ship with sensible defaults — meaning you get a fairly secure
platform at zero effort. Of course, the defaults aren’t perfect, but they’re enough to serve as a safe starting point.
From there you should customize them to your requirements.

We’ll organize the rest of this apter as follows:

• Linux security tenologies
– Namespaces
– Control Groups
– Capabilities
– Mandatory Access Control
– seccomp

• Doer platform security tenologies
– Swarm Mode
– Image Scanning
– Doer Content Trust
– Doer Secrets

Linux security technologies

All good container platforms use namespaces and cgroups to build containers. e best container platforms will
also integrate with other Linux security tenologies su as capabilities,Mandatory Access Control systems like
SELinux and AppArmor, and seccomp. As expected, Doer integrates with them all.

In this section of the apter we’ll take a brief look at some of the major Linux security tenologies used
by Doer. We won’t go into detail, as I want the main focus of the apter to be on the value-add security
tenologies Doer adds.



219

Namespaces

Kernel namespaces are at the very heart of containers. ey slice up an operating system (OS) so that it looks
and feels like multiple isolated operating systems. is lets us do really cool things like run multiple web servers
on the same OS without having port conflicts. It also lets us run multiple apps on the same OS without them
fighting over shared config files and shared libraries.

A couple of qui examples:

• Namespaces let you run multiple web servers, ea on port 443, on a single OS. To do this you just run
ea web server app inside of its own network namespace. is works because ea network namespace
gets its own IP address and full range of ports. You may have to map ea one to a separate port on the
Doer host, but ea can run without being re-wrien or reconfigured to use a different port.

• You can run multiple applications, ea requiring their own version of a shared library or configuration
file. To do this you run ea application inside of its own mount namespace. is works because ea
mount namespace can have its own isolated copy of any directory on the system (e.g. /etc, /var, /dev etc.)

Figure 15.2 shows a high-level example of two web server applications running on a single host and both using
port 443. Ea web server app is running inside of its own network namespace.

Figure 15.2

Note: While namespaces isolate multiple processes on a single OS, the isolation they provide is not
very strong. For example, namespaces are not as good at workload isolation as virtual maines.
You should keep this in mind from a security perspective and not rely too heavily on the isolation
provided by namespaces.

Working directly with namespaces is hard. Fortunately, Doer hides this complexity and manages all of the
namespaces required to build a useful container.

Doer on Linux currently utilizes the following kernel namespaces:



220 15: Security in Doer

• Process ID (pid)
• Network (net)
• Filesystem/mount (mnt)
• Inter-process Communication (ipc)
• User (user)
• UTS (uts)

We’ll briefly explain what ea one does in a moment. But the most important thing to understand is thatDoer
containers are an organized collection of namespaces. is means that you get all of this OS isolation for free
with every container.

For example, every container has its own pid, net, mnt, ipc, uts, and potentially user namespace. In fact, an
organized collection of these namespaces is what we call a “container”. Figure 15.3 shows a single Linux host
running two containers.

Figure 15.3

Let’s briefly look at how Doer uses ea namespace:

• Process ID namespace: Doer uses the pid namespace to provide isolated process trees for ea
container. is means every container gets its own PID 1. PID namespaces also mean that one container
cannot see or access to the process tree of other containers. Nor can it see or access the process tree of the
host it’s running on.

• Network namespace: Doer uses the net namespace to provide ea container its own isolated network
sta. is sta includes; interfaces, IP addresses, port ranges, and routing tables. For example, every
container gets its own eth0 interface with its own unique IP and range of ports.

• Mount namespace: Every container gets its own unique isolated root (/) filesystem. is means every
container can have its own /etc, /var, /dev and other important filesystem constructs. Processes inside
of a container cannot access the mount namespace of the Linux host or other containers — they can only
see and access their own isolated filesystem.

• Inter-process Communication namespace: Doer uses the ipc namespace for shared memory access
within a container. It also isolates the container from shared memory outside of the container.

• User namespace: Doer lets you use user namespaces to map users inside of a container to different
users on the Linux host. A common example is mapping a container’s root user to a non-root user on the
Linux host.

• UTS namespace: Doer uses the uts namespace to provide ea container with its own hostname.

Remember… a container is a collection of namespaces paaged and ready to use.



