Docker Q&A
https://www.linkedin.com/in/vijaykumar-biradar-29b710161/

Q. Docker Vs VM (Virtual Machine)
Virtual Machines Vs Docker Containers

Virtual Machines Docker Containers

Need more resources Less resources are used

Process isolation is done at Process Isolation is done at Operating System level
hardware level

Separate Operating System for Operating System resources can be shared within Docker
each VM

VMs can be customized. Custom container setup is easy

Takes time to create Virtual Creation of docker is very quick

Machine

Booting takes minutes Booting is done within seconds

Q. What is Docker?
Build, Ship, Run, Any App Anywhere

From Dev

CONTAINERIZATION ENGINE

Any OS l Windows ‘ ’ Q Linux
A,

Anywhere @ Q

Physical Virtual Cloud

Container Application Deployment

Executable Application
Code/Binaries

Software
Dependencies

Listing of Hardware
Resources Needed

I] !

Host Host Host

Docker Ecosystem

Docker Client Sasiod
Server

Docker is a platform or

MDaocCr:(i?lre Ilr)no:k; —>» ecosystem around creating

9 and running containers

Docker
Docker Hub Compose
x

Docker is a containerization platform tool for building an application in which container
contains packaged binary files and its library files with its required dependencies, and
further these containers are easily shipped to run on other machines.

Each and every application runs on separate containers and has its own set of
dependencies & libraries.

This makes sure that each application is independent of other applications, giving
developers surety that they can build applications that will not interfere with one another.
Docker is a tool designed to make it easier to create, deploy and run applications by using
containers.

In simple words, Docker is a tool which is used to automate the deployment of
applications in lightweight containers so that applications can work efficiently in
different environments

)
o gy B

PostgresSQL

configuration dependencies
v9.3

configuration Start script

Containerl Container2
App 1 App 2
Libraries Libraries

Docker Engine

Host OS

Multiple containers run on e Y /

the same hardware High productivity

ocker

Maintains isolated applications \‘ Quick and easy configuration

Note: Container is a software package that consists of all the dependencies required to run an
application

What is the purpose of Docker?

A
Installing Software

Flow A
Download installer This is what

Docker is trying
to fix

Run installer

Get an error message during
installation

Troubleshoot issue g

Rerun installer

Get another error!

Docker Anywhere...

&

docker

|
] D

Laptop Data Center Public Cloud

e The purpose of Docker is to help developers and dev-ops team in becoming more
productive and less error prone.

e Setup and deployment of new projects becomes much more easier and time efficient with
the help of Docker.

e Consider a scenario where operating system windows is installed in your system and you
have to deploy and test your application in different operating system let's say fedora,
centos and ubuntu. How will you do that? This is where Docker comes to your rescue.

e Again consider a scenario where you have to test your application with different php
versions let’s say php 7.1, php 7.2 and php 7.3 and using different web server
combinations such as nginx and apache. How will you do that? Doesn’t that seem
complicated to you? This is where Docker comes to your rescue.

Let’s use Docker with an example!
Image a situation where you plan to rent a house in Airbnb

But, in the house, there are 3 rooms and only one cupboard and kitchen

Roorm Room
FRoorm Cupboard and Kitchen

= R

And none of the guests are ready to share the cupboard and the kitchen

Because every individual has different preferences when it comes to the cupboard and the
kitchen usage

Let’s use this example with computers, where all the three applications use different frameworks

'-II--I--I--I-------------------------I..
- e

Software application 1 Software application 2

Software application =

*

Framework

L s

Flask

aF EIFEENENENEENEENEEEEEEENEE NN,
* II*
.

S EEEEEEEEEEEEEEEENEEEEEEEEEERE

’ perfect

.
.'
ey

*
*

-
L

L] at
EgEEEEEE NN E NI IR

Problem statement: But, what if a person wants to run all his applications with their suitable
frameworks?
Solution: Docker will help you run applications with their suitable

— m
™ Airbnb
'.ooccnnn m sessssnnee,,
.

.
o
-

. o
S sssssssssEsssssssEsssEEsssssssssssssnsnnnnnnt”®

Likewise,

Computer

& cocier

gemEEEEEEES
-

SlIMILARLY, FOR
COMPUTERG, POCHER
PROVIDES SUITABLE
FRAMEWCRKS FOR
DIFFERENT
APPLICATIONS

- L
1 Saftware applicatian K

Bl L | [G s

| L Lons
E p Flask

"

EEE I EE IR A E SRRy
- tid
T T T T T T T T T T

l‘. - ;
"l 'l-
s asamssaEsEEEsEEraEEsEEsaEEEsansaansannnnmnnEtt
do
* Cker Computer
INCE EVERY APPLICATIO ...-" ., i

HAS A FRAMEWORK WITH A
SUITABLE VERGION THI&

SPACE ALGO CANBE
UTILIZED FOR A NEW :
SOFTWARE APPLICATION, p= y
ALONG WITH ITé REQURED m A O RAILS
FRA - Flask

Eraimowolk

Q..fii:n.s
@ D i Flask
> AT

.
o
‘e

As a result, Docker makes more efficient use of system resources

Q. What is the advantage of Docker over hypervisors?

HYPERVISOR

Docker supports only

OS SUPPORT Hypervisors are OS agnostic. :
e ARES & l Linux.

Consumes upto 1 min to
boot up.

BooT TIME Boots within seconds.

Dual OS layers provide extra Dependent on supporting

SECURITY ; y
data security. Linux kernel.

RESOURCE Consumes gigabytes of Docker containers are
CONSUMPTION Space. lightweight.

APPLICATION Can run multiple OS Supports multiple
SUPPORT instances simultaneously. application instances.

o Docker is light weight and more efficient in terms of resource uses because it uses the
host underlying kernel rather than creating its own hypervisor.

e Torun an application in a virtualized environment (e.g., vSphere), we first need to create
a VM, install an OS inside and only then deploy the application.

e To run the same application in docker, all you need is to deploy that application in
Docker.

e There is no need for additional OS layer. You just deploy the application with its
dependent libraries, docker engine (kernel, etc.) provides the rest.

App B

Bmns/Libs

App B

= BinsiLibs |

Docker Engine

Host OS

Server

Virtual Machines

Each virtualized application includes not only the
application - which may be only 10s of MB - and the
necessary binaries and libraries, but also an entire guest

operating system - which may weigh 10s of GB.

Docker

The Docker Engine contamer compnses just the
apphcanon and its dependencies. It runs as an isolated
process in userspace on the host operating sysiem,
sharing the kemel with other containers. Thus, it enjoys
the resource solation and allocation benehits ol VMs but
is much more porable and efficient.

* Node.js

* Postgres
* Nginx

Node.js
Postgres

Nginx

OS containers

* Meant to used as an OS - run multiple
services

* No layered filesystemns by default

* Built on cgroups, namespaces, native
process resource isolation

* Examples - LXC, OpenVZ, Linux VServer,
BSD Jails, Solaris Zones

App containers

Meant to run for a single service
Layered filesystems

Built on top of OS container technologies
Examples - Docker, Rocket

. How is Docker different from other container technologies?

