

Implementing	DevOps	on	AWS

Table	of	Contents

Implementing	DevOps	on	AWS
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com

Why	subscribe?
Customer	Feedback
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	What	is	DevOps	and	Should	You	Care?
What	is	DevOps?

A	common	goal
Shared	knowledge	(no	silos)
Trust	and	shared	responsibility
Respect
Automation
Reproducible	infrastructure
Metrics	and	monitoring
Continuous	Integration,	Delivery,	and	Deployment
Embracing	failure

Should	you	care
Is	this	the	right	time?
Will	it	work?
Is	it	worth	it?
Do	you	need	it?

Summary
2.	Start	Treating	Your	Infrastructure	as	Code

IaC	using	Terraform
Configuration
Template	design

Resources

Variables
Outputs

Operations
Validation
Dry-run
Deployment
Updates
Removal

IaC	using	CloudFormation
Configuration
Template	design

Parameters
Resources
Outputs

Operations
Template	validation
Deploying	a	Stack
Updating	a	stack
Deleting	a	stack

Summary
3.	Bringing	Your	Infrastructure	Under	Configuration	Management

Introduction	to	SaltStack
Preparation

Writing	Configuration	Management	code
States
Pillars
Grains
Top	files

Bootstrapping	nodes	under	Configuration	Management	(end-to-end	IaC)
Summary

4.	Build,	Test,	and	Release	Faster	with	Continuous	Integration
Prepare	IaC

Terraform	templates
Variables
Variables	(values)
Resources

Create	the	VPC
Add	networking	components
Add	EC2	node	and	related	resources

Outputs
SaltStack	code

States
Pillars
Minion	configuration

Deploy	IaC
Setup	CI

Jenkins	initialization
Writing	a	demo	app
Defining	the	pipeline
Setting	up	the	pipeline

Summary
5.	Ever-Ready	to	Deploy	Using	Continuous	Delivery

Preparing	Terraform	templates
Resources
Variables
Variables	(values)
Outputs

Prepareing	Salt	code
States

top.sls
jenkins
nginx

Pillars
Minion	configuration

Preparing	Jenkins	code
Packer

demo-app.json
demo-app_vars.json
demo-app_userdata.sh

Serverspec
spec/localhost/demo-app_spec.rb

demo-app
demo-app-cdelivery

Preparing	CodeCommit	repositories
Deploy	Terraform	templates
Initializing	Jenkins
Configuring	Jenkins	jobs

demo-app	pipeline
demo-app-cdelivery	pipeline

Summary
6.	Continuous	Deployment	-	A	Fully	Automated	Workflow

Terraform	code	(resources.tf)
outputs.tf

Deployment
Jenkins	pipelines

Continuous	Deployment	pipeline
cdeployment.sh

Summary

7.	Metrics,	Log	Collection,	and	Monitoring
Centralized	logging

Ingesting	and	storing	logs	with	Logstash	and	Elasticsearch
Collecting	logs	with	Elasticsearch	Filebeat
Visualizing	logs	with	Kibana

Metrics
Ingesting	and	storing	metrics	with	Prometheus
Gathering	OS	and	application	metrics	with	Telegraf
Visualizing	metrics	with	Grafana

Monitoring
Alerting	with	Prometheus
Self-remediation	with	Prometheus	and	Jenkins

Summary
8.	Optimize	for	Scale	and	Cost

Architectural	considerations
The	VPC

CIDR
Subnets	and	Availability	Zones
VPC	limits

The	frontend	layer
The	backend	layer
The	object	storage	layer

The	load	balancing	layer
Cross-zone	load	balancing
ELB	pre-warming
The	CDN	layer
Spot	instances
AWS	Calculators

Summary
9.	Secure	Your	AWS	Environment

Managing	access	using	IAM
Securing	the	root	account

VPC	security
Security	Groups
Network	ACLs
VPN	gateway
VPC	peering

EC2	security
IAM	Roles
SSH	access

Individual	keys
Entrypoint

ELBs	everywhere
HTTPS	by	default

Encrypted	storage
EBS	volumes
S3	objects

OS	updates
Security	auditing

VPC	Flow	Logs
CloudTrail
Trusted	Advisor
AWS	Config
Self	pen	testing

Summary
10.	AWS	Tips	and	Tricks

Using	VPCs
Keep	the	Main	route	table	as	a	fallback
Staying	within	the	VPC
Creating	IAM	roles	in	advance
Groups	over	users
Knowing	the	AWS	service	limits
Pre-warm	ELBs	if	needed
Using	termination	protection
Tagging	what	you	can
Deploying	across	multiple	zones
Enhancing	your	ELB	health-checks
Offloading	SSL	onto	the	ELB
EIP	versus	public	IP
Mind	the	full-hour	billing
Using	Route53	ALIAS	records
The	S3	bucket	namespace	is	global
-	versus	.	in	the	S3	bucket	name
Randomizing	S3	filenames
Initializing	(pre-warm)	EBS	volumes
Summary

Implementing	DevOps	on	AWS

Implementing	DevOps	on	AWS
Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,
except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,
either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and
distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing
cannot	guarantee	the	accuracy	of	this	information.

First	published:	January	2017

Production	reference:	1190117

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	

B3	2PB,	UK.

ISBN	978-1-78646-014-1

www.packtpub.com

http://www.packtpub.com

Credits

Author

Veselin	Kantsev

Copy	Editor

Safis	Editing

Reviewer

Madhu	Joshi

Project	Coordinator

Judie	Jose	

Commissioning	Editor

Kartikey	Pandey

Proofreader

Safis	Editing

Acquisition	Editor

Namrata	Patil	

Indexer

Pratik	Shirodkar	

Content	Development	Editor

Abhishek	Jadhav

Graphics

Kirk	D'Penha

Technical	Editor

Mohd	Riyan	Khan

Production	Coordinator

Nilesh	Mohite

	 

About	the	Author
Veselin	Kantsev	is	a	DevOps	professional	and	a	Linux	enthusiast	who	lives	in	London,	UK.

His	introduction	to	Linux	was	as	a	System	Administrator	back	in	2006.	His	focus	for	the	past	few
years	has	been	mostly	on	cloud	technologies	and	the	transition	of	the	community	from	an	Ops	to	a
DevOps	culture.

He	has	worked	with	companies	in	various	sectors	such	as	Design,	Media,	and	Finance,
specializing	in	the	migration	of	infrastructure	onto	AWS	and	the	promotion	of	DevOps	principles
and	practices.

About	the	Reviewer
Madhu	Joshi,	the	VP	of	Cloud	Services	at	Trillion	Technology	Solutions,	has	built	high-profile
websites	in	AWS	for	DoD,	Verato,	National	Geospatial	Agency	(NGA),	DHS	FEMA,	ProQuest
Search	Solutions,	The	Coca	Cola	Company,	Food	Network,	Scripps,	Special	Olympics,	Home
and	Garden	TV,	and	Monumental	Sports.		He	designed	these	sites	to	handle	millions	of	visitors
per	month	and	has	used	industry	best	practices	to	provide	peak	capacity	required	to	serve	the
global	audience.	He	also	has	expertise	in	migrating	large	applications	such	as	the	KickApps
social	media	platform	and	financial	services	from	a	traditional	data	center	to	Amazon's	cloud.

I	would	like	to	thank	Packt	Publishing	and	Judie	Jose	for	giving	me	the	opportunity	to
review	the	book.	This	has	turned	out	to	be	a	great	book,	and	I	want	to	congratulate	the
author	on	putting	on	lot	of	hard	work	to	make	the	book	very	useful.	I	am	sure	that	the
readers	will	have	as	much	fun	as	I	had	reviewing	it.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book
customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us
at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books
and	video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development
and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thank	you	for	purchasing	this	Packt	book.	We	take	our	commitment	to	improving	our	content	and
products	to	meet	your	needs	seriously—that's	why	your	feedback	is	so	valuable.	Whatever	your
feelings	about	your	purchase,	please	consider	leaving	a	review	on	this	book's	Amazon	page.	Not
only	will	this	help	us,	more	importantly	it	will	also	help	others	in	the	community	to	make	an
informed	decision	about	the	resources	that	they	invest	in	to	learn.

You	can	also	review	for	us	on	a	regular	basis	by	joining	our	reviewers'	club.	If	you're
interested	in	joining,	or	would	like	to	learn	more	about	the	benefits	we	offer,	please	contact
us:	customerreviews@packtpub.com.

Preface
DevOps	and	AWS	are	two	key	subjects	in	the	tech	industry	that	have	been	steadily	growing	in
popularity	in	recent	years	and	for	a	good	reason.

DevOps	is	gradually	becoming	the	de	facto	methodology	or	framework	and	is	adopted	by
organizations	of	all	sizes.	It	has	enabled	technology	teams	to	work	more	efficiently	and	made	their
work	more	rewarding	by	tightening	the	feedback	loop	between	the	developer	and	the	end	user.
Team	members	enjoy	a	more	pleasant,	more	productive	work	environment	through	much
increased	collaboration.

In	this	book,	we	will	first	examine	the	philosophy	behind	DevOps,	then	proceed	with	some
practical	examples	of	its	most	popular	principles.

AWS	is	nowadays	synonymous	with	Cloud	Computing,	sitting	at	the	top	of	the	industry	charts	with
its	31%	market	share.	Starting	back	in	2006,	Amazon	Web	Services	has	evolved	into	a	large,
independent,	sophisticated	ecosystem	in	the	Cloud.	It	is	and	has	been	launching	new	services	at
an	astonishing	rate.	The	AWS	product	categories	range	from	raw	compute	and	database	resources
to	storage,	analytics,	AI,	game	development,	and	mobile	services	to	IoT	solutions.

We	will	use	AWS	as	a	platform	to	apply	DevOps	techniques	on.	In	the	chapters	to	follow,	we	will
see	how	the	convenience	and	elasticity	of	AWS	greatly	complements	the	innovative	approach	of
DevOps	to	system	administration	and	application	development.

What	this	book	covers
Chapter	1,	What	Is	DevOps	and	Should	You	Care?,	introduces	the	DevOps	philosophy.

Chapter	2,	Start	Treating	Your	Infrastructure	as	Code,	offers	examples	on	how	to	deploy
infrastructure	as	code	using	Terraform	or	CloudFormation.

Chapter	3,	Bring	Your	Infrastructure	under	Configuration	Management,	demonstrates	how	to
configure	EC2	instances	using	SaltStack.

Chapter	4,	Build,	Test,	and	Release	Faster	with	Continuous	Integration,	describes	the	process
of	setting	up	a	CI	workflow	using	a	Jenkins	CI	server.

Chapter	5,	Ever-Ready	to	Deploy	Using	Continuous	Delivery,	shows	how	to	extend	a	CI
pipeline	to	produce	deployment-ready	EC2	AMIs	using	Packer	and	Serverspec.

Chapter	6,	Continuous	Deployment	-	A	Fully	Automated	Workflow,	Offers	a	fully	automated
workflow	and	completes	the	CI/CDelivery	pipeline	by	adding	the	functionality	needed	for	AMI
deployment.

Chapter	7,	Metrics,	Log	Collection,	and	Monitoring,	introduces	Prometheus,		Logstash,
Elasticsearch,and	related	DevOps	tools.

Chapter	8,	Optimize	for	Scale	and	Cost,	offers	advice	on	how	to	plan	an	AWS	deployment	with
scalability	and	cost	efficiency	in	mind.

Chapter	9,	Secure	Your	AWS	Environment,	covers	best	practices	in	order	to	improve	the	security
of	an	AWS	deployment.

Chapter	10,	AWS	Tips	and	Tricks,	contains	a	selection	of	useful	tips	for	a	beginner	to	an
intermediate	AWS	users.

What	you	need	for	this	book
The	practical	examples	found	in	this	book	involve	the	use	of	AWS	resources,	thus	an	AWS	account
will	be	required.

The	client-side	tools	used	in	the	examples,	such	as	the	AWS	CLI	and	Terraform,	are	supported	on
most	common	operating	systems	(Linux/Windows/Mac	OS).

Who	this	book	is	for
This	book	is	for	system	administrators	and	developers	who	manage	AWS	infrastructure	and
environments	and	are	planning	to	implement	DevOps	in	their	organizations.	Those	aiming	for	the
AWS	Certified	DevOps	Engineer	certification	will	also	find	this	book	useful.	Prior	experience	of
operating	and	managing	AWS	environments	is	expected.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"We	need	to	SSH	into	the
node	and	retrieve	the	admin	password	stored	in
/var/lib/jenkins/secrets/initialAdminPassword."

A	block	of	code	is	set	as	follows:

aws-region	=	"us-east-1"	

vpc-cidr	=	"10.0.0.0/16"	

vpc-name	=	"Terraform"	

aws-availability-zones	=	"us-east-1b,us-east-1c"	

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or
items	are	set	in	bold:

aws-region	=	"us-east-1"	

vpc-cidr	=	"10.0.0.0/16"	

vpc-name	=	"Terraform"	

aws-availability-zones	=	"us-east-1b,us-east-1c"	

Any	command-line	input	or	output	is	written	as	follows:

$	terraform	validate

$	terraform	plan

Refreshing	Terraform	state	prior	to	plan...

...

Plan:	11	to	add,	0	to	change,	0	to	destroy.

$	terraform	apply

aws_iam_role.jenkins:	Creating...

...

Apply	complete!	Resources:	11	added,	0	changed,	0	destroyed.

Outputs:

JENKINS	EIP	=	x.x.x.x

VPC	ID	=	vpc-xxxxxx

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"We	select	Pipeline	as	a	job	type
and	pick	a	name	for	it."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-what
you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you
will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the	book's	title
in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing
to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get
the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest
version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	complete	set	of	code	can	also	be	downloaded	from	the	following	GitHub	repository:
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can
download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/ImplementingDevOpsonAWS_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/ImplementingDevOpsonAWS_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If
you	find	a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be
grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and
help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata
Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your
submission	will	be	accepted	and	the	errata	will	be	uploaded	to	our	website	or	added	to	any	list
of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support
and	enter	the	name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the
Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,
we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal
copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or
website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Chapter	1.	What	is	DevOps	and	Should	You
Care?
DevOps	can	be	seen	as	an	extension	of	the	successful	and	well	established	Agile	methodology.
Bringing	operations	into	the	picture	helps	the	advance	from	continuous	(Agile)	development	to
integration	to	deployment,	but	more	importantly	it	helps	build	a	better	working	environment,	one
with	stronger	cross-team	relationships.

If	I	had	to	describe	DevOps	in	one	word,	it	would	be	collaboration.	The	genuine	willingness	of
both	the	Dev	and	Ops	camps	to	work	together	is	the	foundation,	the	most	important	aspect	of	the
philosophy.

DevOps	appears	as	the	meeting	point	in	the	following	diagram:

In	this	chapter	we	will	go	through	the	following	topics:

What	is	DevOps?
Questions	you	should	ask	yourself	before	adopting	it

What	is	DevOps?
So,	let	us	examine	the	various	principle	characteristics	of	a	DevOps	environment.

What	follows	is	a	series	of	generally	accepted	definitions,	invariably	mixed	with	personal
opinions	-	you	have	been	warned.

A	common	goal
The	alignment	of	effort	toward	increasing	system	performance	and	stability,	reducing	the	time	it
takes	to	deploy	or	improving	the	overall	quality	of	the	product,	will	result	in	happier	customers
and	proud	engineers.

The	goal	needs	to	be	repeated,	clarified,	and	simplified	until	it	is	fully	understood,	argued
against,	and	eventually	committed	to	by	everybody.

DevOps	shifts	focus	away	from	self-interest	and	toward	that	goal.	It	directs	praise	at	group
achievements	rather	than	those	of	the	individual;	KPIs	and	Employee	of	the	Month	initiatives
perhaps	not	so	much.

Allow	people	to	look	at	the	bigger	picture	past	the	realm	of	their	cubicle.	Trust	them.

Shared	knowledge	(no	silos)
The	chances	are	you	have	already	heard	stories	or	read	books	about	the	notorious	organizational
silos.

In	the	worst	case,	it	would	be	somebody	who	refuses	to	let	go	and	often	becomes	the	main
bottleneck	in	a	development	life	cycle.	They	can	be	fiercely	territorial,	safe-guarding	what
exclusive	knowledge	they	might	have	in	a	given	field,	likely	(I	speculate)	because	this	provides
them	with	a	sense	of	importance,	further	catering	to	their	ego.

On	the	other	hand,	there	are	also	examples	of	people	who	find	themselves	in	a	silo	purely	due	to
unfortunate	circumstances.	My	respect	goes	out	to	the	many	engineers	stuck	with	supporting
inherited	legacy	systems	all	by	themselves.

Fortunately,	DevOps	blurs	such	borders	of	expertise	with	concepts	like	cross-functional	teams
and	full-stack	engineers.	It	is	important	to	note	here	that	this	does	not	translate	into	an
opportunity	to	cut	costs	by	expecting	people	to	be	tech	ninja	experts	at	every	single	thing	(which
in	real	life	equates	to	preceding	average).	But,	as	in	one	of	those	Venn	diagrams,	it	is	the	cross-
over	between	a	Dev	and	an	Ops	set	of	skills.

Silos	are	avoided	by	encouraging	knowledge	sharing.	Peer	reviews,	demo	stand-ups,	or	shared
documentation	are	a	few	ways	to	ensure	that	no	task	or	piece	of	know-how	is	limited	to	a	specific
person.	You	could	even	adopt	Pair	Programming.	It	seems	a	bit	heavy,	but	it	evidently	works!

Trust	and	shared	responsibility
Should	developers	be	given	production	access?

There	are	good	reasons	for	maintaining	strict	role-based	permissions;	one	of	them	is	security
another	is	integrity.	This	standpoint	remains	valid	for	as	long	as	we	maintain	the	stereotype	of	the
developer	who	is	so	used	to	working	in	devlocal;	to	them,	concepts	such	as	passphrase-
protected	SSH	keys	or	not	manually	editing	all	of	the	files	take	a	back	seat.

In	the	era	of	DevOps,	this	is	no	longer	the	case.	Shared	knowledge	and	responsibility	means
operations	engineers	can	rely	on	their	developer	colleagues	to	follow	the	same	code	of	conduct
when	working	in	critical,	production	environments.

Dev	and	Ops	teams	have	access	to	the	same	set	of	tools	and	environments.	Deployments	are	no
longer	a	special	task	reserved	for	the	Ops	team	and	scheduled	days	in	advance.

In	a	team	with	such	knowledge-sharing	habits,	I,	as	an	operations	engineer,	can	be	confident	about
my	Dev	colleague's	ability	to	perform	my	tasks,	and	vice	versa.

Developers	participate	in	the	on-call	rota,	supporting	the	software	they	produce.

This	is	not	to	be	seen	as	an	additional	burden,	but	as	a	sign	of	trust	and	an	opportunity	to	increase
collaboration.	Nobody	is	throwing	code	over	the	wall	anymore.	Responsibility	and	a	sense	of
autonomy	motivates	people	to	do	more	than	is	expected	of	them.

Respect
As	we	spend	more	time	talking	to	each	other	about	the	challenges	we	face	and	the	problems	we
are	trying	to	solve,	our	mutual	respect	grows.

This	manifests	itself	in	developers	seeking	input	from	the	Operations	team	from	the	early	stages
of	the	software	development	process	or	in	Ops	tools	being	built	to	meet	developers'	needs.

	Ops	who	think	like	Devs.	Devs	who	think	like	Ops 	

	 --John	Allspaw	and	Paul	Hammond,	Velocity

A	DevOps	environment	is	built	on	such	respect.	It	is	a	place	where	every	opinion	matters,	where
people	can	and	do	openly	question	decisions	in	the	interest	of	the	best	solution	to	a	problem.	This
is	a	powerful	indicator	of	one's	commitment	toward	the	common	goal	I	mentioned	earlier.

Automation
To	draw	an	overly	simplified	conclusion	from	A.	Maslow's	Theory	of	Motivation,	you	are	less
likely	to	think	about	poetry	when	hungry.	In	other	words,	a	team	with	basic	needs	will	be	solving
basic	problems.

Automating	routine	and	mundane	tasks	allows	engineers	to	concentrate	on	the	more	complex,
higher-value	ones.	Also,	people	get	bored,	cut	corners,	and	make	mistakes	–	computers	tend	not
to	do	so.

Reproducible	infrastructure
Describing	infrastructure	as	code	has	the	following	advantages:

It	can	be	kept	under	version	control
It	is	easily	shared	with	others	to	re-use	or	reproduce
It	serves	as	a	very	useful	diary	of	what	you	did	and	how	exactly	you	did	it
Provisioning	cloud	environments	becomes	trivial	(for	example,	with	Terraform	or
CloudFormation)
It	makes	modern	Configuration	Management	possible

At	any	rate,	I	suspect	anybody	managing	more	than	10	servers	is	already	codifying	infrastructure
in	some	way	or	another.

Metrics	and	monitoring

	Measure	All	The	Things! 	

	 --Actual	DevOps	slogan

Storage	is	cheap.	Develop	the	habit	of	gathering	copious	amounts	of	measurements	and	making
those	easily	accessible	across	your	organization.	The	more	visibility	engineers	have	into	the
performance	of	their	infrastructure	and	applications,	the	more	adequate	their	decisions	will	be	in
critical	situations.

Graphs	can	convey	a	great	deal	of	information,	look	rather	cool	on	big	screens,	and	the	human
mind	has	been	proven	excellent	at	recognizing	patterns.

Another	important	role	of	metrics	data	is	in	performance	optimization.

	
The	trickiest	part	of	speeding	up	a	program	is	not	doing	it,	but	deciding	whether	it's	worth
doing	at	all...Part	of	the	problem	is	that	optimization	is	hard	to	do	well.	It's	frighteningly
easy	to	devolve	into	superstitious	ritual	and	rationalization.

	

	 --Mature	Optimization,	Carlos	Bueno

To	avoid	falling	prey	to	confirmation	bias,	you	need	an	objective	method	of	assessing	your
systems	before	and	after	attempting	any	optimization.	Use	those	metrics;	it	is	hard	to	argue	with
(valid)	data.

On	the	subject	of	validity,	please	do	calibrate	your	instruments	regularly,	sanity-check	output	and
make	sure	what	you	think	you	are	showing	is	what	your	colleagues	think	they	are	seeing	(ref:
https://mars.jpl.nasa.gov/msp98/news/mco990930.html).

https://mars.jpl.nasa.gov/msp98/news/mco990930.html

Continuous	Integration,	Delivery,	and	Deployment
The	Observe,	Orient,	Decide,	and	Act	(OODA)	loop	is	a	concept	developed	by	Col.	J.	Boyd
that	shows	the	value	in	one's	ability	to	adapt	to	ever-changing	circumstances.

Faced	with	unforgiving	(and	productive)	competition,	organizations	should	be	able	to	rapidly
react	to	dynamic	market	conditions.

This	is	probably	best	illustrated	with	the	old	Kodak	and	Netflix	tales.	The	former	after	having
been	wildly	successful	is	said	to	have	failed	to	adapt	to	the	new	trends	in	their	sector,	causing	the
brand	to	gradually	fade	away.	In	contrast,	Netflix	keeps	on	skillfully	molding	their	product	to
match	the	new	ways	in	which	we	consume	digital	content.	They	completely	transformed	their
infrastructure,	shared	some	clever,	new	and	somewhat	controversial	practices	plus	a	ton	of	great
software.	Be	like	Netflix.

Continuous	Integration	and	Delivery	is	essentially	OODA	in	practice.	Teams	continuously
integrate	relatively	small	code	changes,	delivering	releases	more	often,	thus	getting	feedback
from	their	users	much	quicker.	The	type	of	feedback	needed	by	an	organization	to	be	able	to
adequately	respond	to	an	ever	changing	market.

None	of	the	preceding	suggests	however	that	one	should	aim	to	become	a	release	hero,	rushing
things	into	Production,	setting	it	on	fire	twice	a	week.	A	CI/CDframework	still	implies	the	usual
strict	code	review	and	test	processes,	despite	how	often	you	deploy.	Though	code	reviews	and
testing	require	much	less	time	and	effort	as	typically	the	more	frequent	the	deployments,	the
smaller	the	code	changes.

Embracing	failure
Naturally,	more	experimentation	is	likely	to	increase	the	probability	of	error.

I	doubt	this	fact	comes	as	a	surprise	to	anybody;	what	might	surprise	you,	however,	is	the	advice
to	accept	an	additional,	positive	angle	to	failure.

Recall	the	video	nerds	from	the	previous	section.	Well,	they	didn't	exactly	breeze	through	all	that
change	without	casualties.	I	hereby	spare	you	the	Edison	quotes;	however,	trial	and	error	is
indeed	a	valid	form	of	the	scientific	method,	and	the	DevOps	processes	serve	as	a	great	enabler
to	those	who	would	agree.

In	other	words,	an	organization	should	encourage	people	to	keep	on	challenging	and	improving
the	current	state	of	affairs	while	also	allowing	them	to	openly	talk	about	the	times	when	things
went	wrong.

But	dealing	with	experimentation	failures	is	possibly	the	more	romantic	side	of	the	story
compared	to	the	cold,	harsh	reality	of	day-to-day	operations.

Systems	fail.	I	would	like	to	think	most	of	us	have	come	to	accept	that	fact	along	with	the	chain	of
thought	it	provokes:

we	do	not	always	know	as	much	as	we	think	we	do:

	

"Knowledge	of	the	outcome	makes	it	seem	that	events	leading	to	the	outcome	should
have	appeared	more	salient	to	practitioners	at	the	time	than	was	actually	the	case...

After	an	accident,	practitioner	actions	may	be	regarded	as	errors	or	violations,	but
these	evaluations	are	heavily					biased	by	hindsight	and	ignore	the	other	driving
forces..."

	

	 --How	Complex	Systems	Fail,	R.I.	Cook

Excelsior!	Or	how,	in	our	long-standing	pursuit	of	social	dominance,	we	seem	to	have
developed	the	convenient	belief	that	following	an	event	we	not	only	know	exactly	what	and
how	it	happened	but	also	why.	This	peculiar	phenomenon	has	already	been	explained	rather
well	by	D.	Kahneman	in	Thinking	Fast	and	Slow;	I	will	just	add	that	indeed	one	often	hears
of	overconfident	characters	who	point	fingers	at	their	colleagues	based	on	what	appears	to
them	as	a	coherent	storyline.

The	truth	of	the	matter	is	this:	we	were	not	there.	And	keeping	the	details	we	now	know	and
those	known	at	the	time	separated	is	not	an	easy	task.
Blaming	is	of	zero	value:

Etsy	and	the	likes	in	our	community	have	shared	enough	observations	to	suggest	that	negative
reinforcement	as	a	strategy	for	reducing	human	error	is	less	than	optimal.

With	the	adoption	of	DevOps,	we	accept	that	people	generally	come	to	work	every	day	with
the	intention	to	perform	to	the	best	of	their	abilities	and	in	the	interest	of	the	organization.
After	an	outage,	we	begin	our	analysis	with	the	assumption	that	the	operator	has	acted	in	the
best	possible	way	given	the	circumstances	and	information	available	to	them	at	the	time.	We
focus	on	what	could	have	led	to	them	making	the	given	decisions,	their	thought	process,	the
flow	of	events,	and	whether	any	of	these	can	be	improved.
Resilience	can	be	accumulated:

"What	does	not	kill	us..."mithridatism	or	Nassim	Taleb's	concept	of	antifragility	are	all
expressive	of	the	idea	that	we	get	better	at	dealing	with	negative	experiences	as	we
encounter	them,	and	what's	more,	we	should	look	for	them	every	now	and	again.

We	can	train	ourselves	and	our	systems	to	recover	from	errors	faster	or	even	better	to
continue	operating	despite	them.	One	way	to	achieve	this	is	with	controlled	(and	with
practice,	less	controlled)	outages.

With	the	right	monitoring	and	auditing	tools	in	place,	every	abnormal	activity	offers	us	a
more	intimate	view	of	our	applications	and	infrastructure.

Now	that	I	have	bestowed	upon	you,	my	dear	reader,	the	secret	to	a	better	life	through	DevOps,
let	us	concern	ourselves	with	the	latter	part	of	the	title	of	this	chapter.

Should	you	care
I	fail	to	see	a	reason	why	one	should	not.	Some	seven	or	so	years	have	passed	since	the	inception
of	the	idea	of	DevOps,	and	the	amount	of	evidence	of	its	effectiveness	has	been	growing	steadily.
Having	the	respected	Agile	framework	at	its	base	further	adds	to	its	credibility	and	perhaps	helps
explain	a	good	part	of	its	success.

That	is	not	to	say	there	are	not	considerations	to	be	taken	into	account	however.	The	critical
thinker	within	you,	would	want	to	ask	a	question	or	two	prior	to	embarking	on	such	a	cultural
coup	d'état.

Is	this	the	right	time?
Did	you	just	finish	adopting	Lean	or	Agile	Development?	What	else	has	been	going	on	in	the
team?	Is	now	the	best	time	for	yet	another	cry	for	change?

Altering	our	habits	makes	us	uneasy;	it	takes	some	time	to	adjust.	Your	perseverance	is	laudable,
and	pursuing	DevOps	as	the	next	level	of	team	collaboration	is	often	the	right	choice.

There	is	no	need	to	give	it	up	altogether;	perhaps	put	it	on	hold	for	a	moment.

Will	it	work?
Look	around	you.	Those	faces,	those	different	personalities,	can	you	picture	them	all	together
singing	Kumbaya?	Maybe	yes,	maybe	no,	or	not	yet.

Please	do	not	e-mail	an	anonymous	staff	survey.	Get	everybody	in	a	room,	lay	your	DevOps
propaganda	out,	and	gauge	their	reactions.

You	will	need	everyone	to	fully	understand	the	concepts,	acknowledge	the	challenges,	and	accept
the	sacrifices	for	this	to	work.	There	can	neither	be	exceptions	nor	ambiguity.

All	of	this	requires	a	great	degree	of	cultural	change,	which	a	team	should	be	prepared	for.

Is	it	worth	it?
What	would	it	take	to	change	the	current	mentality?	How	much	of	a	disturbance	you	would	need
to	cause?	What	degree	of	backlash	do	you	expect?

While	I	am	not	suggesting	this	as	an	excuse	to	put	up	with	the	status	quo,	I	beg	you	maintain	a
pragmatic	view	of	the	situation.

Your	type	of	organization	might	be	better	suited	for	a	process	of	evolution	rather	than	a
revolution.

Do	you	need	it?
How	would	you	score	your	current	processes?	Would	you	say	your	cross-team	communication	is
satisfactory?	You	regularly	meet	business	expectations?	You	have	already	automated	most	of	your
workflow?

It	sounds	like	you	are	doing	fine	as	it	is;	you	might	already	have	some	DevOps	in	your	team
without	realizing	it.	The	point	is	that	it	could	be	a	better	use	of	resources	if	you	were	to
concentrate	on	optimizing	elsewhere,	solving	other,	more	pressing	problems	at	this	time.

Now	that	you	have	been	through	a	yet	another	interpretation	of	the	ideas	behind	DevOps,	if	you
feel	those	match	your	way	of	thinking	and	the	final	few	questions	did	not	raise	any	concerns,	then
we	can	safely	transition	to	the	more	technical	topics	where	we	put	principles	into	practice.

Summary
First,	we	explored	the	main	ideas	contained	in	the	DevOps	philosophy,	followed	by	a	few
questions	aimed	at	helping	you	construct	a	more	objective	perspective	when	it	comes	to	adopting
DevOps	within	your	organization.

We	have	seen	that	DevOps	is	an	effective	combination	of	some	older,	proven	Agile	concepts	and
other	more	recently	developed	ones,	and	that	it	teaches	us	how	to	build	better	teams	who	write
better	software,	get	results	faster,	and	collaborate	effortlessly	in	an	environment	that	encourages
experimentation	without	compromising	stability.

Now	that	we	have	covered	the	theory,	the	next	chapter	takes	us	into	the	practical	application	of
DevOps.	We	are	going	to	begin	with	examples	of	deploying	infrastructure	as	code	in	the	cloud.

Chapter	2.	Start	Treating	Your	Infrastructure	as
Code
Ladies	and	gentlemen,	put	your	hands	in	the	air,	for	Programmable	Infrastructure	is	here!

Perhaps	Infrastructure-as-Code	(IaC)	is	not	an	entirely	new	concept	considering	how	long
Configuration	Management	has	been	around.	Codifying	server,	storage,	and	networking
infrastructure	and	their	relationships,	however,	is	a	relatively	recent	tendency	brought	about	by
the	rise	of	cloud	computing.	But	let	us	leave	Configuration	Management	for	later	and	focus	our
attention	on	that	second	aspect	of	IaC.

You	should	recall	from	the	previous	chapter	some	of	the	benefits	of	storing	all	the	things	as	code:

Code	can	be	kept	under	version	control
Code	can	be	shared/collaborated	on	easily
Code	doubles	as	documentation
Code	is	reproducible

That	last	point	was	a	big	win	for	me	personally.	Automated	provisioning	helped	reduce	the	time	it
took	to	deploy	a	full-featured	cloud	environment	from	four	hours	down	to	one,	and	the
occurrences	of	human	error	to	almost	zero	(one	shall	not	be	trusted	with	an	input	field).

Being	able	to	rapidly	provision	resources	becomes	a	significant	advantage	when	a	team	starts
using	multiple	environments	in	parallel	and	needs	those	brought	up	or	down	on-demand.	In	this
chapter,	we	examine	in	detail	how	to	describe	(in	code)	and	deploy	one	such	environment	on
AWS	with	minimal	manual	interaction.

To	implement	IaC	in	the	cloud,	we	will	look	at	two	tools	or	services:	Terraform	and
CloudFormation.

We	will	go	through	examples	of	the	following:

Configuring	the	tool
Writing	an	IaC	template
Deploying	a	template
Deploying	subsequent	changes	to	the	template
Deleting	a	template	and	removing	the	provisioned	infrastructure

For	the	purpose	of	these	examples,	let	us	assume	our	application	requires	a	Virtual	Private
Cloud	(VPC)	that	hosts	a	Relational	Database	Services	(RDS)	backend	and	a	couple	of	Elastic
Compute	Cloud	(EC2)	instances	behind	an	Elastic	Load	Balancer	(ELB).	We	will	keep	most
components	behind	Network	Address	Translation	(NAT),	allowing	only	the	load	balancer	to	be
accessed	externally.

IaC	using	Terraform
One	of	the	tools	that	can	help	deploy	infrastructure	on	AWS	is	HashiCorp's	Terraform
(https://www.terraform.io).	HashiCorp	is	that	genius	bunch	that	gave	us	Vagrant,	Packer,	and
Consul.	I	would	recommend	you	look	up	their	website	if	you	have	not	already.

Using	Terraform	(TF),	we	will	be	able	to	write	a	template	describing	an	environment,	perform	a
dry	run	to	see	what	is	about	to	happen	and	whether	it	is	expected,	deploy	the	template,	and	make
any	late	adjustments	where	necessary-all	of	this	without	leaving	the	shell	prompt.

https://www.terraform.io

Configuration
Firstly,	you	will	need	to	have	a	copy	of	TF	(https://www.terraform.io/downloads.html)	on	your
machine	and	available	on	the	CLI.	You	should	be	able	to	query	the	currently	installed	version,
which	in	my	case	is	0.6.15:

$	terraform	--version

Terraform	v0.6.15

Since	TF	makes	use	of	the	AWS	APIs,	it	requires	a	set	of	authentication	keys	and	some	level	of
access	to	your	AWS	account.	In	order	to	deploy	the	examples	in	this	chapter	you	could	create	a
new	Identity	and	Access	Management	(IAM)	user	with	the	following	permissions:

				"autoscaling:CreateAutoScalingGroup",

				"autoscaling:CreateLaunchConfiguration",

				"autoscaling:DeleteLaunchConfiguration",

				"autoscaling:Describe*",

				"autoscaling:UpdateAutoScalingGroup",

				"ec2:AllocateAddress",

				"ec2:AssociateAddress",

				"ec2:AssociateRouteTable",

				"ec2:AttachInternetGateway",

				"ec2:AuthorizeSecurityGroupEgress",

				"ec2:AuthorizeSecurityGroupIngress",

				"ec2:CreateInternetGateway",

				"ec2:CreateNatGateway",

				"ec2:CreateRoute",

				"ec2:CreateRouteTable",

				"ec2:CreateSecurityGroup",

				"ec2:CreateSubnet",

				"ec2:CreateTags",

				"ec2:CreateVpc",

				"ec2:Describe*",

				"ec2:ModifySubnetAttribute",

				"ec2:RevokeSecurityGroupEgress",

				"elasticloadbalancing:AddTags",

				"elasticloadbalancing:ApplySecurityGroupsToLoadBalancer",

				"elasticloadbalancing:AttachLoadBalancerToSubnets",

				"elasticloadbalancing:CreateLoadBalancer",

				"elasticloadbalancing:CreateLoadBalancerListeners",

				"elasticloadbalancing:Describe*",

				"elasticloadbalancing:ModifyLoadBalancerAttributes",

				"rds:CreateDBInstance",

				"rds:CreateDBSubnetGroup",

				"rds:Describe*"

Note

Please	refer	to	this	file	for	more	information:	https://github.com/PacktPublishing/Implementing-
DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/iam_user_policy.json.

One	way	to	make	the	credentials	of	the	IAM	user	available	to	TF	is	by	exporting	the	following
environment	variables:

https://www.terraform.io/downloads.html
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/iam_user_policy.json

$	export	AWS_ACCESS_KEY_ID='user_access_key'

$	export	AWS_SECRET_ACCESS_KEY='user_secret_access_key'

This	should	be	sufficient	to	get	us	started.

Note

Downloading	the	example	code

Detailed	steps	to	download	the	code	bundle	are	mentioned	in	the	Preface	of	this	book.

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at:
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS.	We	also	have	other	code
bundles	from	our	rich	catalog	of	books	and	videos	available	at:
https://github.com/PacktPublishing/.	Check	them	out!

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS
https://github.com/PacktPublishing/

Template	design
Before	we	get	to	coding,	here	are	some	of	the	rules:

You	could	choose	to	write	a	TF	template	as	a	single	large	file	or	a	combination	of	smaller
ones
Templates	can	be	written	in	pure	JSON	or	TF's	own	format
TF	will	look	for	files	with.tf	or	.tf.json	extensions	in	a	given	folder	and	load	them	in
alphabetical	order
TF	templates	are	declarative,	hence	the	order	in	which	resources	appear	in	them	does	not
affect	the	flow	of	execution

A	TF	template	generally	consists	of	three	sections:	resources,	variables,	and	outputs.	As
mentioned	in	the	preceding	section,	it	is	a	matter	of	personal	preference	how	you	arrange	these;
however,	for	better	readability	I	suggest	we	make	use	of	the	TF	format	and	write	each	section	to	a
separate	file.	Also,	while	the	file	extensions	are	of	importance,	the	filenames	are	up	to	you.

Resources

In	a	way,	this	file	holds	the	main	part	of	a	template,	as	the	resources	represent	the	actual
components	that	end	up	being	provisioned.	For	example,	we	will	be	using	the	VPC	Terraform
resource,	RDS,	ELB	and	a	few	others	to	provision	what	roughly	looks	like	this:

Since	template	elements	can	be	written	in	any	order,	TF	determines	the	flow	of	execution	by
examining	any	references	that	it	finds	(for	example,	a	VPC	should	exist	before	an	ELB	that	is	said
to	belong	to	it	is	created).	Alternatively,	explicit	flow	control	attributes	such	as	depends_on	are
used,	as	we	will	observe	shortly.

To	find	out	more,	let	us	go	through	the	contents	of	the	resources.tf	file.

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/Terraform/resources.tf.

First,	we	tell	Terraform	what	provider	to	use	for	our	infrastructure:

#	Set	a	Provider	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/resources.tf

		provider	"aws"		

{	

		region	=	"${var.aws-region}"	

}	

You	will	notice	that	no	credentials	are	specified,	since	we	set	them	as	environment	variables
earlier.

Now	we	can	add	the	VPC	and	its	networking	components:

#	Create	a	VPC	

		resource	"aws_vpc"	"terraform-vpc"		

{	

		cidr_block	=	"${var.vpc-cidr}"	

	

		tags		

		{	

				Name	=	"${var.vpc-name}"	

		}	

}	

	

#	Create	an	Internet	Gateway	

		resource	"aws_internet_gateway"	"terraform-igw"		

{	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

}	

	

#	Create	NAT	

		resource	"aws_eip"	"nat-eip"		

{	

		vpc	=	true	

}	

So	far,	we	have	declared	the	VPC,	its	Internet	and	NAT	gateways,	plus	a	set	of	public	and	private
subnets	with	matching	routing	tables.