221

Control Groups

If namespaces are about isolation, control groups (cgroups) are about seing limits.

ink of containers as similar to rooms in a hotel. While ea room might appear isolated, every room shares
a common set of infrastructure resources — things like water supply, electricity supply, shared swimming pool,
shared gym, shared breakfast bar etc. Cgroups let us set limits so that (stiing with the hotel analogy) no single
container can use all of the water or eat everything at the breakfast bar.

In the real world, not the hotel analogy, containers are isolated from ea other but all share a common set of OS
resources — things like CPU, RAM, network bandwidth, and disk I/O. Cgroups let us set limits on ea of these
so a single container cannot consume everything and cause a denial of service (DoS) aa.

Capabilities

It’s a bad idea to run containers as root — root is all-powerful and therefore very dangerous. But, it can be
allenging running containers as unprivileged non-root users. For example, on most Linux systems, non-root
users tend to be so powerless they’re practically useless. What’s needed, is a tenology that lets us pi and
oose whi root powers a container needs in order to run.

Enter capabilities!

Under the hood, the Linux root user is a combination of a long list of capabilities. Some of these capabilities
include:

• CAP_CHOWN: lets you ange file ownership
• CAP_NET_BIND_SERVICE: lets you bind a soet to low numbered network ports
• CAP_SETUID: lets you elevate the privilege level of a process
• CAP_SYS_BOOT: lets you reboot the system.

e list goes on and is long.

Doer works with capabilities so that you can run containers as root, but strip out all the capabilities you
don’t need. For example, if the only root privilege your container needs is the ability to bind to low numbered
network ports, you should start a container and drop all root capabilities, then add ba just the CAP_NET_-
BIND_SERVICE capability.

is is an excellent example of implementing least privilege — you get a container running with only the
capabilities required. Doer also imposes restrictions so that containers cannot re-add the dropped capabilities.

While this is great, configuring the correct set of capabilities can be prohibitively complex for many users.

Mandatory Access Control systems

Doer works with major Linux MAC tenologies su as AppArmor and SELinux.

Depending on your Linux distribution, Doer applies a default AppArmor profile to all new containers.
According to the Doer documentation, this default profile is “moderately protective while providing wide
application compatibility”.

Doer also lets you start containers without a policy applied, as well as giving you the ability to customize
policies to meet specific requirements. is is also very powerful, but can also be prohibitively complex.



222 15: Security in Doer

seccomp

Doer uses seccomp, in filter mode, to limit the syscalls a container can make to the host’s kernel.

As per the Doer security philosophy, all new containers get a default seccomp profile configured with sensible
defaults. is is intended to provide moderate security without impacting application compatibility.

As always, you can customize seccomp profiles, and you can pass a flag to Doer so that containers can be
started without a seccomp profile.

As with many of the tenologies already mentioned, seccomp is extremely powerful. However, the Linux syscall
table is long, and configuring the appropriate seccomp policies can be prohibitively complex.

Final thoughts on the Linux security technologies

Doer supports most of the important Linux security tenologies and ships with sensible defaults that add
security but aren’t too restrictive. Figure 15.4 shows how these tenologies form multiple layers of potential
security.

Figure 15.4

Some of these tenologies can be complicated to customize as they require deep knowledge of how the Linux
kernel works. Hopefully they will get simpler to configure in the future, but for now, the default configurations
that ship with Doer might be a good place to start.

Docker platform security technologies

Let’s take a look at some of the major security tenologies offered by the Doer platform.



223

Security in Swarm Mode

Doer Swarm allows you to cluster multiple Doer hosts and deploy applications declaratively. Every Swarm
is comprised of managers and workers that can be Linux or Windows. Managers host the control plane of the
cluster and are responsible for configuring the cluster and dispating work tasks. Workers are the nodes that
run your application code as containers.

As expected, swarmmode includes many security features that are enabled out-of-the-box with sensible defaults.
ese include:

• Cryptographic node IDs
• TLS for mutual authentication
• Secure join tokens
• CA configuration with automatic certificate rotation
• Encrypted cluster store (config DB)
• Encrypted networks

Let’s walk through the process of building a secure swarm and configuring some of the security aspects.