Why Docker?

g%

Speed Portability Automation

e Docker containers are very easy to deploy in any cloud platform.

e It can get more applications running on the same hardware when compared to other
technologies, it makes it easy for developers to quickly create, ready-to-run containerized
applications and it makes managing and deploying applications much easier.

e You can even share containers with your applications. With other containerization
methods, these features are not possible.

e There is no limitation on running Docker as the underlying infrastructure can be your
laptop or else your Organization’s Public / Private cloud space

e Docker with its Container HUB forms the repository of all the containers that you are
ever going to work, use and download.

e Sharing of applications is as well possible with the Containers that you create.

e Docker is one of the best-documented technologies available in the Containerization
space.

Docker Architecture
e Docker uses a client-server architecture.
e The Docker client consists of Docker build, Docker pull, and Docker run.

e The client approaches the Docker daemon that further helps in building, running, and
distributing Docker containers.

e Docker client and Docker daemon can be operated on the same system; otherwise, we can
connect the Docker client to the remote Docker daemon. Both communicate with each
other using the REST API, over UNIX sockets or a network.

CLIENT

REMOTE
API CONTAINERS IMAGES

The basic architecture in Docker consists of three parts:

o Docker Client
o Docker Host
o Docker Registry

Docker Client

e Itis the primary way for many Docker users to interact with Docker.

e It uses command-line utility or other tools that use Docker APl to communicate with
the Docker daemon.

e A Docker client can communicate with more than one Docker daemon.

Docker Host

In Docker host, we have Docker daemon and Docker objects such as containers and images. First,
let’s understand the objects on the Docker host, then we will proceed toward the functioning of
the Docker daemon.

o Docker Objects:

o What is a Docker image? A Docker image is a type of recipe/template
that can be used for creating Docker containers. It includes steps for
creating the necessary software.

o What is a Docker container? A type of virtual machine created from
the instructions found within the Docker image. It is a running instance

of a Docker image that consists of the entire package required to run an
application.
e Docker Daemon:

o Docker daemon helps in listening requests for the Docker API and in
managing Docker objects such as images, containers, volumes, etc.
Daemon issues to build an image based on a user’s input and then saves
it in the registry.

o In case we don’t want to create an image, then we can simply pull an
image from the Docker hub (which might be built by some other
user). In case we want to create a running instance of our Docker image,
then we need to issue a run command that would create a Docker
container.

o A Docker daemon can communicate with other daemons to manage
Docker services.

Docker Registry

o Docker registry is a repository for Docker images which is used for creating Docker
containers.

e We can use a local/private registry or the Docker hub, which is the most popular
social example of a Docker repository.

Q. What is Docker image?

Build Run

Docker File Docker Image Docker Container

—» Container

Image » Container

Single file with all the
deps and config

required to run a » Container

program

Instance of an image.
Runs a program.

Y
e A Docker image is a snapshot, or template, from which new containers can be
started.
e Docker images are stopped containers (or classes if you’re a developer).
e We can stop a container and create a new image from it.
Docker images are considered build time constructs whereas containers are run-time
constructs.
It’s a representation of a filesystem plus libraries for a given OS.
Images are created and stored in layered fashion.
All the images downloaded from the Docker hub present in the Docker host.
If an image specified in the Docker run command is not present in the Docker host, by
default, the Docker daemon will download the image from the Docker public registry
(Docker hub).
e Container is a writable layer on top on an image.
e A new image can be created by executing a set of commands from Dockerfile (it’s also
possible but not recommended to take a snapshot from a running container).
Q. What is Docker container?

Docker Containers
I

Docker Image

()

Docker containers are basically runtime instances of Docker images.

Docker is a tool designed to make it easier to create, deploy and run applications by using
containers.

Docker containers will contain all the binaries and libraries required for application or
microservice. So, application is present in a container, or we have containerized
application. Now, that same container can be used in the Test and Prod environment.
Docker Containers are a lightweight solution to Virtual Machines, and it uses the host
OS. The best part, you don’t have to pre-allocate any RAM to the Docker Container, it
will take it as and when required. So, with Docker Container I don’t have to worry about
wastage of resources.

Q. What is the lifecycle of Docker Container?

ljun

pause
create C — start
reate — Paused
—
unpause

rm 1 start Tl stop

Deleted gumm—— Stopped

The life cycle of the Docker container is as below:
Create a container.
Run the Docker container.
Pause the Container.
Un-pause the Container.
Start the Container.
Stop the Container.
Restart the Container.
Kill the Container.
e Destroy the Container.
Q. What is Docker hub?
e Docker Hub is a registry service on the cloud that allows you to download Docker images
that are built by other communities.
e You can also upload your own Docker built images to Docker hub.
Q. What is Docker Swarm?

Raft consensus group

Internal distributed state store -

Worker Worker$ Workeré Worker$ Workeré Workeré | Workeré

Gossip network

e Docker Swarm as the way of managing (orchestrating) the Docker containers.

nifty containers need to be orchestrated

The problem is, when you have lots of containers running, they need to be managed: you
want enough of them running to handle the load, but not so many they are bogging down
the machines in the cluster. And well, from time to time, containers are going to crash,
and need to be restarted.

Need to Define nodes, define services, Set how many replica (the “desired state”) you
want to run and where to run with these details in Docker Swarm mode it will manage the
cluster

There are two types of nodes: manager nodes (which you use to define services), and
worker nodes (which are told what to do by manager nodes based on your service
definitions).

We have to tell docker Swarm how many desired state for the service you want Then
you submit a service definition to a manager node. The service definition consists of one
or more Tasks (which are the atomic unit of scheduling in Docker Swarm mode), and
how many replicas of that service you want to run on the cluster. That was easy.

Q. What is Dockerfile used for?

Q. Ca

A Dockerfile is a text document that contains instructions on how to build your own
images.
Dockerfile is the build instructions to build the image.

n 1 use JSON instead of YAML for my compose file in Docker?
YES, we can use JSON instead of the default YAML for your Docker compose file.
To use JSON file with compose need to specify the filename to use as the following:
docker-compose -f docker-compose.json up

Q. Tell us how you have used Docker in your past position?

edureka!

ANSIBLE

Jenkins

\\ 5"
SALTSTACK |~ | j“’"’ — Y f
docker \
/ B |
/\ ‘C}‘ =55
pupggl: CHEF

Q. Ho

integrated docker with Jenkins.
integrated docker with Ansible
integrated docker with terraform

w to create Docker container?
Docker container can be created by Docker image [docker run -t -i <command name>|
The command above will create the container.
To check whether the Docker container is created and whether it is running or not, you
could make use of the following command.
This command will list out all the Docker containers along with its statuses on the host
that the Docker container runs.

Q. How to stop and restart the Docker container?
e The following command can be used to stop a certain Docker container with the
container id as [docker stop CONTAINER _ID|
e The following command can be used to restart a certain Docker container with the
container id as docker restart CONTAINER_ID
How far do Docker containers scale? Are there any requirements for the same?
e Large web deployments like Google and Twitter and platform providers such as Heroku
and dotCloud, all run on container technology.
e Containers can be scaled to hundreds of thousands or even millions of them running in
parallel.
e Talking about requirements, containers require the memory and the OS at all the times
and a way to use this memory efficiently when scaled.
Q. What platforms does Docker run on?
Docker is currently available on the following platforms and also on the following VVendors or
Linux:
* Ubuntu 12.04, 13.04
* Fedora 19/20+
* RHEL 6.5+
* CentOS 6+
* Gentoo
* ArchLinux
* openSUSE 12.3+
* CRUX 3.0+
Docker is currently available and also is able to run on the following Cloud environment setups
given as below:
* Amazon EC2
* Google Compute Engine
* Microsoft Azure
* Rackspace
Docker is extending its support to Windows and Mac OSX environments and support on
Windows has been on the growth in a very drastic manner.
Q. Do I lose my data when the Docker container exits?