It	will	help	clarify	the	syntax	if	we	examined	some	of	those	resource	blocks,	line	by	line:

resource	"aws_subnet"	"public-1"	{	

The	first	argument	is	the	type	of	the	resource	followed	by	an	arbitrary	name:

vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

The	aws_subnet	resource	named	public-1	has	a	vpc_id	property,	which	refers	to	the	id
attribute	of	a	different	aws_vpc	resource	named	terraform-vpc.	Such	references	to	other
resources	implicitly	define	the	execution	flow,	that	is	to	say,	the	VPC	needs	to	exist	before	the
subnet	can	be	created:

cidr_block	=	"${cidrsubnet(var.vpc-cidr,	8,	1)}"	

We	will	talk	more	about	variables	in	a	moment,	but	the	format	is	var.var_name	as	shown

here.

Here,	we	use	the	cidrsubnet	function	with	the	vpc-cidr	variable,	which	returns	a	cidr_block
to	be	assigned	to	the	public-1	subnet.	Please	refer	to	the	TF	documentation	for	this	and	other
useful	functions.

Next,	we	add	a	RDS	to	the	VPC:

resource	"aws_db_instance"	"terraform"	{	

identifier	=	"${var.rds-identifier}"	

allocated_storage	=	"${var.rds-storage-size}"	

storage_type=	"${var.rds-storage-type}"	

engine	=	"${var.rds-engine}"	

engine_version	=	"${var.rds-engine-version}"	

instance_class	=	"${var.rds-instance-class}"	

username	=	"${var.rds-username}"	

password	=	"${var.rds-password}"	

port	=	"${var.rds-port}"	

vpc_security_group_ids	=	["${aws_security_group.terraform-rds.id}"]	

db_subnet_group_name	=	"${aws_db_subnet_group.rds.id}"	

}	

Here,	we	mostly	see	references	to	variables	with	a	few	calls	to	other	resources.

Following	the	RDS	is	an	ELB:

resource	"aws_elb"	"terraform-elb"		

{	

		name	=	"terraform-elb"	

		security_groups	=	["${aws_security_group.terraform-elb.id}"]	

		subnets	=	["${aws_subnet.public-1.id}",	

"${aws_subnet.public-2.id}"]	

	

listener		

		{	

			instance_port	=	80	

			instance_protocol	=	"http"	

			lb_port	=	80	

			lb_protocol	=	"http"	

		}	

	

tags		

		{	

			Name	=	"terraform-elb"	

		}	

				}	

Lastly,	we	define	the	EC2	Auto	Scaling	Group	and	related	resources	such	as	the	Launch
Configuration.

For	the	Launch	Configuration	we	define	the	AMI	and	type	of	instance	to	be	used,	the	name	of	the
SSH	keypair,	EC2	security	group(s)	and	the	UserData	to	be	used	to	bootstrap	the	instances:

resource	"aws_launch_configuration"	"terraform-lcfg"	{	

image_id	=	"${var.autoscaling-group-image-id}"	

instance_type	=	"${var.autoscaling-group-instance-type}"	

key_name	=	"${var.autoscaling-group-key-name}"	

security_groups	=	["${aws_security_group.terraform-ec2.id}"]	

user_data	=	"#!/bin/bash	\n	set	-euf	-o	pipefail	\n	exec	1>	>(logger	-s	-t	

$(basename	$0))	2>&1	\n	yum	-y	install	nginx;	chkconfig	nginx	on;	service	

nginx	start"	

	

lifecycle	{	

create_before_destroy	=	true	

}	

The	Auto	Scaling	Group	takes	the	ID	of	the	Launch	Configuration,	a	list	of	VPC	subnets,	the
min/max	number	of	instances	and	the	name	of	the	ELB	to	attach	provisioned	instances	to:

}	

resource	"aws_autoscaling_group"	"terraform-asg"	{	

name	=	"terraform"	

launch_configuration	=	"${aws_launch_configuration.terraform-lcfg.id}"	

vpc_zone_identifier	=	["${aws_subnet.private-1.id}",	"${aws_subnet.private-

2.id}"]	

min_size	=	"${var.autoscaling-group-minsize}"	

max_size	=	"${var.autoscaling-group-maxsize}"	

load_balancers	=	["${aws_elb.terraform-elb.name}"]	

depends_on	=	["aws_db_instance.terraform"]	

tag	{	

key	=	"Name"	

value	=	"terraform"	

propagate_at_launch	=	true	

}	

}	

The	preceding	user_data	shell	script	will	install	and	start	NGINX	onto	the	EC2	node(s).

Variables

We	have	made	great	use	of	variables	to	define	our	resources,	making	the	template	as	re-usable	as
possible.	Let	us	now	look	inside	variables.tf	to	study	these	further.

Similarly	to	the	resources	list,	we	start	with	the	VPC:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/Terraform/variables.tf.

variable	"aws-region"	{	

type	=	"string"	

description	=	"AWS	region"	

}	

variable	"aws-availability-zones"	{	

type	=	"string"	

description	=	"AWS	zones"	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/variables.tf

}	

variable	"vpc-cidr"	{	

type	=	"string"	

description	=	"VPC	CIDR"	

}	

variable	"vpc-name"	{	

type	=	"string"	

description	=	"VPC	name"	

}	

The	syntax	is	as	follows:

variable	"variable_name"	{		

variable	properties		

}	

variable_name	is	arbitrary,	but	needs	to	match	relevant	var.var_name	references	made	in	other
parts	of	the	template.	For	example,	the	aws-region	variable	will	satisfy	the	${var.aws-
region}	reference	we	made	earlier	when	describing	the	region	of	the	provider	aws	resource.

We	will	mostly	use	string	variables,	but	there	is	another	useful	type	called	map	that	can	hold
lookup	tables.	Maps	are	queried	in	a	similar	way	to	looking	up	values	in	a	hash/dict	(Please	see:
https://www.terraform.io/docs/configuration/variables.html).

Next	comes	RDS:

variable	"rds-identifier"	{	

type	=	"string"	

description	=	"RDS	instance	identifier"	

}			

variable	"rds-storage-size"	{	

type	=	"string"	

description	=	"Storage	size	in	GB"	

}	

variable	"rds-storage-type"	{	

type	=	"string"	

description	=	"Storage	type"	

}	

variable	"rds-engine"	{	

type	=	"string"	

description	=	"RDS	type"	

}	

variable	"rds-engine-version"	{	

type	=	"string"	

description	=	"RDS	version"	

}	

variable	"rds-instance-class"	{	

type	=	"string"	

description	=	"RDS	instance	class"	

}	

variable	"rds-username"	{	

type	=	"string"	

description	=	"RDS	username"	

}	

https://www.terraform.io/docs/configuration/variables.html

variable	"rds-password"	{	

type	=	"string"	

description	=	"RDS	password"	

}	

variable	"rds-port"	{	

type	=	"string"	

description	=	"RDS	port	number"	

}	

Lastly,	we	add	our	EC2	related	variables:

variable	"autoscaling-group-minsize"	{	

type	=	"string"	

description	=	"Min	size	of	the	ASG"	

}	

variable	"autoscaling-group-maxsize"	{	

type	=	"string"	

description	=	"Max	size	of	the	ASG"	

}	

variable	"autoscaling-group-image-id"	{	

type="string"	

description	=	"EC2	AMI	identifier"	

}	

variable	"autoscaling-group-instance-type"	{	

type	=	"string"	

description	=	"EC2	instance	type"	

}	

variable	"autoscaling-group-key-name"	{	

type	=	"string"	

description	=	"EC2	ssh	key	name"	

}	

We	now	have	the	type	and	description	of	all	our	variables	defined	in	variables.tf,	but	no
values	have	been	assigned	to	them	yet.

TF	is	quite	flexible	with	how	this	can	be	done.	We	could	do	it	any	of	the	following	ways:

Assign	(default)	values	directly	in	variables.tf:
variable	"aws-region"	{	type	=	"string"description	=	"AWS	region"default	=
'us-east-1'	}
Not	assign	a	value	to	a	variable,	in	which	case	TF	will	prompt	for	it	at	run	time
*	Pass	a	-var	'key=value'	argument	directly	to	the	TF	command,	like	so:

-var	'aws-region=us-east-1'	

Store	key=value	pairs	in	a	file
Use	environment	variables	prefixed	with	TF_VAR,	as	in	TF_VAR_	aws-region

Using	a	key=value	pairs	file	proves	to	be	quite	convenient	within	teams,	as	each	engineer	can
have	a	private	copy	(excluded	from	revision	control).	If	the	file	is	named	terraform.tfvars	it
will	be	read	automatically	by	TF;	alternatively,	-var-file	can	be	used	on	the	command	line	to
specify	a	different	source.

Here	is	the	content	of	our	sample	terraform.tfvars	file:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/Terraform/terraform.tfvars.

autoscaling-group-image-id	=	"ami-08111162"	

autoscaling-group-instance-type	=	"t2.nano"	

autoscaling-group-key-name	=	"terraform"	

autoscaling-group-maxsize	=	"1"	

autoscaling-group-minsize	=	"1"	

aws-availability-zones	=	"us-east-1b,us-east-1c"	

aws-region	=	"us-east-1"	

rds-engine	=	"postgres"	

rds-engine-version	=	"9.5.2"	

rds-identifier	=	"terraform-rds"	

rds-instance-class	=	"db.t2.micro"	

rds-port	=	"5432"	

rds-storage-size	=	"5"	

rds-storage-type	=	"gp2"	

rds-username	=	"dbroot"	

rds-password	=	"donotusethispassword"	

vpc-cidr	=	"10.0.0.0/16"	

vpc-name	=	"Terraform"	

A	point	of	interest	is	aws-availability-zones,	as	it	holds	multiple	values	that	we	interact	with
using	the	element	and	split	functions,	as	seen	in	resources.tf.

Outputs

The	third,	mostly	informational	part	of	our	template	contains	the	TF	Outputs.	These	allow
selected	values	to	be	returned	to	the	user	when	testing,	deploying	or	after	a	template	has	been
deployed.	The	concept	is	similar	to	how	echo	statements	are	commonly	used	in	shell	scripts	to
display	useful	information	during	execution.

Let	us	add	outputs	to	our	template	by	creating	an	outputs.tf	file:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/Terraform/outputs.tf.

output	"VPC	ID"	{	

value	=	"${aws_vpc.terraform-vpc.id}"	

}	

	

output	"NAT	EIP"	{	

value	=	"${aws_nat_gateway.terraform-nat.public_ip}"	

}	

	

output	"ELB	URI"	{	

value	=	"${aws_elb.terraform-elb.dns_name}"	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/terraform.tfvars
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/outputs.tf

}	

output	"RDS	Endpoint"	{	

value	=	"${aws_db_instance.terraform.endpoint}"	

}	

To	configure	an	output,	you	simply	reference	a	given	resource	and	its	attribute.	As	shown	in
preceding	code,	we	have	chosen	the	ID	of	the	VPC,	the	Elastic	IP	address	of	the	NAT	gateway,
the	DNS	name	of	the	ELB	and	the	endpoint	address	of	the	RDS	instance.

This	section	completes	the	template	in	this	example.	You	should	now	have	four	files	in	your
template	folder:	resources.tf,	variables.tf,	terraform.tfvars,	and	outputs.tf.

Operations
We	shall	examine	five	main	TF	operations:

Validating	a	template
Testing	(dry-run)
Initial	deployment
Updating	a	deployment
Removal	of	a	deployment

Note

In	the	following	command	line	examples,	Terraform	is	run	within	the	folder	that	contains	the
template	files.

Validation

Before	going	any	further,	a	basic	syntax	check	should	be	done	with	the	terraform	validate
command.	After	renaming	one	of	the	variables	in	resources.tf,	validate	returns	an	unknown
variable	error:

$	terraform	validate

Error	validating:	1	error(s)	occurred:

*	provider	config	'aws':	unknown	variable	referenced:	'aws-region-1'.	define	

it	with	'variable'	blocks

Once	the	variable	name	has	been	corrected,	re-running	validate	returns	no	output,	meaning
validation	has	passed.

Dry-run

The	next	step	is	to	perform	a	test/dry-run	execution	with	terraform	plan,	which	displays	what
would	happen	during	an	actual	deployment.	The	command	returns	a	color-coded	list	of	resources
and	their	properties	or	more	precisely,	as	follows:

$	terraform	plan

Resources	are	shown	in	alphabetical	order	for	quick	scanning.	Green	resources	

will	be	created	(or	destroyed	and	then	created	if	an	existing	resource	

exists),	yellow	resources	are	being	changed	in-place,	and	red	resources	will	

be	destroyed.

To	literally	get	the	picture	of	what	the	to-be-deployed	infrastructure	looks	like,	you	could	use
terraform	graph:

$	terraform	graph	>	my_graph.dot

DOT	files	can	be	manipulated	with	the	Graphviz	open	source	software	(Please	see
http://www.graphviz.org)	or	many	online	readers/converters.	The	following	diagram	is	a	portion
of	a	larger	graph	representing	the	template	we	designed	earlier:

http://www.graphviz.org

Terraform	graph

Deployment

If	you	are	happy	with	the	plan	and	graph,	the	template	can	now	be	deployed	using	terraform
apply:

$	terraform	apply

aws_eip.nat-eip:	Creating...

allocation_id:	""	=>	"<computed>"

association_id:	""	=>	"<computed>"

domain:	""	=>	"<computed>"

instance:	""	=>	"<computed>"

network_interface:	""	=>	"<computed>"

private_ip:	""	=>	"<computed>"

public_ip:	""	=>	"<computed>"

vpc:	""	=>	"1"

aws_vpc.terraform-vpc:	Creating...

cidr_block:	""	=>	"10.0.0.0/16"

default_network_acl_id:	""	=>	"<computed>"

default_security_group_id:	""	=>	"<computed>"

dhcp_options_id:	""	=>	"<computed>"

enable_classiclink:	""	=>	"<computed>"

enable_dns_hostnames:	""	=>	"<computed>"

Apply	complete!	Resources:	22	added,	0	changed,	0	destroyed.

The	state	of	your	infrastructure	has	been	saved	to	the	following	path.	This	state	is	required	to
modify	and	destroy	your	infrastructure,	so	keep	it	safe.	To	inspect	the	complete	state,	use	the
terraform	show	command.

State	path:	terraform.tfstate

Outputs:

ELB	URI	=	terraform-elb-xxxxxx.us-east-1.elb.amazonaws.com

NAT	EIP	=	x.x.x.x

RDS	Endpoint	=	terraform-rds.xxxxxx.us-east-1.rds.amazonaws.com:5432

VPC	ID	=	vpc-xxxxxx

At	the	end	of	a	successful	deployment,	you	will	notice	the	Outputs	we	configured	earlier	and	a
message	about	another	important	part	of	TF	-	the	state	file	(please	refer	to

https://www.terraform.io/docs/state/):

TF	stores	the	state	of	your	managed	infrastructure	from	the	last	time	TF	was	run.	By	default,	this
state	is	stored	in	a	local	file	named	terraform.tfstate,	but	it	can	also	be	stored	remotely,
which	works	better	in	a	team	environment.

TF	uses	this	local	state	to	create	plans	and	make	changes	to	your	infrastructure.	Prior	to	any
operation,	TF	does	a	refresh	to	update	the	state	with	the	real	infrastructure.

In	a	sense,	the	state	file	contains	a	snapshot	of	your	infrastructure	and	is	used	to	calculate	any
changes	when	a	template	has	been	modified.	Normally,	you	would	keep	the	terraform.tfstate
file	under	version	control	alongside	your	templates.	In	a	team	environment	however,	if	you
encounter	too	many	merge	conflicts	you	can	switch	to	storing	the	state	file(s)	in	an	alternative
location	such	as	S3	(please	see:	https://www.terraform.io/docs/state/remote/index.html).

Allow	a	few	minutes	for	the	EC2	node	to	fully	initialize,	then	try	loading	the	ELB	URI	from	the
preceding	Outputs	in	your	browser.	You	should	be	greeted	by	nginx,	as	shown	in	the	following
screenshot:

Updates

As	per	Murphy	's	Law,	as	soon	as	we	deploy	a	template,	a	change	to	it	will	become	necessary.
Fortunately,	all	that	is	needed	for	this	is	to	update	and	re-deploy	the	given	template.

Let's	say	we	need	to	add	a	new	rule	to	the	ELB	security	group	(shown	in	bold):

1.	 Update	the	"aws_security_group"	"terraform-elb"	resource	block	in	resources.tf:

				resource	"aws_security_group"	"terraform-elb"	{

				name	=	"terraform-elb"

				description	=	"ELB	security	group"

				vpc_id	=	"${aws_vpc.terraform-vpc.id}"

				

https://www.terraform.io/docs/state/
https://www.terraform.io/docs/state/remote/index.html

				ingress	{

				from_port	=	"80"

				to_port	=	"80"

				protocol	=	"tcp"

				cidr_blocks	=	["0.0.0.0/0"]

				}

				

				ingress	{

				from_port	=	"443"

				to_port	=	"443"

				protocol	=	"tcp"

				cidr_blocks	=	["0.0.0.0/0"]

				}

				

				egress	{

				from_port	=	0

				to_port	=	0

				protocol	=	"-1"

				cidr_blocks	=	["0.0.0.0/0"]

				}

				

				}

2.	 Verify	what	is	about	to	change:

$	terraform	plan

...

~	aws_security_group.terraform-elb

ingress.#:	"1"	=>	"2"

ingress.2214680975.cidr_blocks.#:	"1"	=>	"1"

ingress.2214680975.cidr_blocks.0:	"0.0.0.0/0"	=>	"0.0.0.0/0"

ingress.2214680975.from_port:	"80"	=>	"80"

ingress.2214680975.protocol:	"tcp"	=>	"tcp"

ingress.2214680975.security_groups.#:	"0"	=>	"0"

ingress.2214680975.self:	"0"	=>	"0"

ingress.2214680975.to_port:	"80"	=>	"80"

ingress.2617001939.cidr_blocks.#:	"0"	=>	"1"

ingress.2617001939.cidr_blocks.0:	""	=>	"0.0.0.0/0"

ingress.2617001939.from_port:	""	=>	"443"

ingress.2617001939.protocol:	""	=>	"tcp"

ingress.2617001939.security_groups.#:	"0"	=>	"0"

ingress.2617001939.self:	""	=>	"0"

ingress.2617001939.to_port:	""	=>	"443"

Plan:	0	to	add,	1	to	change,	0	to	destroy.

3.	 Deploy	the	change:

$	terraform	apply

...

aws_security_group.terraform-elb:	Modifying...

ingress.#:	"1"	=>	"2"

ingress.2214680975.cidr_blocks.#:	"1"	=>	"1"

ingress.2214680975.cidr_blocks.0:	"0.0.0.0/0"	=>	"0.0.0.0/0"

ingress.2214680975.from_port:	"80"	=>	"80"

ingress.2214680975.protocol:	"tcp"	=>	"tcp"

ingress.2214680975.security_groups.#:	"0"	=>	"0"

ingress.2214680975.self:	"0"	=>	"0"

ingress.2214680975.to_port:	"80"	=>	"80"

ingress.2617001939.cidr_blocks.#:	"0"	=>	"1"

ingress.2617001939.cidr_blocks.0:	""	=>	"0.0.0.0/0"

ingress.2617001939.from_port:	""	=>	"443"

ingress.2617001939.protocol:	""	=>	"tcp"

ingress.2617001939.security_groups.#:	"0"	=>	"0"

ingress.2617001939.self:	""	=>	"0"

ingress.2617001939.to_port:	""	=>	"443"

aws_security_group.terraform-elb:	Modifications	complete

...

Apply	complete!	Resources:	0	added,	1	changed,	0	destroyed.

Note

Some	update	operations	can	be	destructive	(please	refer	to
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-
stacks-update-behaviors.html).	You	should	always	check	the	CloudFormation	documentation
on	the	resource	you	are	planning	to	modify	to	see	whether	a	change	is	going	to	cause	an
interruption.	TF	provides	some	protection	via	the	prevent_destroy	life	cycle	property
(please	refer	to
https://www.terraform.io/docs/configuration/resources.html#prevent_destroy).

Removal

This	is	a	friendly	reminder	to	always	remove	AWS	resources	after	you	are	done	experimenting
with	them	to	avoid	any	unexpected	charges.

Before	performing	any	delete	operations,	we	will	need	to	grant	such	privileges	to	the
(terraform)	IAM	user	we	created	in	the	beginning	of	this	chapter.	As	a	shortcut,	you	could
temporarily	attach	the	AdministratorAccess	managed	policy	to	the	user	via	the	AWS	Console,	as
shown	in	the	following	figure:

To	remove	the	VPC	and	all	associated	resources	that	we	created	as	part	of	this	example,	we	will
use	terraform	destroy:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html
https://www.terraform.io/docs/configuration/resources.html#prevent_destroy

$	terraform	destroy

Do	you	really	want	to	destroy?

Terraform	will	delete	all	your	managed	infrastructure.

There	is	no	undo.	Only	'yes'	will	be	accepted	to	confirm.

Enter	a	value:	yes

Terraform	asks	for	a	confirmation	then	proceeds	to	destroy	resources,	ending	with	the	following:

Apply	complete!	Resources:	0	added,	0	changed,	22	destroyed.

Next,	we	remove	the	temporary	admin	access	we	granted	to	the	IAM	user	by	detaching	the
AdministratorAccess	managed	policy,	as	shown	in	the	following	screenshot:

Then,	verify	that	the	VPC	is	no	longer	visible	in	the	AWS	Console.

IaC	using	CloudFormation
CloudFormation	is	an	AWS	service	for	deploying	infrastructure	as	code.	As	before,	we	are	going
to	describe	our	infrastructure	via	templates	containing	parameters	(variables),	resources,	and
outputs.

CloudFormation	calls	each	deployed	template	a	Stack.	Creating,	listing,	updating,	and	deleting
stacks	is	possible	via	the	AWS	Console,	CLI,	or	API.	In	a	small	setup,	you	would	probably
deploy	each	of	your	stacks	individually,	but	as	your	architecture	becomes	more	complex,	you	can
start	nesting	stacks.	You	would	have	a	top-level	or	a	parent	stack	(template)	that	invokes	a
number	of	sub-stacks.	Nested	stacks	allow	you	to	pass	variables	between	them	and,	of	course,
save	you	the	time	of	having	to	deploy	each	one	individually.

Configuration
CloudFormation	provides	a	GUI	via	the	AWS	Console;	we	however,	are	going	to	focus	on	the
AWS	CLI	since	it	is	most	suitable	for	automating	tasks	in	the	future.

Depending	on	the	OS	you	run,	you	could	download	an	installer	from	https://aws.amazon.com/cli/
or	use	Python	PIP:

$	pip	install	awscli

$	aws	--version

aws-cli/1.10.34	...

We	will	need	a	set	of	API	keys,	so	let's	create	a	new	IAM	user	called	cloudformation	with	the
following	privileges:

				"cloudformation:CancelUpdateStack",

				"cloudformation:ContinueUpdateRollback",

				"cloudformation:Create*",

				"cloudformation:Describe*",

				"cloudformation:EstimateTemplateCost",

				"cloudformation:ExecuteChangeSet",

				"cloudformation:Get*",

				"cloudformation:List*",

				"cloudformation:PreviewStackUpdate",

				"cloudformation:SetStackPolicy",

				"cloudformation:SignalResource",

				"cloudformation:UpdateStack",

				"cloudformation:ValidateTemplate",

				"autoscaling:CreateAutoScalingGroup",

				"autoscaling:CreateLaunchConfiguration",

				"autoscaling:DeleteLaunchConfiguration",

				"autoscaling:Describe*",

				"autoscaling:UpdateAutoScalingGroup",

				"ec2:AllocateAddress",

				"ec2:AssociateAddress",

				"ec2:AssociateRouteTable",

				"ec2:AttachInternetGateway",

				"ec2:AuthorizeSecurityGroupEgress",

				"ec2:AuthorizeSecurityGroupIngress",

				"ec2:CreateInternetGateway",

				"ec2:CreateNatGateway",

				"ec2:CreateRoute",

				"ec2:CreateRouteTable",

				"ec2:CreateSecurityGroup",

				"ec2:CreateSubnet",

				"ec2:CreateTags",

				"ec2:CreateVpc",

				"ec2:Describe*",

				"ec2:Modify*",

				"ec2:RevokeSecurityGroupEgress",

				"elasticloadbalancing:CreateLoadBalancer",

				"elasticloadbalancing:CreateLoadBalancerListeners",

				"elasticloadbalancing:Describe*",

				"elasticloadbalancing:ModifyLoadBalancerAttributes",

https://aws.amazon.com/cli/

				"elasticloadbalancing:SetLoadBalancerPoliciesOfListener",

				"rds:CreateDBInstance",

				"rds:CreateDBSubnetGroup",

				"rds:Describe*"

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/CloudFormation/iam_user_policy.json.

You	have	the	choice	of	using	aws	configure,	which	will	prompt	you	for	the	API	credentials,	or
if	you	prefer	not	to	store	them	permanently,	you	could	use	an	environment	variable:

$	export	AWS_ACCESS_KEY_ID='user_access_key'

$	export	AWS_SECRET_ACCESS_KEY='user_secret_access_key'

CloudFormation	templates	do	not	store	any	AWS	region	information,	so	to	avoid	specifying	it	on
the	command	line	each	time.	It	can	be	exported	as	well:

$	export	AWS_DEFAULT_REGION='us-east-1'

With	those	environment	variables	in	place,	awscli	should	be	ready	for	use.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/CloudFormation/iam_user_policy.json

Template	design
CloudFormation	templates	are	written	in	JSON	and	usually	contain	at	least	three	sections	(in	any
order):	parameters,	resources	and	outputs.

Unfortunately	it	is	not	possible	to	store	these	into	separate	files	(with	the	exception	of	parameter
values),	so	in	this	example	we	will	work	with	a	single	template	file	named	main.json.

Templates	can	be	used	locally	or	imported	from	a	remote	location	(an	S3	bucket	is	a	common
choice).

Parameters

Parameters	add	flexibility	and	portability	to	our	Stack	by	letting	us	pass	variables	to	it	such	as
instance	types,	AMI	ids,	SSH	keypair	names	and	similar	values	which	it	is	best	not	to	hard-code.

Each	parameter	takes	an	arbitrary	logical	name	(alphanumeric,	unique	within	the	template),
description,	type,	and	an	optional	default	value.	The	available	types	are	String,	Number,
CommaDelimitedList,	and	the	more	special	AWS-specific	type,	such	as
AWS::EC2::KeyPair::KeyName,	as	seen	in	the	preceding	code.

The	latter	is	useful	for	validation,	as	CloudFormation	will	check	whether	a	key	pair	with	the
given	name	actually	exists	in	your	AWS	account.

Parameters	can	also	have	properties	such	as	AllowedValues,	Min/MaxLength,	Min/MaxValue,
NoEcho	and	other	(please	see
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-
structure.html).

There	is	a	limit	of	60	parameters	per	template.

Let	us	examine	the	parameters	found	at	the	top	of	our	template:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json.

"Parameters"	:	{	

"vpcCidr"	:	{	

"Description"	:	"VPC	CIDR",	

"Type"	:	"String"	

},	

"vpcName"	:	{	

"Description"	:	"VPC	name",	

"Type"	:	"String"	

},	

"awsAvailabilityZones"	:	{	

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json

"Description"	:	"List	of	AZs",	

"Type"	:	"CommaDelimitedList"	

},	

"publicCidr"	:	{	

"Description"	:	"List	of	public	subnet	CIDRs",	

"Type"	:	"CommaDelimitedList"	

},...	

"rdsInstanceClass"	:	{	

"Description"	:	"RDS	instance	class",	

"Type"	:	"String",	

"AllowedValues"	:	["db.t2.micro",	"db.t2.small",	"db.t2.medium"]	

},	

"rdsUsername"	:	{	

"Description"	:	"RDS	username",	

"Type"	:	"String"	

},	

"rdsPassword"	:	{	

"Description"	:	"RDS	password",	

"Type"	:	"String",	

"NoEcho"	:	"true"	

},	

...	

"autoscalingGroupKeyname"	:	{	

"Description"	:	"EC2	ssh	key	name",	

"Type"	:	"AWS::EC2::KeyPair::KeyName"	

},	

"autoscalingGroupImageId"	:	{	

"Description"	:	"EC2	AMI	ID",	

"Type"	:	"AWS::EC2::Image::Id"	

}	

}	

We	have	used	the	following:

CommaDelimitedList,	which	we	will	conveniently	query	later	with	a	special	function
AllowedValues	and	MinValue	to	enforce	constraints
NoEcho	for	passwords	or	other	sensitive	data
Some	AWS-specific	types	to	have	CloudFormation	further	validate	input

You	will	notice	that	there	are	no	values	assigned	to	any	of	the	preceding	parameters.

To	maintain	a	reusable	template,	we	will	store	values	in	a	separate	file	(parameters.json):

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/CloudFormation/parameters.json.

[

{	

"ParameterKey":	"vpcCidr",	

"ParameterValue":	"10.0.0.0/16"	

},	

{	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/CloudFormation/parameters.json

"ParameterKey":	"vpcName",	

"ParameterValue":	"CloudFormation"	

},	

{	

"ParameterKey":	"awsAvailabilityZones",	

"ParameterValue":	"us-east-1b,us-east-1c"		

},	

{	

"ParameterKey":	"publicCidr",	

"ParameterValue":	"10.0.1.0/24,10.0.3.0/24"	

},	

{	

"ParameterKey":	"privateCidr",	

"ParameterValue":	"10.0.2.0/24,10.0.4.0/24"	

},	

{	

"ParameterKey":	"rdsIdentifier",	

"ParameterValue":	"cloudformation"	

},	

{	

"ParameterKey":	"rdsStorageSize",	

"ParameterValue":	"5"	

},	

{	

"ParameterKey":	"rdsStorageType",	

"ParameterValue":	"gp2"	

},	

{	

"ParameterKey":	"rdsEngine",	

"ParameterValue":	"postgres"	

},...	

Resources

You	are	already	familiar	with	the	concept	of	resources	and	how	they	are	used	to	describe
different	pieces	of	infrastructure.

Regardless	of	how	resources	appear	in	a	template,	CloudFormation	will	follow	its	internal	logic
to	decide	the	order	in	which	these	get	provisioned.

The	syntax	for	declaring	a	resource	is	as	follows:

"Logical	ID"	:	{	

"Type"	:	"",	

"Properties"	:	{}	

}	

IDs	need	to	be	alphanumeric	and	unique	within	the	template.

The	list	of	CloudFormation	resource	types	and	their	properties	can	be	found	here:
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-
ref.html

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

The	max	number	of	resources	a	template	can	have	is	200.	Reaching	that	limit,	you	will	need	to
split	a	template	into	smaller	ones	and	possibly	look	into	nested	stacks.

Back	to	our	example,	as	per	tradition	we	start	by	creating	a	VPC	and	its	supporting	elements	such
as	subnets,	Internet	gateway	and	NAT	gateway:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json.

"Resources"	:	{	

"vpc"	:	{	

"Type"	:	"AWS::EC2::VPC",			

"Properties"	:	{	

"CidrBlock"	:	{	"Ref"	:	"vpcCidr"	},	

"EnableDnsSupport"	:	"true",	

"EnableDnsHostnames"	:	"true",	

"Tags"	:	[{	"Key"	:	"Name",	"Value"	:	{	"Ref"	:	"vpcName"	}	}]	

}	

},	

"publicSubnet1"	:	{	

"Type"	:	"AWS::EC2::Subnet",	

"Properties"	:	{	

"AvailabilityZone"	:	{	"Fn::Select"	:	["0",	{"Ref"	:	"awsAvailabilityZones"}	

]	},	

"CidrBlock"	:	{	"Fn::Select"	:	["0",	{"Ref"	:	"publicCidr"}]	},	

"MapPublicIpOnLaunch"	:	"true",	

"Tags"	:	[{	"Key"	:	"Name",	"Value"	:	"Public"	}],	

"VpcId"	:	{	"Ref"	:	"vpc"	}	

}	

},	

...	

"internetGateway"	:	{	

"Type"	:	"AWS::EC2::InternetGateway",	

"Properties"	:	{	

"Tags"	:	[{	"Key"	:	"Name",	"Value"	:	{	"Fn::Join"	:	["	-	",	[{	"Ref"	:	

"vpcName"	},	"IGW"]]	}	}]	

}	

},	

"internetGatewayAttachment"	:	{	

"Type"	:	"AWS::EC2::VPCGatewayAttachment",	

"Properties"	:	{	

"InternetGatewayId"	:	{	"Ref"	:	"internetGateway"	},	

"VpcId"	:	{	"Ref"	:	"vpc"	}	

}	

},	

"natEip"	:	{	

"Type"	:	"AWS::EC2::EIP",	

"Properties"	:	{	

"Domain"	:	"vpc"	

}	

},	

"natGateway"	:	{	

"Type"	:	"AWS::EC2::NatGateway",	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json

"Properties"	:	{	

"AllocationId"	:	{	"Fn::GetAtt"	:	["natEip",	"AllocationId"]},	

"SubnetId"	:	{	"Ref"	:	"publicSubnet1"	}	

},	

"DependsOn"	:	"internetGatewayAttachment"	

},	

Note	some	of	the	CloudFormation	functions	used	in	the	preceding	code:

"Fn::Select"	in	"CidrBlock"	:	{	"Fn::Select"	:	["0",	{"Ref"	:
"publicCidr"}]	},	which	allows	us	to	query	the	CommaDelimitedList	type	parameters
we	set	earlier
"Fn::Join",	for	concatenating	strings
"Fn::GetAtt",	for	retrieving	resource	attributes

Also,	the	DependsOn	property	of	the	natGateway	resource	allows	us	to	set	explicit	conditions	on
the	order	of	execution.	In	this	case,	we	are	saying	that	the	Internet	Gateway	resource	needs	to	be
ready	(attached	to	the	VPC)	before	the	NAT	Gateway	is	provisioned.

After	the	VPC,	let's	add	RDS:

				"rdsInstance"	:	{

				"Type"	:	"AWS::RDS::DBInstance",

				"Properties"	:	{

				"DBInstanceIdentifier"	:	{	"Ref"	:	"rdsIdentifier"	},

				"DBInstanceClass"	:	{	"Ref"	:	"rdsInstanceClass"	},

				"DBSubnetGroupName"	:	{	"Ref"	:	"rdsSubnetGroup"	},

				"Engine"	:	{	"Ref"	:	"rdsEngine"	},

				"EngineVersion"	:	{	"Ref"	:	"rdsEngineVersion"	},

				"MasterUserPassword"	:	{	"Ref"	:	"rdsPassword"	},

				"MasterUsername"	:	{	"Ref"	:	"rdsUsername"	},

				"StorageType"	:	{	"Ref"	:	"rdsStorageType"	},

				"AllocatedStorage"	:	{	"Ref"	:	"rdsStorageSize"	},

				"VPCSecurityGroups"	:	[{	"Ref"	:	"rdsSecurityGroup"	}],

				"Tags"	:	[{	"Key"	:	"Name",	"Value"	:	{	"Ref"	:	"rdsIdentifier"	}	}]

				}}

Then	add	the	ELB:

				...

				"elbInstance"	:	{

				"Type"	:	"AWS::ElasticLoadBalancing::LoadBalancer",

				"Properties"	:	{

				"LoadBalancerName"	:	"cloudformation-elb",

				"Listeners"	:	[{	"InstancePort"	:	"80",	"InstanceProtocol"	:	"HTTP",	

"LoadBalancerPort"	:	"80",	"Protocol"	:	"HTTP"	}],

				"SecurityGroups"	:	[{	"Ref"	:	"elbSecurityGroup"	}],

				"Subnets"	:	[{	"Ref"	:	"publicSubnet1"	},	{	"Ref"	:	"publicSubnet2"	}],

				"Tags"	:	[{	"Key"	:	"Name",	"Value"	:	"cloudformation-elb"	}]

				}

				}

And	add	the	EC2	resources:

				...

				"launchConfiguration"	:	{

				"Type"	:	"AWS::AutoScaling::LaunchConfiguration",

				"Properties"	:	{

				"ImageId"	:	{	"Ref":	"autoscalingGroupImageId"	},

				"InstanceType"	:	{	"Ref"	:	"autoscalingGroupInstanceType"	},

				"KeyName"	:	{	"Ref"	:	"autoscalingGroupKeyname"	},

				"SecurityGroups"	:	[{	"Ref"	:	"ec2SecurityGroup"	}]

We	still	use	a	UserData	shell	script	to	install	the	NGINX	package;	however,	the	presentation	is
slightly	different	this	time.	CloudFormation	is	going	to	concatenate	the	lines	using	a	new	line
character	as	a	delimiter	then	encode	the	result	in	Base64:

				"UserData"	:	{

				"Fn::Base64"	:	{

				"Fn::Join"	:	[

				"\n",

				[

				"#!/bin/bash",

				"set	-euf	-o	pipefail",

				"exec	1>	>(logger	-s	-t	$(basename	$0))	2>&1",

				"yum	-y	install	nginx;	chkconfig	nginx	on;	service	nginx	start"

]

]

				}

				}

				}

				}

We	use	DependsOn	to	ensure	the	RDS	instance	goes	in	before	autoScalingGroup:

"autoScalingGroup"	:	{	

"Type"	:	"AWS::AutoScaling::AutoScalingGroup",	

"Properties"	:	{	

"LaunchConfigurationName"	:	{	"Ref"	:	"launchConfiguration"	},	

"DesiredCapacity"	:	"1",	

"MinSize"	:	"1",	

"MaxSize"	:	"1",	

"LoadBalancerNames"	:	[{	"Ref"	:	"elbInstance"	}],	

"VPCZoneIdentifier"	:	[{	"Ref"	:	"privateSubnet1"	},	{	"Ref"	:	

"privateSubnet2"	}],	

"Tags"	:	[{	"Key"	:	"Name",	"Value"	:	"cloudformation-asg",	

"PropagateAtLaunch"	:	"true"	}]	

},		

"DependsOn"	:	"rdsInstance"	

}	

Outputs

Again,	we	will	use	these	to	highlight	some	resource	attributes	following	a	successful	deployment.
Another	important	feature	of	Outputs,	however,	is	that	they	can	be	used	as	input	parameters	for
other	templates	(stacks).	This	becomes	very	useful	with	nested	stacks.

Note

Once	declared,	Outputs	cannot	be	subsequently	updated	on	their	own.	You	will	need	to	modify	at
least	one	resource	in	order	to	trigger	an	Output	update.

We	add	the	VPC	ID,	NAT	IP	address	and	ELB	DNS	name	as	Outputs:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json.

"Outputs"	:	{	

"vpcId"	:	{	

"Description"	:	"VPC	ID",	

"Value"	:	{	"Ref"	:	"vpc"	}	

},	

"natEip"	:	{	

"Description"	:	"NAT	IP	address",	

"Value"	:	{	"Ref"	:	"natEip"	}	

},	

"elbDns"	:	{	

"Description"	:	"ELB	DNS",	

"Value"	:	{	"Fn::GetAtt"	:	["elbInstance",	"DNSName"]	}	

}	

}	

Currently,	a	template	can	have	no	more	than	60	Outputs.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json

Operations
If	you	have	been	following	along,	you	should	now	have	a	main.json	and	a	parameters.json	in
your	current	folder.	It	is	time	to	put	them	to	use,	so	here	are	a	few	operations	we	are	going	to
perform:

Validate	a	template
Deploy	a	stack
Update	a	stack
Delete	a	stack

Template	validation

First	things	first,	a	basic	check	of	our	JSON	template	with	validate-template:

$	aws	cloudformation	validate-template	--template-body	file://main.json

{

"Description":	"Provisions	EC2,	ELB,	ASG	and	RDS	resources",

"Parameters":	[

{

"NoEcho":	false,

"Description":	"EC2	AMI	ID",

"ParameterKey":	"autoscalingGroupImageId"

}

If	there's	no	errors,	the	CLI	returns	the	parsed	template.	Note	that	we	could	have	just	as	easily
pointed	to	a	remote	location	using	--template-url	instead	of	-template-body.

Deploying	a	Stack

To	deploy	our	template	(stack),	we	will	use	create-stack.	It	takes	an	arbitrary	name,	the
location	of	the	template,	and	the	file	containing	parameter	values:

$	aws	cloudformation	create-stack	--stack-name	cfn-test	--template-body	

						file://main.json	--parameters	file://parameters.json

{

"StackId":	"arn:aws:cloudformation:us-east-1:xxxxxx:stack/cfn-test/xxxxxx"

}

CloudFormation	starts	creating	the	stack	and	no	further	output	is	returned.	To	get	progress
information	on	the	CLI,	use	describe-stacks:

$	aws	cloudformation	describe-stacks	--stack-name	cfn-test	

{	

"Stacks":	[

{	

"StackId":	"arn:aws:cloudformation:us-east-xxxxxx:stack/cfn-test/xxxxxx"	

...	