To follow along with the complete set of examples you’ll need at least three Doer hosts running Doer 17.03
or higher. e examples cited use three Doer hosts called “mgr1”, “mgr2”, and “wrk1”. Ea one is running
Doer 19.03.4. ere is network connectivity between all three hosts, and all three can ping ea other by name.

Configure a secure Swarm

Run the following command from the node you want to be the first manager in the new swarm. In the example,
we’ll run it from mgr1.

$ docker swarm init
Swarm initialized: current node (7xam...662z) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join --token \
SWMTKN-1-1dmtwu...r17stb-ehp8g...hw738q 172.31.5.251:2377

To add a manager to this swarm, run 'docker swarm join-token manager'
and follow the instructions.

at’s it! at is literally all you need to do to configure a secure swarm.

mgr1 is configured as the first manager of the swarm and also as the root certificate authority (CA). e swarm
itself has been given a cryptographic clusterID. mgr1 has issued itself with a client certificate that identifies
it as a manager in the swarm, certificate rotation has been configured with the default value of 90 days, and a
cluster config database has been configured and encrypted. A set of secure tokens have also been created so that
new managers and new workers can be joined to the swarm. And all of this with a single command!

Figure 15.5 shows how the lab looks now. Some of the details may be different in your lab.



224 15: Security in Doer

Figure 15.5

Let’s join mgr2 as an additional manager.

Joining new managers to a swarm is a two-step process. e first step extracts the required token. e second
step runs the docker swarm join command on the node you wish to add. As long as you include the manager
join token as part of the command, mgr2 will join the swarm as a manager.

Run the following command from mgr1 to extract the manager join token.

$ docker swarm join-token manager
To add a manager to this swarm, run the following command:

docker swarm join --token \
SWMTKN-1-1dmtwu...r17stb-2axi5...8p7glz \
172.31.5.251:2377

e output gives you the exact command you need to run on nodes that you want to join as managers. e join
token and IP address will be different in your lab.

e format of the join command is:

• docker swarm join --token <manager-join-token> <ip-of-existing-manager>:<swarm-port>

e format of the token is:

• SWMTKN-1-<hash-of-cluster-certificate>-<manager-join-token>

Copy the command and run it on “mgr2”:



225

$ docker swarm join --token SWMTKN-1-1dmtwu...r17stb-2axi5...8p7glz \
> 172.31.5.251:2377

This node joined a swarm as a manager.

mgr2 has joined the swarm as an additional manager. In production clusters you should always run either 3 or
5 managers for high availability.

Verify mgr2 was successfully added by running a docker node ls on either of the two managers.

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
7xamk...ge662z mgr1 Ready Active Leader
i0ue4...zcjm7f * mgr2 Ready Active Reachable

e output shows that mgr1 and mgr2 are both part of the swarm and are both managers. e updated
configuration is shown in Figure 15.6.

Figure 15.8

Two managers is possibly the worst number possible. However, we’re just messing about in a demo lab, not
building a business critical production environment ;-)

Adding a swarm worker is a similar two-step process. Step 1 extracts the join token, and step 2 is to run a docker
swarm join command on the node you want to join as a worker.

Run the following command on either of the managers to expose the worker join token.



226 15: Security in Doer

$ docker swarm join-token worker

To add a worker to this swarm, run the following command:

docker swarm join --token \
SWMTKN-1-1dmtw...17stb-ehp8g...w738q \
172.31.5.251:2377

Again, you get the exact command you need to run on nodes you want to join as workers. e join token and IP
address will be different in your lab.

Copy the command and run it on wrk1 as shown:

$ docker swarm join --token SWMTKN-1-1dmtw...17stb-ehp8g...w738q \
> 172.31.5.251:2377

This node joined a swarm as a worker.

Run another docker node ls command from either of the swarm managers.

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
7xamk...ge662z * mgr1 Ready Active Leader
ailrd...ofzv1u wrk1 Ready Active
i0ue4...zcjm7f mgr2 Ready Active Reachable

You now have a swarm with two managers and one worker. e managers are configured for high availability
(HA) and the cluster store is replicated to both. e final configuration is shown in Figure 15.7.

Figure 15.7



227

Looking behind the scenes at Swarm security

Now that we’ve built a secure Swarm let’s take a minute to look behind the scenes at some of the security
tenologies involved.