Persistent Data

« Regardless of the lifespan of the container the data
should always persist.

« The container could be scheduled to run on any
node in the cluster, meaning persistent data may
need to be accessed from any node.

Volume mapping

ACTIVE CONTAINER
STORAGE DRIVER

STOPPED CONTAINER

Iﬁ_l

-

NO DATA

WVWRITE LAYER

When do we need Docker Volumes?

Data is gone! When restarting or
removing the container

Container

/var/lib/mysql/data

docker run mysql

docker stop mysql
docker rm mysql

docker run -v /opt/datadir:/var/lib/mysql mysql

/opt/datadir

docker run mysql

docker stop mysql
docker rm mysql

docker run -v Jopt/datadir:/var/lib/mysql mysql
/opt/datadir

There is no loss of data when any of your Docker containers exits as any of the data that
your application writes to the disk in order to preserve it.

This will be done until the container is explicitly deleted.

The file system for the Docker container persists even after the Docker container is
halted.

Q. What, in your opinion, is the most exciting potential use for Docker?

The most exciting potential use of Docker that I can think of is its build pipeline.

Most of the Docker professionals are seen using hyper-scaling with containers, and
indeed get a lot of containers on the host that it actually runs on.

These are also known to be blatantly fast. Most of the development — test build pipeline is
completely automated using the Docker framework.

Q. Why is Docker the new craze in virtualization and cloud computing?

Docker is the newest and the latest craze in the world of Virtualization and also Cloud
computing because it is an ultra-lightweight containerization app that is brimming with
potential to prove its mettle.

Q. Why do my services take 10 seconds to recreate or stop?

SIGTERM PreStop
SIGKILL PostStart
Container
stop P> SIGTERM —F ping google.com Z,“f’,c'::f
| |
Container

kil = SIGKILL *——>{ sirgaoogecom | | Fuming

process

e When you run docker stop, you are instructing the Docker daemon to send a signal to the
process running the container to stop.

e By default, it does this by sending a SIGTERM and then wait a short period so the
process can exit gracefully. If the process does not terminate within a grace period (10s
by default, customisable), it will send a SIGKILL.

e However, your application may be configured to listen to a different signal - SIGUSR1
and SIGUSR2, for example.

e In these instances, you can use the STOPSIGNAL Dockerfile instruction to override the
default.

Q. How do I run multiple copies of a Compose file on the same host?

e Docker’s compose makes use of the Project name to create unique identifiers for all of
the project’s containers and resources.

¢ In order to run multiple copies of the same project, you will need to set a custom project
name using the —p command line option or you could use the
COMPOSE_PROJECT_NAME environment variable for this purpose.

Q. What’s the difference between up, run, and start?

e On any given scenario, you would always want your [docker-compose upl. Using the
command UP, you can start or restart all the services that are defined in a docker-
compose.yml file.

e In the “attached” mode, which is also the default mode — we will be able to see all the log
files from all the containers.

¢ In the “detached” mode, it exits after starting all the containers, which continue to run in
the background showing nothing over in the foreground.

e Using docker-compose run command, we will be able to run the one-off or the ad-hoc
tasks that are required to be run as per the Business needs and requirements.

e This requires the service name to be provided which you would want to run and based on
that, it will only start those containers for the services that the running service depends
on.

e Using the run command, you can run your tests or perform any of the administrative tasks
as like removing / adding data to the data volume container.

e ltis also very similar to the docker run —ti command, which opens up an interactive
terminal to the containers an exit status that matches with the exit status of the process in
the container.

e Using the [docker-compose star command, you can only restart the containers that were
previously created and were stopped. This command never creates any new Docker
containers on its own.

Q. What’s the benefit of “Dockerizing?”

Listed below are the few advantages of dockerizing your environment.

Continuous Integration: Any changes in the code will be automatically deployed immediately
and would be available for testing anytime. Thus, Docker helps in Continuous Integration by
significantly reducing the time.

Continuous Delivery: The transition time from development to production can be greatly
reduced as one container can be used across multiple environments. This way applications can be
delivered much faster and in a more reliable way than ever before.

Portability: Docker can be moved from one server to another with ease. Docker images come
very handy while moving the container from one server to another without much efforts thereby
saving a lot of time. The images can be either private or public.

Scalability: A Docker container is very lightweight in size like tens of megabytes when
compared to gigabytes in the case of virtual machines. Thus, multiple docker containers can be
launched on a single machine and are highly scalable as per the demand.

Micro Services Integration: Integrating microservices with the applications running on
containers is easy. Each tier of a multi-tier application running on Docker behaves as an
independent container and can be used to integrate microservices with the application.

Reduced Cost: Due to its various advantages such as continuous integration and continuous
delivery, Docker significantly reduces the cost of running an application .

Q. How many containers can run per host?

e Depending on the environment where Docker is going to host the containers, there can be
as many containers as the environment supports.

e The application size, available resources (like CPU, memory) will decide on the number
of containers that can run on an environment.

e Though containers create newer CPU on their own but they can definitely provide
efficient ways of utilizing the resources.

e The containers themselves are super lightweight and only last as long as the process they
are running.

Q. Is there a possibility to include specific code with COPY/ADD or a volume?

e COPY <src> <dest>

e The COPY instruction will copy new files from <src> and add them to the container's
filesystem at path <dest>

e ADD <src> <dest>

e The ADD instruction will copy new files from <src> and add them to the container's
filesystem at path <dest>.

e COPY copies a file/directory from your host to your image.

e ADD copies a file/directory from your host to your image, but can also fetch remote
URLSs, extract TAR files, etc...

e Use COPY for simply copying files and/or directories into the build context.

e Use ADD for downloading remote resources, extracting TAR files, etc..

e The main difference between these two is that Add command can also read the files from
a URL.

Q. Will cloud automation overtake containerization any sooner?

e Docker containers are gaining the popularity in Continuous Integration / Continuous
Development pipelines.

e Having said that there is equal responsibility on all the key stakeholders at each
Organization to take up the challenge of weighing the risks and gains on adopting
technologies that are budding up on a daily basis.

o Docker will be extremely effective in Organizations that appreciate the consequences of
Containerization.

Q.How to use the port in Docker.

$ docker run -d redis:latest
74fa693703d98fd2d09bfad0ffd916af1709ef07¢27016¢c1985c6965639a68¢c4

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

74fa693703d9 redis:latest "docker-entrypoint.s..." 28 seconds ago Up 28 seconds
6379/tcp frosty_elbakyan
curl -k localhost:6379

curl: (7) Failed to connect to 127.0.0.1 port 6379: Connection refused

Host Computer Redis Container

PORT 6379

e Redis is running, but cannot access it. The reason is that each container is
sandboxed. If a service needs to be accessible by a process not running in a
container, then the port needs to be exposed via the Host/ Docker port-
forwarding .

e Once exposed, it is possible to access the process as if it were running on the
host OS itself.

Define the port to be used for the remote connection by Docker port-
forwarding .

docker run -p [port_number]:6379 -d redis
Define the host-name or IP

For example, to open and bind to a network port on the host you need to provide the
parameter -p <host-port>:<container-port>.