"CreationTime":	"2016-05-29T20:07:17.813Z",	

"StackName":	"cfn-test",	

"NotificationARNs":	[],	

"StackStatus":	"CREATE_IN_PROGRESS",	

"DisableRollback":	false	

}	

]	

}	

And	for	even	more	details,	use	describe-stack-events.

After	a	few	minutes	(based	on	our	small	template)	StackStatus	changes	from
CREATE_IN_PROGRESS	to	CREATE_COMPLETE	and	we	are	provided	the	requested	Outputs:

$	aws	cloudformation	describe-stacks	--stack-name	cfn-test

"Outputs":	[

{

"Description":	"VPC	ID",

"OutputKey":	"vpcId",

"OutputValue":	"vpc-xxxxxx"

},

{

"Description":	"NAT	IP	address",

"OutputKey":	"natEip",

"OutputValue":	"x.x.x.x"

},

{

"Description":	"ELB	DNS",

"OutputKey":	"elbDns",

"OutputValue":	"cloudformation-elb-xxxxxx.us-east-1.elb.amazonaws.com"

}

],

"CreationTime":	"2016-05-29T20:07:17.813Z",

"StackName":	"cfn-test",

"NotificationARNs":	[],

"StackStatus":	"CREATE_COMPLETE",

"DisableRollback":	false

At	this	point,	the	elbDNS	URL	should	return	the	nginx	welcome	page,	as	shown	here:

If	not,	you	might	need	to	allow	some	more	time	for	the	EC2	node	to	fully	initialize.

Updating	a	stack

CloudFormation	offers	two	ways	of	updating	a	deployed	stack.

Note

Some	update	operations	can	be	destructive	(please	refer	to
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-
update-behaviors.html).	You	should	always	check	the	CloudFormation	documentation	on	the
resource	you	are	planning	to	modify	to	see	whether	a	change	is	going	to	cause	any	interruption.

If	you	would	like	to	quickly	deploy	a	minor	change,	then	all	you	need	to	do	is	modify	the	template
file	and	deploy	it	directly	with	update-stack:

$	aws	cloudformation	update-stack	--stack-name	cfn-test	

						--template-body	file://main.json	

						--parameters	file://parameters.json

Otherwise,	a	good	practice	would	be	to	use	Change	Sets	to	preview	stack	changes	before
deploying	them.	For	example,	let	us	update	the	rules	in	the	ELB	security	group	as	we	did	before:

1.	 Modify	the	main.json	template	(add	another	rule	to	elbSecurityGroup):

				"elbSecurityGroup"	:	{

				"Type"	:	"AWS::EC2::SecurityGroup",

				"Properties"	:	{

				"SecurityGroupIngress"	:	[{	"ToPort"	:	"80",	"FromPort"	:	"80",	

				"IpProtocol"	:	"tcp",	"CidrIp"	:	"0.0.0.0/0"	},

				

						{	"ToPort"	:	"443",	"FromPort"	:	"443",	"IpProtocol"	:	

								"tcp",	"CidrIp"	:	"0.0.0.0/0"	}]

			

2.	 Create	a	Change	Set:

$	aws	cloudformation	create-change-set	

						--change-set-name	updatingElbSecGroup	

						--stack-name	cfn-test	--template-body	file://main.json	

						--parameters	file://parameters.json

3.	 Preview	the	Change	Set:

$	aws	cloudformation	describe-change-set	

						--change-set-name	updatingSecGroup	

						--stack-name	cfn-test

4.	 Execute	the	Change	Set:

$	aws	cloudformation	execute-change-set	--change-set-name	

						updatingSecGroup	--stack-name	cfn-test

Tip

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html

Whether	via	a	Change	Set	or	updating	directly,	if	you	are	simply	modifying	parameter	values
(parameters.json)	you	can	skip	re-uploading	the	template	(main.json)	with	--use-
previous-template.

Deleting	a	stack

In	order	to	tidy	up	after	our	experiments,	we	will	need	to	grant	temporary	Admin	privileges	to	the
CloudFormation	IAM	user	(the	same	procedure	as	in	the	earlier	TF	section);	run	delete-stack:

$	aws	cloudformation	delete-stack	--stack-name	cfn-test

Then	revoke	the	Admin	privileges.

Summary
In	this	chapter,	we	looked	at	the	importance	and	usefulness	of	Infrastructure	as	Code	and	ways	to
implement	it	using	Terraform	or	AWS	CloudFormation.

We	examined	the	structure	and	individual	components	of	both	a	TF	and	a	CF	template	then
practiced	deploying	those	onto	AWS	using	the	CLI.	I	trust	that	the	examples	we	went	through	have
demonstrated	the	benefits	and	immediate	gains	from	the	practice	of	deploying	infrastructure	as
code.

So	far,	however,	we	have	only	done	half	the	job.	With	the	provisioning	stage	completed,	you	will
naturally	want	to	start	configuring	your	infrastructure,	and	that	is	what	we	are	going	to	do	in	the
next	chapter	on	Configuration	Management.

Chapter	3.		Bringing	Your	Infrastructure	Under
Configuration	Management
As	hinted	at	the	end	of	the	previous	chapter,	there	is	some	more	work	to	be	done	before	we	can
claim	to	have	fully	implemented	IaC.

The	first	step	was	to	describe	the	hardware	side	of	our	infrastructure	in	code;	now	it	is	time	to
look	at	the	software	or	configuration	aspect	of	it.

Let	us	say	we	have	provisioned	a	few	EC2	nodes	and	would	like	to	have	certain	packages
installed	on	them,	and	relevant	configuration	files	updated.	Prior	to	Configuration	Management
(CM)	tools	gaining	popularity,	such	tasks	would	have	been	performed	manually	by	an	engineer
either	following	a	checklist,	running	a	collection	of	shell	scripts,	or	both.	As	you	can	imagine,
such	methods	do	not	scale	well	as	they	generally	imply	one	engineer	setting	up	one	server	at	a
time.

In	addition,	checklists	or	scripts:

Are	hard	to	write	when	it	comes	to	configuring	a	host	plus	a	full	application	stack	running	on
it
Are	usually	targeted	at	a	given	host	or	application	and	are	not	very	portable
Get	progressively	harder	to	comprehend	the	further	you	get	from	the	person	who	originally
wrote	them
Build	scripts	tend	to	get	executed	only	once,	usually	at	the	time	a	host	is	provisioned,	thus
configuration	starts	to	drift	from	that	moment	on

Fortunately,	not	many	people	use	these	nowadays,	as	Configuration	Management	has	become	a
common	practice.	Let	us	examine	some	of	the	benefits:

CM	allows	us	to	declare	the	desired	state	of	a	machine	once	and	then	reproduce	that	state	as
often	as	necessary
Powerful	abstraction	takes	care	of	specifics	such	as	environment,	hardware,	and	OS	type,
allowing	us	to	write	reusable	CM	code
The	declared	machine	state	code	is	easy	to	read,	comprehend,	and	collaborate	on.
A	CM	deployment	can	be	performed	on	tens,	hundreds,	or	thousands	of	machines
simultaneously

In	this	age	of	DevOps,	there	are	a	variety	of	CM	tools	to	choose	from.	You	might	have	already
heard	of	Puppet,	Chef,	Ansible,	OpsWorks,	or	the	one	we	are	going	to	use-SaltStack	(the	Salt
Open	project).

All	of	these	are	well	developed,	sophisticated	CM	solutions	with	active	communities	behind
them.	I	find	it	hard	to	justify	any	reported	claims	of	one	being	better	than	the	rest	as	they	all	do	the
job	pretty	well,	each	with	its	own	set	of	strengths	and	weaknesses.	So	which	one	you	use,	as	is

often	the	case,	is	up	to	personal	preference.

Regardless	of	the	tool	you	end	up	using,	I	would	like	to	stress	the	importance	of	two	points:
naming	conventions	and	code	reusability.

Following	naming	conventions	when	writing	code	is	an	obvious	win	as	it	guarantees	other	people
will	be	able	to	understand	your	work	with	less	effort.	In	addition	to	writing	code	however,	CM
involves	executing	it	against	your	nodes	and	this	is	where	naming	also	becomes	important.
Imagine	you	had	four	servers:	leonardo,	donatello,	michelangelo,	and	raphael.	Two	of	those	are
your	frontend	layer	and	two	the	backend,	so	you	sit	down	and	write	your	Configuration
Management	manifests	respectively:	webserver-node	and	database-node.	So	far,	so	good,	given
the	number	of	hosts	you	can	launch	your	CM	tool	and	easily	tell	it	to	run	the	relevant	manifest
against	each	of	them.

Now	imagine	50,	then	100	hosts,	within	a	similar	flat-naming	schema,	and	you	start	to	see	the
problem.	As	the	size	and	complexity	of	your	infrastructure	grows,	you	will	need	a	host-naming
convention	that	naturally	forms	a	hierarchy.	Hostnames	such	as	webserver-{0..10},	db-{0..5}	and
cache-{0..5}	can	be	further	grouped	into	frontend	and	backend	and	then	represented	in	a
structured,	hierarchical	way.	Such	a	way	of	grouping	nodes	based	on	role	or	other	properties	is
extremely	useful	when	applying	Configuration	Management.

Code	reusability	should	already	be	on	your	mind	when	you	start	writing	CM	code	(manifests).
You	will	find	that	there	are	generally	two	ways	of	approaching	this	task.	You	could	write	a	large,
say,	web	server	piece	which	contains	instructions	on	how	to	set	up	the	firewall,	some	CLI	tools,
NGINX,	and	PHP	on	a	node,	or	you	could	break	it	down	into	smaller	parts	like	iptables,	utils,
NGINX,	PHP,	and	so	on.

In	my	opinion,	the	latter	design	adds	some	overhead	when	writing	the	manifests,	but	the	benefit	of
reusability	is	substantial.	Instead	of	writing	large	sets	of	declarations	dedicated	to	each	server
type,	you	maintain	a	collection	of	generic,	small	ones	and	cherry-pick	from	them	to	suit	the
machine	in	question.

To	illustrate:

manifests:	everything_a_websrv_needs,	everything_for_a_db,	cache_main	

nodes:	web01,	db01,	cache01	

CM_execution:	web01=(everything_a_websrv_needs),	db01=(everything_for_a_db),	

cache01=(cache_main)	

Or	better:

manifests:	iptables,	utils,	nginx,	postgresql,	redis,	php	

nodes:	web01,	db01,	cache01	

CM_execution:	web01=(iptables,utils,nginx,php),	db01=

(iptables,utils,postgresql),	cache01=(iptables,utils,redis)	

Introduction	to	SaltStack
SaltStack	(see	https://saltstack.com/),	first	released	in	2011,	is	an	automation	suite	which	offers
Configuration	Management	plus	standard	and/or	event-driven	orchestration.	It	is	commonly	used
in	a	master-minion	setup,	where	a	master	node	provides	centralized	control	across	a	compute
estate.	It	is	known	for	its	speed	and	scalability	thanks	to	the	fast	and	lightweight	message	bus
(ZeroMQ)	used	for	communication	between	the	salt-master	and	minions.	It	can	also	be	used	in	an
agentless	fashion,	where	the	minions	are	controlled	over	SSH,	similarly	to	how	Ansible	operates.

SaltStack	is	written	in	Python	and	is	easily	extensible.	You	can	write	your	own	modules	for	it,
attach	long-running	processes	to	its	event	bus,	and	inject	raw	Python	code	in	unusual	places.

The	master-minion	model	is	quite	powerful,	offers	a	lot	of	flexibility,	and	is	the	recommended
approach	if	you	are	looking	after	anything	more	than	a	few	dev	nodes	and	want	to	take	advantage
of	all	the	features	SaltStack	has	to	offer.

Note

More	on	how	to	get	a	salt-master	up	and	running	can	be	found	here:
https://docs.saltstack.com/en/latest/topics/configuration/index.html

In	our	case,	we	are	going	to	explore	the	power	of	Configuration	Management	using	SaltStack	in	a
standalone	or	masterless	mode.	We	will	reuse	parts	of	the	Terraform	template	from	the	previous
chapter	to	launch	a	set	of	EC2	resources,	bootstrap	a	SaltStack	minion	and	have	it	configure	itself
to	serve	a	web	application.

Provided	all	goes	well,	we	should	end	up	with	a	fully	configured	web	server	(EC2	node)	behind
a	load-balancer	(EC2	ELB).

Here	is	our	task-list:

1.	 Prepare	our	SaltStack	development	environment.
2.	 Write	the	configuration	that	we	would	like	SaltStack	to	apply	to	our	node(s).
3.	 Compose	the	Terraform	template	describing	our	infrastructure.
4.	 Deploy	the	infrastructure	via	Terraform	and	let	SaltStack	configure	it.

https://saltstack.com/
https://docs.saltstack.com/en/latest/topics/configuration/index.html

Preparation
SaltStack	Configuration	Management	is	performed	using	the	following	main	components:

States	are	the	files	which	describe	the	desired	state	of	a	machine.	Here	we	write
instructions	for	installing	packages,	modifying	files,	updating	permissions,	and	so	on.
Pillars	are	the	files	in	which	we	define	variables	to	help	make	States	more	portable	and
flexible.
Grains	are	pieces	of	information	gathered	on	the	minion	host	itself.	These	include	details
about	the	OS,	environment,	the	hardware	platform,	and	others.
The	Salt	File	Server	stores	any	files,	scripts,	or	other	artifacts	which	may	be	referenced	in
the	States.
The	Salt	Top	file(s)	are	used	to	map	States	and/or	Pillars	to	minions.

In	a	master-minion	setup,	all	of	these	components	except	the	Grains	would	be	hosted	on	and	made
available	to	the	minions	by	the	salt-master	(other	backends	are	also	supported).

We	are	planning	to	run	Salt	in	masterless	mode	however,	meaning	that	we	will	need	a	way	to
transfer	any	States,	Pillars,	and	related	files	from	our	local	environment	to	the	minion.	Git?	Good
idea.	We	will	write	all	Salt	code	locally,	push	it	to	a	Git	repository,	and	then	have	it	checked	out
onto	each	minion	at	boot	time.

As	for	choosing	a	Git	hosting	solution,	Github	or	Bitbucket	are	excellent	services,	but	giving	our
minion	EC2	nodes	access	to	these	will	involve	some	key	handling.	In	comparison,	CodeCommit
(the	AWS	Git	solution)	offers	a	much	smoother	integration	with	EC2	instances	via	IAM	Roles.

Let	us	start	by	creating	a	new	IAM	user	and	a	CodeCommit	Git	repository.	We	will	be	using	the
user's	access	keys	to	create	the	repository	and	a	SSH	key	to	clone	and	work	with	it:

1.	 In	the	AWS	Console,	create	an	IAM	user	(write	down	the	generated	access	keys)	and	attach
the	AWSCodeCommitFullAccess	built-in	/	Managed	IAM	policy	to	it	as	shown	in	the
following	screenshot:

2.	 On	the	same	page,	switch	to	the	Security	Credentials	tab	and	click	on	the	Upload	SSH

public	key	as	shown	in	the	following	screenshot:

3.	 Configure	awscli:

$	export	AWS_ACCESS_KEY_ID='AKIAHNPFB9EXAMPLEKEY'

$	export	AWS_SECRET_ACCESS_KEY=

					'rLdrfHJvfJUHY/B7GRFTY/VYSRwezaEXAMPLEKEY'

$	export	AWS_DEFAULT_REGION='us-east-1'

4.	 Create	a	repository:

$	aws	codecommit	create-repository	--repository-name	salt	

						--repository-description	"SaltStack	repo"

{

"repositoryMetadata":	{

"repositoryName":	"salt",

"cloneUrlSsh":	"ssh://git-codecommit.us-

					east-1.amazonaws.com/v1/repos/salt",

"lastModifiedDate":	1465728037.589,

"repositoryDescription":	"SaltStack	repo",

"cloneUrlHttp":	

				"https://git-codecommit.us-east-1.amazonaws.com/v1/repos/salt",

"creationDate":	1465728037.589,

"repositoryId":	"d0628373-d9a8-44ab-942a-xxxxxx",

"Arn":	"arn:aws:codecommit:us-east-1:xxxxxx:salt",

"accountId":	"xxxxxx"

}

}

5.	 Clone	the	new	repository	locally:

$	git	clone	ssh://SSH_KEY_ID@git-codecommit.us-

					east-1.amazonaws.com/v1/repos/salt

Cloning	into	'salt'...

warning:	You	appear	to	have	cloned	an	empty	repository.

Checking	connectivity...	done.

Here,	SSH_KEY_ID	is	the	one	we	saw	after	uploading	a	public	key	in	step	2.

Note

For	more	options	on	connecting	to	CodeCommit	see
http://docs.aws.amazon.com/codecommit/latest/userguide/setting-up.html

We	are	ready	to	start	populating	our	empty,	new	Salt	repository.

http://docs.aws.amazon.com/codecommit/latest/userguide/setting-up.html

Writing	Configuration	Management	code
For	SaltStack	to	help	us	configure	our	node	as	a	web	server,	we	need	to	tell	it	what	one	of	those
should	look	like.	In	Configuration	Management	terms,	we	need	to	describe	the	desired	state	of	the
machine.

In	our	example,	we	will	be	using	a	combination	of	SaltStack	States,	Pillars,	Grains,	and	Top	files
to	describe	the	processes	of:

Creating	Linux	user	accounts
Installing	services	(NGINX	and	PHP-FPM)
Configuring	and	running	the	installed	services

States
A	State	contains	a	set	of	instructions	which	we	would	like	to	be	applied	to	our	EC2	minion(s).
We	will	use	/srv/salt/states	on	the	minion	as	the	root	of	the	Salt	State	tree.	States	can	be
stored	in	there	in	the	form	of	a	single	file,	for	example	/srv/salt/states/mystate.sls,	or
organized	into	folders	like	so	/srv/salt/states/mystate/init.sls	.	Later	on,	when	we
request	that	mystate	is	executed,	Salt	will	look	for	either	a	state_name.sls	or	a
state_name/init.sls	in	the	root	of	the	State	Tree.	I	find	the	second	approach	tidier	as	it
allows	for	other	state-related	files	to	be	kept	in	the	relevant	folder.

We	begin	the	Configuration	Management	of	our	web	server	node	with	a	state	for	managing	Linux
user	accounts.	Inside	our	Salt	Git	repository,	we	create	states/users/init.sls:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/users.

				veselin:

						user.present:

								-	fullname:	Veselin	Kantsev

								-	uid:	{{	salt['pillar.get']('users:veselin:uid')	}}

								-	password:	{{	salt['pillar.get']('users:veselin:password')	}}

								-	groups:

										-	wheel

				

				ssh_auth.present:

						-	user:	veselin

						-	source:	salt://users/files/veselin.pub

						-	require:

								-	user:	veselin

				

				sudoers:

						file.managed:

								-	name:	/etc/sudoers.d/wheel

								-	contents:	'%wheel	ALL=(ALL)	ALL'

We	will	use	YAML	to	write	most	Salt	configuration.	You	will	notice	three	different	state	modules
used	in	the	preceding	section:

user.present:	This	module	ensures	that	a	given	user	account	exists	on	the	system	or
creates	one	if	necessary
ssh_auth.present:	A	module	for	managing	the	SSH	authorized_keys	file	of	a	user
file.managed:	A	module	for	creating/modifying	files

Note

SaltStack's	state	modules	offer	rich	functionality.	For	full	details	of	each	module	see
https://docs.saltstack.com/en/latest/ref/states/all/

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/users
https://docs.saltstack.com/en/latest/ref/states/all/

To	avoid	hardcoding	certain	values	under	user.present,	we	make	use	of	the	SaltStack	Pillars
system.	We	will	examine	a	pillar	file	shortly,	but	for	now	just	note	the	syntax	of	referencing	pillar
values	inside	our	state.

Two	other	points	of	interest	here	are	the	source	of	our	key	file	and	the	require	property.	In	this
example,	a	salt://	formatted	source	address	refers	to	the	Salt	File	Server	which	by	default
serves	files	from	the	State	Tree	(for	supported	backends,	please	see
https://docs.saltstack.com/en/latest/ref/file_server/).	The	require	statement	enforces	an	order	of
execution,	ensuring	that	the	user	account	is	present	before	trying	to	create	an	authorized_keys
file	for	it.

Note

SaltStack	follows	an	imperative	execution	model	until	such	custom	ordering	is	enforced,	invoking
a	declarative	mode	(see	https://docs.saltstack.com/en/latest/ref/states/ordering.html).

Thanks	to	the	readability	of	YAML,	one	can	easily	tell	what	is	going	on	here:

1.	 We	create	a	new	Linux	user.
2.	 We	apply	desired	attributes	(uid,	password,	group,	and	so	on).
3.	 We	deploy	an	SSH	authorized_keys	file	for	it.
4.	 We	enable	sudo	for	the	wheel	group	of	which	the	user	is	a	member.

Perhaps	you	could	try	edit	this	state	and	add	a	user	for	yourself?	It	will	be	useful	later	after	we
deploy.

We	will	now	move	on	to	an	NGINX	installation	via	states/nginx/init.sls.

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/nginx.

We	install	NGINX	using	the	pkg.installed	module:

pkg.installed:	[]

Set	the	service	to	start	on	boot	(enable:	True),	enable	reloading	instead	of	restarting	when
possible	(reload:	True),	ensure	the	NGINX	pkg	has	been	installed	(require:)	before	running
the	service	(service.running:)

				nginx:

						service.running:

								-	enable:	True

								-	reload:	True

								-	require:

										-	pkg:	nginx

https://docs.saltstack.com/en/latest/ref/file_server/
https://docs.saltstack.com/en/latest/ref/states/ordering.html
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/nginx

Then	put	a	config	file	in	place	(file.managed:),	ensuring	the	service	waits	for	this	to	happen
(require_in:)	and	also	reloads	each	time	the	file	is	updated	(watch_in:):

				/etc/nginx/conf.d/default.conf:

						file.managed:

								-	source:	salt://nginx/files/default.conf

								-	require:

										-	pkg:	nginx

								-	require_in:

										-	service:	nginx

								-	watch_in:

										-	service:	nginx

Note	the	require/require_in,	watch/watch_in	pairs.	The	difference	between	each	of	these
requisites	and	its	_in	counterpart	lies	in	the	direction	in	which	they	act.

For	example:

				nginx:

						service.running:

								-	watch:

										-	file:	nginx_config

				nginx_config:

						file.managed:

								-	name:	/etc/nginx/nginx.conf

								-	source:	salt://...

Has	the	same	effect	as:

				nginx:

						service.running:	[]

						nginx_config:

						file.managed:

								-	name:	/etc/nginx/nginx.conf

								-	source:	salt://...

										-	watch_in:

												-	service:	nginx

In	both	cases,	the	NGINX	service	restarts	on	config	file	changes;	however,	you	can	see	how	the
second	format	can	be	potentially	quite	useful	the	further	you	get	from	the	service	block-say	in	a
different	file,	as	we	will	see	in	the	next	state.

Add	in	some	PHP	(states/php-fpm/init.sls):

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/php-fpm.

				include:

						-	nginx

				

				php-fpm:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/php-fpm

						pkg.installed:

								-	name:	php-fpm

								-	require:

										-	pkg:	nginx

				

				service.running:

						-	name:	php-fpm

						-	enable:	True

						-	reload:	True

						-	require_in:

								-	service:	nginx...

Here	you	can	better	see	the	usefulness	of	an	_in	requisite.	After	we	include	the	nginx	state	at	the
top,	our	require_in	makes	sure	that	nginx	does	not	start	before	php-fpm	does.

With	NGINX	and	PHP-FPM	now	configured,	let	us	add	a	quick	test	page
(states/phptest/init.sls).

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/phptest.

We	set	a	few	variables	pulled	from	Grains	(more	on	those	shortly):

{%	set	publqic_ipv4	=	salt['cmd.shell']('ec2-metadata	--public-ipv4	|	awk	'{	

print	$2	}'')	%}	

{%	set	grains_ipv4	=	salt['grains.get']('ipv4:0')	%}	

{%	set	grains_os	=	salt['grains.get']('os')	%}	

{%	set	grains_osmajorrelease	=	salt['grains.get']('osmajorrelease')	%}	

{%	set	grains_num_cpus	=	salt['grains.get']('num_cpus')	%}	

{%	set	grains_cpu_model	=	salt['grains.get']('cpu_model')	%}	

{%	set	grains_mem_total	=	salt['grains.get']('mem_total')	%}	

Then	we	deploy	the	test	page	and	add	contents	to	it	directly:

phptest:	

		file.managed:	

				-	name:	/var/www/html/index.php	

				-	makedirs:	True	

				-	contents:	|	

								<?php	

										echo	'<p	style="text-align:center;color:red">		

										Hello	from	{{	grains_ipv4	}}/{{	public_ipv4	}}	running	PHP	'	.	

										phpversion()	.	'	on	{{	grains_os	}}	{{	grains_osmajorrelease	}}.		

										
	I	come	with	{{	grains_num_cpus	}}	x	{{	grains_cpu_model	}}		

										and	{{	grains_mem_total	}}	MB	of	memory.	</p>';	

										phpinfo(INFO_LICENSE);	

								?>	

We	will	use	this	page	post-deployment	to	check	whether	both	NGINX	and	PHP-FPM	are
operational.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/phptest

Pillars
Now	let	us	look	at	the	main	mechanism	for	storing	variables	in	Salt-the	Pillars.	These	are:

YAML	tree-like	data	structures
Defined/rendered	on	the	salt-master,	unless	running	masterless	in	which	case	they	live	on	the
minion
Useful	for	storing	variables	in	a	central	place	to	be	shared	by	the	minions	(unless	they	are
masterless)
Helpful	for	keeping	States	portable
Appropriate	for	sensitive	data	(they	can	also	be	GPG	encrypted;	see
https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html)

We	will	be	using	/srv/salt/pillars	as	the	root	of	our	Pillar	tree	on	the	minion.	Let	us	go	back
to	the	users	state	and	examine	the	following	lines:

-	uid:	{{	salt['pillar.get']('users:veselin:uid')	}}	

-	password:	{{	salt['pillar.get']('users:veselin:password')	}}	

The	uid	and	password	attributes	are	set	to	be	sourced	from	a	pillar	named	users.	And	if	we
check	our	Pillar	Tree,	we	find	a	/srv/salt/pillars/users.sls	file	containing:

users:	

		veselin:	

				uid:	5001	

				password:	'1wZ0gQOOo$HEN/gDGS85dEZM7QZVlFz/'	

It	is	now	easy	to	see	how	the	users:veselin:password	reference	inside	the	state	file	matches
against	this	pillar's	structure.

Note

For	more	details	and	examples	on	pillar	usage,	see:
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html

https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html

Grains
Unlike	Pillars,	Grains	are	considered	static	data:

They	get	generated	minion-side	and	are	not	shared	between	different	minions
They	contain	facts	about	the	minion	itself
Typical	examples	are	CPU,	OS,	network	interfaces,	memory,	and	kernels
It	is	possible	to	add	custom	Grains	to	a	minion

We	have	already	made	good	use	of	Grains	within	our	preceding	test	page
(states/phptest/init.sls),	getting	various	host	details	such	as	CPU,	memory,	network,	and
OS.	Another	way	of	using	this	data	is	when	dealing	with	multi-OS	environments.	Let	us	look	at
the	following	example:

pkg.installed:	

		{%	if	grains['os']	==	'CentOS'	or	grains['os']	==	'RedHat'	%}	

				-	name:	httpd...		

		{%	elif	grains['os']	==	'Debian'	or	grains['os']	==	'Ubuntu'	%}	

				-	name:	apache2	

		...	

		{%	endif	%}	

As	you	see,	Grains,	much	like	Pillars,	help	make	our	States	way	more	flexible.

Top	files
We	now	have	our	States	ready,	even	supported	by	some	Pillars	and	ideally	would	like	to	apply
all	of	those	to	a	host	so	we	can	get	it	configured	and	ready	for	use.

In	SaltStack,	the	Top	File	provides	the	mapping	between	States/Pillars	and	the	minions	they
should	be	applied	onto.	We	have	a	Top	file	(top.sls)	in	the	root	of	both	the	state	and	pillar	trees.
We	happen	to	have	a	single	environment	(base),	but	we	could	easily	add	more	(dev,	qa,	prod).
Each	could	have	a	separate	state	and	pillar	trees	with	separate	Top	files	which	get	compiled	into
one	at	runtime.

Note

Please	see	https://docs.saltstack.com/en/latest/ref/states/top.html	for	more	information	on	multi-
environment	setups.

Let	us	look	at	a	top.sls	example:

base:	

		'*':	

				-	core_utils	

				-	monitoring_client	

						-	log_forwarder

		'webserver-*':

				-	nginx

				-	php-fpm

		'dbserver-*':	

				-	pgsql_server	

				-	pgbouncer	

We	are	declaring	that	in	our	base	(default)	environment:

All	minions	should	have	the	core	set	of	utilities,	the	monitoring	and	log	forwarding	agents
installed
Minions	with	an	ID	matching	webserver-*,	get	the	nginx	and	php-fpm	States	(in	addition
to	the	previous	three)
Database	nodes	get	applied:	the	common	three	plus	pgsql_server	and	pgbouncer

Minion	targeting	gets	even	more	interesting	when	you	include	Pillars,	Grains,	or	a	mix	of	these
(see	https://docs.saltstack.com/en/latest/ref/states/top.html#advanced-minion-targeting).

By	specifying	such	state/pillar	to	a	minion	association,	from	a	security	standpoint	we	also	create
a	useful	isolation.	Say	our	Pillars	contained	sensitive	data,	then	this	is	how	we	could	limit	the
group	of	minions	who	are	allowed	access	to	it.

Back	to	our	Salt	repository,	where	we	find	two	top.sls	files:

salt/states/top.sls:

https://docs.saltstack.com/en/latest/ref/states/top.html
https://docs.saltstack.com/en/latest/ref/states/top.html#advanced-minion-targeting

base:	

		'*':	

				-	users	

				-	nginx	

				-	php-fpm	

				-	phptest	

salt/pillars/top.sls:

base:	

		'*':	

				-	users	

We	can	allow	ourselves	to	target	*,	as	we	are	running	in	masterless	mode	and	essentially	all	our
States/Pillars	are	intended	for	the	local	minion.

We	enable	this	mode	with	a	few	settings	in	a	minion	configuration	file
(/etc/salt/minion.d/masterless.conf).

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_03_CodeFiles/CodeCommit/salt/minion.d/masterless.conf.

These	effectively	tell	the	salt-minion	process	that	the	Salt	Fileserver,	the	state	tree	and	the	pillar
tree	are	all	to	be	found	on	the	local	filesystem.	You	will	see	how	this	configuration	file	gets
deployed	via	UserData	in	a	moment.

Note

More	on	running	masterless	can	be	found	at:
https://docs.saltstack.com/en/latest/topics/tutorials/standalone_minion.html

This	concludes	our	SaltStack	internals	session.	As	you	get	more	comfortable,	you	may	want	to
look	into	Salt	Engines,	Beacons,	writing	your	own	modules	and/or	Salt	Formulas.	And	those	are
only	some	of	the	ninja	features	being	constantly	added	to	the	project.

At	this	stage	we	already	know	how	to	use	Terraform	to	deploy	and	now	SaltStack	to	configure.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_03_CodeFiles/CodeCommit/salt/minion.d/masterless.conf
https://docs.saltstack.com/en/latest/topics/tutorials/standalone_minion.html

Bootstrapping	nodes	under	Configuration
Management	(end-to-end	IaC)
Without	further	delay,	let	us	get	our	old	VPC	re-deployed	along	with	a	configuration-managed
web	service	inside	it.

Terraform	will	spawn	the	VPC,	ELB,	and	EC2	nodes	then	bootstrap	the	SaltStack	workflow	with
the	use	of	EC2	UserData.	Naturally,	we	strive	to	reuse	as	much	code	as	possible;	however,	our
next	deployment	requires	some	changes	to	the	TF	templates.

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_03_CodeFiles/Terraform.

resources.tf:

We	do	not	need	the	private	subnets/route	tables,	NAT,	nor	RDS	resources	this	time,	so	we
have	removed	these,	making	the	deployment	a	bit	faster.
We	will	be	using	an	IAM	Role	to	grant	permission	to	the	EC2	node	to	access	the
CodeCommit	repository.

We	have	declared	the	role:

resource	"aws_iam_role"	"terraform-role"	{

name	=	"terraform-role"path	=	"/"...

We	have	added	and	associated	a	policy	(granting	read	access	to	CodeCommit)	with	that
role:

resource	"aws_iam_role_policy"	"terraform-policy"	{

name	=	"terraform-policy"

role	=	"${aws_iam_role.terraform-role.id}"...

We	have	created	and	associated	an	instance	profile	with	the	role:

resource	"aws_iam_instance_profile"	"terraform-profile"	{

name	=	"terraform-profile"

roles	=	["${aws_iam_role.terraform-role.name}"]

...

We	have	updated	the	Auto	Scaling	launch-configuration	with	the	instance	profile	ID:

resource	"aws_launch_configuration"	"terraform-lcfg"			

													{...iam_instance_profile	=	

													"${aws_iam_instance_profile.terraform-profile.id}"

														...

We	have	updated	the	UserData	script	with	some	SaltStack	bootstrap	instructions,	to	install
Git	and	SaltStack,	checkout	and	put	our	Salt	code	in	place	and	finally	run	Salt:

			user_data	=	<<EOF	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/Terraform

			#!/bin/bash	

			set	-euf	-o	pipefail	

			exec	1>	>(logger	-s	-t	$(basename	$0))	2>&1	

			#	Install	Git	and	set	CodeComit	connection	settings	

			#	(required	for	access	via	IAM	roles)	

			yum	-y	install	git	

			git	config	--system	credential.helper	

			'!aws	codecommit	credential-helper	$@'	

			git	config	--system	credential.UseHttpPath	true	

			#	Clone	the	Salt	repository	

			git	clone	https://git-codecommit.us-east-1.amazonaws.com/v1/repos/

			salt/srv/salt;	chmod	700	/srv/salt	

			#	Install	SaltStack	

			yum	-y	install	https://repo.saltstack.com/yum/amazon/

			salt-amzn-repo-latest-1.ami.noarch.rpm	

			yum	clean	expire-cache;	yum	-y	install	salt-minion;	

			chkconfig	salt-minion	off	

			#	Put	custom	minion	config	in	place	(for	enabling	masterless	mode)	

			cp	-r	/srv/salt/minion.d	/etc/salt/	

			#	Trigger	a	full	Salt	run	

			salt-call	state.apply	

			EOF	

			We	have	moved	our	EC2	node	(the	Auto	Scaling	group)	

			to	a	public	subnet	and	allowed	incoming	SSH	traffic	

			so	that	we	can	connect	and	play	with	Salt	on	it:	

			resource	"aws_security_group"	"terraform-ec2"	{ingress	{	

			from_port	=	"22"	

			to_port	=	"22"	

			...resource	"aws_autoscaling_group"	"terraform-asg"	{	

			...	

			vpc_zone_identifier	=	["${aws_subnet.public-1.id}",

			...	

variables.tf:

We	have	removed	all	RDS	related	variables.

outputs.tf:

We	have	removed	RDS	and	NAT	related	outputs.

iam_user_policy.json:

This	document	will	become	useful	shortly	as	we	will	need	to	create	a	new	user	for	the
deployment.	We	have	removed	RDS	permissions	and	added	IAM	ones	from	it.

We	are	now	ready	for	deployment.	Pre-flight	check:

Updated	Terraform	templates

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/Terraform

AWS/tree/master/5585_03_CodeFiles/Terraform)	are	available	locally	in	our	designated
terraform	folder

Created/updated	our	Terraform	IAM	account	with	the	new	set	of	permissions	as	per
iam_user_policy.json

Ensured	we	have	a	copy	of	the	terraform	ec2	keypair	(for	SSH-ing	later)
All	our	SaltStack	code	has	been	pushed	up	to	the	Salt	CodeCommit	repository	(Please	refer
to:	https://git-codecommit.us-east-1.amazonaws.com/v1/repos/salt)

Let	us	export	our	credentials	and	launch	Terraform:

$	export	AWS_ACCESS_KEY_ID='user_access_key'

$	export	AWS_SECRET_ACCESS_KEY='user_secret_access_key'

$	export	AWS_DEFAULT_REGION='us-east-1'$	cd	Terraform/$	terraform	validate

$	terraform	plan...Plan:	15	to	add,	0	to	change,	0	to	destroy.

$	terraform	apply...Outputs:

ELB	URI	=	terraform-elb-xxxxxx.us-east-1.elb.amazonaws.com

VPC	ID	=	vpc-xxxxxx

Allow	3-5	minutes	for	output	t2.nano	to	come	into	shape	and	then	browse	to	the	ELB	URI	from
the	following	output:

Victory!

Try	increasing	the	autoscaling-group-minsize	and	autoscaling-group-maxsize	in
terraform.tfvars,	then	re-applying	the	template.	You	should	start	seeing	different	IPs	when	the
page	is	refreshed.

Given	the	preceding	test	page,	we	can	be	reasonably	confident	that	Salt	bootstrapped	and	applied
our	set	of	States	successfully.

We	did,	however,	enable	SSH	access	in	order	to	be	able	to	experiment	more	with	Salt,	so	let	us
do	that.

We	see	the	public	IP	of	the	node	on	our	test	page.	You	could	SSH	into	it	with	either	the
terraform	ec2	keypair	or	the	default	ec2-user	Linux	account,	or	if	you	dared	create	one	for
yourself	in	the	users/init.sls	state	earlier,	you	could	use	it	now.

https://git-codecommit.us-east-1.amazonaws.com/v1/repos/salt

Once	connected,	we	can	use	the	salt-call	command	(as	root)	to	interact	with	Salt	locally:

How	about	some	Pillars:

#	salt-call	pillar.items

Or	let	us	see	what	Grains	we	have:

#	salt-call	grains.items

Run	individual	States:

#	salt-call	state.apply	nginx

Or	execute	a	full	run,	that	is	of	all	assigned	States	as	per	the	Top	file:

#	salt-call	state.apply

After	playing	with	our	new	deployment	for	a	bit,	I	suspect	you	are	going	to	want	to	try	adding	or
changing	States/Pillars	or	other	parts	of	the	Salt	code.	As	per	the	IaC	rules	we	agreed	upon
earlier,	every	change	we	make	goes	through	Git,	but	let	us	examine	what	options	we	have	for
deploying	those	changes	afterwards:

Pull	the	changes	down	to	each	minion	and	run	salt-call
Provision	new	minions	which	will	pull	down	the	latest	code
Push	changes	via	a	Salt-master

It	is	easy	to	see	that	the	first	option	will	work	with	the	couple	of	nodes	we	use	for	testing,	but	is
quickly	going	to	become	hard	to	manage	at	scale.

Provisioning	new	minions	on	each	deployment	is	a	valid	option	if	masterless	Salt	setup	is
preferred;	however,	you	need	to	consider	the	frequency	of	deployments	in	your	environment	and
the	associated	cost	of	replacing	EC2	nodes.	One	benefit	worth	nothing	here	is	that	of	blue/green
deployments.	By	provisioning	new	minions	to	serve	your	code	changes,	you	get	to	keep	the	old
ones	around	for	a	while	which	allows	you	to	shift	traffic	gradually	and	roll	back	safely	if	needed.

Having	a	Salt-master	would	be	my	recommended	approach	for	any	non-dev	environments.	The
Salt	code	is	kept	on	it,	so	any	Git	changes	you	make,	need	to	be	pulled	down	only	once.	You	can
then	deploy	the	changed	States/Pillars	by	targeting	the	minions	you	want	from	the	Salt-master.	You
could	still	do	blue/green	for	major	releases	or	you	could	choose	to	deploy	to	your	current	minions
directly	if	it	is	just	a	minor,	safe	amendment,	or	perhaps	something	critical	that	needs	to	reach	all
minions	as	soon	as	possible.

Another	powerful	feature	of	the	Salt-master	is	orchestration,	more	specifically-remote	execution.
With	all	your	minions	connected	to	it,	the	salt-master	becomes	a	command	center	from	which	you
have	more	or	less	full	control	over	them.