Swarm join tokens

e only thing that is needed to join new managers and workers to an existing swarm is the relevant join token.
For this reason, it’s vital that you keep your join-tokens safe. Do not post them on public GitHub repos or even
internal source code repos that are not restricted.

Every swarm maintains two distinct join tokens:

• One for joining new managers
• One for joining new workers

It’s worth understanding the format of the Swarm join token. Every join token is comprised of 4 distinct fields
separated by dashes (-):

PREFIX - VERSION - SWARM ID - TOKEN

e prefix is always SWMTKN. is allows you to paern-mat against it and prevent people from accidentally
posting it publicly. e VERSION field indicates the version of the swarm. e Swarm ID field is a hash of the
swarm’s certificate. e TOKEN field is the part that determines whether it can join nodes as managers or workers.

As the following shows, the manager and worker join tokens for a given Swarm are identical except for the final
TOKEN field.

• MANAGER: SWMTKN-1-1dmtwusdc...r17stb-2axi53zjbs45lqxykaw8p7glz
• WORKER: SWMTKN-1-1dmtwusdc...r17stb-ehp8gltji64jbl45zl6hw738q

If you suspect that either of your join tokens has been compromised, you can revoke them and issue new ones
with a single command. e following example revokes the existing manager join token and issues a new one.

$ docker swarm join-token --rotate manager

Successfully rotated manager join token.

To add a manager to this swarm, run the following command:

docker swarm join --token \
SWMTKN-1-1dmtwu...r17stb-1i7txlh6k3hb921z3yjtcjrc7 \
172.31.5.251:2377

Existing managers do not need updating, however, you’ll need to use the new token to add new managers.

Notice that the only difference between the old and new join tokens is the last field. e hash of the Swarm ID
remains the same.

Join tokens are stored in the cluster store whi is encrypted by default.



228 15: Security in Doer

TLS and mutual authentication

Every manager and worker that joins a swarm is issued a client certificate. is certificate is used for mutual
authentication. It identifies the node, the swarm that it’s a member of, and role the node performs in the swarm
(manager or worker).

You can inspect a node’s client certificate on Linux nodes with the following command.

$ sudo openssl x509 \
-in /var/lib/docker/swarm/certificates/swarm-node.crt \
-text

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

80:2c:a7:b1:28...a8:af:89:a1:2a:51:89
Signature Algorithm: ecdsa-with-SHA256

Issuer: CN = swarm-ca
Validity

Not Before: May 5 10:31:00 2020 GMT
Not After : Aug 3 11:31:00 2020 GMT

Subject: O=mfbkgjm2tlametbnfqt2zid8x, OU=swarm-manager,
CN=7xamk8w3hz9q5kgr7xyge662z
Subject Public Key Info:

<SNIP>

e Subject data in the output uses the standard O, OU, and CN fields to specify the Swarm ID, the node’s role,
and the node ID.

• e Organization (O) field stores the Swarm ID
• e Organizational Unit (OU) field stores the node’s role in the swarm
• e Canonical Name (CN) field stores the node’s crypto ID.

is is shown in Figure 15.8.

Figure 15.8



229

You can also see the certificate rotation period in the Validity section.

You can mat these values to the corresponding values shown in the output of a docker system info command.

$ docker system info
<SNIP>
Swarm: active
NodeID: 7xamk8w3hz9q5kgr7xyge662z # Relates to the CN field
Is Manager: true # Relates to the OU field
ClusterID: mfbkgjm2tlametbnfqt2zid8x # Relates to the O field
...
<SNIP>
...
CA Configuration:
Expiry Duration: 3 months # Relates to Validity field
Force Rotate: 0

Root Rotation In Progress: false
<SNIP>

Configuring some CA settings

You can configure the certificate rotation period for the Swarm with the docker swarm update command. e
following example anges the certificate rotation period to 30 days.

$ docker swarm update --cert-expiry 720h

Swarm allows nodes to renew certificates early (slightly before they expire) so that not all nodes don’t try and
update their certificates at the same time.

You can configure an external CA when creating a new swarm by passing the --external-ca flag to the docker
swarm init command.

e new docker swarm ca sub-command can be used to manage CA related configuration. Run the command
with the --help flag to see a list of things it can do.