$ docker run -d --name redisHostPort -p 6379:6379 redis:latest

4dd56fcecf62eb4b7ced4d651c5c5b60091e428dfde00975106abef1c98276594

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

4dd56fcecf62 redis:latest "docker-entrypoint.s..." 9 secondsago Up 9 seconds
:6379->6379/tcp redisHostPort

Host Computer Redis Container
PORT 6379 PORT 6379

By default, the port on the host is mapped to 0.0.0.0, which means all IP addresses. You can
specify a particular IP address when you define the port mapping
Port binding
e This method is used for outside the same network.
e Toallow communication via the defined ports to containers outside of the same network,
e you need to publish the ports by using -p flag on docker run to publish and map one or
more ports, or the -P flag to publish all exposed ports and map them to high-order ports.
e You can do port porting via one of the below ways:
1. Expose a port via Dockerfile by —expose and publish it with the -P flag. It will bind the
exposed port to the Docker host on a random port.
2. Expose a port via Dockerfile by —expose and publish it with the -p 6379: 6379 flag, this
will bind the expose port to Docker host on certain port 6379 with guest 6379.

Bind the port by docker container run command:
e The problem with running processes on a fixed port is that you can only run one instance.

e We would prefer to run multiple Redis instances and configure the application depending
on which port Redis is running on.

$ docker run -d --name redisDynamic -p 6379:6379 redis:latest
74435h177c7d7b3ac3c2833c9efa6215735¢c23ce0f3432bad36d281c2fca2bl4

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
PORTS NAMES

74435b177c7d redis:latest "docker-entrypoint.s..." 5 seconds ago
0.0.0.0:32768->6379/tcp redisDynamic

For two instances

docker run -d --name redisDynamicl -p 6379:6379 redis:latest
docker run -d --name redisDynamic2 -p 6380:6379 redis:latest

Access The Redis Containers:

STATUS

Up 4 seconds

We can access the Redis containers using the host computer’s IP address and port

number.
http://ip_address:6379
http://ip_address:6380

Redis Container
PORT 6379 PORT 6379

Host Computer

Redis Container
PORT 6380 PORT 6379

Q. Explain Port mapping in docker
e Publishing Docker ports via -P or -p
e There are two ways of publishing ports in Docker:
e Using the -P flag (Random Port Mapping)
e Using the -p flag (Fixed Port mapping using UDP/TCP)
Fixed Port mapping using UDP/TCP

e when you expose a port from Dockerfile that means you are mapping a port defined in

your image to your newly launched container

#docker run -d -p 8080:80 --name=mycontaniername myimagename
#docker run -d --name MyWebServer -p 8080:80 httpd

« when you want to change the protocol from default i.e tcp to udp , use:

#docker run -d -p 8080:80/udp --name=mycontinername myimagename
#docker run -d --name MyWebServer -p 8080:80/udp httpd

i | Apache
0
‘t__/ Container 1

lets say when you want to expose your image port to any specific IP address from your docker
host , use:

#docker run -d -p 192.168.0.100:8080:80 --name=mycontaniername myimagename
docker run -d -p 192.168.0.100:8080:80 --name MyWebServer httpd

now when you want to map multiple ports exposed in your Dockerfile to high random available
ports , use:

#docker run -d -P --name=mycontaniername3 myimagename
$ docker run -d --name MyWebServer -P httpd

to check port mapping , use:

\ #docker port myimagename

Random Port Mapping

First up, stop and remove the Container so that we can use the same Container Name i.e.
MyWebServer.

$ docker stop MyWebServer
MyWebServer

$ docker rm MyWebServer
MyWebServer

e Now, let us start the httpd Container with an extra parameter i.e. -P. What this parameter
does is that it “Publish all exposed ports to random ports”. So in our case, the port 80
should get mapped to a random port, which is going to be the public port.

Execute the following command:

$ docker run -d --name MyWebServer -P httpd
60debd0d57bf292b0c3f006e4e52360feaa575e45ae3caead7637bb26b490b10

Next, let us use the port command again to see what has happened:

$ docker port MyWebServer
80/tcp -> 0.0.0.0:32769

We can see that port 80 has got mapped to port 32769. So if we access our web site at

\ http://<HostIP>/<HostPort>

|9

Specific Port Mapping
So what if we wanted to map it to a port number other than 32769. You can do that via the -p
(note the lowercase) parameter.

\l.:-../._

This parameter format is as follows:

-p HostPort:ContainerPort

For e.g. -p 8080:80

The first parameter is the Host port and we are now making that 8080. The second port is what
Apache httpd exposes i.e. 80.

Let us check out everything again:

$ docker stop MyWebServer
MyWebServer

$ docker rm MyWebServer
MyWebServer

$ docker run -d --name MyWebServer -p 8080:80 httpd
02ce77550940ch1f37361b74af8913e46d6a507d06¢2579b8a8b49e389b1e75f

Now, let us give the port command again:

$ docker port MyWebServer
80/tcp -> 0.0.0.0:8080

Flag value

Description

“p 8080:80

Bind container’s TCP port 80 to host’s port
8080

-p 192.0.2.1:8080:80

Bind container’s TCP port 80 to host’s port
8080 for connections to host IP 192.0.2.1. By
default, Docker binds published container ports
to the 0.0.0.0 IP address, which matches any
IP address on the system

-p 8080:80/udp

Bind container’s UDP port 80 to host's port
8080

-p 8080:80/tcp -p 8080:80/udp

Bind container’s TCP port 80 to host’s TCP port
8080, and bind container’s UDP port 80 to
host’s UDP port 8080

-p 2346-2346:2346-2346/tcp

Specify hostPort and containerPort as a
range of ports. Note that the number of
container ports specified in the range should
be equivalent to the number of host ports
specified in the range.

“p 2346-2346:2346/tcp

Specify hostPort range only. In such a case,
containerPort must not be in a specific
range. Container port will be published
anywhere within the stated hostPort range.

docker run kodekloud/webapp

Y

http://192.168.1.5:80

* Running on http://0.0.0.0:5808/ (Press CTRL+C to quit)

http://172.17.0.2:5000

80 8000 8001

1P: 192.1610L1.5

5000 5000 5000

WP:172.17.0.2 P: 172.17.0.3 IP: 172.17.04

docker run -p 80:5000 kodekloud/simple-webapp

Web APP Web APP Web APP

Docker Container Docker Container Docker Container

docker run -p 8000:5600 kodekloud/simple-webapp

docker run -p 80@1:5000 kodekloud/simple-webapp

docker run -p 3306:3386 mysql

docker run -p 8306:3386 mysql

docker run -p 83066:3306 mysql

3 P 1720705 5 P:172.17.06 3 IP:172.17.06

3 MysQlL 3 MySQL 3 MySQL
0 pocker 0 Dpocker O Docker
6 Container 6 Container 6 Container

‘
.’ CONTAINER Port vs HOST Port

Port5000 1 | Port3000 1 1 Port 3000,

Container Container Container

CONTAINER Port vs HOST Port

Container

Binding Ports

Forward everything

If you append -P (or --publish-all=true) to docker run, Docker identifies every port the Dockerfile
exposes (you can see which ones by looking at the EXPOSE lines). Docker also finds ports you
expose with --expose 8080 (assuming you want to expose port 8080). Docker maps all of these

ports to a host port within a given epehmeral port range. You can find the configuration for these
ports (usually 32768 to 61000)

Forward selectively

You can also specify ports. When doing so, you don’t need to use ports from the ephemeral port
range. Suppose you want to expose the container’s port 8080 (standard http port) on the host’s
port 80 (assuming that port is not in use). Append -p 80:8080 (or --publish=80:8080) to

your docker run command. For example:

docker run -p 80:8080 nginx

OR

docker run --publish=80:8080 nginx

Custom IP and port forwarding

By default, Docker exposes container ports to the IP address 0.0.0.0 (this matches any IP on the
system). If you prefer, you can tell Docker which IP to bind on. To bind on IP address 10.0.0.3,
host port 80, and container port 8080:

docker run -p 10.0.0.3:80:8080 nginx

Q.What is container linking in docker ?