Executing	commands	on	the	minions	is	done	via	modules	from	generic	ones	such	as	cmd.run,
which	essentially	allows	you	to	run	arbitrary	shell	commands	to	more	specialized	ones	such	as

nginx,	postfix,	selinux,	or	zfs.	The	list	is	quite	long	as	you	can	see	here:
https://docs.saltstack.com/en/latest/ref/modules/all/index.html.

And	if	you	recall	the	earlier	section	on	hostnames	and	naming	conventions,	this	is	where	one	can
appreciate	their	value.	It	is	quite	convenient	to	be	able	to	execute	statements	like:

salt	'webserver-*'	nginx.status		

salt	'db-*'	postgres.db_list	

You	can	also	use	Pillars	and/or	Grains	to	add	tags	to	your	hosts,	so	you	could	further	group	them
per	location,	role,	department,	or	something	similar.

In	brief,	here	are	a	few	key	points	of	masterless	versus	a	salt-master	arrangement:

Salt	Master Masterless

A	powerful,	centralized	control	platform	(must	be
secured	adequately)	which	allows	for	quick,
parallel	access	to	a	vast	network	of	minions
Advanced	features	such	as	Salt	Engines,	Runners,
Beacons,	the	Reactor	System
API	access

No	salt-master	node	to	maintain
Not	having	a	single	node	which
provides	full	access	to	the	rest	of
them	is	more	secure	in	some	sense
Simpler	Salt	operation
After	the	initial	Salt	execution,	the
minions	can	be	considered
immutable

For	many	FOR	LOOP	gurus	out	there,	parallel	execution	tools	like	Salt	are	very	appealing.	It
allows	you	to	rapidly	reach	out	to	nodes	at	a	massive	scale,	whether	you	simply	want	to	query
their	uptime,	reload	a	service,	or	react	to	a	threat	alert	by	stopping	sshd	across	your	cluster.

Note

Before	you	go,	please	remember	to	delete	any	AWS	resources	used	in	the	preceding	examples
(VPC,	ELB,	EC2,	IAM,	CodeCommit,	and	so	on)	to	avoid	unexpected	charges.

https://docs.saltstack.com/en/latest/ref/modules/all/index.html

Summary
In	this	chapter,	we	examined	the	second	part	of	Infrastructure	as	Code,	namely	Configuration
Management.

We	learned	about	a	few	different	components	of	the	CM	solution	SaltStack:	States,	Pillars,
Grains,	and	the	Top	File.	We	learned	how	to	use	them	and	how	to	write	code	for	them.

We	then	combined	our	previous	knowledge	of	how	to	deploy	infrastructure	using	Terraform	with
that	of	how	to	configure	it	using	SaltStack,	resulting	in	our	first	end-to-end	IaC	deployment.

Next,	we	are	going	to	look	into	Continuous	Integration:	what	it	is	and	how	to	setup	a	CI	pipeline
on	AWS.

Chapter	4.	Build,	Test,	and	Release	Faster	with
Continuous	Integration
The	emphasis	of	this	chapter	will	be	the	value	of	quick	iteration:	Quick	over	quality	iteration,	as
per	Boyd's	law	(you	might	recall	the	OODA	principle	mentioned	in	Chapter	1,	What	Is	DevOps
and	Should	You	Care?).

By	iteration,	I	am	referring	to	a	software	development	cycle,	from	the	moment	a	piece	of	code	is
written,	published	(committed	to	version	control),	compiled	(if	needed),	tested	and	finally
deployed.

Continuous	Integration	(CI)	defines	the	routines	that	should	be	adopted	by	developers	plus	the
necessary	tools	to	make	this	iteration	as	fast	as	possible.

Let	us	start	with	the	human	factor:

Use	version	control	(for	example	Git)
Commit	smaller	changes,	more	often
Test	locally	first
Do	peer	code	reviews
Pause	other	team	activity	until	an	issue	is	resolved

Then	add	a	bit	of	automation	(a	CI	server):

Monitor	for	version	control	changes	(for	example	Git	commits)
Pull	down	changed	code
Compile	and	run	tests

On	success,	build	an	artefact
On	failure,	notify	the	team	and	pause	the	pipeline

Repeat

Committing	smaller	changes	helps	detect	problems	earlier	and	potentially	solves	them	much	more
easily;	and	a	developer	receives	feedback	on	their	work	more	frequently	which	builds	confidence
that	their	code	is	in	a	good	state.

Testing	locally,	where	possible,	greatly	reduces	team	distraction	caused	by	the	CI	pipeline
tripping	over	minor	issues.

Code	reviews	are	beneficial	at	many	levels.	They	eliminate	bad	coding	habits	as	peers	ensure
code	complies	with	agreed	standards.	They	increase	visibility;	peers	get	a	lot	more	exposure	to
the	work	of	others.	They	help	catch	the	errors	which	a	machine	would	miss.

The	Toyota	Way	teaches	us	to	Stop	the	Line	whenever	a	problem	is	detected.	In	terms	of	CI,	this
translates	into	halting	the	pipeline	on	errors	and	concentrating	resources	on	fixing	these.	At	first

this	might	seem	like	an	obvious	way	to	reduce	productivity	and	slow	down	the	whole	process,	but
it's	been	proven	again	and	again	that	the	initial	overhead	is	ultimately	worth	it.	This	way	you	keep
your	technical	debt	to	a	minimum;	improve	code	as-you-go,	preventing	issues	from	accumulating
and	re-surfacing	at	a	later	stage.	Now	is	a	good	time	to	restate	the	test	locally	point	made	earlier.
You	would	likely	not	want	to	interrupt	your	colleagues	with	something	trivial,	which	could	have
been	spotted	easily	before	committing.

As	you	succeed	in	building	this	team	discipline	(the	hard	part),	it	is	time	to	add	some	automation
flavor	by	setting	up	a	CI	pipeline.

The	CI	server	tirelessly	monitors	your	code	repository	and	reacts	to	changes	by	performing	a	set
of	tasks	over	and	over	again.	I	believe	it	is	evident	how	this	saves	engineers	a	great	amount	of
time	and	effort,	not	to	mention	the	fact	that	they	avoid	having	to	address	the	monotone	nature	of
such	work.

A	pipeline,	say	in	Jenkins,	would	normally	consist	of	a	number	of	stages:	individual	stages	can
represent	the	checking	out	of	the	latest	code,	running	build	tasks	on	it,	performing	tests	then
building	artefacts,	where	each	stage	runs	subject	to	the	previous	one	completing	successfully.

This	generally	describes	how	a	combination	of	engineer	habits	and	some	tooling	can	greatly
improve	a	software	development	cycle.	Continuous	Integration	helps	us	collaborate	better,	write
better	code,	ship	more	often	and	get	feedback	quicker.

Users	want	new	features	released	fast,	developers	want	to	see	the	result	of	their	work	out	there	-
everybody	wins.

We	have	discussed	the	theory,	now	let	us	bring	our	focus	to	the	title	of	this	chapter.	We	are	going
to	use	our	acquired	Terraform	and	Salt	skills	to	deploy	a	CI	environment	on	AWS	featuring	a
Jenkins	(v2)	CI	server.

Jenkins	(ref:	https://jenkins.io)	is	a	popular,	well	established	open	source	project	focusing	on
automation.	It	comes	with	a	long	list	of	integrations,	catering	to	a	variety	of	platforms	and
programming	languages.	Meet	Jenkins:	https://wiki.jenkins-
ci.org/display/JENKINS/Meet+Jenkins.

The	deployment	of	our	CI	environment	can	be	broken	down	into	three	main	stages:

1.	 Prepare	an	Infrastructure	as	Code	deployment:
Write	Terraform	templates	to	provision	a	VPC	and	an	EC2	instance
Write	Salt	States	to	install	Jenkins,	NGINX	and	other	software	onto	the	EC2	instance

2.	 Deploy	IaC:
Deploy	the	Terraform	templates	and	Salt	States

3.	 Setup	CI:
Configure	a	Jenkins	pipeline	for	Continuous	Integration	of	a	demo	application

https://jenkins.io
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins

Prepare	IaC
In	accordance	with	our	Infrastructure	as	Code	principles,	this	deployment	will	also	be	mostly
template	driven.	We	will	try	to	reuse	some	of	the	Terraform	and	Salt	code	from	previous
chapters.

Terraform	templates
For	this	particular	setup	we	can	simplify	our	template	as	we	will	only	need	the	VPC,	some
networking	bits,	and	an	EC2	instance.

Let's	browse	through	the	files	in	our	TF	repository:

Variables

The	few	variables	we	need	can	be	grouped	into	VPC	and	EC2	related	ones:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/Terraform/variables.tf.

VPC

variable	"aws-region"	{	

		type	=	"string"	

		description	=	"AWS	region"	

}	

variable	"vpc-cidr"	{	

		type	=	"string"	

		description	=	"VPC	CIDR"	

}	

variable	"vpc-name"	{	

		type	=	"string"	

		description	=	"VPC	name"	

}	

variable	"aws-availability-zones"	{	

		type	=	"string"	

		description	=	"AWS	zones"	

}	

EC2

variable	"jenkins-ami-id"	{	

		type="string"	

		description	=	"EC2	AMI	identifier"	

}	

variable	"jenkins-instance-type"	{	

		type	=	"string"	

		description	=	"EC2	instance	type"	

}	

variable	"jenkins-key-name"	{	

		type	=	"string"	

		description	=	"EC2	ssh	key	name"	

}	

Variables	(values)

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/Terraform/variables.tf

Following	the	bare	variable	definitions,	we	now	supply	some	values:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/Terraform/terraform.tfvars.

VPC

We'll	keep	our	deployment	in	US	East:

aws-region	=	"us-east-1"	

vpc-cidr	=	"10.0.0.0/16"	

vpc-name	=	"Terraform"	

aws-availability-zones	=	"us-east-1b,us-east-1c"	

EC2

A	Nano	instance	will	be	sufficient	for	testing.	Ensure	the	referenced	key-pair	exists:

jenkins-ami-id	=	"ami-6869aa05"	

jenkins-instance-type	=	"t2.nano"	

jenkins-key-name	=	"terraform"	

Resources
Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/Terraform/resources.tf.

Create	the	VPC

As	a	matter	of	standard	(good)	practice	we	create	all	our	resources	inside	a	VPC:

#	Set	a	Provider	

provider	"aws"	{	

		region	=	"${var.aws-region}"	

}	

	

#	Create	a	VPC	

resource	"aws_vpc"	"terraform-vpc"	{	

		cidr_block	=	"${var.vpc-cidr}"	

	

		tags	{	

				Name	=	"${var.vpc-name}"	

		}	

}	

Add	networking	components

We	add	a	gateway,	a	route	table,	and	an	Internet	facing	subnet	from	where	our	Jenkins	instance
will	be	launched:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/Terraform/terraform.tfvars
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/Terraform/resources.tf

IGW

#	Create	an	Internet	Gateway	

resource	"aws_internet_gateway"	"terraform-igw"	{	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

}	

Route	table

#	Create	public	route	tables	

resource	"aws_route_table"	"public"	{	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

		route	{	

				cidr_block	=	"0.0.0.0/0"	

				gateway_id	=	"${aws_internet_gateway.terraform-igw.id}"	

		}	

	

		tags	{	

				Name	=	"Public"	

		}	

}	

Subnet

#	Create	and	associate	public	subnets	with	a	route	table	

resource	"aws_subnet"	"public-1"	{	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

		cidr_block	=	"${cidrsubnet(var.vpc-cidr,	8,	1)}"	

		availability_zone	=	"${element(split(",",var.aws-availability-zones),	

count.index)}"	

		map_public_ip_on_launch	=	true	

	

		tags	{	

				Name	=	"Public"	

		}	

}	

	

resource	"aws_route_table_association"	"public-1"	{	

		subnet_id	=	"${aws_subnet.public-1.id}"	

		route_table_id	=	"${aws_route_table.public.id}"	

}	

Add	EC2	node	and	related	resources

The	security	group	for	our	Jenkins	node	needs	to	permit	HTTP/S	access	plus	SSH	for
convenience,	so	that	we	can	access	the	command	line	if	needed:

Security	Group

resource	"aws_security_group"	"jenkins"	{	

		name	=	"jenkins"	

		description	=	"ec2	instance	security	group"	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

	

		ingress	{	

				from_port	=	"22"	

				to_port	=	"22"	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

	

		ingress	{	

				from_port	=	"80"	

				to_port	=	"80"	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

	

		ingress	{	

				from_port	=	"443"	

				to_port	=	"443"	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

	

		egress	{	

				from_port	=	0	

				to_port	=	0	

				protocol	=	"-1"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

	

}	

IAM	Role

We	will	use	an	IAM	Role	to	grant	Jenkins	access	to	AWS	services:

resource	"aws_iam_role"	"jenkins"	{	

				name	=	"jenkins"	

				path	=	"/"	

				assume_role_policy	=	<<EOF	

{	

		"Version":	"2012-10-17",	

		"Statement":	[

				{	

						"Action":	"sts:AssumeRole",	

						"Principal":	{	

								"Service":	"ec2.amazonaws.com"	

						},	

						"Effect":	"Allow",	

						"Sid":	""	

				}	

]	

}	

EOF	

}	

IAM	Role	Policy

This	policy	will	allow	Jenkins	to	read	from	a	codecommit	repository	and	perform	all	actions
(except	deleting)	on	an	s3	bucket:

resource	"aws_iam_role_policy"	"jenkins"	{	

				name	=	"jenkins"	

				role	=	"${aws_iam_role.jenkins.id}"	

				policy	=	<<EOF	

{	

				"Version":	"2012-10-17",	

				"Statement":	[

							{	

												"Effect":	"Allow",	

												"Action":	[

																"codecommit:Get*",	

																"codecommit:GitPull",	

																"codecommit:List*"	

],	

												"Resource":	"*"	

							},	

							{	

												"Effect":	"Allow",	

												"NotAction":	[

																"s3:DeleteBucket"	

],	

												"Resource":	"*"	

								}	

]	

}	

EOF	

}	

IAM	Profile

resource	"aws_iam_instance_profile"	"jenkins"	{	

				name	=	"jenkins"	

				roles	=	["${aws_iam_role.jenkins.name}"]	

}	

EC2	instance

Here	we	define	a	single	instance	along	with	its	bootstrap	UserData	script:

resource	"aws_instance"	"jenkins"	{	

				ami	=	"${var.jenkins-ami-id}"	

				instance_type	=	"${var.jenkins-instance-type}"	

				key_name	=	"${var.jenkins-key-name}"	

				vpc_security_group_ids	=	["${aws_security_group.jenkins.id}"]	

				iam_instance_profile	=	"${aws_iam_instance_profile.jenkins.id}"	

				subnet_id	=	"${aws_subnet.public-1.id}"	

				tags	{	Name	=	"jenkins"	}	

	

Here	we	set	the	attributes	needed	to	launch	an	EC2	instance,	such	as	the	instance	type,	the	AMI	to
be	used,	security	group(s),	subnet	and	so	on.

Next,	we	add	the	bootstrap	shell	script	to	help	us	install	required	packages,	checkout	Git
repositories	and	run	Salt:

				user_data	=	<<EOF	

#!/bin/bash	

set	-euf	-o	pipefail	

exec	1>	>(logger	-s	-t	$(basename	$0))	2>&1	

#	Install	Git	and	set	CodeComit	connection	settings	

#	(required	for	access	via	IAM	roles)	

yum	-y	install	git	

git	config	--system	credential.helper	'!aws	codecommit	credential-helper	$@'	

git	config	--system	credential.UseHttpPath	true	

#	Clone	the	Salt	repository	

git	clone	https://git-codecommit.us-east-1.amazonaws.com/v1/repos/salt	

/srv/salt;	chmod	700	/srv/salt	

#	Install	SaltStack	

yum	-y	install	https://repo.saltstack.com/yum/amazon/salt-amzn-repo-latest-

1.ami.noarch.rpm	

yum	clean	expire-cache;	yum	-y	install	salt-minion;	chkconfig	salt-minion	off		

#	Put	custom	minion	config	in	place	(for	enabling	masterless	mode)	

cp	-r	/srv/salt/minion.d	/etc/salt/	

#	Trigger	a	full	Salt	run	

salt-call	state.apply	

EOF	

	

				lifecycle	{	create_before_destroy	=	true	}	

}	

Elastic	IP

Finally,	we	provision	a	static	IP	for	Jenkins:

resource	"aws_eip"	"jenkins"	{	

		instance	=	"${aws_instance.jenkins.id}"	

		vpc						=	true	

}	

Outputs
Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/Terraform/outputs.tf.

Some	useful	outputs	to	provide	us	with	the	address	of	the	Jenkins	node:

output	"VPC	ID"	{	

		value	=	"${aws_vpc.terraform-vpc.id}"	

}	

	

output	"JENKINS	EIP"	{	

		value	=	"${aws_eip.jenkins.public_ip}"	

}	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/Terraform/outputs.tf

And	that	is	our	VPC	infrastructure	defined.	Now	we	can	move	onto	Salt	and	the	application	stack.

SaltStack	code
You'll	remember	our	favorite	Configuration	Management	tool	from	the	previous	chapter.	We	will
use	SaltStack	to	configure	the	EC2	Jenkins	node	for	us.

States
Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/states.

top.sls

We	are	working	with	a	single	minion,	and	all	our	states	apply	to	it:

base:	

		'*':	

				-	users	

				-	yum-s3	

				-	jenkins	

				-	nginx	

				-	docker	

users

We	add	a	Linux	user	account,	configure	its	SSH	keys	and	sudo	access:

veselin:	

		user.present:	

				-	fullname:	Veselin	Kantsev	

				-	uid:	{{	salt['pillar.get']('users:veselin:uid')	}}	

...	

yum-s3

As	part	of	our	CI	pipeline,	we	will	be	storing	RPM	artefacts	in	S3.	Cob	(ref:
https://github.com/henrysher/cob)	is	a	Yum	package	manager	plugin	which	makes	it	possible	to
access	S3	based	RPM	repositories	using	an	IAM	Role.

We	deploy	the	plugin,	its	configuration	and	a	repository	definition	(disabled	for	now)	as	managed
files:

yum-s3_cob.py:	

		file.managed:	

				-	name:	/usr/lib/yum-plugins/cob.py	

				-	source:	salt://yum-s3/files/cob.py	

	

yum-s3_cob.conf:	

		file.managed:	

				-	name:	/etc/yum/pluginconf.d/cob.conf	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/states
https://github.com/henrysher/cob

				-	source:	salt://yum-s3/files/cob.conf	

	

yum-s3_s3.repo:	

		file.managed:	

				-	name:	/etc/yum.repos.d/s3.repo	

				-	source:	salt://yum-s3/files/s3.repo	

Jenkins

Here	comes	the	lead	character	–	Mr	Jenkins.	We	make	use	of	Docker	in	our	CI	pipeline,	hence	the
include	following.	Docker	allows	us	to	run	the	different	pipeline	steps	in	isolation,	which	makes
dependency	management	much	easier	and	helps	keeps	the	Jenkins	node	clean.

include:	

		-	docker	

Also	we	ensure	Java	and	a	few	other	prerequisites	get	installed:

jenkins_prereq:	

		pkg.installed:	

				-	pkgs:	

						-	java-1.7.0-openjdk	

						-	gcc	

						-	make	

						-	createrepo	

Then,	install	Jenkins	itself:

jenkins:	

		pkg.installed:	

				-	sources:	

						-	jenkins:	http://mirrors.jenkins-ci.org/redhat-stable/jenkins-2.7.1-

1.1.noarch.rpm	

				-	require:	

						-	pkg:	jenkins_prereq	

...	

NGINX

We	will	use	NGINX	as	a	reverse	proxy	and	an	SSL	termination	point.	That	is	not	to	say	that
Jenkins	cannot	serve	on	its	own,	it	is	just	considered	better	practice	to	separate	the	roles:

include:	

		-	jenkins	

	

nginx:	

		pkg.installed:	[]	

...	

{%	for	FIL	in	['crt','key']	%}	

/etc/nginx/ssl/server.{{	FIL	}}:	

...	

{%	endfor	%}	

Docker

It	is	about	time	we	mentioned	Docker,	given	its	(deserved)	popularity	nowadays.	It	is	very	well
suited	to	our	CI	needs,	providing	isolated	environments	for	the	various	tests	and	builds	that	may
be	required:

docker:	

		pkg.installed:	[]	

	

		service.running:	

				-	enable:	True	

				-	reload:	True	

Pillars
Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/pillars.

top.sls

Our	standalone	minion	gets	it	all:

base:	

		'*':	

				-	users	

				-	nginx	

users

Setting	a	password	hash	and	a	consistent	UID	for	the	Linux	account:

users:	

		veselin:	

				uid:	5001	

				password:	...	

NGINX

We	store	the	SSL	data	in	this	Pillar:

nginx:	

		crt:	|	

				-----BEGIN	CERTIFICATE-----	

				...	

				-----END	CERTIFICATE-----	

		key:	|	

				-----BEGIN	RSA	PRIVATE	KEY-----	

				...	

				-----END	RSA	PRIVATE	KEY-----	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/pillars

Minion	configuration
Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/minion.d.

masterless.conf

We	are	still	using	Salt	in	standalone	(masterless)	mode,	so	this	is	our	extra	minion	configuration:

file_client:	local	

file_roots:	

		base:	

				-	/srv/salt/states	

pillar_roots:	

		base:	

				-	/srv/salt/pillars	

Thanks	to	all	of	the	preceding	codes,	we	should	be	able	to	run	Terraform	and	end	up	with	a
Jenkins	service	ready	for	use.

Let	us	give	that	a	try.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/minion.d

Deploy	IaC
We	start	by	creating	a	Terraform	EC2	key-pair	and	a	Terraform	IAM	user	as	in	previous	chapters
(do	not	forget	to	write	down	access/secret	API	keys).	Then	we	grant	permissions	to	the	IAM	user
to	perform	actions	with	the	EC2,	IAM,	S3	and	CodeCommit	services:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/Terraform/iam_user_policy.json.

{	

				"Version":	"2012-10-17",	

				"Statement":	[

						{	

										"Effect":	"Allow",	

										"NotAction":	[

														"codecommit:DeleteRepository"	

],	

										"Resource":	"*"	

						},	

						{	

										"Effect":	"Allow",	

										"NotAction":	[

														"s3:DeleteBucket"	

],	

										"Resource":	"*"	

						},	

						{	

										"Sid":	"Stmt1461764665000",	

										"Effect":	"Allow",	

										"Action":	[

														"ec2:AllocateAddress",	

...	

																	

Then	we	associate	a	SSH	public	key	with	the	user	(as	per	the	screenshots	in	the	previous	chapter)
to	allow	codecommit	repository	access.

Next,	we	need	to	setup	our	AWS	CLI	environment	with	the	keys	we	produced	earlier:

$	export	AWS_ACCESS_KEY_ID='user_access_key'

$	export	AWS_SECRET_ACCESS_KEY='user_secret_access_key'

$	export	AWS_DEFAULT_REGION='us-east-1'

Now	we	should	be	able	to	use	the	CLI	tool	and	create	our	SaltStack	repository:

$	aws	codecommit	create-repository	--repository-name	salt	

						--repository-description	"SaltStack	repo"

{

"repositoryMetadata":	{

"repositoryName":	"salt",

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/Terraform/iam_user_policy.json

"cloneUrlSsh":	

				"ssh://git-codecommit.us-east-1.amazonaws.com/v1/repos/salt",

...

We	clone	the	repository	locally:

$	git	clone	ssh://SSH_KEY_ID@git-codecommit.us-east-

					1.amazonaws.com/v1/repos/salt

Cloning	into	'salt'...

warning:	You	appear	to	have	cloned	an	empty	repository.

Checking	connectivity...	done.

(where	SSH_KEY_ID	is	the	one	we	saw	after	uploading	a	public	key	here)

Finally,	you	can	copy	the	ready	salt	code	examples	for	this	chapter,	commit	and	push	to	the
codecommit	repository.

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt

With	the	SaltStack	repo	in	sync,	we	can	proceed	with	Terraform	and	the	bootstrap	process.	Inside
our	TF	templates	folder	we	run	the	familiar	command	sequence:

$	terraform	validate

$	terraform	plan

Refreshing	Terraform	state	prior	to	plan...

...

Plan:	11	to	add,	0	to	change,	0	to	destroy.

$	terraform	apply

aws_iam_role.jenkins:	Creating...

...

Apply	complete!	Resources:	11	added,	0	changed,	0	destroyed.

Outputs:

		JENKINS	EIP	=	x.x.x.x

		VPC	ID						=	vpc-xxxxxx

At	the	end	we	get	the	IP	of	our	Jenkins	node	which	we	would	need	to	resolve	into	a	hostname	(for
example	via	the	nslookup	cmd).	Load	that	in	your	browser	and	you	should	be	greeted	by	Jenkins.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt

Setup	CI
After	a	successful	Terraform	deployment,	it	is	time	to	move	onto	service	configuration.	More
specifically,	Jenkins	and	the	integration	pipeline.

Jenkins	initialization
With	Jenkins	running	for	the	first	time,	we	need	to	complete	a	short	setup	routine.	First,	we	need
to	SSH	into	the	node	and	retrieve	the	admin	password	stored	in
/var/lib/jenkins/secrets/initialAdminPassword:

We	are	mainly	interested	in	the	pipeline	group	of	plugins	which	is	included	with	the	suggested
ones:

After	the	plugins	installation	has	completed,	it's	time	to	create	our	first	user:

With	this	the	initialization	process	is	complete	and	Jenkins	is	ready	for	use:

Writing	a	demo	app
Before	configuring	the	CI	pipeline,	it	will	help	to	have	something	to	do	some	integration	on.	A
basic	Hello	World	type	of	PHP	code	will	do,	so	with	a	sincere	apology	to	all	PHP	developers	out
there,	I	present	you	with	the	source	of	our	demo	app:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_04_CodeFiles/CodeCommit/demo-app.

src/index.php:	

<?php	

	

function	greet($name)	{	

		return	"Hello	$name!";	

}	

	

$full_name	=	"Bobby	D";	

	greet	($full_name);	

Clapping	fades...	

And	naturally,	a	unit	test	for	it:	

tests/indexTest.php:	

<?php	

require_once	"src/index.php";	

	

class	IndexTest	extends	PHPUnit_Framework_TestCase	

{	

		public	function	testGreet()	{	

				global	$full_name;	

				$expected	=	"Hello	$full_name!";	

				$actual	=	greet($full_name);	

				$this->assertEquals($expected,	$actual);	

				}	

}

There	is	a	third	file	in	our	demo-app	folder	curiously	named	Jenkinsfile	which	we	will
discuss	shortly.

Now	let	us	get	our	code	into	a	repository:

$	aws	codecommit	create-repository	--repository-name	demo-app	

						--repository-description	"Demo	app"

{

"repositoryMetadata":	{

"repositoryName":	"demo-app",

"cloneUrlSsh":	

				"ssh://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app"

...

Then	we	clone	it	locally	(replace	SSH_KEY_ID	as	before):

$	git	clone	ssh://SSH_KEY_ID@git-codecommit.us-east-

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_04_CodeFiles/CodeCommit/demo-app

						1.amazonaws.com/v1/repos/demo-app

...

Finally,	we	place	our	demo-app	code	into	the	empty	repository,	commit	and	push	all	changes	to
codecommit.

Defining	the	pipeline
It	is	time	to	decide	on	what	the	CI	pipeline	is	meant	to	do	for	us.	Here	is	a	list	of	useful	steps	as	a
start:

1.	 Checkout	application	source	code	from	Git
2.	 Run	tests	against	it	by	running	PHPUnit	inside	a	Docker	container	(on	the	Jenkins	host)
3.	 Build	application	artefacts	by	executing	FPM	within	a	container	on	the	Jenkins	host
4.	 Upload	artefacts	to	an	external	store	(for	example,	a	Yum	repository)

Translated	into	Jenkins	pipeline	code:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/CodeCommit/demo-app/Jenkinsfile.

#!groovy	

	

node	{	

	

		stage	"Checkout	Git	repo"	

				checkout	scm	

			

		stage	"Run	tests"	

				sh	"docker	run	-v	\$(pwd):/app	--rm	phpunit/phpunit	tests/"	

		stage	"Build	RPM"	

				sh	"[-d	./rpm]	||	mkdir	./rpm"	

				sh	"docker	run	-v	\$(pwd)/src:/data/demo-app	-v	\$(pwd)/rpm:/data/rpm	--

rm	tenzer/fpm	fpm	-s	dir	-t	rpm	-n	demo-app	-v	\$(git	rev-parse	--short	HEAD)	

--description	"Demo	PHP	app"	--directories	/var/www/demo-app	--package	

/data/rpm/demo-app-\$(git	rev-parse	--short	HEAD).rpm	/data/demo-

app=/var/www/"	

	

		stage	"Update	YUM	repo"	

				sh	"[-d	~/repo/rpm/demo-app/]	||	mkdir	-p	~/repo/rpm/demo-app/"	

				sh	"mv	./rpm/*.rpm	~/repo/rpm/demo-app/"	

				sh	"createrepo	~/repo/"	

				sh	"aws	s3	sync	~/repo	s3://MY_BUCKET_NAME/	--region	us-east-1	--delete"	

	

		stage	"Check	YUM	repo"	

				sh	"yum	clean	all"	

				sh	"yum	info	demo-app-\$(git	rev-parse	--short	HEAD)"	

}	

Generally	speaking,	defining	a	pipeline	consists	of	a	setting	out	a	series	of	tasks/stages.	Let	us
review	each	of	the	preceding	stages:

We	start	with	a	Git	checkout	of	our	demo-app	code.	The	repository	address	is	assumed	to	be
the	one	of	the	Jenkinsfile.
At	the	next	stage	we	take	advantage	of	Docker's	isolation	and	spin	up	a	container	with

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/CodeCommit/demo-app/Jenkinsfile

everything	needed	for	PHPUnit	(ref:	https://phpunit.de)	to	run	a	test	against	our	demo-app
source	code.	Take	a	look	in	the	tests/	folder	under	${GIT_URL}/Examples/Chapter-
4/CodeCommit/demo-app/	if	you	would	like	to	add	more	or	modify	it	further.
If	the	tests	pass,	we	move	onto	building	an	RPM	artefact	using	a	neat,	user-friendly	tool
called	FPM	(ref:	https://github.com/jordansissel/fpm),	again	in	a	Docker	container.	We	use
the	short	git	commit	hash	as	the	version	identifier	for	our	demo-app.
We	move	our	RPM	artefact	to	a	designated	repository	folder,	create	a	YUM	repository	out	of
it	using	createrepo	and	sync	all	that	data	to	an	Amazon	S3	bucket.	The	idea	is	to	use	this
S3	based	YUM	repository	later	on	for	deploying	our	demo-app.
Finally,	as	a	bonus,	we	check	that	the	package	we	just	synced	can	be	retrieved	via	YUM.

Our	pipeline	is	now	defined	but	before	we	can	run	it,	we	need	to	satisfy	one	(S3)	dependency.	We
need	to	create	a	S3	bucket	to	store	the	RPM	artefacts	that	the	pipeline	would	produce.	Then	we
need	to	update	parts	of	the	Jenkins	and	Saltstack	code	with	the	address	of	that	S3	bucket.

To	interact	with	S3,	we	shall	use	the	AWS	CLI	tool	within	the	environment	we	configured	for
Terraform	earlier:

$	aws	s3	mb	s3://MY_BUCKET_NAME

The	bucket	name	is	up	to	you,	but	keep	in	mind	that	the	global	S3	namespace	is	shared,	so	the
more	unique	the	name	the	better.

Next,	we	update	our	pipeline	definition	(Jenkinsfile).	Look	for	the	line	containing
MY_BUCKET_NAME:

sh	"aws	s3	sync	~/repo	s3://MY_BUCKET_NAME/	--region	us-east-1	

								--delete"

We	also	need	to	update	SaltStack	(again	replacing	MY_BUCKET_NAME):

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/CodeCommit/salt/states/yum-s3/files/s3.repo.

[s3-repo]	

name=S3-repo	

baseurl=https://s3.amazonaws.com/MY_BUCKET_NAME	

enabled=1	

gpgcheck=0	

This	repo	file	will	be	used	in	the	last	stage	of	our	pipeline,	as	we	will	see	in	a	moment.	At	this
point	you	will	need	to	commit	and	push	both	changes:	the	Jenkinsfile	to	the	demo-app
repository	and	the	s3.repo	file	to	the	SaltStack	one.	Then	you	would	SSH	into	the	Jenkins	node,
pull	and	apply	the	Salt	changes.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/CodeCommit/salt/states/yum-s3/files/s3.repo

Setting	up	the	pipeline
Back	to	the	Jenkins	interface.	After	logging	in,	we	click	on	the	create	new	jobs	link	on	the
welcome	page:

We	select	Pipeline	as	a	job	type	and	pick	a	name	for	it:

The	next	screen	takes	us	to	the	job	configuration	details.	At	the	top	we	choose	to	Discard	old
builds	in	order	to	keep	our	Jenkins	workspace	compact.	We	are	saying,	only	keep	details	of	the
last	five	executions	of	this	job:

Under	Build	Triggers	we	choose	to	poll	our	Git	repository	for	changes	every	5	minutes:

Underneath,	we	choose	Pipeline	script	from	SCM,	set	SCM	to	Git	and	add	the	URL	of	our
demo-app	repository	(that	is	https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-
app)	to	be	polled:

No	need	for	extra	credentials	as	these	will	be	fetched	via	the	EC2	IAM	Role.	Note	the	Script
Path	referencing	the	Jenkins	file	we	mentioned	earlier.	This	is	a	great	new	feature	which	gives	us
pipeline	as	code	functionality	as	described	here:	https://jenkins.io/doc/pipeline/#loading-
pipeline-scripts-from-scm.

With	that	we	can	keep	our	application	code	and	the	Jenkins	pipeline	definition	conveniently
together	under	revision	control.

After	we	save	the	pipeline	job,	Jenkins	will	start	polling	the	Git	repository	and	trigger	an
execution	whenever	a	change	is	detected	(or	you	can	click	on	Build	Now	to	force	a	run).

Each	successful	build	will	result	in	an	RPM	package	uploaded	to	our	YUM	repository.	Go	ahead
and	experiment,	breaking	the	build	by	changing	the	demo-app	source	code	so	that	the	test	fails.

https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app
https://jenkins.io/doc/pipeline/#loading-pipeline-scripts-from-scm

To	troubleshoot,	look	at	the	Build	History	list,	select	the	job	that	failed	and	examine	its	Console
Output:

Now	that	you	are	familiar	with	our	example	pipeline,	I	encourage	you	to	expand	it:	Add	more
stages	to	it,	make	some	of	the	tasks	execute	in	parallel,	enable	chat	or	email	notifications,	or	link
pipelines	so	they	trigger	each	other.

You	will	appreciate	the	benefits	of	implementing	a	CI	server	as	you	continue	to	convert	more	of
your	daily,	manual	routines	to	Jenkins	jobs.

You	can	be	sure	your	teammates	will	love	it	too.

Note

Please	remember	to	delete	any	AWS	resources	used	in	the	preceding	examples	(VPC,	EC2,	S3,
IAM,	CodeCommit,	etcetera)	to	avoid	unnecessary	charges.

Summary
In	this	chapter	we	studied	examples	of	how	to	launch	and	configure	a	Continuous	Integration
environment	on	AWS.

We	used	our	previous	Terraform	and	SaltStack	knowledge	to	prepare	the	AWS	infrastructure.

With	the	help	of	Jenkins	CI	we	composed	a	pipeline	that	would	take	application	source	code,	run
tests	against	it,	build	an	RPM	package	and	deposit	that	into	a	remote	YUM	repository	for	later
use.

Our	next	topic	will	be	on	Continuous	Delivery,	an	extension	to	Continuous	Integration	which	takes
us	a	step	closer	to	being	ready	to	deploy	our	application	to	a	production	environment	with
confidence.

Chapter	5.	Ever-Ready	to	Deploy	Using
Continuous	Delivery
Thanks	to	the	Continuous	Integration	setup	we	examined	in	the	previous	chapter,	we	now	have	a
way	of	continuously	producing	deployable	artifacts	from	our	source	code.

Our	next	goal	will	be	to	upgrade	the	pipeline	from	a	Continuous	Integration	to	an	Integration	plus
Delivery	one.	To	illustrate,	we	are	in	the	middle	of	a	three	stage	workflow:

That	is	to	say,	following	a	successful	Integration	run,	we	trigger	the	Delivery	stage	that	will	do
the	following:

Launch	a	vanilla	EC2	instance
Apply	configuration	management	to	it:

Install	the	demo-app	RPM	we	produced
Install	other	required	packages	to	turn	it	into	a	web	server

Test	the	applied	configuration	(using	Serverspec)
Produce	an	AMI	out	of	the	configured	instance	(using	Packer)
Launch	an	EC2	instance	from	the	produced	AMI
Run	additional	tests	against	the	new	EC2	instance

This	pipeline	will	ensure	that	the	application	RPM	installs	correctly,	our	configuration
management	gets	applied	as	expected,	and	our	new	AMI	artifact	is	fit	for	purpose.	At	the	end	we
should	be	left	with	a	sparkling,	prebaked,	production-ready	AMI	of	a	web	server	with	our	demo-
app	on	it.

To	accomplish	these	tasks,	we	are	going	to	introduce	two	new	tools	to	the	mix	-	Packer	and
Serverspec	(more	details	as	we	go).

We	will	be	able	to	reuse	a	significant	part	of	our	work	so	far,	given	that	we	are	building	on	top	of
it.	As	before,	we	will	start	by	preparing	our	code,	deploying	it	to	AWS,	and	configuring	our
Jenkins	Pipeline.

Feel	free	to	skip	some	of	the	following	steps	if	you	have	kept	the	AWS	environment	from	the
previous	chapter	running.	Although	I	think	that	it	might	be	better	to	start	from	scratch	to	avoid	any
confusion.

Preparing	Terraform	templates
In	addition	to	the	usual	VPC,	IGW,	and	subnet	that	we	need	for	Jenkins,	we	are	going	to	deploy
NAT	and	ELB	for	our	demo-app	web	server	scenario.

Resources
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/Terraform/resources.tf.

We	start	with	VPC,	IGW,	and	NAT:

resource	"aws_vpc"	"terraform-vpc"	{	

		cidr_block	=	"${var.vpc-cidr}"	

...	

	

resource	"aws_internet_gateway"	"terraform-igw"	{	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

}	

	

resource	"aws_eip"	"nat-eip"	{	

		vpc	=	true	

}	

	

resource	"aws_nat_gateway"	"terraform-nat"	{	

		allocation_id	=	"${aws_eip.nat-eip.id}"	

		subnet_id	=	"${aws_subnet.public-1.id}"	

		depends_on	=	["aws_internet_gateway.terraform-igw"]	

...	

We	add	a	public	subnet	for	Jenkins	and	ELB,	plus	a	private	one	to	be	used	by	the	EC2	web
server:

resource	"aws_route_table"	"public"	{	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

...	

resource	"aws_route_table"	"private"	{	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

...	

Next	is	IAM.	We	need	a	role	for	Jenkins:

resource	"aws_iam_role"	"jenkins"	{	

				name	=	"jenkins"	

				path	=	"/"	

				assume_role_policy	=	<<EOF	

{	

And	another	one	for	the	demo-app	web	server:

resource	"aws_iam_role"	"demo-app"	{	

				name	=	"demo-app"	

				path	=	"/"	

				assume_role_policy	=	<<EOF	

{	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/Terraform/resources.tf

They	will	be	sharing	a	common	policy,	allowing	them	to	access	CodeCommit,	where	we	keep	our
infrastructure	and	application	code	and	S3,	where	we	store	our	RPM	artifacts:

resource	"aws_iam_policy"	"common"	{	

				name	=	"common"	

				path	=	"/"	

				policy	=	<<EOF	

{	

				"Version":	"2012-10-17",	

				"Statement":	[

							{	

												"Effect":	"Allow",	

												"Action":	[

																"codecommit:Get*",	

																"codecommit:GitPull",	

																"codecommit:List*"	

],	

												"Resource":	"*"	

							},	

							{	

												"Effect":	"Allow",	

												"NotAction":	[

																"s3:DeleteBucket"	

],	

												"Resource":	"*"	

...	

The	newcomer,	Packer,	is	going	to	require	a	separate	policy	to	allow	for	the	manipulation	of	EC2
resources.	We	are	going	to	use	it	to	start/stop/terminate	instances	and	create	AMIs:

resource	"aws_iam_policy"	"jenkins"	{	

				name	=	"jenkins"	

				path	=	"/"	

				policy	=	<<EOF	

{	

				"Version":	"2012-10-17",	

				"Statement":	[

							{	

									"Effect":	"Allow",	

									"Action":	[

											"ec2:AttachVolume",	

											"ec2:CreateVolume",	

											"ec2:DeleteVolume",	

											"ec2:CreateKeypair",	

											"ec2:DeleteKeypair",	

											"ec2:DescribeSubnets"	

...	