$ docker swarm ca --help

Usage: docker swarm ca [OPTIONS]

Manage root CA

Options:
--ca-cert pem-file Path to the PEM-formatted root CA

certificate to use for the new cluster
--ca-key pem-file Path to the PEM-formatted root CA

key to use for the new cluster
--cert-expiry duration Validity period for node certificates

(ns|us|ms|s|m|h) (default 2160h0m0s)
-d, --detach Exit immediately instead of waiting for



230 15: Security in Doer

the root rotation to converge
--external-ca external-ca Specifications of one or more certificate

signing endpoints
-q, --quiet Suppress progress output

--rotate Rotate the swarm CA - if no certificate
or key are provided, new ones will be generated

The cluster store

e cluster store is the brains of a swarm and is where cluster config and state are stored. It’s also critical to other
Doer tenologies su as overlay networking and Secrets. is is why swarm mode is required for so many
advanced and security related Doer features. e moral of the story… if you’re not running in swarm mode,
there’ll be a bun of Doer tenologies and security features you won’t be able to use.

e store is currently based on the popular etcd distributed database and is automatically configured to replicate
itself to all managers in the swarm. It is also encrypted by default.

Day-to-day maintenance of the cluster store is taken care of automatically by Doer. However, in production
environments, you should have strong baup and recovery solutions in place for it.

at’s enough for now about swarm mode security.

Detecting vulnerabilities with image security scanning

Image scanning is your primary weapon against vulnerabilities and security holes in your images.

Image scanners work by inspecting images and searing for paages that have known vulnerabilities. Once
you know about these, you can update the paages and dependencies to versions with fixes.

As good as image scanning is, it’s important to understand its limitations. For example, image scanning is focussed
on images and does not detect security problems with networks, nodes, or orestrators. Also, not all image
scanners are equal — some perform deep binary-level scanning to detect paages, whereas others simply look
at paage names and do not closely inspect the content of images.

At the time of writing, Doer Hub does not offer image scanning services. is may ange in the future. Some
on-premises private registry solutions offer built-in scanning, and there are third-party services that offer image
scanning services.

Figure 15.9 and Figure 15.10 are included as an example of the kind of reports image scanners can provide.



231

Figure 15.9

Figure 15.10

In summary, image security scanning can be a great tool for deeply inspecting your images for known
vulnerabilities. Beware though, with great knowledge comes great responsibility — once you become aware
of vulnerabilities you are responsible for mitigating or fixing them.

Signing and verifying images with Docker Content Trust

Doer Content Trust (DCT) makes it simple and easy to verify the integrity and the publisher of images that
you download and run. is is especially important when pulling images over untrusted networks su as the
internet.

At a high level, DCT allows developers to sign images when they are pushed to Doer Hub or other container
registries. ese images can then be verified when they are pulled and ran. is high-level process is shown in
Figure 15.11



232 15: Security in Doer

Figure 15.11

DCT can also be used to provide important context. is includes; whether or not an image has been signed for
use in a particular environment su as “prod” or “dev”, or whether an image has been superseded by a newer
version and is therefore stale.

e following steps will walk you through configuring Doer Content Trust, signing and pushing an image, and
then pulling the signed image. To follow along, you’ll need a cryptographic key-pair to sign images.

If you don’t already have a key-pair, you can use the docker trust sub-command to generate a new key-pair
one. e following command generates a new key-pair called “nigel”.

$ docker trust key generate nigel
Generating key for nigel...
Enter passphrase for new nigel key with ID 1f78609:
Repeat passphrase for new nigel key with ID 1f78609:
Successfully generated and loaded private key.... public key available: /root/nigel.pub

If you already have a key-pair, you can import and load it with docker trust key load key.pem --name nigel.

Now that you’ve loaded a valid key-pair, you need to associate it with the image repository you’ll be pushing
signed images to. is example uses the nigelpoulton/dct repo on Doer Hub and the nigel.pub key that was
created by the previous docker trust key generate command. Your key file will be different.

$ docker trust signer add --key nigel.pub nigel nigelpoulton/dct
Adding signer "nigel" to nigelpoulton/dct...
Initializing signed repository for nigelpoulton/dct...
Enter passphrase for root key with ID aee3314:
Enter passphrase for new repository key with ID 1a18dd1:
Repeat passphrase for new repository key with ID 1a18dd1:
Successfully initialized "nigelpoulton/dct"
Successfully added signer: nigel to nigelpoulton/dct

e following command will sign the nigelpoulton/dct:signed image and push it to Doer Hub.