Container Linking allows multiple containers to link with each other. It is a better option than
exposing ports.

docker run -p 5000:80 —link redis:redis voter-app

docker run —link redis:redis —link db:db worker-app

Voter |—in— yorker

l ' T
5000 80

l Docker
4.

6603 Host

1

By linking containers, you provide a secure channel via which Docker containers can
communicate to each other but Docker compose is the recommended way when no
increases

Q. Is there a way to identify the status of a Docker container?
e We can identify the status of a Docker container by ‘docker ps —a’, which will in turn list
down all the available docker containers with its corresponding statuses on the host
Q. What are the differences between the ‘docker run’ and the ‘docker create’?
e Docker run is basically for running commands in the container.
e docker run -it <Container Name> /bin/bash
e The above is for creating a bash terminal. And make us use bash commands in the
container.
e Docker create is to create a container from a Docker Image.
e docker create -d /var/lib:/var/lib --name docker-ubuntu ubuntu
e The above is to create a docker a container of the name "docker-ubuntu” from the image
"ubuntu”
Q. What are the various states that a Docker container can be in at any given point in
time?
There are four states that a Docker container can be in, at any given point in time. Those states
are as given as follows:
* Running
* Paused
* Restarting
* Exited
Q. Can you remove a paused container from Docker?
e No, itis not possible to remove a container from Docker that is just paused.
e Itis amustthata container should be in the stopped state, before it can be removed
from the Docker container.

Q. Is there a possibility that a container can restart all by itself in Docker?
e No, itis not possible.
e The default —restart flag is set to never restart on its own.
Q. What is the preferred way of removing containers - ‘docker rm -f* or ‘docker stop’ then
followed by a ‘docker rm’?
e The best and the preferred way of removing containers from Docker is to use the ‘docker
stop’, as it will allow sending a SIG_HUP signal to its recipients giving them the time
that is required to perform all the finalization and clean-up tasks.

e Once this activity is completed, we can then comfortably remove the container using the
‘docker rm’ command from Docker and thereby updating the docker registry as well.
Q. Difference between Docker Image and container?
e Docker container is the runtime instance of docker image.
e Docker Image does not have a state and its state never changes as it is just set of files
whereas docker container has its execution state.

12. What are the commands that are available in the Dockerfile?

The followings are the commands that are available in the Dockerfile:
Add

CMD

Entry point

ENV

EXPOSE

FROM

MAINTAINER

RUN

USER

VOLUME

WORKDIR

Now, let us look at another Dockerfile shown below:

FROM ubuntu

MAINTAINER vijay (vijayl5.biradar@gmail.com)
date

RUN apt-get update

RUN apt-get install -y nginx

ENTRYPOINT [*“/usr/sbin/nginx”,”-g”,”daemon off;”]
EXPOSE 80

Here, what we are building is an image that will run the nginx proxy server for us.
These instructions inform Docker that we want to create an image:

FROM a ubuntu base image with the tag of latest

MAINTAINER Author field of the generated images is vijay

CMD Defining a command to be run after the docker is up is [date]

RUN -running a package update and then installing nginx on newly created operating system.
The ENTRYPOINT is then running the nginx executable

EXPOSE command will open the mentioned port on the docker image to allow access to
outside world to 80

EXPOSE port will be used by default. However, if we want to change the host port then we have
to use -p parameter.

If you build the image and run the container as follows:

docker build -t webserver- myimage:v1l.

docker images | grep webserver- myimage

webserver- myimage vl d79c¢7313bba5 6 minutesago 16.1MB
docker run -d -p 80:80 --name webserver- myimage

You will find that it will have nginx started on port 80. And if you visit the page via the host IP,
you will see the following point:

http://localhost:80

Q) Explain about configure networking in Docker?

Answer:

bridge: The default network driver

host: For stand-alone containers , remove network isolation between the container and the
docker host

Overlay: Overlay networks connect multiple docker daemons

macvlan: for assigning MAC address for container

none: disable all neworking

Q What is the command to create a docker swarm?
Answer: docker swarm init —advertise-addr <manager IP>
What is docker Docker compose

tool for defining & running multi-container docker applications

use yaml files to configure application services (docker-compose.yml)

can start all services with a single command : docker compose up

can stop all services with a single command : docker compose down

can scale up selected services when required

docker-compose is allows you to run multiple services as kind of micro service by
defining them in a single configuration file

docker compose is a docker tool for defining and running multi containers docker
application.

docker compose allows us to define all the services in a configuration file and with one
command it will spin up all the containers that we need.

it uses yaml files to configure application services (docker-compose.yml)

it uses single command to start and stop all the services (docker-compose up & docker-
compose down)

it can scale up services whenever required.

version: '3’
Services:

web:

image: nginx

db:

image: mysq|l

ports:

- "3306:3306"

environment:

- MYSQL_ROOT_PASSWORD=password
- MYSQL_USER=user

- MYSQL_PASSWORD=password

- MYSQL_DATABASE=demodb

docker-compose up
docker-compose up -d
docker-compose ps

docker-compose. yml docker-compose.yml docker-compose.yml

version: 2 version: 3

services:

version: 1 version: 2 version: 3

What is a service?

e A service is a group of containers of the same image:tag.

e Services make it simple to scale your application.

e Services are really just “containers in production.”

e A service only runs one image, but it codifies the way that image runs—what ports it
should use, how many replicas of the container should run so the service has the capacity
it needs, and so on.

e Scaling a service changes the number of container instances running that piece of
software, assigning more computing resources to the service in the process.

¢ When you create a service, you specify which container image to use and which
commands to execute inside running containers. You also define options for the service
including: the port where the swarm makes the service available outside the swarm an
overlay network for the service to connect to other services in the swarm CPU and
memory limits and reservations a rolling update policy the number of replicas of the
image to run in the swarm

e docker service create --replicas 3 -p 80:80 --name hello-app nginx

e docker service scale hello-app=8

Without Services

hello-app hello-app hello-app

" PORTS8080 - | PORT 8081 PORT 8082

With a Service

hello-app hello-app hello-app

PORT 80

(My simple) definition:

Service = n containers all running with the same parameters,
available at the same port

Docker services vs docker container
e The docker run command creates and starts a container on the local docker host.
e A docker "service" is one or more containers with the same configuration running under
docker's swarm mode.
It's similar to docker run in that you spin up a container.
The difference is that you now have orchestration
Docker run will start a single container.
With docker service you manage a group of containers (from the same image). You can
scale them (start multiple containers) or update them.
Services deployment types in Docker
e There are two types of service deployments Replicated services and global services
e For areplicated service, you specify the number of identical tasks you want to run.
e A global service is a service that runs one task on every node.
e There is no pre-specified number of tasks. Each time you add a node to the swarm, the
orchestrator creates a task and the scheduler assigns the task to the new node.