									"Resource":	"*",	

							},	

							{	

									"Effect":	"Allow",	

									"Action":	"iam:PassRole",	

									"Resource":	["${aws_iam_role.demo-app.arn}"]	

...	

The	need	to	allow	PassRole	represents	an	IAM	security	feature	which	helps	prevent
users/services	granting	themselves	more	privileges	than	they	are	supposed	to	have	(refer
to:	https://blogs.aws.amazon.com/security/post/Tx3M0IFB5XBOCQX/Granting-Permission-to-
Launch-EC2-Instances-with-IAM-Roles-PassRole-Permission).

We	are	going	to	need	a	security	group	for	ELB,	accepting	HTTP	traffic	from	the	World:

resource	"aws_security_group"	"demo-app-elb"	{	

		name	=	"demo-app-elb"	

		description	=	"ELB	security	group"	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

	

		ingress	{	

				from_port	=	"80"	

				to_port	=	"80"	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

...	

Then,	ELB	itself:

resource	"aws_elb"	"demo-app-elb"	{	

		name	=	"demo-app-elb"	

		security_groups	=	["${aws_security_group.demo-app-elb.id}"]	

		subnets	=	["${aws_subnet.public-1.id}"]	

	

		listener	{	

				instance_port	=	80	

				instance_protocol	=	"http"	

				lb_port	=	80	

				lb_protocol	=	"http"	

...	

We	create	a	security	group	for	Jenkins	permitting	SSH	and	HTTP/S	traffic	from	anywhere:

resource	"aws_security_group"	"jenkins"	{	

		name	=	"jenkins"	

		description	=	"ec2	instance	security	group"	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

	

ingress	{	

				from_port	=	"80"	

				to_port	=	"80"	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

	

		ingress	{	

				from_port	=	"443"	

				to_port	=	"443"	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

...	

https://blogs.aws.amazon.com/security/post/Tx3M0IFB5XBOCQX/Granting-Permission-to-Launch-EC2-Instances-with-IAM-Roles-PassRole-Permission

The	next	one	is	for	the	web	server,	accepting	HTTP	from	ELB	and	SSH	from	Jenkins:

resource	"aws_security_group"	"demo-app"	{	

		name	=	"demo-app"	

		description	=	"ec2	instance	security	group"	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

	

		ingress	{	

				from_port	=	"80"	

				to_port	=	"80"	

				protocol	=	"tcp"	

				security_groups	=	["${aws_security_group.demo-app-elb.id}"]	

		}	

	

		ingress	{	

				from_port	=	"22"	

				to_port	=	"22"	

				protocol	=	"tcp"	

				security_groups	=	["${aws_security_group.jenkins.id}"]	

...	

To	bootstrap	the	Jenkins	node,	we	need	the	user-data	we	used	in	the	past,	with	one	important
addition:

resource	"aws_instance"	"jenkins"	{	

...	

				user_data	=	<<EOF	

...	

#	Install	SaltStack	

yum	-y	install	https://repo.saltstack.com/yum/amazon/salt-amzn-repo-latest-

1.ami.noarch.rpm	

yum	clean	expire-cache;	yum	-y	install	salt-minion;	chkconfig	salt-minion	off		

#	Put	custom	minion	config	in	place	(for	enabling	masterless	mode)	

cp	-r	/srv/salt/minion.d	/etc/salt/	

echo	-e	'grains:\n	roles:\n		-	jenkins'	>	/etc/salt/minion.d/grains.conf	

...	

You	will	note	that	after	we	have	installed	SaltStack	and	put	the	masterless	minion	configuration	in
place,	we	also	add	a	custom	Grains	file.	The	roles	list	that	it	holds	will	help	us	assign	the	Salt
States	later	on	(since	we	are	now	going	to	have	two	different	types	of	hosts	under	configuration
management:	jenkins	and	our	demo-app	web	server).

Variables
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/Terraform/variables.tf.

No	change	from	Chapter	4,	Build,	Test,	and	Release	Faster	with	Continuous	Integration,	we	set
just	a	few	VPC-	and	EC2	(Jenkins)-related	variables.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/Terraform/variables.tf

Variables	(values)
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/Terraform/terraform.tfvars.

Same	as	our	previous	deployment,	we	specify	the	values	for	the	VPC	and	Jenkins	variables.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/Terraform/terraform.tfvars

Outputs
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/Terraform/outputs.tf.

Some	new	outputs	reflect	the	additional	resources.	The	ELB	endpoint	and	the	ID	of	our
Private	subnet	and	the	demo-app	security	group:

output	"ELB	URI"	{	

		value	=	"${aws_elb.demo-app-elb.dns_name}"	

}	

output	"Private	subnet	ID"	{	

		value	=	"${aws_subnet.private-1.id}"	

}	

output	"Demo-app	secgroup"	{	

		value	=	"${aws_security_group.demo-app.id}"		

}	

This	is	certainly	not	an	exhaustive	list,	and	if	we	need	more	information	later,	we	can	always
retrieve	a	detailed	description	of	our	deployed	infrastructure	via	the	terraform	show	command.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/Terraform/outputs.tf

Prepareing	Salt	code
We	will	be	using	SaltStack	to	apply	configuration	management	on	both	our	Jenkins	and	demo-app
web	server	nodes.	We	will	be	using	Grains	to	define	which	States/Pillars	apply	to	which	host.
Let	us	have	a	look	at	the	code:

States
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/states.

top.sls

The	top	file	shows	us	that	some	states	are	shared	between	all	hosts/roles	while	others	are
assigned	based	on	the	role:

base:	

		'*':	

				-	users	

				-	yum-s3	

	

		'roles:jenkins':	

				-	match:	grain	

				-	jenkins	

				-	nginx.jenkins	

				-	docker	

				-	packer	

	

		'roles:demo-app':	

				-	match:	grain	

				-	php-fpm	

				-	nginx.demo-app	

				-	demo-app	

You	are	already	familiar	with	the	users	and	the	yum-s3	States.	Now	this	is	a	good	time	to	add	an
account	and	an	SSH	key	for	yourself.

jenkins

We	install	the	service	as	before	plus	a	couple	of	extra	tools:

jenkins_prereq:	

		pkg.installed:	

				-	pkgs:	

...	

						-	jq	

						-	httpd-tools	

...	

We	will	be	using	jq	to	parse	JSON	output	and	ab	from	the	httpd-tools	package	for	basic	HTTP
load	testing.

nginx

This	time	we	split	the	NGINX	State	into	three	parts:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/states

init.sls

This	installs	the	main	package	and	sets	up	the	service	daemon:

nginx:	

		pkg.installed:	[]	

	

		service.running:	

				-	enable:	True	

				-	reload:	True	

				-	require:	

						-	pkg:	nginx	

jenkins.sls

This	deploys	the	NGINX	configuration	and	related	file	needed	for	the	Jenkins	service:

include:	

		-	nginx	

	

/etc/nginx/conf.d/jenkins.conf:	

		file.managed:	

				-	source:	salt://nginx/files/jenkins.conf	

...	

demo-app.sls

This	deploys	the	NGINX	configuration	and	related	file	needed	for	the	demo-app	web	server:

include:	

		-	nginx	

	

/etc/nginx/conf.d/demo-app.conf:	

		file.managed:	

				-	source:	salt://nginx/files/demo-app.conf	

In	both	cases,	we	include	init.sls	also	known	as	NGINX,	which	provides	shared	functionality,
Docker	remains	the	same,	whereas	Packer	is	a	new	addition	which	we	will	get	to	play	with
shortly:

packer:	

		archive.extracted:	

				-	name:	/opt/	

				-	source:	

'https://releases.hashicorp.com/packer/0.10.1/packer_0.10.1_linux_amd64.zip'	

				-	source_hash:	md5=3a54499fdf753e7e7c682f5d704f684f	

				-	archive_format:	zip	

				-	if_missing:	/opt/packer	

	

		cmd.wait:	

				-	name:	'chmod	+x	/opt/packer'	

				-	watch:	

						-	archive:	packer	

The	archive	module	conveniently	downloads	and	extracts	the	Packer	zip	file	for	us.	After	that	we
ensure	that	the	binary	is	executable	with	cmd.wait,	which	gets	triggered	on	package	change	(that
is	watch	archive).

php-fpm

We	need	PHP	in	order	to	be	able	to	serve	our	PHP	application	(demo-app):

include:	

		-	nginx	

	

php-fpm:	

		pkg.installed:	

				-	name:	php-fpm	

				-	require:	

						-	pkg:	nginx	

	

		service.running:	

				-	name:	php-fpm	

				-	enable:	True	

				-	reload:	True	

				-	require_in:	

						-	service:	nginx	

...	

And	finally,	the	demo-app	State,	which	installs	a	selected	version	the	application	rpm.	We	will
discuss	how	we	populate	/tmp/APP_VERSION	a	bit	later:

{%	set	APP_VERSION	=	salt['cmd.run']('cat	/tmp/APP_VERSION')	%}	

	

include:	

		-	nginx	

	

demo-app:	

		pkg.installed:	

				-	name:	demo-app	

				-	version:	{{	APP_VERSION	}}	

				-	require_in:	

						-	service:	nginx	

Pillars
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/pillars.

We	will	reuse	the	nginx	and	users	Pillars	from	the	previous	chapter.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/pillars

Minion	configuration
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/minion.d.

While	masterless.conf	remains	the	same	as	before,	we	are	extending	the	minion	configuration
with	a	custom	role	Grain,	which	we	set	via	UserData	for	Jenkins	and	a	config	file	for	the	demo-
app	web	server	(discussed	later	in	the	chapter).

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/minion.d

Preparing	Jenkins	code
Before	we	proceed	with	Jenkins,	allow	me	to	introduce	the	two	new	helpers	–	Packer	and
Serverspec.

Packer
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/packer.

As	described:

	 "Packer	is	a	tool	for	creating	machine	and	container	images	for	multiple	platforms	from	a
single	source	configuration."

	

	 --https://www.packer.io

Essentially,	Packer	is	going	to,	well,	pack	things	for	us.	We	will	feed	it	a	template,	based	on
which	it	will	launch	an	EC2	instance,	perform	requested	tasks	(over	SSH),	then	create	an	AMI
from	it.	Packer	can	talk	to	various	platforms	(AWS,	GCE,	OpenStack,	and	so	on)	to	provision
resources	via	local	shell,	remote	(SSH),	Salt,	Ansible,	Chef,	and	others.	As	a	HashiCorp	product,
it	does	not	come	as	a	surprise	that	Packer	uses	a	templating	system	very	similar	to	Terraform's.

demo-app.json

Here,	we	define	what	and	how	it	should	be	provisioned.	At	the	top,	we	set	our	variables:

		"variables":	{	

				"srcAmiId":	null,	

				"amiName":	null,	

				"sshUser":	null,	

				"instanceProfile":	null,	

				"subnetId":	null,	

				"vpcId":	null,	

				"userDataFile":	null,	

				"appVersion":	null	

		}	

...	

We	have	exported	the	actual	values	to	a	variables	file	(see	later).	Setting	a	value	to	null	here,
makes	it	required.	We	could	also	fix	values	here	or	make	use	of	environment	variables	(refer	to
https://www.packer.io/docs/templates/user-variables.html).	Once	defined,	you	can	refer	to
variables	with	this	syntax:	{{user	`srcAmiId`}}.

The	next	section	lists	the	builders,	in	our	case,	AWS	EC2:

		"builders":	[{	

				"type":	"amazon-ebs",	

				"region":	"us-east-1",	

				"source_ami":	"{{user	`srcAmiId`}}",	

				"instance_type":	"t2.nano",	

				"ssh_username":	"{{user	`sshUser`}}",	

				"ami_name":	"{{user	`amiName`}}-{{timestamp}}",	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/packer
https://www.packer.io/docs/templates/user-variables.html

				"iam_instance_profile":	"{{user	`instanceProfile`}}",	

				"subnet_id":	"{{user	`subnetId`}}",	

				"vpc_id":	"{{user	`vpcId`}}",	

				"user_data_file":	"{{user	`userDataFile`}}",	

				"run_tags":	{	

						"Name":	"Packer	({{user	`amiName`}}-{{timestamp}})",	

						"CreatedBy":	"Jenkins"	

						},	

				"tags":	{	

						"Name":	"{{user	`amiName`}}-{{timestamp}}",	

						"CreatedBy":	"Jenkins"	

						}	

		}]	

We	are	asking	for	an	EBS-backed	nano	instance	in	the	US-East-1	region.	It	is	to	be	bootstrapped
via	UserData	(see	later	in	the	text)	and	tagged	as	"CreatedBy":	"Jenkins".

Naturally,	after	launching	the	instance,	we	would	like	to	provision	it:

"provisioners":	[

				{	

						"type":	"shell",	

						"inline":	[

								"echo	'Waiting	for	the	instance	to	fully	boot	up...'",	

								"sleep	30"	,	

								"echo	"Setting	APP_VERSION	to	{{user	`appVersion`}}"",	

								"echo	"{{user	`appVersion`}}"	>	/tmp/APP_VERSION"	

]	

				}	

Here,	our	first	provisioners	is	a	shell	command	to	be	executed	over	SSH	by	Packer	(refer	to
https://www.packer.io/docs/provisioners/shell.html).	It	pauses	for	30	seconds	to	allow	the	node
to	complete	its	boot	process,	then	creates	the	APP_VERSION	file	needed	by	the	Salt	php-fpm
State.

Next,	we	run	SaltStack:

{	

						"type":	"salt-masterless",	

						"skip_bootstrap":	true,	

						"local_state_tree":	"salt/states",	

						"local_pillar_roots":	"salt/pillars"	

}	

Packer	already	knows	how	to	run	Salt	via	the	salt-masterless	provisioner.	It	only	needs	a
source	of	States	and	Pillars	(refer	to:	https://www.packer.io/docs/provisioners/salt-
masterless.html).	We	define	a	relative	path	of	salt/,	which	is	part	of	a	checked	out	Git
repository	(see	demo-app-cdelivery	here).	We	are	opting	to	install	Salt	via	UserData,	hence
skip_bootstrap:	true.

We	will	get	to	Serverspec	in	a	moment,	but	here	is	how	we	run	it:

https://www.packer.io/docs/provisioners/shell.html
https://www.packer.io/docs/provisioners/salt-masterless.html

{	

						"type":	"file",	

						"source":	"serverspec",	

						"destination":	"/tmp/"	

},	

{	

						"type":	"shell",	

						"inline":	[

								"echo	'Installing	Serverspec	tests...'",	

								"sudo	gem	install	--no-document	rake	serverspec",	

								"echo	'Running	Serverspec	tests...'",	

								"cd	/tmp/serverspec	&&	sudo	/usr/local/bin/rake	spec"	

]	

}	

The	file	provisioners	is	used	to	transfer	data	between	the	remote	instance	and	Packer	(refer	to
https://www.packer.io/docs/provisioners/file.html).	We	push	the	local	"serverspec/"	folder
containing	our	Serverspec	tests	to	"/tmp"	on	the	remote	side.	Then,	run	a	few	shell	commands	to
install	the	Serverspec	ruby	gem	and	run	the	tests.

demo-app_vars.json

The	values	for	the	variables	we	defined	earlier	(alternatively,	you	could	set	these	as	a	list	of	-
var	'key=value'	cmd	line	arguments):

{		

		"srcAmiId":	"ami-6869aa05",	

		"amiName":	"demo-app",	

		"sshUser":	"ec2-user",	

		"instanceProfile":	"demo-app",	

		"subnetId":	"subnet-4d1c2467",	

		"vpcId":	"vpc-bd6f0bda",	

		"userDataFile":	"packer/demo-app_userdata.sh"	

}	

demo-app_userdata.sh

The	EC2	UserData	to	bootstrap	our	test	instance:

#!/bin/bash	

	

set	-euf	-o	pipefail	

exec	1>	>(logger	-s	-t	$(basename	$0))	2>&1	

	

#	Install	SaltStack	

yum	-y	install	https://repo.saltstack.com/yum/amazon/salt-amzn-repo-latest-

1.ami.noarch.rpm	

yum	clean	expire-cache;	yum	-y	install	salt-minion;	chkconfig	salt-minion	off		

	

#	Put	custom	grains	in	place	

echo	-e	'grains:\n	roles:\n		-	demo-app'	>	/etc/salt/minion.d/grains.conf	

Much	like	the	one	we	use	for	Jenkins.	It	gets	SaltStack	installed	and	puts	the	roles	Grain	in	place.

https://www.packer.io/docs/provisioners/file.html

Serverspec
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/serverspec.

Straight	out	of	the	front	page:

	

"RSpec	tests	for	your	servers	configured	by	CFEngine,	Puppet,	Ansible,	Itamae	or	anything
else.	With	Serverspec,	you	can	write	RSpec	tests	for	checking	your	servers	are	configured
correctly.	Serverspec	tests	your	servers'	actual	state	by	executing	command	locally,	via
SSH,	via	WinRM,	via	Docker	API	and	so	on.	So	you	don't	need	to	install	any	agent	softwares
on	your	servers	and	can	use	any	configuration	management	tools,	Puppet,	Ansible,
CFEngine,	Itamae	and	so	on.	But	the	true	aim	of	Serverspec	is	to	help	refactoring
infrastructure	code."

	

	 --http://serverspec.org

We	are	going	to	use	Serverspec	to	assert	the	final	state	of	the	EC2	instance	after	all	other
configuration	tasks	have	been	completed.	It	should	help	verify	that	any	nonconfiguration
management	changes	have	taken	effect	(for	example,	shell	commands)	and	that	configuration
management	has	been	applied	correctly	(for	example,	no	race	conditions/overlaps/conflicts	in
States).	This	does	introduce	some	overhead	and	some	will	rightly	question	whether	it	is	needed	in
addition	to	a	SaltStack	run,	so	it	remains	a	personal	preference.	I	see	it	as	a	second	layer	of
verification	or	a	safety	net.

The	content	under	the	serverspec/	folder	has	been	created	by	running	serverspec-init	(refer
to	http://serverspec.org),	selecting	UNIX	and	then	SSH.	We	replace	the	sample	spec.rb	file	with
our	own:

spec/localhost/demo-app_spec.rb
require	'spec_helper'	

	

versionFile	=	open('/tmp/APP_VERSION')	

appVersion	=	versionFile.read.chomp	

	

describe	package("demo-app-#{appVersion}")	do	

		it	{	should	be_installed	}	

end	

	

describe	service('php-fpm')	do	

		it	{	should	be_enabled	}	

		it	{	should	be_running	}	

end	

	

describe	service('nginx')	do	

		it	{	should	be_enabled	}	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/serverspec
http://serverspec.org

		it	{	should	be_running	}	

end	

	

describe	user('veselin')	do	

		it	{	should	exist	}	

		it	{	should	have_authorized_key	'ssh-rsa	...'	}	

end	

Serverspec	performs	tests	on	supported	resource	types	(refer	to
http://serverspec.org/resource_types.html).

In	the	preceding	brief	example	we	assert	that:

A	specific	version	of	our	demo-app	package	has	been	installed
PHP-FPM	and	NGINX	are	running	and	enabled	on	boot
The	SSH	authorized_keys	file	for	a	given	user	has	the	expected	contents

Our	Serverspec	tests	can	be	run	from	the	containing	folder	like	so:

cd	/tmp/serverspec	&&	sudo	/usr/local/bin/rake	spec

It	will	parse	any	files	it	finds	ending	in	_spec.rb.	We	use	sudo	only	because,	in	this	case,	we	are
trying	to	read	a	private	file	(authorized_keys).

And	back	to	Jenkins.	We	are	already	familiar	with	the	concept	of	a	Jenkinsfile	(as	used	by	our
Integration	job).	In	this	example,	we	will	be	adding	a	second	(Delivery)	pipeline	using	the	same
approach.

Let	us	examine	both	pipeline	jobs.

http://serverspec.org/resource_types.html

demo-app
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app/Jenkinsfile.

This	is	our	old	Integration	job	that	downloads	the	application	code,	runs	tests	against	it,	produces
an	RPM	package	and	uploads	the	package	to	a	YUM	repository.	We	are	going	to	add	one	more
stage	to	this	process:

stage	"Trigger	downstream"	

				build	job:	"demo-app-cdelivery",	

				parameters:	[[$class:	"StringParameterValue",	name:	"APP_VERSION",	value:		

				"${gitHash}-1"]],	wait:	false	

This	final	stage	triggers	our	next	job	that	is	the	Delivery	pipeline	and	passes	an	APP_VERSION
parameter	to	it.

The	value	of	this	parameter	is	the	gitHash	which	we	have	been	using	so	far	as	a	version	string
for	our	demo-app	RPM	package.

The	-1	you	see	appended	to	the	gitHash	represents	the	rpm's	minor	version	number	which	you
can	safely	ignore	at	this	time.

Setting	wait	to	false	means	that	we	don't	want	to	keep	the	current	job	running,	waiting	for	the
subsequently	triggered	one	to	complete.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app/Jenkinsfile

demo-app-cdelivery
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/Jenkinsfile.

Now	the	fun	part.	The	Delivery	job	has	been	passed	an	APP_VERSION	and	is	ready	to	start,	let	us
follow	the	process	described	in	the	Jenkinsfile.

We	start	by	cleaning	up	our	workspace,	checking	out	the	demo-app-cdelivery	repository,	then
adding	the	SaltStack	code	on	top	of	it.	We	need	both	codebases	in	order	to	launch	an	instance	and
configure	it	to	be	a	web	server:

#!groovy	

	

node	{	

	

		step([$class:	'WsCleanup'])	

	

		stage	"Checkout	Git	repo"	

				checkout	scm	

	

		stage	"Checkout	additional	repos"	

				dir("salt")	{	

						git	"https://git-codecommit.us-east-1.amazonaws.com/v1/repos/salt"	

				}	

After	this,	we	are	ready	to	run	Packer:

stage	"Run	Packer"	

				sh	"/opt/packer	validate	-var="appVersion=$APP_VERSION"	-var-

file=packer/demo-app_vars.json	packer/demo-app.json"	

				sh	"/opt/packer	build	-machine-readable	-var="appVersion=$APP_VERSION"	-

var-file=packer/demo-app_vars.json	packer/demo-app.json	|	tee	

packer/packer.log"	

First,	we	validate	our	template	and	then	execute,	requesting	a	machine-readable	output.	Packer	is
going	to	spin	up	an	instance,	connect	over	SSH	to	it,	apply	all	relevant	Salt	States,	run	Serverspec
tests,	and	produce	an	AMI	of	what	is	essentially	a	web	server	that	has	the	demo-app	and	all	its
prerequisites	installed.

Then,	we	go	ahead	and	launch	a	second	EC2	instance;	this	time,	form	the	AMI	we	just	created:

stage	"Deploy	AMI"	

				def	amiId	=	sh	returnStdout:	true,	script:"tail	-n1	packer/packer.log	|	

awk	'{printf	\$NF}'"	

				def	ec2Keypair	=	"terraform"	

				def	secGroup	=	"sg-2708ef5d"	

				def	instanceType	=	"t2.nano"	

				def	subnetId	=	"subnet-4d1c2467"	

				def	instanceProfile	=	"demo-app"	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/Jenkinsfile

				echo	"Launching	an	instance	from	${amiId}"	

				sh	"aws	ec2	run-instances	\	

								--region	us-east-1	\	

								--image-id	${amiId}	\	

								--key-name	${ec2Keypair}	\	

								--security-group-ids	${secGroup}	\	

								--instance-type	${instanceType}	\	

								--subnet-id	${subnetId}	\	

								--iam-instance-profile	Name=${instanceProfile}	\	

								|	tee	.ec2_run-instances.log	\	

							"	

				def	instanceId	=	sh	returnStdout:	true,	script:	"printf	\$(jq	

.Instances[0].InstanceId	<	.ec2_run-instances.log)"	

The	variables	seen	at	the	top	we	get	from	Terraform	(terraform	show).

We	use	the	aws	cli	to	launch	the	instance	inside	the	Private	VPC	subnet,	attach	the	demo-app
security	group,	the	Terraform	key,	and	demo-app	instance	profile	to	it.	You	will	notice	that	we
need	not	pass	any	EC2	credentials	here	as	Jenkins	is	already	authorized	via	the	IAM	role	we
assigned	to	it	earlier.

Next,	we	retrieve	the	instanceId	by	parsing	the	aws	cli	JSON	output	with	jq	(refer	to
https://stedolan.github.io/jq).

After	we	have	launched	the	instance,	we	set	its	tags,	register	it	with	ELB,	and	loop	until	its	ELB
status	becomes	InService:

sh	"aws	ec2	create-tags	--resources	${instanceId}	\	

								--region	us-east-1	\	

								--tags	Key=Name,Value="Jenkins	(demo-app-$APP_VERSION)"	

								Key=CreatedBy,Value=Jenkins	\	\	

							"	

	

				echo	"Registering	with	ELB"	

				def	elbId	=	"demo-app-elb"	

				sh	"aws	elb	register-instances-with-load-balancer	\	

								--region	us-east-1	\	

								--load-balancer-name	${elbId}	\	

								--instances	${instanceId}	\	

							"	

	

				echo	"Waiting	for	the	instance	to	come	into	service"	

				sh	"while	["x\$(aws	elb	describe-instance-health	--region	us-east-1	--

load-

				balancer-name	${elbId}	--instances	${instanceId}	|	

				jq	.InstanceStates[].State	|	tr	-d	'"')"	!=	"xInService"];	do	:	;	sleep	

60;	

				done"	

Now	that	the	node	is	ready	to	serve,	we	can	launch	our	improvised	Load	Test	using	AB:

		stage	"Run	AB	test"	

				def	elbUri	=	"http://demo-app-elb-1931064195.us-east-

https://stedolan.github.io/jq

1.elb.amazonaws.com/"			

				sh	"ab	-c5	-n1000	-d	-S	${elbUri}	|	tee	.ab.log"	

				def	non2xx	=	sh	returnStdout:	true,	script:"set	-o	pipefail;(grep	'Non-

2xx'	.ab.log	|	awk	'{printf	\$NF}')	||	(printf	0)"	

				def	writeErr	=	sh	returnStdout:	true,	script:"grep	'Write	errors'	.ab.log	

|	awk	'{printf	\$NF}'"	

				def	failedReqs	=	sh	returnStdout:	true,	script:"grep	'Failed	requests'	

.ab.log	|	awk	'{printf	\$NF}'"	

				def	rps	=	sh	returnStdout:	true,	script:"grep	'Requests	per	second'	

.ab.log	|	awk	'{printf	\$4}'	|	awk	-F.	'{printf	\$1}'"	

				def	docLen	=	sh	returnStdout:	true,	script:"grep	'Document	Length'	

.ab.log	|	awk	'{printf	\$3}'"	

	

				echo	"Non2xx=${non2xx},	WriteErrors=${writeErr},	

FailedReqs=${failedReqs},	ReqsPerSec=${rps},	DocLength=${docLen}"	

				sh	"if	[${non2xx}	-gt	10]	||	[${writeErr}	-gt	10]	||	[${failedReqs}	

-gt	10]	||	[${rps}	-lt	1000]	||	[${docLen}	-lt	10];	then	\	

										echo	"ERR:	AB	test	failed"	|	tee	-a	.error.log;	\	

								fi	\	

							"	

At	the	end	of	the	AB	test,	the	various	reported	metrics	are	compared	with	preset	thresholds	and
logged.

The	EC2	instance	is	no	longer	needed,	so	it	can	be	terminated:

	stage	"Terminate	test	instance"	

				sh	"aws	ec2	terminate-instances	--region	us-east-1	--instance-ids	

${instanceId}"	

In	the	final	stage,	the	job's	exit	code	is	determined	by	the	AB	test	results:

		stage	"Verify	test	results"	

				sh	"if	[-s	'.error.log'];	then	\	

										cat	'.error.log';	\	

										:>	'.error.log';	\	

										exit	100;	\	

								else	\	

										echo	'Tests	OK';	\	

								fi	\	

							"	

Preparing	CodeCommit	repositories
Ideally,	we	would	put	all	the	preceding	code	under	revision	control,	so	let	us	create	some
repositories.	We	need	an	IAM	user	with	enough	privileges	to	do	that:

Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/Jenkinsfile.

{	

				"Version":	"2012-10-17",	

				"Statement":	[

						{	

										"Effect":	"Allow",	

										"NotAction":	[

														"codecommit:DeleteRepository"	

],	

										"Resource":	"*"	

						},	

						{	

										"Effect":	"Allow",	

										"NotAction":	[

														"s3:DeleteBucket"	

],	

										"Resource":	"*"	

						},	

						{	

										"Sid":	"Stmt1461764665000",	

										"Effect":	"Allow",	

										"Action":	[

														"ec2:AllocateAddress",	

														"ec2:AssociateAddress",	

...	

We	create	a	terraform	IAM	user	with	the	preceding	policy	that	grants	us	privileges	to	carry	out
the	CodeCommit	tasks	and	also	do	the	Terraform	deployment	later	(remember	to	write	down	the
API	keys).

Please	refer	to	the	previous	chapter	on	how	to	export	the	API	keys	and	create	three	CodeCommit
repositories:	salt,	demo-app,	and	demo-app-cdelivery.

You	will	need	to	clone	the	repositories	locally	and	populate	each	with	the	code	we	prepared
earlier	respectively	(refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit).

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/Jenkinsfile
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit

Deploy	Terraform	templates
Create	a	terraform	EC2	key	pair,	then	run	terraform	plan,	terraform	validate,	and	finally
terraform	apply	inside	the	Terraform	templates	folder	(if	needed,	please	refer	to	the	previous
chapter	for	details	on	how	to	do	all	of	this).

Initializing	Jenkins
Once	Terraform	has	finished	the	deployment,	you	will	get	the	Jenkins	EIP	value	in	the	outputs.	Do
a	hostname	lookup	on	it	and	load	the	resulting	address	in	your	browser.	You	should	see	the
Getting	Started	page	(screenshots	and	instructions	in	previous	chapter):

Unlock	jenkins
Install	suggested	plugins
Create	an	Admin	user

Configuring	Jenkins	jobs
Prior	to	recreating	the	Continuous	Integration	pipeline	job,	we	need	a	S3	bucket	for	our	YUM
repository.	Create	a	bucket	(unless	you've	kept	the	old	one	around),	update	the	demo-
app/Jenkinsfile	script	accordingly	then	commit	and	push	Git	changes	upstream.

demo-app	pipeline
Refer	to	the	Setting	up	the	pipeline	steps	from	the	previous	chapter	to	create	the	Continuous
Integration	job.	Let	us	call	it	demo-app	this	time	around.	The	script	path	remains	the	same
(https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app).

You	should	now	have	this:

The	pipeline	is	going	to	fail	as	we	do	not	have	our	YUM	repository	configured	yet:

The	repository	contents	have	already	been	uploaded	to	S3	by	this	first	job	run.	Now	we	need	to
update	the	salt/states/yum-s3/files/s3.repo	file	with	the	S3	URL	and	set	the	repository	to
enabled.	Commit	and	push	the	Salt	changes	to	the	Git	repository,	then	pull	and	apply	on	the
Jenkins	node.

A	subsequent	pipeline	run	takes	us	a	step	further:

https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app

This	time	the	failure	is	because	our	downstream	job	is	not	quite	ready	yet.	Let	us	fix	that	next.

demo-app-cdelivery	pipeline
From	the	Jenkin's	dashboard,	we	select		New	Item:

We	shall	call	it	demo-app-cdelivery:

This	job	will	be	triggered	by	another	one,	so	no	need	to	poll	SCM.	Also,	we	have	a	parameter
being	passed	to	this	pipeline:

Finally,	we	set	the	location	of	the	Jenkinsfile	(https://git-codecommit.us-east-
1.amazonaws.com/v1/repos/demo-app-cdelivery):

https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app-cdelivery

Do	you	remember	the	VPC	details	we	specified	in	the	Packer	variables	file	and	also	the
Jenkinsfile	for	this	pipeline?	We	need	to	set	those	to	match	our	current	VPC:

Update	the	variables	in	packer/demo-app_vars.json
srcAmiId	could	be	the	latest	AmazonLinux	AMI
subnetId	is	the	ID	of	the	Private	subnet
vpcId

Update	demo-app-cdelivery/Jenkinsfile:
In	the	Deploy	AMI	stage:

secGroupis	the	ID	of	the	demo-app	security	group
subnetIdis	the	ID	of	the	Private	VPC	subnet	as	mentioned	earlier

In	Run	AB	test
elbUriis	the	endpoint	address	of	the	demo-app-elb	ELB

Commit	and	push	your	changes.

Here,	we	are	with	our	two	pipelines	ready	for	action:

Let	us	trigger	a	demo-app	run	by	changing	the	$full_name	in	demo-app/src/index.php.	You
should	see	it	running	after	detecting	the	Git	change.	At	the	end	of	the	run,	it	should	trigger	the
downstream	demo-app-cdelivery	pipeline,	and	after	another	approximately10	minutes,	there
should	be	a	brand	new	demo-app	AMI	waiting	for	you	(check	the	AWS	console).

Note

Please	remember	to	delete	any	AWS	resources	used	in	the	mentioned	examples	(VPC,	EC2,	S3,
IAM,	CodeCommit,	and	so	on)	to	avoid	unnecessary	charges.

Summary
In	this	chapter,	we	extended	our	Jenkins	pipeline	to	deploy	and	test	our	application	artifact	on	an
EC2	instance	in	a	VPC	environment.	You	learned	how	to	use	Packer	to	template	the	provisioning
of	instances	as	well	as	how	to	use	Serverspec	to	apply	extra	verification	of	our	infrastructure.

In	the	next	chapter,	we	are	going	to	finalize	our	Jenkins	pipeline	setup	by	adding	the	Continuous
Deployment	element	to	it.	We	will	examine	ways	to	deploy	AMIs	created	during	the	Delivery
stage	into	a	production	environment.

Chapter	6.	Continuous	Deployment	-	A	Fully
Automated	Workflow
Welcome	to	the	final	stage	of	the	CI	workflow	-	the	Continuous	Deployment.

We	are	now	ready	to	take	the	AMI	we	produced	during	the	Continuous	Delivery	step	and	deploy
that	to	production.

For	this	process,	we	are	going	to	use	blue/green	deployment	approach.	Our	production
environment	is	going	to	consist	of	ELB	and	two	Auto	scaling	Groups	(blue	and	green):

If	we	assume	that	the	blue	group	holds	our	current	production	nodes,	then	upon	deployment,	we
do	the	following:

1.	 Attach	ELB	to	the	green	group
2.	 Scale	the	green	group	up	using	the	new	AMI
3.	 Check	for	errors
4.	 Scale	the	blue	group	down,	effectively	shifting	traffic	to	the	instances	of	the	new	AMI

As	we	are	building	on	top	of	our	existing	CI	pipelines,	there	are	only	a	few	changes	we	need	to
make	to	the	code	from	the	previous	chapter.	We	need	to	add	a	few	extra	Terraform	resources;	let
us	take	a	look	at	those.

Terraform	code	(resources.tf)
Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_06_CodeFiles/Terraform/resources.tf	.

We	add	a	second	public	and	a	matching	private	subnet	so	that	we	can	distribute	the	production
instances	across	multiple	availability	zones.

The	aws_subnet	resource	creates	a	subnet	named	public-2.	It	takes	attributes	such	as	a	VPC	ID,
CIDR	BLOCK	and	AZs,	the	values	of	which	we	pull	from	variables.	To	compute	the	CIDR	and
AZ	values	we	use	Terraform's	interpolation	functions	(ref:
https://www.terraform.io/docs/configuration/interpolation.html):

resource	"aws_subnet"	"public-2"	{	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

		cidr_block	=	"${cidrsubnet(var.vpc-cidr,	8,	3)}"	

		availability_zone	=	"${element(split(",",var.aws-availability-zones),	

count.index	+	1)}"	

		map_public_ip_on_launch	=	true	

	

		tags	{	

				Name	=	"Public"	

		}	

}	

	

Next,	we	associate	the	newly	created	subnet	with	a	routing	table:

resource	"aws_route_table_association"	"public-2"	{	

		subnet_id	=	"${aws_subnet.public-2.id}"	

		route_table_id	=	"${aws_route_table.public.id}"	

}	

Then	repeat	for	the	Private	subnet:

	

resource	"aws_subnet"	"private-2"	{	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

		cidr_block	=	"${cidrsubnet(var.vpc-cidr,	8,	4)}"	

		availability_zone	=	"${element(split(",",var.aws-availability-zones),	

count.index	+1)}"	

		map_public_ip_on_launch	=	false	

	

		tags	{	

				Name	=	"Private"	

		}	

}	

	

resource	"aws_route_table_association"	"private-2"	{	

		subnet_id	=	"${aws_subnet.private-2.id}"	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_06_CodeFiles/Terraform/resources.tf
https://www.terraform.io/docs/configuration/interpolation.html

		route_table_id	=	"${aws_route_table.private.id}"	

}	

In	this	VPC,	we	are	going	to	end	up	with	subnets	1	and	3	public,	and	2	and	4	private.

The	next	change	is	the	addition	of	a	prod	ELB	and	a	security	group	for	it:

resource	"aws_security_group"	"demo-app-elb-prod"	{	

		name	=	"demo-app-elb-prod"	

		description	=	"ELB	security	group"	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

	

		ingress	{	

				from_port	=	"80"	

				to_port	=	"80"	

				protocol	=	"tcp"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

	

Note	the	protocol	value	of	"-1",	meaning	"all":

		egress	{	

				from_port	=	0	

				to_port	=	0	

				protocol	=	"-1"	

				cidr_blocks	=	["0.0.0.0/0"]	

		}	

	

}	

	

resource	"aws_elb"	"demo-app-elb-prod"	{	

		name	=	"demo-app-elb-prod"	

		security_groups	=	["${aws_security_group.demo-app-elb-prod.id}"]	

		subnets	=	["${aws_subnet.public-1.id}",	"${aws_subnet.public-2.id}"]	

		cross_zone_load_balancing	=	true	

		connection_draining	=	true	

		connection_draining_timeout	=	30	

	

		listener	{	

				instance_port	=	80	

				instance_protocol	=	"http"	

				lb_port	=	80	

				lb_protocol	=	"http"	

		}	

	

		tags	{	

				Name	=	"demo-app-elb-prod"	

		}	

}	

Let	us	also	update	the	demo-app	security	group	Ingress	rules	to	allow	traffic	from	the	ELB.	To
help	visualize,	here	is	our	earlier	diagram	with	more	labels:

And	in	code:

resource	"aws_security_group"	"demo-app"	{	

		name	=	"demo-app"	

		description	=	"ec2	instance	security	group"	

		vpc_id	=	"${aws_vpc.terraform-vpc.id}"	

	

		ingress	{	

				from_port	=	"80"	

				to_port	=	"80"	

				protocol	=	"tcp"	

				security_groups	=	["${aws_security_group.demo-app-elb.id}",	

"${aws_security_group.demo-app-elb-prod.id}"]	

		}		

Then	we	introduce	our	blue/green	Auto	Scaling	Groups	(ASG)	and	a	temporary	launch
configuration:

resource	"aws_launch_configuration"	"demo-app-lcfg"	{	

				name	=	"placeholder_launch_config"	

				image_id	=	"${var.jenkins-ami-id}"	

				instance_type	=	"${var.jenkins-instance-type}"	

				iam_instance_profile	=	"${aws_iam_instance_profile.demo-app.id}"	

				security_groups	=	["${aws_security_group.demo-app.id}"]	

}	

	

resource	"aws_autoscaling_group"	"demo-app-blue"	{	

		name	=	"demo-app-blue"	

		launch_configuration	=	"${aws_launch_configuration.demo-app-lcfg.id}"	

		vpc_zone_identifier	=	["${aws_subnet.private-1.id}",	"${aws_subnet.private-

2.id}"]	

		min_size	=	0	

		max_size	=	0	

	

		tag	{	

				key	=	"ASG"	

				value	=	"demo-app-blue"	

				propagate_at_launch	=	true	

		}	

}	

	

resource	"aws_autoscaling_group"	"demo-app-green"	{	

		name	=	"demo-app-green"	

		launch_configuration	=	"${aws_launch_configuration.demo-app-lcfg.id}"	

		vpc_zone_identifier	=	["${aws_subnet.private-1.id}",	"${aws_subnet.private-

2.id}"]	

		min_size	=	0	

		max_size	=	0	

	

		tag	{	

				key	=	"ASG"	

				value	=	"demo-app-green"	

				propagate_at_launch	=	true	

		}	

}	

The	launch	configuration	here	is	really	only	a	placeholder,	so	that	we	can	define	the	Auto	Scaling
Groups	(which	is	why	we	reuse	the	Jenkins	variables).	We	are	going	to	create	a	new,	real	launch
configuration	to	serve	the	demo-app	later	on	as	part	of	the	pipeline.

outputs.tf
Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_06_CodeFiles/Terraform/outputs.tf.