233

$ docker trust sign nigelpoulton/dct:signed
Signing and pushing trust data for local image nigelpoulton/dct:signed,
may overwrite remote trust data
The push refers to repository [docker.io/nigelpoulton/dct]
1a777bda846c: Mounted from nigelpoulton/dct
d23c343f7626: Mounted from nigelpoulton/dct
18dc259b4479: Mounted from nigelpoulton/dct
40a236c21a47: Mounted from nigelpoulton/dct
a9a7f132e4de: Mounted from nigelpoulton/dct
9a8b7b2b0c33: Mounted from nigelpoulton/dct
00891a9058ec: Mounted from nigelpoulton/dct
d87eb7d6daff: Mounted from nigelpoulton/dct
beee9f30bc1f: Mounted from nigelpoulton/dct
signed: digest: sha256:c9f8e18822...6cbb9a74cf size: 2202
Signing and pushing trust metadata
Enter passphrase for nigel key with ID 1f78609:
Successfully signed docker.io/nigelpoulton/dct:signed

Once the image is pushed, you can inspect its signing data with the following command.

$ docker trust inspect nigelpoulton/dct:signed --pretty

Signatures for nigelpoulton/dct:signed
SIGNED TAG DIGEST SIGNERS
signed c9f8c18522...75aaccd6cbb9a74cf nigel

List of signers and their keys for nigelpoulton/dct:signed
SIGNER KEYS
nigel 1f786095c467

Administrative keys for nigelpoulton/dct:signed
Repository Key: 1a18dd1113...a91f489782
Root Key: c2f53fd2f2...b0a720d344

You can force a Doer host to always sign and verify image push and pull operations by exporting the DOCKER_-
CONTENT_TRUST environment variable with a value of 1. In the real world, you’ll want to make this a more
permanent feature of Doer hosts.

$ export DOCKER_CONTENT_TRUST=1

Once DCT is enabled, you’ll no longer be able to pull and work with unsigned images. You can test this behavior
by aempting to pull the following two images:

• nigelpoulton/dct:unsigned
• nigelpoulton/dct:signed

If you have enabled DCT by seing the DOCKER_CONTENT_TRUST environment variable, you will not be able to
pull the dct:unsigned image. However, you will be able to pull the image tagged as signed.



234 15: Security in Doer

$ docker image pull nigelpoulton/dct:unsigned
No valid trust data for unsigned

Doer Content Trust is an important tenology for helping you verify the images you are pulling from container
registries. It’s simple to configure in its basic form, but more advanced features, su as context, can be more
complex to configure.

Docker Secrets

Many applications need secrets — things like passwords, TLS certificates, SSH keys, and more.

Early versions of Doer had no standardised way of making secrets available to apps in a secure way. It was
common for developers to insert secrets into apps via plain text environment variables (we’ve all done it). is
was far from ideal.

Doer 1.13 introduced Doer Secrets as first-class objects in the Doer API.

Behind the scenes, secrets are encrypted at rest, encrypted in-flight, mounted in containers to in-memory
filesystems, and operate under a least-privilege model where they are only made available to services that have
been explicitly granted access to them. It’s quite a comprehensive end-to-end solution, and it even has its own
docker secret sub-command.

Figure 15.12 shows a high-level workflow:

Figure 15.12

e following steps walk through the high-level workflow shown in Figure 15.12.

1. e blue secret is created and posted to the Swarm
2. It gets stored in the encrypted cluster store (all managers have access to the cluster store)
3. e blue service is created and the secret is aaed to it



235

4. e secret is encrypted in-flight while it is delivered to the tasks (containers) in the blue service
5. e secret is mounted into the containers of the blue service as an unencrypted file at /run/secrets/.

is is an in-memory tmpfs filesystem (this step is different onWindows Doer hosts as they do not have
the notion of an in-memory filesystem like tmpfs)

6. Once the container (service task) completes, the in-memory filesystem is torn down and the secret flushed
from the node

7. e red containers in the red service cannot access the secret

e reason that secrets are surfaced in their un-encrypted form in running containers is so applications can use
them without requiring methods to decrypt them.