How swarm mode accepts service create requests and schedules tasks to worker nodes.

Docker Engine cIientE

accepts command and creates
API service object

. reconciliation loop that creates

orchestrator tasks for service objects
e 2
u_ .
swarm manager.: < allocater allocates ip addresses to tasks
x l
dispatcher assigns tasks to nodes
scheduler instructs a worker to run a task
r Y

container

1

worker node connects to dispatcher to
worker check for assigned tasks
executes tasks assigned to
executor worker node

Q. Can we run multiple apps on one server with Docker?

Yes, theoretically we can run multiples apps on one Docker server. But in practice, it is better to
run different components on separate containers.

With this we get cleaner environment and it can be used for multiple uses.

Q. What are the main features of Docker-compose?

Some of the main features of Docker-compose are as follows:

Multiple environments on same Host: We can use it to create multiple environments on the
same host server.

Preserve Volume Data on Container Creation: Docker compose also preserves the volume
data when we create a container.

Recreate the changed Containers: We can also use compose to recreate the changed
containers.

Variables in Compose file: Docker compose also supports variables in compose file. In this
way we can

Create variations of our containers.

Q. What is the most popular use of Docker?

The most popular use of Docker is in build pipeline.

With the use of Docker it is much easier to automate the development to deployment process in
build pipeline.

We use Docker for the complete build flow from development work, test run and deployment to
production environment.

Q. What is the role of open source development in the popularity of Docker?

Since Linux was an open source operating system, it opened new opportunities for developers
who want to contribute to open source systems.

One of the very good outcomes of open source software is Docker.

It has very powerful features.

Docker has wide acceptance due to its usability as well as its open source approach of integrating
with different systems.

Q. What is Docker Machine?

We can use Docker Machine to install Docker Engine on virtual hosts.

It also provides commands to manage virtual hosts.

Some of the popular Docker machine commands enable us to start, stop, inspect and restart a
managed host.

Docker Machine provides a Command Line Interface (CLI), which is very useful in managing
multiple hosts.

Q. Why do we use Docker Machine?

There are two main uses of Docker Machine:

Old Desktop : If we have an old desktop and we want to run Docker then we use Docker
Machine to run Docker. It is like installing a virtual machine on an old hardware system to run
Docker engine.

Remote Hosts : Docker Machine is also used to provision Docker hosts on remote systems. By
using Docker Machine you can install Docker Engine on remote hosts and configure clients on
them.

Q. How will you create a Container in Docker?

To create a Container in Docker we have to create a Docker Image. We can also use an existing
Image from Docker Hub Registry.

We can run an Image to create the container.

Q. Do you think Docker is Application-centric or Machine-centric?

Docker is an Application-centric solution.

It is optimized for deployment of an application.

It does not replace a machine by creating a virtual machine. Rather, it focuses on providing ease
of use features to run an application.

Q. Can we run more than one process in a Docker container?

Yes, a Docker Container can provide process management that can be used to run multiple
processes.

There are process supervisors like runit, s6, daemontools etc that can be used to fork additional
processes in a Docker container.

Q. What are the objects created by Docker Cloud in Amazon Web Services (AWS) EC2?
Docker Cloud creates following objects in AWS EC2 instance:

VPC : Docker Cloud creates a Virtual Private Cloud with the tag name dc-vpc. It also creates
Class Less

Inter-Domain Routing (CIDR) with the range of 10.78.0.0/16 .

Subnet : Docker Cloud creates a subnet in each Availability Zone (AZ). In Docker Cloud, each
subnet is tagged with dc-subnet.

Internet Gateway : Docker Cloud also creates an internet gateway with name dc-gateway and
attaches it to the VPC created earlier.

Routing Table : Docker Cloud also creates a routing table named dc-route-table in Virtual
Private Cloud. In this Routing Table Docker Cloud associates the subnet with the Internet
Gateway.

Q. How will you take backup of Docker container volumes in AWS S3?

We can use a utility named Dockup provided by Docker Cloud to take backup of Docker
container volumes in S3.

Q. What are the three main steps of Docker Compose?

Three main steps of Docker Compose are as follows:

Environment : We first define the environment of our application with a Dockerfile. It can be
used to recreate the environment at a later point of time.

Services : Then we define the services that make our app in docker-compose.yml. By using this
file we can define how these services can be run together in an environment.

Run : The last step is to run the Docker Container. We use docker-compose up to start and run
the application.

Q. What is Pluggable Storage Driver architecture in Docker based containers?

Docker storage driver is by default based on a Linux file system. But Docker storage driver also
has provision to plug in any other storage driver that can be used for our environment.

In Pluggable Storage Driver architecture, we can use multiple kinds of file systems in our Docker
Container.

In Docker info command we can see the Storage Driver that is set on a Docker daemon.

We can even plug in shared storage systems with the Pluggable Storage Driver architecture.

Q. What are the main security concerns with Docker based containers?

Docker based containers have following security concerns:

Kernel Sharing: In a container-based system, multiple containers share same Kernel. If one
container causes Kernel to go down, it will take down all the containers. In a virtual machine
environment we do not have this issue.

Container Leakage: If a malicious user gains access to one container, it can try to access the
other containers on the same host. If a container has security vulnerabilities it can allow the user
to access other containers on same host machine.

Denial of Service: If one container occupies the resources of a Kernel then other containers will
starve for resources. It can create a Denial of Service attack like situation.

Tampered Images: Sometimes a container image can be tampered. This can lead to further
security concerns. An attacker can try to run a tampered image to exploit the vulnerabilities in
host machines and other containers.

Secret Sharing: Generally one container can access other services. To access a service it
requires a Key or Secret. A malicious user can gain access to this secret. Since multiple
containers share the secret, it may lead to further security concerns.

Q. How can we check the status of a Container in Docker?

We can use command to get the list of all the containers in Docker. This command
also returns the status of these containers.

Q. What are the main benefits of using Docker?

Docker is a very powerful tool. Some of the main benefits of using Docker are as follows:
Utilize Developer Skills : With Docker we maximize the use of Developer skills. With Docker
there is less need of build or release engineers. Same Developer can create software and wrap it
in one single file.

Standard Application Image : Docker based system allows us to bundle the application
software and Operating system files in a single Application Image that can be deployed
independently.

Uniform deployment : With Docker we can create one package of our software and deploy it on
different platforms seamlessly.

Q. How does Docker simplify Software Development process?

Prior to Docker, Developers would develop software and pass it to QA for testing and then it is
sent to Build & Release team for deployment.

In Docker workflow, Developer builds an Image after developing and testing the software. This
Image is shipped to Registry. From Registry it is available for deployment to any system. The

development process is simpler since steps for QA and Deployment etc take place before the
Image is built. So Developer gets the feedback early.
Q. What is the basic architecture behind Docker?

Q.

.......é......

Docker is built on client server model.

Docker server is used to run the images.

We use Docker client to communicate with Docker server.
Clients tell Docker server via commands what to do.
Additionally there is a Registry that stores Docker Images.
Docker Server can directly contact Registry to download images.

hat are the popular tasks that you can do with Docker Command line tool?

Docker Command Line (DCL) tool is implemented in Go language.

It can compile and run on most of the common operating systems.

Some of the tasks that we can do with Docker Command Line tool are as follows:
We can download images from Registry with DCL.

We can start, stop or terminate a container on a Docker server by DCL.

We can retrieve Docker Logs via DCL.