A	minor	addition	to	the	outputs,	to	give	us	the	Production	ELB	endpoint:

output	"ELB	URI	PROD"	{	

		value	=	"${aws_elb.demo-app-elb-prod.dns_name}"	

}	

Deployment

It	is	time	for	exercise.	Using	the	earlier-mentioned	templates	and	the	rest	of	the	familiar	code
from	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_06_CodeFiles	plus	your	previous	experience	you	should	be	able	to	bring
up	a	VPC	plus	a	Jenkins	instance	with	two	pipelines,	exactly	as	we	did	in	the	chapter	on
Continuous	Delivery.	Do	not	forget	to	update	any	deployment-specific	details	such	as	the
following:

The	SSH	public	key	in	salt:states:users:files
The	authorized	key	in	the	serverspec	test	specification
The	S3	URI	in	salt:states:yum-s3:files:s3.repo
The	S3	bucket	name	in	demo-app/Jenkinsfile
The	variables	in	packer:demo-app_vars.json
The	variables	in	demo-app-cdelivery/Jenkinsfile

I	would	recommend	you	to	disable	the	SCM	Polling	in	the	demo-app	job	so	that	we	don't	trigger
a	run	before	all	our	downstream	jobs	have	been	configured.

Assuming	that	all	went	well,	we	are	back	where	we	left	off:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_06_CodeFiles/Terraform/outputs.tf
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_06_CodeFiles

Jenkins	pipelines
Earlier	we	have	our	Integration	and	Delivery	pipelines	chained	together,	taking	code	and
producing	and	AMI	artifact.	Our	next	task	is	to	design	a	third	pipeline	to	take	that	AMI	and
deploy	it	into	our	production	environment.

Before	we	can	create	the	new	job	in	Jenkins,	we	need	to	make	the	code	for	it	available	via	Git:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment.

We	will	examine	the	files	in	detail	shortly,	for	now	just	create	and	populate	a	demo-app-
cdeployment	CodeCommit	repository.	Similar	to	our	other	repositories,	the	new	one	would	have
an	URL	such	as	https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app-
cdeployment.

With	that	in	hand,	we	proceed	to	create	the	pipeline:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment
https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app-cdeployment

It	will	need	to	take	an	AMI	ID	parameter	(to	be	passed	on	from	the	Delivery	job):

Then	of	course,	it	needs	the	Jenkinsfile	location	(https://git-codecommit.us-east-
1.amazonaws.com/v1/repos/demo-app-cdeployment):

https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app-cdeployment

With	that	final	job	ready,	our	Jenkins	dashboard	looks	like	this:

Continuous	Deployment	pipeline
Back	to	the	code,	as	promised:

Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment/Jenkinsfile.

Our	Jenkinsfile	is	rather	simple:

#!groovy	

	

node	{	

			

		step([$class:	'WsCleanup'])	

	

		stage	"Checkout	Git	repo"	{	

				checkout	scm	

		}	

	

		stage	"Deploy	AMI"	{	

			sh	returnStdout:	false,	script:	"bash	./cdeployment.sh	${AMI_ID}"	

		}	

	

}	

We	simply	check	out	the	associated	repository	and	execute	a	shell	script.	Naturally,	we	could
have	coded	the	whole	task	in	Groovy,	but	I	personally	am	more	used	to	Bash,	hence	the	resulting
cdeployment.sh.

We	briefly	described	the	deployment	task	in	the	beginning	of	this	chapter.	Generally	speaking,	we
are	going	to	be	serving	the	application	code	from	two	separate	clusters	of	instances	and	swap
traffic	from	one	to	the	other.	We	will	use	the	extensive	and	user	friendly	AWS	CLI	to	carry	out
most	operations	plus	Bash	to	process	any	input/output	data.

Let	us	dive	into	the	script	for	more	details.

cdeployment.sh
Note

Please	refer	to	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment/cdeployment.sh.

At	the	top,	we	define	the	names	of	our	Auto	Scaling	Groups,	the	Production	ELB,	and	the	ID	of
the	AMI,	which	we	will	be	working	with	(passed	on	from	the	upstream	pipeline):

#!/bin/bash	

set	-ef	-o	pipefail	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment/Jenkinsfile
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment/cdeployment.sh

	

blueGroup="demo-app-blue"	

greenGroup="demo-app-green"	

elbName="demo-app-elb-prod"	

AMI_ID=${1}	

A	couple	of	helper	functions:

function	techo()	{		

		echo	"[$(date	+%s)]	"	${1}	

}	

	

function	Err()	{	

		techo	"ERR:	${1}"	

		exit	100	

}	

Namely,	the	techo	(timestamped	echo)	for	a	more	informative	output	and	ERR	for	when	we
encounter	problems.

If	we	need	to	abort	a	deployment	and	restore	our	infrastructure	to	its	original	state,	we	will	use
this:

function	rollback()	{	

		techo	"Metrics	check	failed,	rolling	back"	

		aws	autoscaling	update-auto-scaling-group	--auto-scaling-group-name	

${newActiveGroup}	\	

		--min-size	0	

		techo	"Instances	${1}	entering	standby	in	group	${newActiveGroup}"	

		aws	autoscaling	enter-standby	--should-decrement-desired-capacity	\	

				--auto-scaling-group-name	${newActiveGroup}	--instance-ids	${1}	

		techo	"Detaching	${elbName}	from	${newActiveGroup}"	

		aws	autoscaling	detach-load-balancers	--auto-scaling-group-name	

${newActiveGroup}	\	

				--load-balancer-names	${elbName}	

		Err	"Deployment	rolled	back.	Please	check	instances	in	StandBy."	

}	

In	our	case,	we	would	abort	if	we	detect	an	increase	in	the	error	count	of	certain	metrics.	We
would	put	the	newly	deployed	instances	in	Standby	mode	then	detach	the	ELB	from	the	given
Auto	Scaling	Group.

Every	time	we	launch	new	instances,	we	should	pause	to	allow	those	to	fully	initialize	then	verify
what	they	have	done	so	far	and	the	following	wait_for_instances()function	will	help	us	with
this	task.

Wait	for	the	expected	number	of	instances	to	launch:

techo	">>>	Waiting	for	instances	to	launch"	

asgInstances=()	

	

while	[${#asgInstances[*]}	-ne	${1}];do	

		sleep	10	

		asgInstances=($(aws	autoscaling	describe-auto-scaling-groups	\	

				--auto-scaling-group-name	${newActiveGroup}	|	jq	

.AutoScalingGroups[0].Instances[].InstanceId	|	tr	-d	'"'))	

		techo	"Launched	${#asgInstances[*]}	out	of	${1}"	

done	

Wait	for	them	to	become	available:

techo	">>>	Waiting	for	instances	to	become	available"	

asgInstancesReady=0	

iterList=(${asgInstances[*]})	

	

while	[${asgInstancesReady}	-ne	${#asgInstances[*]}];do	

		sleep	10	

		for	i	in	${iterList[*]};do	

				asgInstanceState=$(aws	autoscaling	describe-auto-scaling-instances	\	

						--instance-ids	${i}	|	jq	.AutoScalingInstances[0].LifecycleState	|	tr	-

d	'"')	

	

				if	[[${asgInstanceState}	==	"InService"]];then	

						asgInstancesReady="$((asgInstancesReady+1))"	

						iterList=(${asgInstances[*]/${i}/})	

				fi	

		done	

		techo	"Available	${asgInstancesReady}	out	of	${#asgInstances[*]}"	

done	

Let	the	ELB	declare	them	InService:

techo	">>>	Waiting	for	ELB	instances	to	become	InService"	

elbInstancesReady=0	

iterList=(${asgInstances[*]})	

	

while	[${elbInstancesReady}	-ne	${#asgInstances[*]}];do	

		sleep	10	

		for	i	in	${iterList[*]};do	

				elbInstanceState=$(aws	elb	describe-instance-health	\	

						--load-balancer-name	${elbName}	--instances	${i}	|	jq	

.InstanceStates[].State	|	tr	-d	'"')	

	

				if	[[${elbInstanceState}	==	"InService"]];then	

						elbInstancesReady=$((elbInstancesReady+1))	

						iterList=(${asgInstances[*]/${i}/})	

				fi	

		done	

		techo	"InService	${elbInstancesReady}	out	of	${#asgInstances[*]}"		

done	

Next,	since	we	know	the	region	we	will	be	working	with,	we	set	it	in	advance	to	avoid	having	to
append	it	to	each	AWS	CLI	command:

export	AWS_DEFAULT_REGION="us-east-1"	

Before	going	any	further,	we	make	sure	that	there	is	a	valid	AMI	ID	to	work	with:

[[${AMI_ID}	=	ami-*]]	||	Err	"AMI	ID	${AMI_ID}	is	invalid"	

We	will	be	working	with	two	Auto	Scaling	Groups	and	one	ELB,	we	check	the	properties	of	each
group	and	extract	the	ELB	name:

blueElb=$(aws	autoscaling	describe-auto-scaling-groups	--auto-scaling-group-

names	${blueGroup}	|	\	

		jq	.AutoScalingGroups[0].LoadBalancerNames[0]	|	tr	-d	'"')	

greenElb=$(aws	autoscaling	describe-auto-scaling-groups	--auto-scaling-group-

names	${greenGroup}	|	\	

		jq	.AutoScalingGroups[0].LoadBalancerNames[0]	|	tr	-d	'"')	

Next,	we	ensure	that	only	one	of	the	groups	has	the	Production	ELB	associated	with	it:

[["${blueElb}"	!=	"${greenElb}"]]	||	Err	"Identical	ELB	value	for	both	

groups"	

	

if	[["${blueElb}"	==	"${elbName}"]];	then	

		activeGroup=${blueGroup}	

		newActiveGroup=${greenGroup}	

elif	[["${greenElb}"	==	"${elbName}"]];	then	

		activeGroup=${greenGroup}	

		newActiveGroup=${blueGroup}	

fi	

	

[-n	"${activeGroup}"]	||	Err	"Missing	activeGroup"	

[-n	"${newActiveGroup}"]	||	Err	"Missing	newActiveGroup"	

	

techo	"Active	group:	${activeGroup}"	

techo	"New	active	group:	${newActiveGroup}"	

At	this	point,	we	have	established	which	of	the	two	groups	is	currently	serving	traffic	(Active)
and	the	one	to	take	over	from	it	(newActive).

Ideally,	the	newActive	will	be	empty,	before	we	deploy	any	instances	within	it:

asgInstances=($(aws	autoscaling	describe-auto-scaling-groups	\	

				--auto-scaling-group-name	${newActiveGroup}	|	jq	

.AutoScalingGroups[0].Instances[].InstanceId	|	tr	-d	'"'))	

[${#asgInstances[*]}	-eq	0]	||	Err	"Found	instances	attached	to	

${newActiveGroup}!"	

If	that	is	so,	we	can	proceed	to	get	some	stats	from	the	Active	group:

activeDesired=$(aws	autoscaling	describe-auto-scaling-groups	\	

		--auto-scaling-group-name	${activeGroup}	|	jq	

.AutoScalingGroups[0].DesiredCapacity)	

activeMin=$(aws	autoscaling	describe-auto-scaling-groups	\	

		--auto-scaling-group-name	${activeGroup}	|	jq	

.AutoScalingGroups[0].MinSize)	

activeMax=$(aws	autoscaling	describe-auto-scaling-groups	\	

		--auto-scaling-group-name	${activeGroup}	|	jq	

.AutoScalingGroups[0].MaxSize)	

scaleStep=$(((30	*	${activeDesired})	/100))	

Desired/Min/Max	are	the	standard	Auto	Scaling	values	that	we	will	end	up	transferring	onto	the
newActive	group.	The	scaleStep,	in	this	case,	30%	of	the	instances	presumably	in	service,	is
the	initial	number	of	instances	we	would	like	to	introduce	(allowing	them	to	receive	live	traffic)
during	the	deployment.

It	would	be	rather	strange	if	our	Active	group	is	empty,	otherwise	should	it	have	a	low	count,	we
round	up	the	scaleStep	to	at	least	1:

[${activeDesired}	-gt	0]	||	Err	"Active	group	${activeGroup}	is	set	to	0	

instances!"	

	

[${scaleStep}	-gt	0]	||	scaleStep=1	

Those	were	the	prerequisites;	now	let	us	start	the	deployment	by	slowly	scaling	up	the
newActive	group.

We	would	need	a	launch	configuration.	To	create	one,	we	can	either	pass	all	needed	parameters
ourselves	or	let	EC2	copy	most	of	those	by	providing	an	example	instance	from	our	Active
group:

activeInstance=$(aws	autoscaling	describe-auto-scaling-groups	\	

		--auto-scaling-group-name	${activeGroup}	|	jq	

.AutoScalingGroups[0].Instances[0].InstanceId	|	tr	-d	'"')	

	

[[${activeInstance}	=	i-*]]	||	Err	"activeInstance	${activeInstance}	is	

invalid"	

	

launchConf="demo-app-${AMI_ID}-$(date	+%s)"		

	

aws	autoscaling	create-launch-configuration	--launch-configuration-name	

${launchConf}	\	

		--image-id	${AMI_ID}	--instance-id	${activeInstance}	

Attach	the	newly	created	launch	configuration	to	the	group	as	follows:

techo	">>>	Attaching	${launchConf}	to	${newActiveGroup}"	

aws	autoscaling	update-auto-scaling-group	--auto-scaling-group-name	

${newActiveGroup}	\	

		--launch-configuration-name	${launchConf}	

Add	ELB	as	follows:

techo	">>>	Attaching	${elbName}	to	${newActiveGroup}"	

aws	autoscaling	attach-load-balancers	--auto-scaling-group-name	

${newActiveGroup}	\	

		--load-balancer-names	${elbName}	

Start	scaling	up	as	follows:

techo	">>>	Increasing	${newActiveGroup}	capacity	(min/max/desired)	to	

${scaleStep}"	

aws	autoscaling	update-auto-scaling-group	--auto-scaling-group-name	

${newActiveGroup}	\	

		--min-size	${scaleStep}	--max-size	${scaleStep}	--desired-capacity	

${scaleStep}	

Wait	for	a	moment	or	two,	for	the	instances	to	boot:

wait_for_instances	${scaleStep}	

Our	initial	batch	of	instances	should	now	have	been	deployed,	attached	to	the	Production	ELB,
and	started	serving	traffic.	Before	we	launch	even	more	copies	of	the	new	AMI,	we	ought	to
check	that	we	have	not	caused	any	issues	so	far.	One	way	to	do	this	is	to	pause	the	deployment	for
a	few	minutes	and	examine	metrics,	such	as	number	of	non-200	responses,	exceptions,	or	requests
per	second.	For	simplicity,	in	this	example,	we	assume	that	this	has	been	done;	in	real	life,	you
would	query	your	monitoring	system(s)	or	perhaps	pull	samples	of	CloudWatch	ELB/EC2
statistics.

If	we	do	not	detect	any	anomalies,	we	scale	the	newActive	group	further	to	match	the	size	of	the
Active	one:

techo	">>>	Checking	error	metrics"	

sleep	5	

doRollback=false	

${doRollback}	&&	rollback	"${asgInstances[*]}"	

	

techo	">>>	Matching	${newActiveGroup}	capacity	(min/max/desired)	to	that	of	

${activeGroup}"	

aws	autoscaling	update-auto-scaling-group	--auto-scaling-group-name	

${newActiveGroup}	\	

		--min-size	${activeMin}	--max-size	${activeMax}	--desired-capacity	

${activeDesired}	

As	you	would	expect,	another	check	is	in	order:

wait_for_instances	${activeDesired}	

This	time,	we	could	simulate	a	problem	and	trigger	a	rollback:

techo	">>>	Checking	error	metrics"	

sleep	5	

doRollback=true	

${doRollback}	&&	rollback	"${asgInstances[*]}"

The	rollback	function	should	take	care	of	the	rest.	If	we	keep	doRollback	as	false,	our
deployment	continues	as	planned	and	we	shift	traffic	completely	from	the	Active	to	the
newActive	group	by	scaling	the	former	down:

techo	">>>	Reducing	${activeGroup}	size	to	0"	

aws	autoscaling	update-auto-scaling-group	--auto-scaling-group-name	

${activeGroup}	\	

		--min-size	0	--max-size	0	--desired-capacity	0	

And	detach	ELB	from	it:

techo	">>>	Detaching	${elbName}	from	${activeGroup}"	

aws	autoscaling	detach-load-balancers	--auto-scaling-group-name	

${activeGroup}	\	

		--load-balancer-names	${elbName}	

Now,	let	us	see	our	script	in	action.	First,	we	should	simulate	an	Active	group	by	manually
scaling	up,	say	the	blue	one,	and	attach	the	Production	ELB	to	it:

In	a	few	moments,	you	should	have	three	instances	and	ELB	in	blue:

Now,	let	us	re-enable	SCM	polling	for	the	demo-app	job	and	trigger	a	run	by	pushing	a	code
change	to	its	CodeCommit	repo.	You	should	see	the	pipeline	running,	invoking	the	two
downstream	ones	along	the	way.

If	you	choose	to	simulate	a	metrics	problem	and	cause	a	rollback,	then	the	deployed	instances
should	end	up	in	the	Standby	mode:

In	this	case,	the	rollback	was	triggered	after	the	initial	deployment	of	one	instance
(scaleStep=1).	Theoretically,	the	next	step	would	be	to	investigate	the	instance	looking	for	a
possible	cause	for	the	error	metrics.

If	the	instance	is	deemed	healthy,	then	we	would	need	to	complete	the	deployment	manually	by
bringing	the	instance	into	service,	scaling	the	group	up	further,	then	scaling	the	other	group	down
(essentially	completing	the	remaining	steps	in	the	cdeployment	script).

Otherwise,	the	instance	can	be	put	into	service,	then	the	group	scaled	down	to	zero,	bringing	the
infrastructure	back	to	its	original	state	with	the	blue	group	remaining	as	Active.

Should	you	have	chosen	not	to	cause	any	rollbacks,	the	deployment	ought	to	proceed	as	planned
and	in	the	end	the	green	group	would	have	taken	over	the	blue	one,	indicating	a	successful
deployment:

At	this	point,	if	you	load	the	ELB	URI	in	your	browser,	you	should	get	a	response	from	our	demo-
app	as	served	from	the	newly	deployed	AMI.

Congratulations!

Summary
In	this	chapter,	we	finalized	our	Jenkins	CI	solution	by	adding	the	Deployment	component	to	it.
We	made	extensive	use	of	the	AWS	CLI	to	orchestrate	a	blue/green	deployment	process.	The
resulting	pipeline	or	a	collection	of	such	allows	us	to	continuously	integrate	our	application's
code	changes	and	build	an	AMI	containing	those,	which	is	then	deployed	to	a	given	environment
after	certain	tests	have	been	passed	and	criteria	met.

The	next	chapter	takes	us	in	a	new	direction,	introducing	the	topic	of	monitoring,	metrics,	and	log
collection.	We	will	take	a	look	at	tools	that	can	help	us	stay	aware	of	the	state	of	our
infrastructure	at	any	given	time,	visualize	performance,	and	react	to	issues.

Chapter	7.	Metrics,	Log	Collection,	and
Monitoring

That's	it.	This	chapter	could	well	have	ended	here	but	I	shall	carry	on	for	the	benefit	of	those
amongst	us	who	would	prefer	things	in	more	detail.

A	great	deal	of	the	DevOps	practice(s)	evolve	around	the	idea	of	being	able	to	review	and	react
to	the	state	of	your	infrastructure	at	any	given	time	–	should	you	need	to.

That	is	not	to	say,	setup	e-mail	notifications	for	every	time	the	date	changes	on	your	host,	but	a
stream	of	sensible,	usable	amount	of	event	data	which	would	allow	an	operator	to	make	a
reasonably	informed	decision	under	stress	and/or	uncertainy.

If	you	have	been	paying	attention	in	life	so	far,	you	would	have	noticed	many	a	wise	man	talking
about	balance,	the	golden	middle.

You	should	aim	to	configure	your	monitoring	system	in	a	way	that	you	are	notified	of	events	of
potential	interest	and	in	a	timely	manner.	The	notifications	should	arrive	in	a	format	that	is	hard	to
overlook,	and	should	provide	enough	detail	for	an	operator	to	be	able	to	make	an	informed	guess
at	what	is	going	on.

At	the	same	time,	the	said	monitoring	system	must	cause	the	least	amount	of	alert	fatigue	(as
outlined	in	this	concise	Datadog	article:	https://www.datadoghq.com/blog/monitoring-101-
alerting).

Unfortunately	for	our	friendship,	finding	that	middle	ground	which	suits	your	case	(your
infrastructure	and	the	people	looking	after	it)	is	an	adventure	which	you	will	have	to	go	on	alone.

https://www.datadoghq.com/blog/monitoring-101-alerting

We	could	however	spend	some	quality	time	together,	discussing	a	few	of	the	tools	that	could	make
it	even	more	enjoyable!

Checklists	are	sophisticated,	so	here	is	one:

Centralized	logging:
Ingesting	and	storing	logs	with	Logstash	and	Elasticsearch
Collecting	logs	with	Elasticsearch	Filebeat
Visualizing	logs	with	Kibana

Metrics:
Ingesting	and	storing	metrics	with	Prometheus
Gathering	OS	and	application	metrics	with	Telegraf
Visualizing	metrics	with	Grafana

Monitoring:
Alerting	with	Prometheus
Self-remediation	with	Prometheus	and	Jenkins

Naturally,	we	would	require	a	few	hosts	to	form	our	playground	for	all	of	the	preceding	checklist.
There	has	been	sufficient	practice	in	deploying	VPC	EC2	instances	on	AWS	in	previous	chapters,
thus	I	hereby	exercise	the	great	power	of	delegation	and	assume	the	existence	of:

A	VPC	with	an	IGW,	NAT	gateway,	2x	private	and	2x	public	subnets
2x	standalone,	vanilla	Amazon	Linux	EC2	instances	(say	t2.small)	within	the	public
subnets
1x	Auto	Scale	Group	(t2.nano)	within	the	private	subnets
1x	Internet-facing	ELB	passing	HTTP	traffic	to	the	Auto	Scale	Group

Centralized	logging
Since	the	olden	days,	mankind	has	strived	to	use	its	limited	attention	span	only	on	what	really
matters	in	life,	and	without	having	to	look	for	it	too	hard	–	if	possible.	So	we	started	with	copying
log	files	around,	evolution	brought	us	centralized	(r)syslog	and	today	(we	learn	from	our
mistakes)	we	have	Logstash	and	Elasticsearch.

	

Elasticsearch	is	a	distributed,	open	source	search	and	analytics	engine,	designed	for
horizontal	scalability,	reliability,	and	easy	management.	It	combines	the	speed	of	search
with	the	power	of	analytics	via	a	sophisticated,	developer-friendly	query	language	covering
structured,	unstructured,	and	time-series	data.

Logstash	is	a	flexible,	open	source	data	collection,	enrichment,	and	transportation	pipeline.
With	connectors	to	common	infrastructure	for	easy	integration,	Logstash	is	designed	to
efficiently	process	a	growing	list	of	log,	event,	and	unstructured	data	sources	for
distribution	into	a	variety	of	outputs,	including	Elasticsearch.

	

	 --https://www.elastic.co/products

https://www.elastic.co/products

Ingesting	and	storing	logs	with	Logstash	and	Elasticsearch
We	will	be	using	Logstash	to	receive,	process	and	then	store	log	events	into	Elasticsearch.

For	the	purposes	of	the	demos	in	this	chapter,	we'll	be	installing	and	configuring	services
manually,	directly	on	the	hosts.	When	done	experimenting,	you	should,	of	course,	use
configuration	management	instead	(wink).

Let	us	start	by	installing	the	two	services	on	one	of	the	standalone	EC2	instances	(we	shall	call	it
ELK):

#	yum	-y	install	

https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribut

ion/rpm/elasticsearch/2.4.1/elasticsearch-2.4.1.rpm	

https://download.elastic.co/logstash/logstash/packages/centos/logstash-

2.4.0.noarch.rpm

Edit	/etc/elasticsearch/elasticsearch.yml:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/elk/etc/elasticsearch/elasticsearch.yml

cluster.name:	wonga-bonga	

index.number_of_shards:	1	

index.number_of_replicas:	0	

index	:	

		refresh_interval:	5s	

It	is	important	to	select	a	unique	name	for	the	Elasticsearch	cluster,	so	that	the	node	does	not	join
somebody	else's	inadvertently,	should	there	be	any	on	your	LAN.	For	development,	we	only	ask
for	a	single	shard	and	no	replicas.	Impatience	dictates	a	five	second	refresh	rate	on	any	ES
indices.

Create	a	Logstash	patterns	folder:

#	mkdir	/opt/logstash/patterns

Create	a	sample	NGINX	pattern	/opt/logstash/patterns/nginx	(ref:
https://www.digitalocean.com/community/tutorials/adding-logstash-filters-to-improve-
centralized-logging):

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/elk/opt/logstash/patterns/nginx

NGUSERNAME	[a-zA-Z\.\@\-\+_%]+	

NGUSER	%{NGUSERNAME}	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/elk/etc/elasticsearch/elasticsearch.yml
https://www.digitalocean.com/community/tutorials/adding-logstash-filters-to-improve-centralized-logging
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/elk/opt/logstash/patterns/nginx

NGINXACCESS	%{IPORHOST:clientip}	%{NGUSER:ident}	%{NGUSER:auth}	\[%

{HTTPDATE:timestamp}\]	"%{WORD:verb}	%{URIPATHPARAM:request}	HTTP/%

{NUMBER:httpversion}"	%{NUMBER:response}	(?:%{NUMBER:bytes}|-)	(?:"(?:%

{URI:referrer}|-)"|%{QS:referrer})	%{QS:agent}	

Create	/etc/logstash/conf.d/main.conf:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/elk/etc/logstash/conf.d/main.conf

input	{	

		beats	{	

				port	=>	5044	

		}	

}	

	

filter	{	

		if	[type]	==	"nginx-access"	{	

				grok	{	

						match	=>	{	"message"	=>	"%{NGINXACCESS}"	}	

				}	

		}	

}	

	

output	{	

		elasticsearch	{	

				hosts	=>	"localhost:9200"	

				manage_template	=>	false	

				index	=>	"%{[@metadata][beat]}-%{+YYYY.MM.dd}"	

				document_type	=>	"%{[@metadata][type]}"	

		}	

}	

Logstash	allows	us	to	configure	one	or	more	listeners	(inputs)	in	order	to	receive	data,	filters	to
help	us	process	it	and	outputs	specifying	where	that	data	should	be	forwarded	once	processed.

We	expect	logs	to	be	delivered	by	Elasticsearch	Filebeat	on	TCP:	5044.	If	the	log	event	happens
to	be	of	type	nginx-access,	we	have	it	modified	according	to	the	NGINXACCESS	pattern	then
shipped	to	Elasticsearch	on	localhost	TCP:	9200	for	storage.

Finally,	let	us	start	the	services:

#	service	elasticsearch	start

#	service	logstash	start

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/elk/etc/logstash/conf.d/main.conf

Collecting	logs	with	Elasticsearch	Filebeat
We	have	the	systems	in	place;	let	us	push	somes	from	the	ELK	node	that	we	are	on.

We	will	use	Filebeat	to	collect	local	logs	of	interest	and	forward	those	to	Logstash	(incidentally
also	local	in	this	case):

	
Filebeat	is	a	log	data	shipper.	Installed	as	an	agent	on	your	servers,	Filebeat	monitors	the
log	directories	or	specific	log	files,	tails	the	files,	and	forwards	them	either	to	Elasticsearch
or	Logstash	for	indexing.

	

	 --https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-overview.html

Installation:

#	yum	-y	install	https://download.elastic.co/beats/filebeat/filebeat-1.3.1-

x86_64.rpm

While	functionality	is	provided	to	ship	directly	to	ES,	we	are	planning	to	use	Logstash	so	we
need	to	disable	the	Elasticsearch	output	and	enable	the	logstash	one	in
/etc/filebeat/filebeat.yml:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/elk/etc/filebeat/filebeat.yml

output:	

		#elasticsearch:	

		#		hosts:	["localhost:9200"]	

		logstash:	

				hosts:	["localhost:5044"]	

We	could	also	list	a	few	more	log	files	to	collect:

filebeat:	

		prospectors:	

				-	

						paths:	

					-	/var/log/*.log	

								-	/var/log/messages	

								-	/var/log/secure	

Then	start	the	service:

#	service	filebeat	start

Fun,	but	let	us	launch	a	few	other	EC2	instances	for	even	more	of	it!

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/elk/etc/filebeat/filebeat.yml

We	shall	use	the	Auto	Scale	Group	we	mentioned	earlier.	We	will	install	Filebeat	on	each
instance	and	configure	it	to	forward	selected	logs	to	our	Logstash	node.

First,	ensure	that	the	security	group	of	the	Logstash	instance	allows	inbound	connections	from	the
Auto	Scale	Group	(TCP:	5044).

Next,	we	use	an	EC2	User	Data	script	to	bootstrap	the	Filebeat	binary	and	configuration	onto
each	of	the	EC2	instances	in	our	Auto	Scale	Group	(we	will	call	them	webservers):

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/webserver/user_data.sh

#!/bin/bash	

	

yum	-y	install	https://download.elastic.co/beats/filebeat/filebeat-1.3.1-

x86_64.rpm	

yum	-y	install	nginx	

	

cat	<<	EOF	>	/etc/filebeat/filebeat.yml	

filebeat:	

		prospectors:	

				-	

						paths:	

								-	/var/log/*.log	

								-	/var/log/messages	

								-	/var/log/secure	

				-	

						paths:	

								-	/var/log/nginx/access.log	

						document_type:	nginx-access	

		registry_file:	/var/lib/filebeat/registry	

output:	

		logstash:	

				hosts:	["10.0.1.132:5044"]	

EOF	

	

service	nginx	start	

service	filebeat	start	

With	that	in	place,	go	ahead	and	scale	the	group	up.	The	new	web	server	instances,	should	start
streaming	logs	promptly.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/webserver/user_data.sh

Visualizing	logs	with	Kibana
We	have	our	logs	collected	by	Filebeat	and	stored	in	Elasticsearch,	how	about	browsing	them?

Kibana,	right	on	time:

	
Kibana	is	an	open	source	analytics	and	visualization	platform	designed	to	work	with
Elasticsearch.	You	use	Kibana	to	search,	view,	and	interact	with	data	stored	in
Elasticsearch	indices.	You	can	easily	perform	advanced	data	analysis	and	visualize	your
data	in	a	variety	of	charts,	tables,	and	maps.

	

	 --https://www.elastic.co/guide/en/kibana/current/introduction.html

Install	the	package:

#	yum	-y	install	https://download.elastic.co/kibana/kibana/kibana-4.6.1-

x86_64.rpm

Start	the	service:

#	service	kibana	start

The	default	port	is	TCP:5601,	if	allowed	in	the	relevant	security	group,	you	should	be	able	to	see
the	Kibana	dashboard:

Set	the	index	pattern	to	filebeat-*	and	click	Create.

Kibana	is	now	ready	to	display	our	Filebeat	data.	Switch	to	the	Discover	tab	to	see	the	list	of
recent	events:

In	addition	to	the	standard	Syslog	messages,	you	will	also	notice	some	NGINX	access-log
entries,	with	various	fields	populated	as	per	the	filter	we	specified	earlier:

Logs:	done.	Now,	how	about	some	metrics?

Metrics
For	ingesting,	storing	and	alerting	on	our	metrics,	we	shall	explore	another,	quite	popular	open-
source	project	called	Prometheus:

	

Prometheus	is	an	open-source	systems	monitoring	and	alerting	toolkit	originally	built	at
SoundCloud.

Prometheus's	main	features	are:

-a	multi-dimensional	data	model	(time	series	identified	by	metric	name	and	key/value	pairs)

-	a	flexible	query	language	to	leverage	this	dimensionality

-	no	reliance	on	distributed	storage;	single	server	nodes	are	autonomous

-	time	series	collection	happens	via	a	pull	model	over	HTTP

-	pushing	time	series	is	supported	via	an	intermediary	gateway

-	targets	are	discovered	via	service	discovery	or	static	configuration

-	multiple	modes	of	graphing	and	dashboarding	support

	

	 --https://prometheus.io/docs/introduction/overview/emphasis>

Even	though	it	is	the	kind	of	system	that	takes	care	of	pretty	much	everything,	the	project	still
follows	the	popular	UNIX	philosophy	of	modular	development.	Prometheus	is	composed	of
multiple	components,	each	providing	a	specific	function:

	

-	the	main	Prometheus	server	which	scrapes	and	stores	time	series	data

-	client	libraries	for	instrumenting	application	code

-	a	push	gateway	for	supporting	short-lived	jobs

-	a	GUI-based	dashboard	builder	based	on	Rails/SQL

-	special-purpose	exporters	(for	HAProxy,	StatsD,	Ganglia,	etc.)

-	an	(experimental)	alertmanager

-	a	command-line	querying	tool

	

	 --https://prometheus.io/docs/introduction/overview/

Ingesting	and	storing	metrics	with	Prometheus
Our	second	EC2	instance	is	going	to	host	the	Prometheus	service	alongside	Jenkins	(we	will
come	to	that	shortly),	thus	a	rather	appropriate	name	would	be	promjenkins.

As	a	start,	download	and	extract	Prometheus	and	Alertmanager	in	/opt/prometheus/server
and	/opt/prometheus/alertmanager	respectively	(ref:	https://prometheus.io/download).

We	create	a	basic	configuration	file	for	the	Alertmanager	in
/opt/prometheus/alertmanager/alertmanager.yml	(replace	e-mail	addresses	as	needed):

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/alertmanager/alertmanager.yml

global:	

		smtp_smarthost:	'localhost:25'	

		smtp_from:	'alertmanager@example.org'	

	

route:	

		group_by:	['alertname',	'cluster',	'service']	

		group_wait:	30s	

		group_interval:	5m	

		repeat_interval:	1h		

		receiver:	team-X-mails	

	

receivers:	

-	name:	'team-X-mails'	

		e-mail_configs:	

		-	to:	'team-X+alerts@example.org'	

				require_tls:	false	

This	will	simply	e-mail	out	alert	notifications.

Start	the	service:

#	cd	/opt/prometheus/alertmanager

#	(./alertmanager	2>&1	|	logger	-t	prometheus_alertmanager)&

Ensure	the	default	TCP:9093	is	allowed,	then	you	should	be	able	to	get	to	the	dashboard	at
http://$public_IP_of_promjenkins_node:9093/#/status:

https://prometheus.io/download
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/alertmanager/alertmanager.yml

Back	to	the	Prometheus	server,	the	default	/opt/prometheus/server/prometheus.yml	will
suffice	for	now.	We	can	start	the	service:

#	cd	/opt/prometheus/server

#	(./prometheus	-alertmanager.url=http://localhost:9093	2>&1	|	logger	-t	

prometheus_server)

Open	up	TCP:9090,	then	try	http://$public_IP_of_promjenkins_node:9090/status:

We	are	ready	to	start	adding	hosts	to	be	monitored.	That	is	to	say	targets	for	Prometheus	to
scrape.

Prometheus	offers	various	ways	in	which	targets	can	be	defined.	The	one	most	suitable	for	our
case	is	called	ec2_sd_config	(ref:	https://prometheus.io/docs/operating/configuration/#
<ec2_sd_config>).	All	we	need	to	do	is	provide	a	set	of	API	keys	with	read-only	EC2	access
(AmazonEC2ReadOnlyAccess	IAM	policy)	and	Prometheus	will	do	the	host	discovery	for	us
(ref:	https://www.robustperception.io/automatically-monitoring-ec2-instances).

We	append	the	ec2_sd_config	settings	to:	/opt/prometheus/server/prometheus.yml:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/prometheus.yml

		-	job_name:	'ec2'	

				ec2_sd_configs:	

						-	region:	'us-east-1'	

								access_key:	'xxxx'	

								secret_key:	'xxxx'	

								port:	9126	

				relabel_configs:	

						-	source_labels:	[__meta_ec2_tag_Name]	

								regex:	^webserver	

								action:	keep	

We	are	interested	only	in	any	instances	in	the	us-east-1	region	with	a	name	matching	the
^webserver	regex	expression.

https://prometheus.io/docs/operating/configuration/#<ec2_sd_config>
https://www.robustperception.io/automatically-monitoring-ec2-instances
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/prometheus.yml

Now	let	us	bring	some	of	those	online.

Gathering	OS	and	application	metrics	with	Telegraf
We	will	be	using	the	pull	method	of	metric	collection	in	Prometheus.	This	means	that	our	clients
(targets)	will	expose	their	metrics	for	Prometheus	to	scrape.

To	expose	OS	metrics,	we	shall	deploy	InfluxData's	Telegraf	(ref:
https://github.com/influxdata/telegraf).

It	comes	with	a	rich	set	of	plugins,	which	will	provide	for	a	good	deal	of	metrics.	Should	you
need	more,	you	have	the	option	to	write	your	own	(in	Go)	or	use	the	exec	plugin	which	will
essentially	attempt	to	launch	any	type	of	script	you	point	it	at.

As	for	application	metrics,	we	have	two	options	(at	least):

Build	a	metrics	API	endpoint	in	the	application	itself
Have	the	application	submit	metrics	data	to	an	external	daemon	(StatsD	as	an	example)

Incidentally,	Telegraf	comes	with	a	built-in	StatsD	listener,	so	if	your	applications	already	happen
to	have	StatsD	instrumentation,	you	should	be	able	to	simply	point	them	at	it.

Following	on	from	the	ELK	example,	we	will	extend	the	EC2	user	data	script	to	get	Telegraf	on
our	the	Auto	Scale	Group	instances.

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/webserver/user_data.sh

We	append:

yum	-y	install	https://dl.influxdata.com/telegraf/releases/telegraf-

1.0.1.x86_64.rpm	

	

cat	<<	EOF	>	/etc/telegraf/telegraf.conf	

[global_tags]	

[agent]	

		interval	=	"10s"	

		round_interval	=	true	

		metric_batch_size	=	1000	

		metric_buffer_limit	=	10000	

		collection_jitter	=	"0s"	

		flush_interval	=	"10s"	

		flush_jitter	=	"0s"	

		precision	=	""	

		debug	=	false	

		quiet	=	false	

		hostname	=	""	

		omit_hostname	=	false	

[[outputs.prometheus_client]]	

		listen	=	":9126"	

https://github.com/influxdata/telegraf
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/webserver/user_data.sh

[[inputs.cpu]]	

		percpu	=	true	

		totalcpu	=	true	

		fielddrop	=	["time_*"]	

[[inputs.disk]]	

		ignore_fs	=	["tmpfs",	"devtmpfs"]	

[[inputs.diskio]]	

[[inputs.kernel]]	

[[inputs.mem]]	

[[inputs.processes]]	

[[inputs.swap]]	

[[inputs.system]]	

EOF	

	

service	telegraf	start	

The	important	one	here	is	outputs.prometheus_client	with	which	we	turn	Telegraf	into	a
Prometheus	scrape	target.	By	all	means	check	the	default	configuration	file	if	you'd	like	to	enable
more	metrics	during	this	test	(ref:
https://github.com/influxdata/telegraf/blob/master/etc/telegraf.conf)

Next,	check	that	TCP:	9126	is	allowed	into	the	Auto	Scale	Group	security	group,	then	launch	a
couple	of	nodes.	In	a	few	moments,	you	should	see	any	matching	instances	listed	in	the	targets
dashboard	(ref:	http://$	public_IP_of_promjenkins_node:9090/targets):

We	see	the	new	hosts	under	the	ec2	scrape	job	which	we	configured	earlier.

https://github.com/influxdata/telegraf/blob/master/etc/telegraf.conf

Visualizing	metrics	with	Grafana
It	is	true	that	Prometheus	is	perfectly	capable	of	visualizing	the	data	we	are	now	collecting	from
our	targets,	as	seen	here:

In	fact,	this	is	the	recommended	approach	for	any	ad-hoc	queries	you	might	want	to	run.

Should	you	have	an	appetite	for	dashboards	however,	you	would	most	certainly	appreciate
Grafana	-	The	8th	Wonder	(ref:	http://grafana.org)

Check	this	out	to	get	a	feel	for	the	thing:	http://play.grafana.org

I	mean,	how	many	other	projects	do	you	know	of	with	a	play	URL?!