You can create and manage secrets with the docker secret sub-command, and you can aa them to services
by specifying the --secret flag to the docker service create command.

Chapter Summary

Doer can be configured to be extremely secure. It supports all of the major Linux security tenologies,
including; kernel namespaces, cgroups, capabilities, MAC, and seccomp. It ships with sensible defaults for all
of these, but you can customize them and even disable them.

Over and above the general Linux security tenologies, Doer includes an extensive set of its own security
tenologies. Swarm Mode is built on TLS and is extremely simple to configure and customize. Image scanning
can perform binary-level scans of images and provide detailed reports of known vulnerabilities. Doer Content
Trust lets you sign and verify content, and Doer Secrets allow you to securely share sensitive data with
containers and Swarm services.

e net result is that your Doer environment can be configured to be as secure or insecure as you desire — it
all depends on how you configure it.





16: What next
Hopefully you’re feeling confident with Doer and ready to take your next steps. Fortunately, taking those next
steps has never been easier.

Practice makes perfect

ere’s no substitute for hands-on practice. Fortunately, as we showed in Chapter 3, it’s easier than ever to get
Doer and start developing your hands-on skills. I personally use Doer Desktop every day and regularly use
Play with Doer¹⁸ when I need to test something quily with multiple nodes.

Video training

Video training is another way to learn things and see stuff in action.

I’ve created a lot of high-quality Doer video training courses at Pluralsight¹⁹. If you’re not a member of
Pluralsight then become one! It costs money, but it could be one of the most important career investments you
ever make. And if you’re unsure about parting with your hard-earned money… they always have a free trial
where you can get free access to my courses for a limited period.

Get involved with the community

ere’s a vibrant Doer community full of helpful people. Get involved with Doer groups and ats on the
internet, and look-up your local Doer or cloud-native meetup (sear Google for “Doer meetup near me”). I
regularly present at meetups and they’re a great place to network with people and learn.

Kubernetes

Now that you know a thing or two about Doer, a logical next-step might be Kubernetes. Without going into
detail, Kubernetes is similar to Doer Swarm but has a larger scope and a more active community. It’s also
notoriously hard to learn. However, now that you know Doer and how swarm orestration works, learning
Kubernetes will be easier. at said, if you don’t need all the extras that Kubernetes brings, you might be beer
stiing with Swarm.

¹⁸https://play-with-docker.com/
¹⁹http://app.pluralsight.com/author/nigel-poulton

https://play-with-docker.com/
http://app.pluralsight.com/author/nigel-poulton
https://play-with-docker.com/
http://app.pluralsight.com/author/nigel-poulton


238 16: What next

Feedback and connecting

Massive thanks for reading my book, I really hope it was useful. It’d be magic if you could leave a review on
Amazon.

Feel free to connect with me on Twier²⁰, LinkedIn and other places you can find me (I don’t accept Facebook 
friends requests. It’s nothing personal, I just keep Facebook for family and old friends.

²⁰https://twitter.com/nigelpoulton

• Twitter (@nigelpoulton)

• LinkedIn (https://www.linkedin.com/in/nigelpoulton/)

• nigelpoulton.com

• YouTube: Nigel Poulton - KubeTrainer

https://twitter.com/nigelpoulton
https://www.linkedin.com/in/nigelpoulton/
https://twitter.com/nigelpoulton


239


	Table of Contents
	0: About the book
	Why should I read this book or care about Docker?
	What if I'm not a developer
	Should I buy the book if I've already watched your video training courses?
	How the book is organized
	Editions of the book
	Having problems getting the latest updates on your Kindle?
	The paperback edition
	Leave a review

	Part 1: The big picture stuff
	1: Containers from 30,000 feet
	The bad old days
	Hello VMware!
	VMwarts
	Hello Containers!
	Linux containers
	Hello Docker!
	Windows containers
	Windows containers vs Linux containers
	What about Mac containers?
	What about Kubernetes
	Chapter Summary

	2: Docker
	Docker - The TLDR
	Docker, Inc.
	The Docker technology
	The Open Container Initiative (OCI)
	Chapter summary