We can build a Container Image with DCL.

Q. What type of applications- Stateless or Stateful are more suitable for Docker Container?

Docker was designed for stateless applications and horizontal scalability, with containers
deleted and replaced as needed

We can create a container out of our application and take out the configurable state
parameters from application.

Now we can run same container in Production as well as QA environments with different
parameters.

This helps in reusing the same Image in different scenarios.

stateless application is much easier to scale with Docker Containers than a stateful
application.

Databases are not suited for this approach, and Docker is evolving to support the needs of
stateful enterprise apps.

Docker supports for few database services and it doesn’t supports all of the database
services that you might expect out of your Docker environment.

Q. How can Docker run on different Linux distributions?

Docker directly works with Linux kernel level libraries.

In every Linux distribution, the Kernel is same.

Docker containers share same kernel as the host kernel.

Since all the distributions share the same Kernel, the container can run on any of these
distributions.

Q. Why do we use Docker on top of a virtual machine?

Generally, we use Docker on top of a virtual machine to ensure isolation of the
application.

On a virtual machine we can get the advantage of security provided by hypervisor.
We can implement different security levels on a virtual machine.

Docker can make use of this to run the application at different security levels.

We can run multiple Docker containers on same host.

[]
[]
[]
Q. How can Docker container share resources?
[]
[]

These containers can share Kernel resources.
Each container runs on its own Operating System and it has its own user-space and
libraries. So, in a way Docker container does not share resources within its own

namespace. But the resources that are not in isolated namespace are shared between
containers. These are the Kernel resources of host machine that have just one copy.So in
the back-end there is same set of resources that Docker Containers share.

Q. What is Docker Entrypoint?

e We use Docker Entrypoint to set the starting point for a command in a Docker Image. We
can use the entrypoint as a command for running an Image in the container.

E.g. We can define following entrypoint in docker file and run it as following command:
ENTRYPOINT [“mycmd”]

e 9% docker run mycmd
ENTRYPOINT cannot be overriden at run time with normal commands such as docker
run [args].

e ENTRYPOINT can be overriden with --entrypoint.

e The ENTRYPOINT specifies a command that will always be executed when the
container starts.

e Otherwise, if you want to make an image for general purpose, you can leave
ENTRYPOINT unspecified and use CMD ["/path/dedicated_command"] as you will be
able to override the setting by supplying arguments to docker run

e CMD command mentioned inside Dockerfile file can be overridden via docker run
command while ENTRYPOINT cannot be.

e entrypoint behaves similarly to cmd. And in addition, it allows us to customize the
command executed at startup.

e Like with cmd, in case of multiple entrypoint entries, only the last one is considered.

FROM ubuntu

MAINTAINER vijay

RUN apt-get update
ENTRYPOINT ["echo™, "Hello"]
CMD ["World"]

docker build .

docker run [container_name]

It will return the message Hello World.
docker run [container_name] [your_name]

The output has now changed to Hello [your_name]
e This is because you cannot override ENTRYPOINT instructions, whereas with CMD
you can easily do so.

85. What is ONBUILD command in Docker?
We use ONBUILD command in Docker to run the instructions that have to execute after the
completion of current Dockerfile build.

It is used to build a hierarchy of images that have to be build after the parent image is built.
A Docker build will execute first ONBUILD command and then it will execute any other
command in Child Dockerfile.

Q. What is Build cache in Docker?
When we build an Image, Docker will process each line in Dockerfile.

It will execute the commands on each line in the order that is mentioned in the file.

But at each line, before running any command, Docker will check if there is already an existing
image in its cache that can be reused rather than creating a new image.

This method of using cache in Docker is called Build cache in Docker.
We can also specify the option —no-cache=true to let Docker know that we do not want to use
cache for Images. With this option, Docker will create all new images.

Q. What are the most common instructions in Dockerfile?

Some of the common instructions in Dockerfile are as follows:

FROM : We use FROM to set the base image for subsequent instructions. In every valid
Dockerfile, FROM is the first instruction.

LABEL : We use LABEL to organize our images as per project, module, licensing etc. We can
also use LABEL to help in automation.

In LABEL we specify a key value pair that can be later used for programmatically handling the
Dockerfile.

RUN : We use RUN command to execute any instructions in a new layer on top of the current
image. With each RUN command we add something on top of the image and use it in subsequent
steps in Dockerfile.

CMD : We use CMD command to provide default values of an executing container. In a
Dockerfile, if we include multiple CMD commands, then only the last instruction is used.

Q. What is the purpose of EXPOSE command in Dockerfile?

We use EXPOSE command to inform Docker that Container will listen on a specific network
port during runtime.

But these ports on Container may not be accessible to the host. We can use —p to publish a range
of ports from Container.

Q. What are the different kinds of namespaces available in a Container?

In a Container we have an isolated environment with namespace for each resource that a kernel
provides. There are mainly six types of namespaces in a Container.

UTS Namespace : UTS stands for Unix Timesharing System. In UTS namespace every
container gets its own hostname and domain name.

Mount Namespace : This namespace provides its own file system within a container. With this
namespace we get root like / in the file system on which rest of the file structure is based.

PID Namespace : This namespace contains all the processes that run within a Container. We can
run ps command to see the processes that are running within a Docker container.

IPC Namespace : IPC stands for Inter Process Communication. This namespace covers shared
memory, semaphores, named pipes etc resources that are shared by processes. The items in this
namespace do not cross the container boundary.

User Namespace : This namespace contains the users and groups that are defined within a
container.

Network Namespace : With this namespace, container provides its own network resources like-
ports, devices etc. With this namespace, Docker creates an independent network stack within
each container.

90. How will you monitor Docker in production?

Docker provides tools like docker stats and docker events to monitor Docker in production. We
can get reports on important statistics with these commands.

Docker stats : When we call docker stats with a container id, we get the CPU, memory usage etc
of a container. It is similar to top command in Linux.

Docker events : Docker events are a command to see the stream of activities that are going on in
Docker daemon. Some of the common Docker events are: attach, commit, die, detach, rename,
destroy etc.

We can also use various options to limit or filter the events that we are interested in.

Q. What are the Cloud platforms that support Docker?
Some of the popular cloud platforms that support Docker are:

e Amazon AWS

e Google Cloud Platform

e Microsoft Azure

e IBM Bluemix

Q. How can we control the start-up order of services in Docker compose?

¢ In Docker compose we can use the depends on option to control the start-up order of
services.

e With compose, the services will start in the dependency order.

e Dependencies can be defined in the options like- depends_on, links, volumes_from,
network_mode etc But Docker does not wait for until a container is ready.

Q. Why Docker compose does not wait for a container to be ready before moving on to
start next service in dependency order?

e The problem with waiting for a container to be ready is that in a Distributed system, some
services or hosts may become unavailable sometimes. Similarly, during startup also some
services may also be down.

e Therefore, we have to build resiliency in our application. So that even if some services
are down we can continue our work or wait for the service to become available again.

We can use wait-for-it or dockerize tools for building this kind of resiliency.
Q. How will you customize Docker compose file for different environments?

e In Docker compose there are two files docker-compose.yml and docker-
compose.override.yml.

e We specify our base configuration in docker- compose.yml file. For any environment

specific customization we use docker-compose.override.yml file.

We can specify a service in both the files.

Docker compose will merge these files based on following rules:

For single value options, new value replaces the old value.

For multi-value options, compose will concatenate the both set of values.