1.	 So,	yes,	Grafana,	let	us	install	the	service	on	the	promjenkins	node:

#	yum	-y	install	https://grafanarel.s3.amazonaws.com/builds/

								grafana-3.1.1-1470047149.x86_64.rpm

#	service	grafana-server	start

The	default	Grafana	port	is	TCP:3000,	auth	admin:admin.	After	updating	the	relevant
security	group,	we	should	be	able	to	see	the	screen	at:	http://$
public_IP_of_promjenkins_node:3000:

http://grafana.org

2.	 After	logging	in,	first	we	need	to	create	a	Data	Sources	for	our	Dashboards:

3.	 Back	at	the	home	screen,	choose	to	create	a	new	dashboard,	then	use	the	green	button	on	the
left	to	Add	Panel	then	a	Graph:

4.	 Then,	adding	a	basic	CPU	usage	plot	looks	like	this:

At	this	point	I	encourage	you	to	browse	http://docs.grafana.org	to	find	out	more	about
templating,	dynamic	dashboards,	access	control,	tagging,	scripting,	playlist,	and	so	on.

http://docs.grafana.org

Monitoring
We	have	our	metrics	flowing	into	Prometheus.	We	also	have	a	way	of	exploring	and	visualizing
them.	The	next	step	should	probably	be	to	configure	some	sort	of	alerts,	so	that	we	show	other
people	we	are	doing	real	work.

Alerting	with	Prometheus

	

ALERTING	OVERVIEW

Alerting	with	Prometheus	is	separated	into	two	parts.	Alerting	rules	in	Prometheus	servers
send	alerts	to	an	Alertmanager.	The	Alertmanager	then	manages	those	alerts,	including
silencing,	inhibition,	aggregation	and	sending	out	notifications	via	methods	such	as	e-mail,
PagerDuty	and	HipChat.

The	main	steps	to	setting	up	alerting	and	notifications	are:

-	Setup	and	configure	the	Alertmanager

-	Configure	Prometheus	to	talk	to	the	Alertmanager	with	the-alertmanager.url	flag

-	Create	alerting	rules	in	Prometheus

	

	 --https://prometheus.io/docs/alerting/overview/

Let	us	break	this	down.

We	already	have	Alertmanager	running	with	some	minimal	configuration	in
/opt/prometheus/alertmanager/alertmanager.yml.

Our	Prometheus	instance	is	aware	of	it	as	we	passed	the	-
alertmanager.url=http://localhost:9093	flag.

What	is	left	is	to	create	alerting	rules.	We'll	store	these	in	a	rules/	folder:

#	mkdir	/opt/prometheus/server/rules

We	need	to	tell	Prometheus	about	this	location,	so	we	add	a	rule_files	section	to
prometheus.yml:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/prometheus.yml

rule_files:	

		-	"rules/*.rules"	

This	way	we	can	store	separate	rule	files,	perhaps	based	on	the	type	of	rules	they	contain?

As	an	example,	let	us	have	a	keepalive	and	a	disk	usage	alert:

Note

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/prometheus.yml

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/rules

/opt/prometheus/server/rules/keepalive.rules:

ALERT	Keepalive	

		IF	up	==	0	

		FOR	1m	

		ANNOTATIONS	{	

				summary	=	"Instance	{{$labels.instance}}	down",	

				description	=	"{{$labels.instance}}	of	job	{{$labels.job}}	has	been	down	

for	more	than	1	minute."	

		}	

/opt/prometheus/server/rules/disk.rules:

ALERT	High_disk_space_usage	

		IF	disk_used_percent	>	20	

		FOR	1m	

		ANNOTATIONS	{	

				summary	=	"High	disk	space	usage	on	{{	$labels.instance	}}",	

				description	=	"{{	$labels.instance	}}	has	a	disk_used	value	of	{{	$value	

}}%	on	{{	$labels.path	}})",	

		}	

As	you'll	notice,	we	are	being	impatient	with	the	FOR	1m	and	>20,	meaning	notifications	will	fire
after	just	60	seconds	of	alert	detection	and	the	alert	threshold	is	only	20%	of	space	used.

In	a	more	realistic	scenario,	we	should	wait	a	bit	longer	to	filter	any	transient	issues	and	use
severities	to	distinguish	between	critical	alerts	and	warnings	(ref:
https://github.com/prometheus/alertmanager).

Reload	Prometheus	with	the	new	rules	in	place.	Now	let	us	suppose	that	one	of	the	web	server
nodes	goes	down:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/rules
https://github.com/prometheus/alertmanager

Switching	to	the	Alerts	tab	we	see:

In	the	Alertmanager	respectively:	(http://$
public_IP_of_promjenkins_node:9093/#/alerts):

At	this	point	an	e-mail	notification	should	have	gone	out	as	well.

Self-remediation	with	Prometheus	and	Jenkins
The	dream	of	every	operator	is	an	ecosystem	that	looks	after	itself.

Imagine	for	a	moment	an	environment	in	which,	instead	of	receiving	alerts	prompting	for	action,
we	received	mere	notifications	or	reports	of	actions	taken	on	our	behalf.

For	example,	no	more	"CRITICAL:	Service	X	is	not	responding.	Please	check."	but	"INFO:
Service	X	was	unresponsive	at	nn:nn:nn	and	was	restarted	after	N	seconds	at	nn:nn:nn"	instead.

Well,	technically,	this	should	not	be	too	difficult	to	achieve	if	we	were	to	provide	enough	context
to	the	tools	we	use	today.	It	is	not	uncommon	to	find	alerts	which	tend	to	get	resolved	in	the	same
manner	under	the	same	conditions	and	those	are	to	be	considered	prime	candidates	for
automation.

To	demonstrate,	let	us	assume	we	inherited	this	old,	no	longer	supported	application.	A	cool	app
overall,	but	it	does	not	have	the	habit	of	tidying	up	after	itself,	so	would	occasionally	fill	up	its
tmp	directory.

Let	us	also	assume	that	while	we	are	not	particularly	excited	about	having	to	connect	to	this	app's
server	to	delete	tmp	files	at	random	times	of	the	day,	our	friend,	Mr.	Jenkins	-	does	not	mind	at
all.

Conveniently,	Jenkins	allows	jobs	to	be	triggered	via	a	relevant	JOB_URL	and	at	the	same	time
Prometheus	supports	webhook	calls	as	a	method	of	alert	notification.

Here	is	the	plan:

1.	 Prometheus	will	make	a	webhook	call	to	Jenkins	whenever	a	disk_space	alert	is	fired	with
the	alert	details	passed	as	parameters.

2.	 Jenkins	will	use	the	parameters	to	determine	which	host	to	connect	to	and	clean	up	the
application's	tmp	directory.

We	would	need	to:

1.	 Create	a	parameterized	Jenkins	job	which	can	be	triggered	remotely.
2.	 Allow	Jenkins	to	ssh	into	the	application's	host.
3.	 Setup	a	webhook	receiver	in	Prometheus	which	calls	the	Jenkins	job	when	a	certain	alert	is

fired.

First	a	quick	Jenkins	installation	onto	our	promjenkins	node:

#	yum	install	http://mirrors.jenkins-ci.org/redhat-stable/

						jenkins-2.7.1-1.1.noarch.rpm

#	service	jenkins	start

TCP:	8080	needs	to	be	open,	then	you	should	be	able	to	reach	the	Jenkins	service	at
http://$public_IP_of_promjenkins_node:8080.

Under	Manage	Jenkins	|	Manage	Users	create	an	account	for	Prometheus:

Then,	under	Manage	Jenkins	|	Configure	Global	Security,	select	Jenkins'	own	user	database
and	Matrix-based	Security,	then	add	both	accounts.

Tip

Untick	Prevent	Cross	Site	Request	Forgery	exploits	if	you	find	that	it	causes	issues	when
making	curl	request	to	Jenkins.

Grant	yourself	Overall	Administer	rights	and	Prometheus	Overall	Read	plus	Job	Build/Read:

To	be	able	to	ssh	into	the	app	(web	server)	nodes	we	need	a	key	for	the	Jenkins	user:

#	su	-	-s	/bin/bash	jenkins

$	ssh-keygen	-trsa	-b4096

Generating	public/private	rsa	key	pair.

Enter	file	in	which	to	save	the	key	(/var/lib/jenkins/.ssh/id_rsa):	

Created	directory	'/var/lib/jenkins/.ssh'

...

While	we	are	here,	let	us	create	an	ssh	config	file	for	the	Jenkins	user	(~/.ssh/config)
containing:

Host	10.0.*	

			StrictHostKeyChecking	no	

			UserKnownHostsFile=/dev/null	

			User	ec2-user	

This	is	to	allow	our	non-interactive	jobs	to	ssh	to	instances	for	the	first	time.

We	also	need	to	take	the	generated	public	key	and	add	it	to	the	Auto	Scale	Group	user	data	,	so
that	it	gets	onto	our	web	server	instances.	We	will	be	using	the	standard	(Amzn-Linux)	ec2-user
account	to	connect:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/webserver/user_data.sh

...	

#	Add	Jenkins's	key	

cat	<<	EOF	>>	/home/ec2-user/.ssh/authorized_keys	

{{JENKINS_PUB_KEY_GOES_HERE}}	

EOF	

Now	let	us	create	the	Jenkins	job	(freestyle	project)	with	a	few	parameters:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/webserver/user_data.sh

We	will	discuss	those	four	parameters	(alertname,	alertcount,	instance,	labels)	later.	In
the	Build	section,	select	Execute	shell	and	enter	exit	0	as	a	placeholder	until	we	are	ready	to
configure	the	job	further.	Save	and	let's	get	back	to	Prometheus.

As	we	mentioned	earlier,	we	will	be	using	the	webhook	receiver	to	trigger	the	Jenkins	job.	While
the	receiver	allows	us	to	set	a	URL	to	call,	it	does	not	seem	to	allow	for	any	parameters	to	be
included.	To	accomplish	this,	we	will	use	a	small	helper	application	called	prometheus-am-
executor	(ref:	https://github.com/imgix/prometheus-am-executor).

The	executor	sits	between	the	Alertmanager	and	an	arbitrary	executable.	It	receives	the	webhook
call	from	the	Alertmanager	and	runs	the	executable,	passing	a	list	of	alert	variables	to	it.	In	our
case,	we	will	be	executing	a	shell	script	which	processes	those	variables	and	constructs	a	curl

https://github.com/imgix/prometheus-am-executor

call	in	the	format	that	Jenkins	expects.

Let	us	install	the	helper	app	alongside	Prometheus	and	the	Alertmanager:

#	yum	-y	install	golang

#	mkdir	/opt/prometheus/executor	&&	export	GOPATH=$_

#	go	get	github.com/imgix/prometheus-am-executor

On	success,	you	should	have	a	binary	in	/opt/prometheus/executor/bin.	Now	the	script
(executable)	that	we	mentioned:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/executor/executor.sh

#!/bin/bash	

	

if	[["$AMX_STATUS"	!=	"firing"]];	then	

		exit	0	

fi	

	

main()	{	

		for	i	in	$(seq	1	"$AMX_ALERT_LEN");	do	

				ALERT_NAME=AMX_ALERT_${i}_LABEL_alertname	

				INSTANCE=AMX_ALERT_${i}_LABEL_instance	

				LABELS=$(set|egrep	"^AMX_ALERT_${i}_LABEL_"|tr	'\n'	'	'|base64	-w0)	

				PAYLOAD="{'parameter':	[{'name':'alertcount',	'value':'${i}'},	

{'name':'alertname',	'value':'${!ALERT_NAME}'},	{'name':'instance',	

'value':'${!INSTANCE}'},	{'name':'labels',	'value':'${LABELS}'}]}"	

				curl	-s	-X	POST	http://localhost:8080/job/prometheus_webhook/build	--user	

'prometheus:password'	--data-urlencode	json="${PAYLOAD}"	

		done	

		wait	

}	

	

main	"$@"	

In	essence	we	are	constructing	an	HTTP	call	to	our	Jenkins	job	URL	at
http://localhost:8080/job/prometheus_webhook/build	passing	the	alertcount,
alertname,	instance	and	labels	parameters.	All	values	come	from	the	AMX	environment
variables	which	the	prometheus-am-executor	exposes	(ref:	https://github.com/imgix/prometheus-
am-executor).

Now	we	need	to	reconfigure	the	Alertmanager	to	use	webhooks:

Note

Please	refer	to:	https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/alertmanager/alertmanager.yml

global:	

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/executor/executor.sh
https://github.com/imgix/prometheus-am-executor
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/alertmanager/alertmanager.yml

		smtp_smarthost:	'localhost:25'	

		smtp_from:	'alertmanager@example.org'	

	

route:	

		group_by:	['alertname',	'cluster',	'service']	

		group_wait:	10s	

		group_interval:	30s	

		repeat_interval:	1m	

		receiver:	team-X-mails	

	

		routes:	

		-	receiver:	'jenkins-webhook'	

				match:	

						alertname:	"High_disk_space_usage"	

	

receivers:	

-	name:	'team-X-mails'	

		e-mail_configs:	

		-	to:	'veselin+testprom@kantsev.com'	

				require_tls:	false	

				send_resolved:	true	

	

-	name:	'jenkins-webhook'	

		webhook_configs:	

		-	url:	http://localhost:8888	

So,	we	have	added	a	new	sub-route	which	would	match	on	alertname:
High_disk_space_usage	and	use	the	jenkins-webhook	receiver.

Reload	Alertmanager	and	let	us	start	the	executor.	Assuming	that	the	executor.sh	has	been
placed	in	/opt/prometheus/executor:

#	cd	/opt/prometheus/executor

#	./bin/prometheus-am-executor	-l	':8888'	./executor.sh

2016/10/16	17:57:36	Listening	on	:8888	and	running	[./executor.sh]

We	have	the	executor	running	(port	8888)	and	ready	to	accept	requests	from	the	Alertmanager.

Before	triggering	any	test	alerts,	let's	go	back	to	our	Jenkins	job.	You	are	now	familiar	with	the
parameters	it	expects	and	the	ones	that	we	pass	via	the	webhook	|	executor	|	jenkins	setup	that
we	have,	so	we	can	replace	the	contents	of	the	placeholder	Build	step	with	this	shell	script:

echo	"alertname:	${alertname}"	

echo	"alertcount:	${alertcount}"	

echo	"instance:	${instance}"	

	

export	$(echo	${labels}|base64	-d)	

	

NODE=$(echo	${instance}|cut	-d:	-f1)	

LABEL_DIR=AMX_ALERT_${alertcount}_LABEL_path	

APP_DIR='/opt/myapp/tmp'	

	

if	[${!LABEL_DIR}	==	${APP_DIR}];then	

ssh	${NODE}	"sudo	rm	-f	${APP_DIR}/*.tmp"

fi	

To	test	all	of	this,	we	need	to	ssh	into	one	of	the	ASG	(web	server)	instances	which	Prometheus
is	monitoring	and	setup	a	pretend	App	temporary	folder	like	so:

#	dd	if=/dev/zero	of=/tmp/dd.out	bs=1M	count=256

#	mkfs.ext4	/tmp/dd.out

#	mkdir	-p	/opt/myapp/tmp

#	mount	-oloop	/tmp/dd.out	/opt/myapp/tmp/

This	should	give	us	a	small	filesystem	to	play	with.	Next,	we	fill	it	up:

#	dd	if=/dev/zero	of=/opt/myapp/tmp/dd.tmp	bs=1M	count=196

This	is	way	over	the	20%	we	have	set	in	the	High_disk_space_usage	and	should	trigger	it.	In
turn	the	executor	should	call	Jenkins	and	run	our	job:

We	can	see	Jenkins	connecting	to	the	affected	instance	over	SSH,	then	clearing	our	fake
application	tmp	directory.

It	is	important	to	note	that	while	we	allow	ourselves	root	access	for	the	purpose	of	this	example,
in	any	other	circumstances	you	would	either	ensure	that	Jenkins	could	handle	the	given	tmp

directory	as	a	non-privileged	user,	or	if	you	would	absolutely	have	to	use	sudo	and	then	limit	the
commands	and	command	line	arguments	that	can	be	used.

Summary
In	this	chapter	we	looked	at	a	way	of	centralizing	our	logs	with	Logstash	and	Elasticsearch	then
browsing	them	in	Kibana.	We	configured	a	metrics	collection	and	visualization	with	the	help	of
Prometheus,	Telegraf	and	Grafana.	Finally,	we	added	monitoring	via	Prometheus	and	self-
remediation	using	Jenkins.

The	next	chapter	takes	us	into	the	area	of	optimization.	We	shall	discuss	cost	considerations	and
approaches	to	demand-based	scaling.

Chapter	8.	Optimize	for	Scale	and	Cost
On	the	subject	of	optimization,	we	shall	start	from	the	top,	that	is	to	say	the	earliest	stage:	the
design	stage.

Imagine	iterating	over	your	architecture	plan	time	and	time	again,	until	you	have	convinced
yourself	and	your	colleagues	that	this	is	the	best	you	can	do	with	the	information	available	at	that
time.	Now	imagine	that,	unless	you	have	a	very	unusual	use	case,	other	people	have	already	done
similar	iterations	and	have	kindly	shared	the	outcome.

Back	to	reality	and	fortunately,	we	were	not	far	off.	There	is	indeed	a	collective	AWS	knowledge
base	in	the	form	of	blog	posts,	case	studies,	and	white	papers	available	to	anybody	embarking	on
their	first	cloud	deployment.

We	are	going	to	take	a	distilled	sample	of	that	knowledge	base	and	apply	it	to	a	common
architecture	example,	in	an	attempt	to	achieve	maximum	scalability,	whilst	remaining	cost
efficient.

The	example	is	going	to	be	one	of	a	typical	frontend	(NGINX	nodes),	backend	(DB	cluster)	and	a
storage	layer	deployment	within	a	VPC:

Whilst,	technically,	our	whole	deployment	is	on	the	Internet,	the	visual	segregation	above	is	to
emphasize	the	network	isolation	properties	of	a	VPC.

Architectural	considerations
Let	us	now	examine	this	deployment	one	component	at	a	time,	starting	with	the	VPC	itself.

The	VPC
I	am	proceeding	under	the	assumption	that	if	you	are	still	holding	this	book,	you	have	likely
accepted	the	way	of	the	VPC.

CIDR

How	many	VPCs	are	you	foreseeing	having?	Would	they	be	linked	(VPC	peering)	or	would	you
be	bridging	other	networks	in	(VPN)?

The	answers	to	these	questions	play	a	role	when	choosing	the	CIDR	for	a	VPC.	As	a	general	rule
it	is	recommended	to	avoid	common	(household	router)	network	addresses	such	as	192.168.1.0
or	10.0.0.0.

Keep	track	of	and	assign	different	CIDRs	if	you	have	more	than	one	VPC,	even	if	you	don't	have
an	immediate	need	to	peer	them.

Consider	a	CIDR	that	will	allow	for	large	enough	subnets	to	accommodate	potential	instance
scaling	with	minimal	fragmentation	(number	of	subnets).

Subnets	and	Availability	Zones

Availability	Zones	(AZs)	are	how	we	add	resilience	to	a	deployment,	so	we	should	have	at	least
two	of	those.	There	might	be	configurations	in	which	you	have	to	use	three,	for	example	where	a
cluster	quorum	is	needed,	such	as	ZooKeeper.	In	that	case,	it	is	advisable	to	keep	quorum
members	in	separate	zones	in	order	to	handle	network	partitions	better.	To	accommodate	this	and
to	keep	charges	low,	we	could	create	subnets	in	three	zones,	deploy	quorum	clusters	in	all	three,
and	other	components	(say	NGINX	hosts)	in	only	two	of	those.

Let	us	illustrate	an	example	where	we	have	a	Zookeeper	and	a	web	server	(NGINX)	component
within	our	VPC.	We	have	decided	to	use	three	AZs	and	maintain	two	sets	of	subnets:	public	and
private.	The	former	routing	through	the	IGW,	the	latter	via	NAT:

Here	we	have	the	ELB	spanning	across	all	three	AZs	and	public	subnets	respectively.	In	the
private	subnet	space,	we	find	two	web	servers	plus	our	cluster	of	three	ZooKeeper	nodes	giving
us	a	good	balance	of	resilience	at	optimal	cost.

VPC	limits

AWS	enforces	certain	initial	limits	on	every	account,	which	might	catch	you	by	surprise	when
your	environment	starts	scaling	up.	Important	ones	to	check	are:	Instances,	EBS	and	Networking
limits	found	on	the	EC2	dashboard:

When	requesting	an	increase,	select	a	number	that	is	high	enough	to	provide	a	buffer	for	scaling,
but	not	inadequately	high	as	after	all	the	limits	are	there	to	protect	against	accidental/erroneous
overprovisioning.

The	frontend	layer
With	the	subnets	in	place,	we	can	start	thinking	about	our	VPC	inhabitants.

The	frontend	or	application	layer	consists	of	our	Auto	Scaling	Groups	and	the	first	decision	that
we'll	face	would	be	that	of	an	EC2	instance	type.

The	profile	of	the	frontend	application	would	very	much	dictate	the	choice	between	a	memory,
compute	or	a	storage	optimized	instance.	With	some	help	from	fellow	developers	(in	the	case	of
an	in-house	application)	and	a	suitable	performance	testing	tool	(or	service)	you	should	be	able
to	ascertain	which	system	resource	does	the	given	application	make	most	use	of.

Let	us	assume	we	have	picked	the	C4	Compute	Optimized	instance	class	which	AWS	suggests
for	webservers.	The	next	question	will	be	-	what	size?

Well,	one	way	to	guess	our	way	through,	is	to	take	the	average	number	of	requests	per	second	that
we	would	like	to	be	able	to	support,	deploy	the	minimum	number	of	instances	we	can	afford	(two
for	resilience)	of	the	smallest	size	available	in	the	chosen	class	and	run	a	load	test	against	them.
Ideally	the	average	utilization	across	the	two	nodes	would	remain	under	50%	to	allow	for	traffic
spikes	and	events	of	failure	where	the	remaining	host	takes	all	the	load.	If	the	results	are	far
below	that	mark,	then	we	should	look	for	a	different	class	with	smaller	instance	types	for	better
value.	Otherwise	we	keep	increasing	the	C4	size.

Next	comes	the	question	of	Auto	Scaling.	We	have	the	right	class	and	instance	size	to	work	with,
and	now	we	need	scaling	thresholds.	Firstly,	if	you	are	fortunate	enough	to	have	predicable	loads,
then	your	problems	end	here	with	the	use	of	Scheduled	Actions:

You	can	simply	tell	AWS	scale	me	up	at	X	o'clock	then	back	down	at	Y.	The	rest	of	us,	we	have	to
set	alarms	and	thresholds.

We've	already	decided	that	a	50%	average	utilization	(let	us	say	CPU)	is	our	upper	limit	and	by
that	time	we	should	already	have	scaling	in	progress.	Otherwise,	if	one	of	our	two	nodes	fails,	at
that	rate	the	other	one	will	have	to	work	at	maximum	capacity.	As	an	example	a	CloudWatch
alarm	could	be	>40%	average	CPU	used	for	five	minutes,	triggering	an	Auto	Scaling	Group
action	to	increase	the	group	size	by	50%	(which	is	one	instance).

Tip

In	order	to	prevent	unnecessary	scaling	events,	it	is	important	to	adjust	the	value	of	the	Cooldown
period.	It	should	reflect	the	expected	time	a	newly	launched	instance	will	take	to	become	fully
operational	and	start	affecting	the	CloudWatch	metric.

For	even	finer	control	over	how	Auto	Scaling	reacts	to	the	alarm	we	could	use	Step	Scaling	(ref:
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scale-based-on-demand.html).	Step
Adjustments	allow	for	a	varied	response	based	on	the	severity	of	the	threshold	breach.	For
example,	if	the	load	increases	from	40%	to	50%,	then	scale	up	with	only	a	single	instance,	but	if
the	hop	is	from	40%	to	70%,	go	straight	to	two	or	more.

Tip

With	Step	Scaling	the	Cooldown	period	is	set	via	the	Instance	Warmup	option.

http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scale-based-on-demand.html

While	we	aim	to	scale	up	relatively	quickly	to	prevent	any	service	disruption,	scaling	down
should	be	timely	to	save	hourly	charges,	but	not	premature	which	could	cause	a	scaling	loop.

The	CloudWatch	alarm	for	scaling	down	should	act	over	a	much	longer	period	of	time	than	the
five	minutes	we	observed	earlier.	Also	the	gap	between	the	threshold	for	scaling	up	and	the	one
for	scaling	down	should	be	wide	enough	not	to	have	instances	launch,	only	to	be	terminated
shortly	after.

EC2	Instance	utilization	is	just	one	example	of	a	trigger;	it	is	also	worth	considering	ELB	metrics
such	as	sum	of	total	request,	non-2XX	responses	or	response	latency.	If	you	choose	to	use	any	of
those,	ensure	that	your	scale	down	alarms	react	to	the	INSUFFICIENT_DATA	state	which	is
observed	during	periods	of	no	traffic	(perhaps	late	at	night).

The	backend	layer
Behind	the	application	we	are	likely	to	find	a	database	cluster	of	some	sort.	For	this	example,	we
have	chosen	RDS	(MySQL/PostgreSQL).	However,	the	scaling	and	resilience	ideas	can	be	easily
translated	to	suit	a	custom	DB	cluster	on	EC2	instances.

Starting	with	high-availability,	in	terms	of	RDS,	the	feature	is	called	a	Multi-AZ	deployment.
This	gives	us	a	Primary	RDS	instance	with	a	hot	STANDBY	replica	as	a	failover	solution.
Unfortunately,	the	Standby	cannot	be	used	for	anything	else,	that	is	to	say	we	cannot	have	it,	for
example,	serving	read-only	queries.

A	Multi-AZ	setup	within	our	VPC	would	look	like	this:

In	the	case	of	a	PRIMARY	outage,	RDS	automatically	fails	over	to	the	STANDBY,	updating
relevant	DNS	records	in	the	process.	According	to	the	documentation,	a	typical	failover	takes	one
to	two	minutes.

The	triggers	include	the	Primary	becoming	unavailable	(thus	failing	AWS	health-checks),	a
complete	AZ	outage,	or	a	user	interruption	such	as	an	RDS	instance	reboot.

So	far,	with	Multi-AZ	we	have	a	reasonably	resilient,	but	perhaps	not	very	scalable	setup.	In	a
busy	environment	it	is	common	to	dedicate	a	primary	DB	node	for	writes,	while	reading	is	done
off	of	replicas.	The	inexpensive	option	would	be	to	add	a	single	replica	to	our	current
arrangement:

Here	we	write	to	PRIMARY	and	read	from	REPLICA,	or	for	read-intensive	applications	reads
can	go	to	both.

If	our	budget	allows,	we	can	take	this	a	step	further	and	provide	a	REPLICA	in	both	subnets	in
which	we	deploy	frontend/application	nodes:

Latency	across	AWS	zones	is	already	pretty	low,	but	with	such	a	per-zone	RDS	distribution,	we
reduce	it	even	further.	All	hosts	would	write	to	the	PRIMARY.	However	they	can	assign	a	higher
priority	to	their	local	(same	zone)	REPLICA	when	reading.

And	since	we	are	on	a	spending	spree,	additional	RDS	performance	boost	can	be	gained	with
provisioned	IOPS.	This	is	something	to	consider	if	you	are	running	a	heavy	workload	and	in	need
of	high	RDS	Storage	I/O.

Although	indirectly,	caching	is	another	very	effective	way	to	increase	RDS	scalability	by
alleviating	the	load.

Popular	software	choices	here	are	Memcached	and	Redis.	Either	is	simple	to	setup	locally	(on
each	application	host).	If	you	would	like	to	benefit	from	a	shared	cache	then	you	could	run	a
cluster	on	EC2	or	use	the	AWS	managed	ElastiCache	service.	With	the	latter,	we	can	have	again	a
Multi-AZ	configuration	plus	multiple	replicas	for	resilience	and	low-latency:

You	will	notice	that	the	failover	scenario	differs	from	RDS	in	that	there	is	no	standby	instance.	In
the	event	of	a	PRIMARY	failure	ELASTICACHE	promotes	the	most	up-to-date	REPLICA
instead.

Tip

Note	that	after	the	promotion	the	PRIMARY	endpoint	remains	the	same,	however	the	promoted
Replica's	address	changes.

The	object	storage	layer
In	the	effort	of	achieving	effortless	scalability,	we	must	put	emphasis	on	building	stateless
applications	where	possible.	Not	keeping	state	on	our	application	nodes	would	mean	storing	any
valuable	data	away	from	them.	A	classic	example	is	WordPress,	where	user	uploads	are	usually
kept	locally,	making	it	difficult	to	scale	such	a	setup	horizontally.

While	it	is	possible	to	have	a	shared	file	system	across	your	EC2	instances	using	Elastic	File
System	(EFS),	for	reliability	and	scalability	we	are	much	better	off	using	an	object	storage
solution	such	as	AWS	S3.

It	is	fair	to	say	that	accessing	S3	objects	is	not	as	trivial	as	working	with	an	EFS	volume,
however	the	AWS	tools	and	SDKs	lower	the	barrier	considerably.	For	easy	experimenting,	you
could	start	with	the	S3	CLI.	Eventually	you	would	want	to	build	S3	capabilities	into	your
application	using	one	of	the	following:

Java/.NET/PHP/Python/Ruby	or	other	SDKs	(ref:	https://aws.amazon.com/tools/)
REST	API	(ref:	http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAPI.html)

In	previous	chapters	we	examined	IAM	Roles	as	a	convenient	way	of	granting	S3	bucket	access
to	EC2	instances.	We	can	also	enhance	the	connectivity	between	those	instances	and	S3	using
VPC	Endpoints:

	

A	VPC	endpoint	enables	you	to	create	a	private	connection	between	your	VPC	and	another
AWS	service	without	requiring	access	over	the	Internet,	through	a	NAT	device,	a	VPN
connection,	or	AWS	Direct	Connect.	Endpoints	are	virtual	devices.	They	are	horizontally
scaled,	redundant,	and	highly	available	VPC	components	that	allow	communication
between	instances	in	your	VPC	and	AWS	services	without	imposing	availability	risks	or
bandwidth	constraints	on	your	network	traffic.

	

	 --http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html

If	you	have	clients	in	a	different	geographic	location	uploading	content	to	your	bucket,	then	S3
transfer	acceleration	(ref:	http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-
acceleration.html)	can	be	used	to	improve	their	experience.	It	is	simply	a	matter	of	clicking
Enable	on	the	bucket's	settings	page:

https://aws.amazon.com/tools/
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAPI.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html

We	have	now	covered	speed	improvements;	scalability	comes	built	into	the	S3	service	itself	and
for	cost	optimization	we	have	the	different	storage	classes.

S3	currently	supports	four	types	(classes)	of	storage.	The	most	expensive	and	most	durable	being
the	Standard	class,	which	is	also	the	default.	This	is	followed	by	the	Infrequent	Access	class
(Standard_IA)	which	is	cheaper,	however	keep	in	mind	that	it	is	indeed	intended	for	rarely
accessed	objects	otherwise	the	associated	retrieval	cost	would	be	prohibitive.	Next	is	the
Reduced	Redundancy	class	which,	despite	the	scary	name,	is	still	pretty	durable	at	99.99%.	And
lastly,	comes	the	Glacier	storage	class	which	is	akin	to	a	tape	backup	in	that	objects	are
archived	and	there	is	a	3-5	hour	retrieval	time	(with	1-5	minute	urgent	retrievals	available	at	a
higher	cost).

You	can	specify	the	storage	class	(except	for	Glacier)	of	an	object	at	time	of	upload	or	change	it
retrospectively	using	the	AWS	console,	CLI	or	SDK.	Archiving	to	Glacier	is	done	using	a	bucket
lifecycle	policy	(bucket's	settings	page):

We	need	to	add	a	new	rule,	describing	the	conditions	under	which	an	object	gets	archived:

Incidentally,	Lifecycle	rules	can	also	help	you	clean	up	old	files.

The	load	balancing	layer
The	days	of	the	Wild	Wild	West	when	one	used	to	setup	web	servers	with	public	IPs	and	DNS
round-robin	have	faded	away	and	the	load	balancer	has	taken	over.

We	are	going	to	look	at	the	AWS	ELB	service,	but	this	is	certainly	not	the	only	available	option.
As	a	matter	of	fact,	if	your	use	case	is	highly	sensitive	to	latency	or	you	observe	frequent,	short
lived	traffic	surges	then	you	might	want	to	consider	rolling	your	own	EC2	fleet	of	load	balancing
nodes	using	NGINX	or	HAProxy.

The	ELB	service	is	priced	at	a	flat	per-hour	fee	plus	bandwidth	charges,	so	perhaps	not	much	we
can	do	to	reduce	costs,	but	we	can	explore	ways	of	boosting	performance.

Cross-zone	load	balancing
Under	normal	conditions,	a	Classic	ELB	would	deploy	its	nodes	within	the	zones	which	our
backend	(application)	instances	occupy	and	forward	traffic	according	to	those	zones.	That	is	to
say,	the	ELB	node	in	zone	A	will	talk	to	the	backend	instance	in	the	same	zone,	and	the	same
principle	applies	for	zone	B:

This	is	sensible	as	it	clearly	ensures	lowest	latency,	but	there	are	a	couple	of	things	to	note:

An	equal	number	of	backend	nodes	should	be	maintained	in	each	zone	for	best	load	spread
Clients	caching	the	IP	address	for	an	ELB	node	would	stick	to	the	respective	backend
instance

To	improve	the	situation	at	the	expense	of	some	(minimal)	added	latency,	we	can	enable	Cross-
Zone	Load	Balancing	in	the	Classic	ELB's	properties:

This	will	change	the	traffic	distribution	policy,	so	that	requests	to	a	given	ELB	node	will	be
evenly	spread	across	all	registered	(status:	InService)	backend	instances,	changing	our	earlier
diagram	to	this:

An	unequal	number	of	backend	nodes	per	zone	would	no	longer	have	an	impact	on	load
balancing,	nor	would	external	parties	targeting	a	single	ELB	instance.

ELB	pre-warming
An	important	aspect	of	the	ELB	service	is	that	it	runs	across	a	cluster	of	EC2	instances	of	a	given
type,	very	much	like	our	backend	nodes.	With	that	in	mind,	it	should	not	come	as	a	surprise	that
ELB	scales	based	on	demand,	again	much	like	our	Auto	Scaling	Group	does.

This	is	all	very	well	when	incoming	traffic	fluctuates	within	certain	boundaries,	so	that	it	can	be
absorbed	by	the	ELB	or	increases	gradually,	allowing	enough	time	for	the	ELB	to	scale	and
accommodate.	However,	sharp	surges	can	result	in	ELB	dropping	connections	if	large	enough.

This	can	be	prevented	with	a	technique	called	pre-warming	or	essentially	scaling	up	an	ELB
ahead	of	anticipated	traffic	spikes.	Currently	this	is	not	something	that	can	be	done	at	the	user	end,
meaning	you	would	need	to	contact	AWS	Support	with	an	ELB	pre-warming	request.

The	CDN	layer
CloudFront	or	AWS's	CDN	solution	is	yet	another	method	of	improving	the	performance	of	the
ELB	and	S3	services.	If	you	are	not	familiar	with	CDN	networks,	those,	generally	speaking,
provide	faster	access	to	any	clients	you	might	have	in	a	different	geographic	location	from	your
deployment	location.	In	addition,	a	CDN	would	also	cache	data	so	that	subsequent	requests	won't
even	reach	your	server	(also	called	origin)	greatly	reducing	load.

So,	given	our	VPC	deployment	in	the	US,	if	we	were	to	setup	a	CloudFront	distribution	in	front
of	our	ELB	and/or	S3	bucket,	then	requests	from	clients	originating	in	say	Europe	would	be
routed	to	the	nearest	European	CloudFront	Point-of-Presence	which	in	turn	would	either	serve	a
cached	response	or	fetch	the	requested	data	from	the	ELB/S3	over	a	high-speed,	internal	AWS
network.

To	setup	a	basic	web	distribution	we	can	use	the	CloudFront	dashboard:

Once	we	Get	Started	then	the	second	page	presents	the	distribution	properties:

Conveniently,	resources	within	the	same	AWS	account	are	suggested.	The	origin	is	the	source	of
data	that	CloudFront	needs	to	talk	to,	for	example	the	ELB	sitting	in	front	of	our	application.	In	the
Alternate	Domain	Names	field	we	would	enter	our	website	address	(say	www.example.org),
the	rest	of	the	settings	can	remain	with	their	defaults	for	now.

After	the	distribution	becomes	active	all	that	is	left	to	do	is	to	update	the	DNS	record	for
www.example.org	currently	pointing	at	the	ELB	to	point	to	the	distribution	address	instead.

Spot	instances
Our	last	point	is	on	making	further	EC2	cost	savings	using	Spot	instances.	These	represent	unused
resources	across	the	EC2	platform,	which	users	can	bid	on	at	any	given	time.	Once	a	user	has
placed	a	winning	bid	and	has	been	allocated	the	EC2	instance,	it	remains	theirs	for	as	long	as	the
current	Spot	price	stays	below	their	bid,	else	it	gets	terminated	(a	notice	is	served	via	the
instance	meta-data,	ref:	http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-
interruptions.html).

These	conditions	make	Spot	instances	ideal	for	workflows,	where	the	job	start	time	is	flexible
and	any	tasks	can	be	safely	resumed	in	case	of	instance	termination.	For	example,	one	can	run
short-lived	Jenkins	jobs	on	Spot	instances	(there	is	even	a	plugin	for	this)	or	use	it	to	run	a
workflow	which	performs	a	series	of	small	tasks	that	save	state	regularly	to	S3/RDS.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html

AWS	Calculators
Lastly,	a	simple	yet	helpful	tool	to	give	you	an	idea	of	how	much	your	planned	deployment	would
cost:	http://calculator.s3.amazonaws.com/index.html	(remember	to	untick	the	FREE	USAGE
TIER	near	the	top	of	the	page)

And	if	you	were	trying	to	compare	the	cost	of	on-premise	to	cloud,	then	this	might	be	of	interest:
https://aws.amazon.com/tco-calculator/.

http://calculator.s3.amazonaws.com/index.html
https://aws.amazon.com/tco-calculator/

Summary
In	this	chapter	we	examined	different	ways	in	which	to	optimize	both	the	scalability	and	running
costs	of	an	AWS	deployment.

We	started	with	the	underlying	VPC	and	its	core	properties	such	as	the	CIDR,	subnets	and	how	to
plan	for	growth.	We	covered	methods	of	improving	the	performance	of	the	frontend,	backend,
storage	and	load	balancing	components.	Then	we	looked	at	AWS	Spot	instances	as	a	very	cost
efficient	solution	for	executing	lower-priority,	batch	processing	jobs.

In	the	next	chapter	we	move	into	the	realm	of	security	and	explore	the	topic	of	how	to	better
harden	an	AWS	environment.

Chapter	9.		Secure	Your	AWS	Environment
Security	is	unsurprisingly	a	very	hot	topic	in	The	Cloud	Computing	-	should	you	be	doing	it?
debate.

On	one	side	we	have	the	my-hardware-is-my-castle	group	of	people,	who	find	it	deeply	unnatural
to	even	think	of	delegating	your	compute	environment	to	some	abstract	entity	that	assures	you	that
you	own	the	capacity	of	X	number	of	machines	at	any	given	time,	but	which	you	cannot	see	or
touch.	Not	to	mention	the	question	of	your	data.

On	the	other,	we	find	the	people	who	do	not	really	mind	the	mystical	concept	of	the	cloud	at	all.
Their	main	interest	is	in	having	instant	access	to	somewhat	unlimited	amount	of	compute
resources	at	a	reasonable	cost.	Unfortunately,	they	might	occasionally	concentrate	too	much	on
getting	a	job	done	quickly,	ignoring	some	valid,	healthy	concerns	that	the	former	group	puts
forward.

Then	there	is	the	middle	ground	-	those	of	us	who	recognize	the	sacrifices	one	has	to	accept	when
moving	to	the	cloud	as	well	as	the	various	solutions	to	make	up	for	those.	That	is	to	say,	with
well-designed	applications	plus	carefully	planned-out	architecture,	your	environment	can	remain
adequately	secure	regardless	of	the	underlying	type	of	hosting	platform.

We	are	going	to	examine	a	few	of	these	solutions	and	practices	in	attempt	to	make	our	AWS
environment	more	secure.

We	shall	cover:

Managing	access	using	IAM
VPC	security
EC2	security
Security	auditing

Let	us	begin.