	3: Installing Docker
	Docker Desktop
	Windows pre-reqs
	Installing Docker Desktop on Windows 10
	Installing Docker Desktop on Mac

	Installing Docker on Linux
	Installing Docker on Windows Server 2019
	Play with Docker
	Chapter Summary

	4: The big picture
	The Ops Perspective
	Images
	Containers
	Attaching to running containers

	The Dev Perspective
	Chapter Summary


	Part 2: The technical stuff
	5: The Docker Engine
	Docker Engine - The TLDR
	Docker Engine - The Deep Dive
	Getting rid of LXC
	Getting rid of the monolithic Docker daemon
	The influence of the Open Container Initiative (OCI)
	runc
	containerd
	Starting a new container (example)
	One huge benefit of this model
	What's this shim all about?
	How it's implemented on Linux
	What's the point of the daemon
	Securing client and daemon communication

	Chapter summary

	6: Images
	Docker images - The TLDR
	Docker images - The deep dive
	Images and containers
	Images are usually small
	Pulling images
	Image naming
	Image registries
	Image naming and tagging
	Images with multiple tags
	Filtering the output of docker image ls
	Searching Docker Hub from the CLI
	Images and layers
	Sharing image layers
	Pulling images by digest
	A little bit more about image hashes (digests)
	Multi-architecture images
	Deleting Images

	Images - The commands
	Chapter summary

	7: Containers
	Docker containers - The TLDR
	Docker containers - The deep dive
	Containers vs VMs
	The VM tax
	Running containers
	Checking that Docker is running
	Starting a simple container
	Container processes
	Container lifecycle
	Stopping containers gracefully
	Self-healing containers with restart policies
	Web server example
	Inspecting containers
	Tidying up

	Containers - The commands
	Chapter summary

	8: Containerizing an app
	Containerizing an app - The TLDR
	Containerizing an app - The deep dive
	Containerize a single-container app
	Moving to production with Multi-stage Builds
	A few best practices

	Containerizing an app - The commands
	Chapter summary

	9: Deploying Apps with Docker Compose
	Deploying apps with Compose - The TLDR
	Deploying apps with Compose - The Deep Dive
	Compose background
	Installing Compose
	Compose files
	Deploying an app with Compose
	Managing an app with Compose

	Deploying apps with Compose - The commands
	Chapter Summary

	10: Docker Swarm
	Docker Swarm - The TLDR
	Docker Swarm - The Deep Dive
	Swarm primer
	Build a secure Swarm cluster
	Swarm manager high availability (HA)
	Swarm services
	Viewing and inspecting services
	Replicated vs global services
	Scaling a service
	Removing a service
	Rolling updates
	Troubleshooting
	Backing up Swarm

	Docker Swarm - The Commands
	Chapter summary

	11: Docker Networking
	Docker Networking - The TLDR
	Docker Networking - The Deep Dive
	The theory
	Single-host bridge networks
	Multi-host overlay networks
	Connecting to existing networks
	Service discovery
	Ingress load balancing

	Docker Networking - The Commands
	Chapter Summary

	12: Docker overlay networking
	Docker overlay networking - The TLDR
	Docker overlay networking - The deep dive
	Build and test a Docker overlay network in Swarm mode
	Test the overlay network
	The theory of how it all works

	Docker overlay networking - The commands
	Chapter Summary

	13: Volumes and persistent data
	Volumes and persistent data - The TLDR
	Volumes and persistent data - The Deep Dive
	Containers and non-persistent data
	Containers and persistent data
	Demonstrating volumes with containers and services
	Sharing storage across cluster nodes

	Volumes and persistent data - The Commands
	Chapter Summary

	14: Deploying apps with Docker Stacks
	Deploying apps with Docker Stacks - The TLDR
	Deploying apps with Docker Stacks - The Deep Dive
	Overview of the sample app
	Looking closer at the stack file
	Deploying the app
	Managing the app

	Deploying apps with Docker Stacks - The Commands
	Chapter Summary

	15: Security in Docker
	Security in Docker - The TLDR
	Security in Docker - The deep dive
	Linux security technologies
	Docker platform security technologies
	Docker Secrets

	Chapter Summary

	16: What next
	Practice makes perfect
	Video training
	Get involved with the community
	Kubernetes
	Feedback and connecting