We can also use extends field to extend a service configuration to multiple environments.

e With extends, child services can use the common configuration defined by parent service.

Development command:

docker-compose -f docker-compose.yml -f docker-compose.dev.yml up
Production command:

docker-compose -f docker-compose.yml -f docker-compose.prod.yml up

.!\)!ﬂ.

Note: If you name your second dockerfile "docker-compose.override.yml’, a simple docker-
compose up would read the overrides automatically.
But in your case, a name based on the environment is clearer.

Network Drivers

There are mainly 5 network drivers: Bridge, Host, None, Overlay, Macvlan

Docker Networking

docker run ubuntu

Docker Host

- 7‘0"2.] -

172.17.0.4| 172.17.0.1 [172.17.0.5

Docker Host

Host

dockerrun \
--network=host
ubuntu

Docker Host
5000

° OVERLAY NETWORK

0/24 my-overlay-network

docker service create --replicas 2 network my-owve twork nginx

Web Web db redis Web

Container Container Container Container Container

'
1721 7.0.2: 1721703 172.1740_22 ! 1721703 172.17.0.2:

i 172.17.01 | 1721701 I ! 172.17.01
1. dockerO . I dockerO | b= docker0

- b
== . — Oyerlay Network
10.0.9.0

Q. How do multiple containers publish on the same port?
e Mapping of replica ports to the same host port denied Without ingress

Without Ingress

http://192.168.1.5:80

Web
Containor
17217021

dockerO

Docker Host

Without Ingress

http://192.168.1.5:80

)

5000 5000
Web Web

Container Contamer
17217021 :1721703

'----'

docker0

Docker Host

How do multiple containers publish on the same port?
Mapping of replica ports to the same host port allowed with ingress
e When you create a docker swarm cluster, it automatically creates an ingress network. The
ingress network has a built-in load balancer that redirects traffic from the published port,
which in this case is the port 80.
e All the mapped ports are the port 5000 on each container. Since the ingress network is
created automatically there is no configuration that you have to do.

p INGRESS NETWORK

http://192.168.1.5:80

5000 5000
Web Web

Container Container
17217021 : 1721703

docker0

- Docker Host

Ingress Load balancer

Web server
(instavote/vote)

Container IP
Ingress ¥ Swarm
Network LB
L ::r:e/m Service name Container IP

Web server
(instavote/vote)

e ——

nginx load balancer

published port 80

backend
published port 8080

SWarm SWarm
load balancer load balancer

10.0.0.3:80 10.0.0.4:80

node 1 node 2

|
|
[
[
[
[
[
[
backend.1 backend.2 :
[
[
|
[
[
|
|

ingress network

What is routing mesh under docker swarm mode

1.

2.

Routing Mesh is a feature which make use of Load Balancer concepts.

It provides global publish port for a given service.

The routing mesh uses port-based service discovery and load balancing. So to reach any
service from outside the cluster you need to expose ports and reach them via the
Published Port.

Docker Engine swarm mode makes it easy to publish ports for services to make them
available to resources outside the swarm.
All nodes participate in an ingress routing mesh.

The routing mesh enables each node in the swarm to accept connections on published
ports for any service running in the swarm, even if there’s no task running on the node.
The routing mesh routes all incoming requests to published ports on available nodes to an
active container.

To use the ingress network in the swarm, you need to have the following ports open
between the swarm nodes before you enable swarm mode:

Port 7946 TCP/UDP for container network discovery.

Port 4789 UDP for the container ingress network.

How do you access a service that could be started anywhere in your cluster?

Docker Swarm has a very useful tool to solve this problem called the Swarm routing
mesh.

e The routing mesh manages ingress into your running containers. By default, Swarm
makes all services accessible via their published port on each Docker host.

Swarm Cluster

e The Swarm routing mesh has its pros and cons. This default configuration has its
limitations, but it is designed to make getting started as easy as possible. As your
applications get more complex, the routing mesh can be configured to behave differently,
and different services can be deployed to use different routing configurations

Goals of Docker Networking
Flexibility — Docker provides flexibility by enabling any number of applications on various
platforms to communicate with each other.

Cross-Platform — Docker can be easily used in cross-platform which works across various servers
with the help of Docker Swarm Clusters.

Scalability — Docker is a fully distributed network, which enables applications to grow and scale
individually while ensuring performance.

Decentralized — Docker uses a decentralized network, which enables the capability to have the
applications spread and highly available. In the event that a container or a host is suddenly missing
from your pool of resource, you can either bring up an additional resource or pass over to services
that are still available.

User — Friendly — Docker makes it easy to automate the deployment of services, making them
easy to use in day-to-day life.

Support — Docker offers out-of-the-box supports. So, the ability to use Docker Enterprise Edition
and get all of the functionality very easy and straightforward, makes Docker platform to be very
easy to be used.

Docker — version
You can check the currently used Docker version on your system through this command -
$ docker —version

Docker pull

This command can pull the images from docker’s hub or repository that is hub.docker.com
$ docker pull ubuntu

All the images of the hub will be cached and stored from docker’s hub.

Docker run

You can create a container from the image through this command.

$ docker run —it —d ubuntu

Docker ps

To check the running containers or to know that how many containers are running right now, you
can use this command:

$ docker ps

Docker ps —a

To view all the running and exited containers, you can use this command:

$ docker ps —a

Docker exec

To access the running container, you can use this command:

$ docker exec it <container id> bash

Docker stop

To stop the running container, we can use this command:

$ docker stop <container id>

Docker kill

The containers get killed after getting stopped by this command. In Docker, stop command
container gets the full time to shut down, but when you need to shut down any container
immediately then you can kill the Docker container through kill command.

$ docker kill <container id>

Docker commit

To create a new image of the edited container on the local system, you can use this command:
$ docker commit <container id> <username/imagename>

Docker login

To login the docker hub repository, you can use this command:

$ docker login

Docker push

You can push a new image into Docker hub through this command:

$ docker push <username/image name>

Docker images

All locally stored images in docker hub will be listed through this command:

$ docker images

Docker rm

If you want to delete any stopped container then this command can help you:

$ docker rm <container id>

Docker build

If you want to build an image from a Docker file then you can use this command:

$ docker build <path to docker file>

Apart from the above-listed Docker commands cheat sheet, one can also use other commands for
Docker like ‘docker export’ command that can export a container’s filesystem as an archive file
or ‘docker attach’ that can attach any running container, etc.

Docker network
To view Docker networks, run:
docker network Is

To get further details on networks, run:
docker network inspect

docker network inspect bridge
docker network create --driver bridge <bridge_network_name>
docker run --net=<bridge_network_name> --name=my_psql_db postgres

Create the overlay network in a similar manner to the bridge network (network
name my_multi_host_network):

docker network create --driver overlay <bridge_network_name>

Launch containers on each host; make sure you specify the network name:
docker run -itd -net=<bridge_network_name> my_python_app

we can use host network directly.

docker run -d --name webl --net=host <image_name>

docker run -d --name web1 --net=host nginx

docker run -d --name web2 --net=none <image_name>

	Docker Architecture
	Docker Client
	Docker Host
	Docker Registry
	4dd56fcecf62 redis:latest "docker-entrypoint.s…" 9 seconds ago Up 9 seconds 0.0.0.0:6379->6379/tcp redisHostPort

	Binding Ports
	Binding Ports
	Forward everything
	Forward selectively
	Custom IP and port forwarding