Managing	access	using	IAM
AWS	Identity	and	Access	Management	(IAM)	is	a	web	service	that	helps	you	securely
control	access	to	AWS	resources	for	your	users.	You	use	IAM	to	control	who	can	use	your
AWS	resources	(authentication)	and	what	resources	they	can	use	and	in	what	ways
(authorization).

ref:	http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

We	will	be	using	IAM	for	managing	access	(be	it	user	or	application)	to	services	under	our	AWS
account.

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Securing	the	root	account
When	a	new	AWS	account	is	opened,	it	comes	with	a	single	user	(the	account	owner)	also
referred	to	as	the	root	login.	This	almighty	user	has	all	the	powers,	including	the	option	of
terminating	the	AWS	account.	For	this	reason,	it	is	often	advised	that	the	root	login	is	only	used
for	high-level	account	management	purposes	while	any	day-to-day	operations	are	done	via	IAM
user	accounts.

We	shall	follow	this	recommendation,	so	the	very	first	thing	we	do	after	registering	an	AWS
account	is	to	login	as	root,	disable	any	unnecessary	authentication	mechanisms	and	create
ourselves	a	lower-privileged	IAM	user	account.

Let	us	browse	to	the	AWS	Console	(ref:	https://console.aws.amazon.com/console/home):

Notice	the	small	print	underneath	the	Sign	In	button.	This	is	the	link	we	need	to	follow	in	order	to
access	the	root	account,	which	takes	us	to	a	slightly	different	login	page	as	shown	in	the	following
screenshot:

https://console.aws.amazon.com/console/home

Here,	use	your	main	Amazon	credentials;	you	should	see	the	familiar	Console	page.	click	on	the
name	in	the	top-right	corner:

Choosing	Security	Credentials	takes	us	to	our	root	account	security	options:

Enable	Multi-Factor	Authentication	(MFA);	there	really	isn't	a	good	reason	not	to.	You	could
purchase	a	hardware	token	device	or	simply	use	an	app	on	your	phone	such	as	the	Google
Authenticator.

Delete	the	keys	under	Access	Keys.	These	are	used	for	API	access,	which	you	are	very	likely	not
going	to	need	for	account	management	tasks.

Next,	click	on	the	Account	Settings	link	on	the	left,	to	update	the	current	password	policy.	With
the	various	password	management	tools	available	today,	choosing	a	complex	password	and
changing	it	often	is	no	longer	an	inconvenience,	so	go	crazy:

On	the	same	page,	we	can	disable	any	regions	we	are	not	going	to	be	using:

Now	we	proceed	to	create	the	IAM	accounts	for	daily	AWS	usage.	We	will	organize	our	users
into	groups.	We	start	with	a	user	in	a	group	which	has	administrator	privileges,	which	can	then	be
used	to	manage	almost	all	aspects	of	the	AWS	account.

On	the	left,	select	Groups	and	create	a	new	group,	granting	it	administrator	access.	Then	under
Users,	create	an	account	for	yourself	and	make	it	a	member	of	that	group.

During	the	user	creation	process	you	would	have	had	the	option	to	create	API	access	keys	(you
could	also	do	it	at	a	later	stage	too),	which	are	useful	if	you	are	planning	to	use	the	AWS	CLI	or
programmatic	access	in	general.	Once	created,	select	the	user	and	switch	to	the	Security
Credentials	tab:

Here	you	have	the	option	to	create	an	Access	Keys	pair,	if	you	did	not	do	so	earlier,	as	well	as
set	a	password	for	using	the	AWS	Console.	As	mentioned	earlier,	you	should	take	the	opportunity
to	enable	MFA	(to	take	this	a	step	further,	have	a	look	at
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-
require.html).	Also	if	you	are	planning	to	use	the	CodeCommit	service	over	SSH,	this	is	where
you	upload	your	public	key.

This	is	it,	from	now	on	you	can	login	to	the	AWS	Console	using	the	username	and	password	of	the
IAM	account	you	just	created,	keeping	the	root	for	special	occasions.

As	a	side	note	for	those	who	might	already	maintain	a	user	database	external	to	AWS,	there	are
ways	to	integrate	it	using	Federation.

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html

Note

For	more	details,	see	either	of	these	links:	https://aws.amazon.com/iam/details/manage-federation
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html

https://aws.amazon.com/iam/details/manage-federation
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html

VPC	security
If	you	have	deployed	your	resources	in	a	VPC,	you	are	already	moving	in	the	right	direction.	Here
we	are	mostly	going	to	concern	ourselves	with	network	security	and	the	tools	or	features	a	VPC
provides	for	enhancing	it.

Security	Groups
These	represent	our	first	layer	of	defense	as	stated	in	the	AWS	documentation.	Security	Groups
(SG)	get	assigned	to	EC2	instances	(generally	speaking)	and	provide	a	type	of	stateful	firewall,
which	supports	allow	rules	only.

They	are	very	flexible	and	an	EC	instance	can	have	multiple	such	groups	assigned	to	it.	The	rules
can	be	based	on	host	IP	addresses,	CIDRs	or	even	on	other	Security	Groups,	for	example,	allow
inbound	HTTP:80	from	group	ID	sg-12345.

Usually,	within	a	VPC	we	would	create	an	SG	per	role,	such	as	web	server,	db,	cache.	Instances
of	the	same	component	would	then	be	assigned	the	respective	SG,	thus	regulating	traffic	between
the	different	components	of	a	platform.

Tip

It	is	often	tempting	to	allow	traffic	based	on	the	VPC	CIDR	address,	resting	on	the	fact	that	the
VPC	is	largely	an	isolated	environment.	Resist	that	as	much	as	possible	and	limit	access	to
components	that	actually	need	it.

The	db	SG	should	allow	traffic	from/to	the	web	server	SG,	but	possibly	not	from	the	cache	one.

Network	ACLs
The	second	layer	comes	in	the	form	of	Network	ACLs.

The	ACLs	are	stateless,	they	apply	to	the	underlying	subnet	that	an	instance	lives	in	and	their	rules
are	evaluated	based	on	priority,	just	like	an	old	fashioned	firewall.	As	a	bonus,	you	can	also	set
deny	policies.

Tip

Network	ACLs	sit	at	the	edge	of	the	VPC,	hence	are	evaluated	before	traffic	reaches	any	Security
Groups.	This	feature	plus	the	ability	to	set	deny	rules	make	them	very	suitable	for	reacting	to
potential	DDOS	threats.

Overall,	both	types	of	traffic	management	have	their	place	in	our	VPC	security	design.	ACLs
should	store	a	set	of	broader,	less	frequently	changing	rules,	complemented	by	flexible	Security
Groups	for	fine-grained	control.

VPN	gateway
If	it	so	happens	that	you	are	using	a	VPC	as	an	extension	to	your	on-premise	infrastructure,	it
would	make	a	lot	of	sense	to	have	the	two	sides	more	tightly	connected.

Instead	of	restricting	external	access	via	Security	Groups	or	ACLs,	you	could	create	a	secure
VPN	channel,	benefiting	from	the	implied	encryption.

You	can	connect	your	VPC	to	your	office	network	using	either	a	hardware	or	a	software	VPN
solution	(ref:	http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html).

For	more	demanding	use-cases,	one	could	even	route	their	VPN	traffic	over	a	high-speed	direct
link	to	AWS	using	the	AWS	Direct	Connect	service	(ref:
http://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html).

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
http://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html

VPC	peering
In	a	similar	situation,	where	instead	of	your	office	network	you	have	another	VPC	which	needs	to
communicate	with	your,	let	us	call	it	primary	one,	you	could	use	VPC	peering:

A	VPC	peering	connection	is	a	networking	connection	between	two	VPCs	that	enables	you
to	route	traffic	between	them	using	private	IP	addresses.	Instances	in	either	VPC	can
communicate	with	each	other	as	if	they	are	within	the	same	network.	You	can	create	a
VPC	peering	connection	between	your	own	VPCs,	or	with	a	VPC	in	another	AWS	account
within	a	single	region.

AWS	uses	the	existing	infrastructure	of	a	VPC	to	create	a	VPC	peering	connection;	it	is
neither	a	gateway	nor	a	VPN	connection,	and	does	not	rely	on	a	separate	piece	of
physical	hardware.	There	is	no	single	point	of	failure	for	communication	or	a	bandwidth
bottleneck.

ref:	http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-
overview.html

Your	VPCs	will	be	able	to	communicate	directly	(within	the	same	region)	so	you	will	not	need	to
expose	any	services	that	do	not	explicitly	need	to	be	exposed.	In	addition,	you	can	conveniently
keep	using	private	addresses	for	communication.

http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-overview.html

EC2	security
Diving	deeper	into	our	VPC,	we	are	now	going	to	look	at	ways	to	enhance	the	security	around	our
EC2	instances.

IAM	Roles
IAM	EC2	Roles	are	the	recommended	way	to	grant	your	application	access	to	AWS	services.

As	an	example,	let	us	assume	we	had	a	web	app	running	on	our	web	server	EC2	instance	and	it
needs	to	be	able	to	upload	assets	to	S3.

A	quick	way	of	satisfying	that	requirement	would	be	to	create	a	set	of	IAM	access	keys	and
hardcode	those	into	the	application	or	its	configuration.	This	however	means	that	from	that
moment	on	it	might	not	be	very	easy	to	update	those	keys	unless	we	perform	an	app/config
deployment.	Furthermore,	we	might	for	one	reason	or	another	end	up	re-using	the	same	set	of	keys
with	other	applications.

The	security	implications	are	evident:	reusing	keys	increases	our	exposure	if	those	get
compromised	and	having	them	hardcoded	greatly	increases	our	reaction	time	(it	takes	more	effort
to	rotate	such	keys).

An	alternative	to	the	preceding	method	would	be	to	use	Roles.	We	would	create	an	EC2	Role,
grant	it	write	access	to	the	S3	bucket	and	assign	it	to	the	web	server	EC2	instance.	Once	the
instance	has	booted,	it	is	given	temporary	credentials	which	can	be	found	in	its	metadata	and
which	get	changed	at	regular	intervals.	We	can	now	instruct	our	web	app	to	retrieve	the	current
set	of	credentials	from	the	instance	metadata	and	use	those	to	carry	out	the	S3	operations.	If	we
were	to	use	the	AWS	CLI	on	that	instance,	we	would	notice	that	it	fetches	the	said	metadata
credentials	by	default.

Tip

Roles	can	be	associated	with	instances	only	at	launch	time,	so	it	is	a	good	habit	to	assign	one	to
all	your	hosts	even	if	they	do	not	need	it	right	away.

Roles	can	be	used	to	assume	other	roles,	making	it	possible	for	your	instances	to	temporarily
escalate	their	privileges	by	assuming	a	different	role	within	your	account	or	even	across	AWS
accounts	(ref:	http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html).

http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

SSH	access
The	most	common	way	to	interact	with	an	EC2	instance	would	be	over	SSH.	Here	are	a	couple	of
ideas	to	make	our	SSH	sessions	even	more	secure.

Individual	keys

When	a	vanilla	EC2	instance	is	launched	it	usually	has	a	set	of	PEM	keys	associated	with	it	to
allow	initial	SSH	access.	If	you	also	work	within	a	team,	my	recommendation	would	be	not	to
share	that	same	key	pair	with	your	colleagues.

Instead,	as	soon	as	you,	or	ideally	your	configuration	management	tool,	gain	access	to	the
instance,	individual	user	accounts	should	be	created	and	public	keys	uploaded	for	the	team
members	(plus	sudo	access	where	needed).	Then	the	default	ec2-user	account	(on	Amazon
Linux)	and	PEM	key	can	be	removed.

Entrypoint

Regardless	of	the	purpose	that	an	EC2	instance	serves,	it	is	rarely	the	case	that	you	must	have
direct	external	SSH	access	to	it.

Assigning	public	IP	addresses	and	opening	ports	on	EC2	instances	is	often	an	unnecessary
exposure	in	the	name	of	convenience	and	somewhat	contradicts	the	idea	of	using	a	VPC	in	the
first	place.

SSH	can	unarguably	be	useful	however.	So,	to	maintain	the	balance	between	the	forces,	one	could
setup	an	SSH	gateway	host	with	a	public	address.	You	would	then	restrict	access	to	it	to	your
home	and/or	office	network	and	permit	SSH	connections	from	that	host	towards	the	rest	of	the
VPC	estate.

The	chosen	node	becomes	the	administrative	entry	point	of	the	VPC.

ELBs	everywhere
Latency	is	of	importance.	You	will	find	brilliant	engineering	articles	online	from	expert	AWS
users	who	have	put	time	and	effort	into	benchmarking	ELB	performance	and	side-effects.

Perhaps	not	surprisingly	their	findings	show	that	there	is	a	given	latency	penalty	with	using	an
ELB,	as	opposed	to	serving	requests	directly	off	of	a	backend	web	server	farm.	The	other	side	to
this	however	is	the	fact	that	such	an	additional	layer,	be	it	an	ELB	or	a	cluster	of	custom	HAProxy
instances,	acts	as	a	shield	in	front	of	those	web	servers.

With	a	balancer	at	the	edge	of	the	VPC,	web	server	nodes	can	remain	within	the	private	subnet
which	is	not	a	small	advantage	if	you	can	afford	the	said	latency	trade-off.

HTTPS	by	default
Services	like	the	AWS	Certificate	Manager,	make	using	SSL/TLS	encryption	even	easier	and
more	affordable.	You	get	the	certificates	plus	automatic	renewals	for	free	(within	AWS).

Whether	traffic	between	an	ELB	and	the	backend	instances	within	a	VPC	should	be	encrypted	is
another	good	question,	but	for	now	please	do	add	a	certificate	to	your	ELBs	and	enforce	HTTPS
where	possible.

Encrypted	storage
Logically,	since	we	are	concerned	with	encrypting	our	HTTP	traffic,	we	should	not	ignore	our
data	at	rest.

The	most	common	type	of	storage	on	AWS	must	be	the	EBS	volume	with	S3	right	behind	it.	Each
of	the	two	services	supports	a	strong	and	effortless	implementation	of	encryption.

EBS	volumes

First,	it	should	be	noted	that	not	all	EC2	instance	types	support	encrypted	volumes.	Before	going
any	further,	please	consult	this	table:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_supported_instances

Also,	let	us	see	what	does	get	encrypted	and	how:

When	you	create	an	encrypted	EBS	volume	and	attach	it	to	a	supported	instance	type,	the
following	types	of	data	are	encrypted:

-	Data	at	rest	inside	the	volume

-	All	data	moving	between	the	volume	and	the	instance

-	All	snapshots	created	from	the	volume

The	encryption	occurs	on	the	servers	that	host	EC2	instances,	providing	encryption	of
data-in-transit	from	EC2	instances	to	EBS	storage.

ref:	http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

Note	that	the	data	gets	encrypted	on	the	servers	that	host	EC2	instances,	that	is	to	say	the
hypervisors.

Naturally,	if	you	wanted	to	go	the	extra	mile	you	could	manage	your	own	encryption	on	the
instance	itself.	Otherwise,	you	can	be	reasonably	at	peace	knowing	that	each	volume	gets
encrypted	with	an	individual	key	which	is	in	turn	encrypted	by	a	master	key	associated	with	the
given	AWS	account.

In	terms	of	key	management,	AWS	recommends	that	you	create	a	custom	key	to	replace	the	one
which	gets	generated	for	you	by	default.	Let	us	create	a	key	and	put	it	to	use.

On	the	IAM	dashboard,	select	Encryption	Keys	on	the	left:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_supported_instances
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

Choose	to	Create	Key	and	fill	in	the	details:

Then	you	can	define	who	can	manage	the	key:

As	well	as	who	can	use	it:

And	the	result	should	be	visible	back	on	that	dashboard	among	the	list	of	keys:

Now	if	you	were	to	switch	to	the	EC2	Console	and	choose	to	create	a	new	EBS	volume,	the
custom	encryption	key	should	be	available	as	an	option:

You	can	now	proceed	to	attach	the	new	encrypted	volume	to	an	EC2	instance	as	per	the	usual
process.

S3	objects

S3	allows	the	encryption	of	all,	or	a	selection	of	objects	within	a	bucket	with	the	same	AES-256
algorithm	as	EBS	here.

A	few	methods	of	key	management	are	available	(ref:
http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html):

You	can	import	your	own,	external	set	of	keys
You	can	use	the	KMS	service	to	generate	custom	keys	within	AWS
You	can	use	the	S3	service	default	(unique)	key

Encrypting	existing	data	can	be	done	on	the	folder	level:

or	by	selecting	individual	files:

New	data	is	encrypted	on	demand	by	either	specifying	a	header	(x-amz-server-side-
encryption)	in	the	PUT	request	or	by	passing	any	of	the	--sse	options	if	using	the	AWS	S3	CLI.

http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

It	is	also	possible	to	deny	any	upload	attempts	which	do	not	specify	encryption	by	using	a	bucket
policy	(ref:	http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html).

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html

OS	updates
If	you	follow	any	security	bulletins,	you	would	have	noticed	the	frequency	with	which	new
security	flaws	are	being	published.	So,	it	is	probably	not	much	of	an	exaggeration	to	state	that	OS
packages	become	obsolete	days	if	not	hours	after	a	fully	up-to-date	EC2	instance	has	been
provisioned.	And	unless	the	latest	vulnerability	is	affecting	BASH	or	OpenSSL,	we	tend	to	take
comfort	in	the	fact	that	most	of	our	hosts	reside	within	an	isolated	environment	(such	as	a	VPC),
postponing	updates	over	and	over	again.

I	believe	we	all	agree	this	is	a	scary	practice,	which	likely	exists	due	to	the	anxiety	that
accompanies	the	thought	of	updating	live,	production	systems.	There	is	also	a	legitimate	degree	of
complication	brought	about	by	services	such	as	Auto	Scaling,	but	this	can	be	turned	to	an
advantage.	Let	us	see	how.

We'll	separate	a	typical	EC2	deployment	into	two	groups	of	instances:	static(non-autoscaled)
and	autoscaled.	Our	task	is	to	deploy	the	latest	OS	updates	to	both.

In	the	case	of	static	instances,	where	scaling	is	not	an	option	due	to	some	application	specific	or
other	type	of	limitation,	we	will	have	to	resort	to	the	well-known	approach	of	first	testing	the
updates	in	a	completely	separate	environment	then	updating	our	static	production	hosts	(usually
one	at	a	time).

With	Auto	Scaling	however,	OS	patching	can	be	a	much	more	pleasant	experience.	You	will
recall	Packer	and	Serverspec	from	previous	chapters,	where	we	used	these	tools	to	produce	and
test	AMIs.	A	similar	Jenkins	pipeline	can	also	be	used	for	performing	OS	updates:

1.	 Launch	the	source	AMI.
2.	 Perform	a	package	update.
3.	 Run	tests.
4.	 Package	a	new	AMI.
5.	 Proceed	with	a	phased	deployment	in	production.

To	be	comfortable	with	this	process,	we	certainly	need	to	put	a	decent	amount	of	effort	into
ensuring	that	tests,	deployment	and	rollback	procedures	are	as	reliable	as	practically	possible,
but	then	the	end	justifies	the	means.

Security	auditing
AWS	offers	some	good	tools	to	help	you	keep	your	security	policies	in	shape.	Those	will	provide
you	with	detailed	audit	reports	including	advice	on	how	to	improve	any	potential	risk	areas.	In
addition,	you	can	configure	service	logs,	so	you	get	a	better	understanding	what	goes	on	within
your	deployment	or	AWS	account	as	a	whole.

VPC	Flow	Logs
This	service	lets	you	capture	information	about	the	network	traffic	flowing	through	a	VPC.	The
generated	logs	(unfortunately	not	quite	real-time	yet)	contain	src/dst	port,	src/dst	address,
protocol	and	other	related	details	(for	a	full	list	please	see:
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records).
Apart	from	making	for	some	pretty	cool	graphs	to	help	identify	network	bottlenecks,	the	data	can
also	be	used	for	spotting	unusual	behavior.	You	could,	for	example,	devise	an	in-house	IDS	by
parsing	the	Flow	Logs	and	forwarding	any	suspicious	entries	to	your	monitoring	solution.

In	the	VPC	Console,	select	a	VPC	and	switch	to	the	Flow	Logs	tab:

Click	on	Create	Flow	Log:	you	will	need	to	fill	a	few	parameters	such	as	the	IAM	Role	to	be
used	(click	on	Set	Up	Permissions	to	create	one)	and	the	desired	name	of	the	Destination	Log
Group.

In	a	few	minutes,	the	said	log	group	should	appear	under	the	Logs	section	in	the	CloudWatch
dashboard:

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records

Within	that	group,	you	will	find	a	log	stream	per	EC2	instance	(per	network	interface	to	be	more
precise)	containing	the	captured	traffic	details.

CloudTrail
The	CloudTrail	service	is	used	for	recording	API	activity	within	an	AWS	account.	This	includes
requests	done	via	the	AWS	Console,	the	CLI,	the	SDK	or	other	services	which	issue	calls	on	your
behalf.	The	trail	can	be	helpful	for	both	security	auditing	and	troubleshooting.	Collected	data	is
stored	in	S3	as	encrypted	objects,	along	with	signed	hashes	to	help	ensure	no	tampering	has
occurred.

To	enable	the	service,	we	go	to	the	CloudTrail	dashboard	looking	for	a	Get	Started	or	an	Add
new	trail	button:

We	have	chosen	to	collect	data	from	all	regions,	storing	it	in	a	new	S3	bucket	with	validation
turned	on.	It	is	also	possible	to	receive	notifications	on	each	log	delivery,	which	can	be	useful	for
any	further	processing	jobs.

Back	on	the	dashboard,	we	click	on	the	new	trail	to	review	its	settings:

We	enable	encryption,	then	enter	a	name	for	the	new	KMS	key.	After	approximately	15	minutes,
we	should	see	events	appearing	under	the	API	activity	history	dashboard	tab:

Expanding	any	of	these	entries	would	provide	additional	information	such	as	the	access_key
used	for	the	given	API	call	and	source	IP.

In	the	S3	bucket	we	would	find	two	subfolders:	CloudTrail	which	holds	the	API	logs	and
CloudTrail-Digest	for	the	file	hashes.

Trusted	Advisor
The	Advisor	is	enabled	by	default	and	periodically	reviews	your	AWS	account	in	order	to
identify	any	risk	or	areas	of	improvement.

It	provides	insights	about	cost,	performance,	security	and	HA	as	seen	on	the	dashboard:

We	are	mainly	interested	in	the	security	tips	at	this	time:

Things	appear	to	be	green,	following	the	steps	we	took	to	secure	the	root	account	earlier	in	the
chapter.

In	addition	to	this	view,	weekly	e-mail	reports	can	be	configured	under	the	Preferences	tab.

AWS	Config
With	Config	we	can	track,	inspect,	and	alert	on	resource	changes	that	have	occurred	within	our
deployment.

When	first	enabled,	the	service	performs	an	inventory	of	the	resources	found	within	the	region
and	starts	recording	any	changes.

Once	a	resource	change	is	detected,	for	example	a	new	rule	is	added	to	a	security	group,	Config
allows	us	to	view	a	timeline	with	details	about	the	current	and	any	previous	changes	to	that
resource.

Another	powerful	feature	is	change	inspection.	Within	Config	we	can	define	a	set	of	rules	to	be
evaluated	against	each	resource	change	and	alerts	generated	where	necessary.

Let	us	try	both	use-cases.

Click	on	Get	Started	on	the	Config	dashboard,	then	choose	a	Bucket	name	and	a	Role	name:

One	the	next	page	we	can	choose	a	few	rules	to	get	us	started:

We	have	chosen	to	monitor	CloudTrail,	EBS	volumes	and	MFA	settings.	Finalize	the	setup	and	go
back	to	the	Rules	tab	in	the	dashboard	where	we	can	add	some	more.

Note

Please	note	that	at	the	time	of	writing,	there	is	a	cost	of	$2	per	active	rule	per	month.

Click	on	Add	rule	and	look	for	the	restricted-ssh	rule	which	will	monitor	security	groups	for
open	SSH	access.	With	the	new	rule	in	place,	we	can	make	a	few	resource	changes	and	see	how
Config	reacts	to	these.	As	an	example,	disable	CloudTrail	and	create	a	temporary	security	group
which	allows	incoming	SSH	from	anywhere.

After	a	short	while	we	can	see	the	effect	on	the	AWS	Config	dashboard:

We	can	click	on	the	restricted-ssh	entry	for	more	details.	Locate	the	noncompliant	entry	in	the	list
and	click	the	AWS	Config	timeline	icon:

We	can	see	the	two	recorded	states	of	the	resource.	Clicking	on	the	Change	shows	us	what	has
happened:

Here	we	see	the	reason	why	our	security	group	resource	has	been	flagged	as	noncompliant.

In	addition	to	the	AWS-provided	Config	rules,	you	could	write	your	own	in	the	form	of	Lambda
functions	(ref:	http://docs.aws.amazon.com/config/latest/developerguide/evaluate-
config_develop-rules.html).

http://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules.html

Self	pen	testing
Here	we	examine	self	pen	testing	as	an	inexpensive	alternative	or	as	a	preparation	step	prior	to
you	hiring	a	third	party	for	the	official	test	(considering	that	each	penetration	testing	iteration	is
usually	chargeable).

The	goal	is	a	system	which	allows	for	on-demand	and/or	regular	vulnerability	scanning	against
our	VPC	deployment	both	internally	and	externally.

Two	community	projects	that	can	help	us	with	this	task	are	OpenVAS	(ref:
http://www.openvas.org)	and	OpenSCAP	(ref:	https://www.open-scap.org).

A	relatively	easy	way	of	setting	up	such	an	automated	scanner	would	be	to	use	a	prebaked	AMI
and	some	user	data.	In	essence,	you	would	install	either	or	both	of	the	preceding	frameworks	on	a
vanilla	EC2	instance	and	create	an	AMI	out	of	it.	Then	launch	a	new	instance	of	that	AMI
(perhaps	per	schedule)	and,	using	user	data,	you	would	start	the	scanner,	pass	it	the	destination
URI	to	be	scanned,	then	e-mail	any	scan	reports	or	save	to	S3.

Scheduling	is	achieved	using	an	Auto	Scale	Group,	which	simply	launches	a	node,	then	terminates
it	after	N	hours	(however	long	it	takes	to	perform	the	scan).	Alternatively,	you	could	use
CloudWatch	events	together	with	some	Lambda	functions	(ref:
https://aws.amazon.com/premiumsupport/knowledge-center/start-stop-lambda-cloudwatch).

Note

Please	note	that	vulnerability	scanning	or	similar	activity	needs	to	be	approved	by	AWS	Support
first	(ref:	https://aws.amazon.com/forms/penetration-testing-request).

Following	the	advice	throughout	this		chapter	is	one	step	towards	creating	a	more	secure
environment,	but	we	can	by	no	means	consider	the	job	done.	It	has	been	said	that	security	is	a
process,	not	a	product	and	as	such	it	should	perhaps	be	a	daily	task	on	one's	list.

It	is	recommended	that	you	subscribe	to	relevant	security	feeds	or	mailing	lists.

AWS	maintains	a	few	of	its	own:

https://aws.amazon.com/blogs/security
https://aws.amazon.com/security/security-bulletins/
https://alas.aws.amazon.com/

http://www.openvas.org
https://www.open-scap.org
https://aws.amazon.com/premiumsupport/knowledge-center/start-stop-lambda-cloudwatch
https://aws.amazon.com/forms/penetration-testing-request
https://aws.amazon.com/blogs/security
https://aws.amazon.com/security/security-bulletins/
https://alas.aws.amazon.com/

Summary
In	this	chapter	we	covered	some	ideas	on	how	to	improve	the	overall	security	of	an	AWS
account.

We	looked	at	AWS	services	which	can	be	used	for	auditing	and	alerting	on	suspicious	activity
plus	open-source	tools	that	can	be	useful	for	regular	vulnerability	scanning.

In	the	next	chapter	we	will	look	at	a	list	of	popular	(and	less	so)	AWS	tips	and	tricks.

Chapter	10.	AWS	Tips	and	Tricks
In	this	chapter,	I	would	like	to	provide	you	with	a	selection	of	random	bits	of	advice.	Some	of
them	are	derived	from	my	own	experience	with	using	AWS;	others	are	found	in	the	AWS
whitepapers	or	related	blogs.

Note

A	few	links	on	the	subject:

https://d0.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf

https://wblinks.com/notes/aws-tips-i-wish-id-known-before-i-started/

https://launchbylunch.com/posts/2014/Jan/29/aws-tips/

https://d0.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://wblinks.com/notes/aws-tips-i-wish-id-known-before-i-started/
https://launchbylunch.com/posts/2014/Jan/29/aws-tips/

Using	VPCs
Apart	from	the	initial,	minor	setup	overhead,	it	is	generally	accepted	that	you	are	better	off
deploying	your	infrastructure	inside	a	VPC.	AWS	even	provides	you	one	by	default	and	tends	to
deploy	resources	in	it	unless	you	ask	otherwise.	A	VPC	gives	you	more	flexibility	when	operating
EC2	instances,	better	control	of	your	networking,	and	enhanced	security.	Also,	it	is	free.

Keep	the	Main	route	table	as	a	fallback
If	you	follow	the	previous	tip,	you	will	notice	that	a	new	VPC	comes	with	a	route	table	marked	as
Main:

I	would	recommend	that	it	is	left	as	it	is,	with	a	single,	local	route,	and	create	additional	route
tables	for	any	custom	routing	needs	instead.

This	way,	the	main	or	default	route	table	becomes	a	sort	of	a	safety	net	for	any	subnets	that	get
created	but	remain	unassociated,	be	it	by	mistake	or	intent.

Staying	within	the	VPC
As	tempting	as	it	may	be,	try	to	avoid	exposing	your	VPC	resources,	as	this	defeats	the	purpose.
This	is	to	say,	instead	of	assigning	public	IPs	to	your	EC2	instances,	which	might	give	you	quick
and	easy	access,	use	a	designated	ssh-gateway	host	(also	known	as	a	bastion	or	a	jump	host)	to
hop	through.

You	would	assign	a	public	(Elastic)	IP	only	this	single	machine,	ensure	its	security	group	is
locked	down	to	the	static	IPs	of	your	home	and/or	work	place,	and	use	it	to	connect	(say	over	ssh)
to	any	other	instances	within	your	VPC.

Creating	IAM	roles	in	advance
We	have	already	discussed	EC2	instance	roles	as	a	much	better	way	of	providing	credentials	to
your	application.

A	good	practice	is	to	always	create	and	assign	an	IAM	role	to	your	instances,	even	if	it	is	not
needed	at	the	time	and	holds	no	permissions.

This	is	because	IAM	roles	can	only	be	assigned	when	an	EC2	instance	is	being	launched.

Groups	over	users
As	you	create	your	first	deployment,	you	might	not	necessarily	have	that	many	users	needing
access	to	your	AWS	account.

Nevertheless,	it	is	still	a	good	idea	to	assign	permissions	to	an	IAM	group	and	make	your	IAM
users	members	of	it,	as	opposed	to	granting	privileges	to	each	user	as	they	come.

In	the	long	term,	it	is	often	the	case	that	team	members	tend	to	require	(reuse)	the	same	list	of
permissions.

Knowing	the	AWS	service	limits
An	AWS	account	comes	with	certain	limits	that	can	be	found	in	the	AWS	console:

These	are	meant	to	protect	the	customer	as	well	as	the	provider	against	any	unintentional	use.	The
following	are	examples:

A	coding	error	in	your	CloudFormation	template,	resulting	in	an	unexpected	amount	of
storage	or	other	resources	being	provisioned
A	misconfigured	Auto	Scaling	Group,	launching	tens	or	hundreds	of	instances
Your	user	making	an	API	call	to	request	an	unusual	number	of	instances

As	we	can	see,	the	said	limits	are	an	overall	good	idea,	most	of	the	time.

If	you	find	yourself	in	a	production	environment,	getting	ready	for	a	major	event	and	the	traffic
spike	that	comes	with	it,	you	certainly	want	to	be	aware	of	your	current	AWS	service	limits.	Most
instance	types	are	initially	limited	to	20,	VPC	EIPs	to	5,	and	storage	types	to	20	TB.

Ideally,	you	would	review	these	as	soon	as	you	get	an	idea	of	your	expected	usage	baseline
(allowing	for	bursting)	and	contact	AWS	Support	requesting	a	limit	increase	where	needed.

Pre-warm	ELBs	if	needed
On	the	subject	of	traffic	spikes,	while	ELBs	are	impressively	performant,	there	might	be
occasions	where	you	will	need	to	pre-warm	them.

As	you	probably	already	know,	an	ELB	is	a	collection	of	EC2	instances	managed	by	AWS,
running	proprietary	load	balancing	software.

An	algorithm	ensures	that	the	number	of	ELB	EC2	instances	grows	or	shrinks	in	response	to	the
traffic	pattern	of	your	application.	This	process	of	adaptive	scaling	is	done	based	on	averaged
traffic	measurements	taken	over	time	and	as	such	is	not	very	rapid.

To	ensure	that	this	feature	does	not	become	a	problem,	AWS	allows	you	to	request	an	ELB	to	be
pre-warmed,	that	is	to	say,	scaled-up	ahead	of	time.

If	you	are	on	the	premium	support	plan,	you	could	probably	wait	until	a	few	hours	prior	to	the
event;	otherwise,	you	should	contact	the	support	team	sooner	to	account	for	the	extra	response
time.

You	will	be	asked	a	series	of	questions	relating	to	the	expected	requests	per	second,	average
payload	size,	event	duration,	and	other	traffic	properties,	which	will	help	AWS	Support
determine	whether	pre-warming	is	necessary	at	all.

Using	termination	protection

It	goes	without	saying	that	one	should	not	keep	state	on	machines	if	it	can	be	helped.

After	all,	the	beauty	of	AWS	is	that	it	allows	you	to	not	focus	so	much	on	individual	instances	any
more.	It	promotes	a	cluster	or	service	culture	where	the	health	of	the	endpoint	is	of	importance.

For	the	rare	cases	where	we	must	have	one	of	those	management	or	similar	type	of	non-
autoscaling	node,	however,	you	have	nothing	but	to	gain	from	protecting	yourself	against
accidentally	making	the	wrong	API	call	or	a	console	click.

Tagging	what	you	can
This	sounds	like	a	chore,	but	it	does	indeed	pay	back	later.	Whether	for	the	much	better	clarity	on
your	AWS	bill	or	the	extra	flexibility	you	get	when	managing	your	resources,	tags	are	always
useful.

Instrument	your	tools	to	apply	tags	whenever	an	asset	is	provisioned,	then	start	scanning	your
estate	regularly	for	any	untagged	resources.

Deploying	across	multiple	zones
Unarguably,	deploying	within	the	same	physical	location	should	yield	the	lowest	latency.

In	the	majority	of	use	cases	however,	the	added	few	milliseconds	in	return	for	a	multiple	increase
in	resilience	are	worth	it.

Try	to	span	your	deployment	across	two	availability	zones	at	least.

Enhancing	your	ELB	health-checks
The	stock	ELB	health	checks	allow	you	to	check	raw	TCP	responses	or	go	higher	in	the	stack	and
look	for	an	HTTP/200	response.

Either	is	good.	A	basic	check	should	get	you	started	but	as	your	application	and	its	dependencies
evolve,	you	might	need	to	enrich	your	health	checks	too.

Let	us	suppose	that	you	were	serving	a	web	application	that	relies	on	a	cache	and	a	database
backend.

If	the	ELB	was	checking	TCP:80	then	as	long	as	your	HTTP	daemon	is	running,	it	will	receive	an
OK.	If	you	were	checking	for	an	HTTP/200,	instead	that	would	verify	access	to	the	application's
file(s)	on	disk	but	likely	not	much	more.

Instead,	you	could	benefit	much	more	from	pointing	the	ELB	at	a	dedicated	health	check	endpoint
within	your	application,	which	verifies	all	its	dependencies	(disk:	OK,	cache:	OK,	db:	OK)
before	returning	a	green	light.	But	beware	of	impacting	the	overall	application	performance:	the
more	frequently	the	health	check	is	called,	the	more	lightweight	it	ought	to	be.

Offloading	SSL	onto	the	ELB
AWS	now	issues	free	SSL	certificates	as	part	of	the	Certificate	Manager	service	which	also
takes	care	of	renewals.	This	seems	like	a	pretty	good	reason	on	its	own.

Managing	certificates	on	the	ELB	itself	is	much	more	convenient	in	comparison	to	doing	the	same
across	a	number	of	EC2	backend	instances.	Also,	there	must	be	at	least	a	small	amount	of	CPU
performance	to	be	gained	by	delegating	the	SSL	operations.

EIP	versus	public	IP
A	few	points	about	the	two	types,	in	case	you	have	not	used	these	much.

Public	IPs:

You	choose	whether	an	instance	should	have	a	public	IP	at	the	time	you	are	launching	it
The	address	will	persist	across	reboots	but	not	a	stop/start
These	come	at	no	extra	cost

Elastic	IPs:

You	can	associate/disassociate	an	EIP	with	an	instance	at	any	time	after	it	has	been	launched
An	EIP	remains	associated	across	reboots	or	start/stop	operations
EIPs	incur	cost	(when	kept	unused)
EIPs	can	be	migrated	between	EC2	instances

In	light	of	the	IPv4	deficit	we	are	facing	today,	AWS	is	cleverly	trying	to	incentivize	sensible
provisioning	by	charging	for	any	dormant	EIP	resources.

Tip

Be	a	gentleman/lady	and	release	your	IPs	when	you	are	done	with	them.

Mind	the	full-hour	billing
It	is	great	that	AWS	allows	you	to	pay-for-what-you-use	and	as-you-go.	Something	to	keep	in
mind,	however,	is	that	AWS	meters	usage	in	hourly	increments.

So,	say	you	were	running	a	number	of	batch	jobs,	launching	and	terminating	an	instance	every	10
minutes.	After	an	hour	and	10	minutes,	you	would	have	launched	and	terminated	six	instances	(6x
smallest	increment	of	1h)	resulting	in	6	hours	of	billable	usage	despite	the	fact	the	neither	of	them
lasted	more	than	10	minutes.

At	any	rate,	to	avoid	surprises,	it	is	highly	recommended	you	to	set	up	billing	alerts.	These	are
simple	CloudWatch	alarms	which	can	notify	you	when	your	estimated	bill	has	reached	a
threshold.

Using	Route53	ALIAS	records
This	is	a	special	in-house	type	of	DNS	record	specific	to	the	Route53	service.

For	an	AWS	user	an	Alias	record	is	a	great	alternative	to	a	CNAME	(for	supported	resources).

Some	of	the	main	advantages	are:

Aliases	resolve	directly	to	an	IP	address,	saving	the	extra	lookup	which	a	CNAME	would
require
Alias	records	are	supported	at	the	zone	apex,	so	you	could	create	an	alias	which	uses	the	top
of	a	domain	(for	example	mydomain.com)
Alias	records	allow	advanced	Route53	features	such	as	weighted/latency/geo	routing	and
failovers
There	is	no	AWS	cost	associated	with	Alias	lookups

Note

NB:	A	Route53	Alias	record	can	currently	only	point	to	a	limited	set	of	AWS	resources.	For	more
information	please	see:	http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-
record-sets-choosing-alias-non-alias.html

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html

The	S3	bucket	namespace	is	global
This	means	that	if	you	get	a	name	conflict	when	creating	a	bucket,	it	is	likely	because	somebody
else	in	the	AWS	universe	has	beaten	you	to	it.

Devise	a	naming	schema	that	offers	some	uniqueness;	perhaps,	use	your	organization's	name	or	a
random	prefix/suffix	to	the	bucket	name.

S3	bucket	deletion	tends	to	propagate	slowly.	Pay	attention	to	the	region	in	which	you	are	creating
your	bucket.	If	you	get	it	wrong,	you	will	need	to	delete	then	wait	for	20-30	minutes	in	my
experience	before	you	can	recreate	it	in	the	right	place.

-	versus	.	in	the	S3	bucket	name
It	seems	that	there	is	often	the	question	of	whether	one	should	name	buckets	as	images-example-
com	or	images.example.com.

Two	things	to	consider	are:

Would	you	like	to	use	S3	over	HTTPS?
Would	you	like	to	use	a	custom	domain	name	instead	of	the	default	S3	bucket	URL?

Strictly	speaking,	buckets	with	dots	in	the	name	will	show	an	SSL	mismatch	warning	when	you
address	them	over	HTTPS	using	the	default	bucket	URI.

This	is	due	to	the	fact	that	S3	operates	on	the	.amazonaws.com	domain,	and	any	extra	dots	will
make	it	seem	as	if	a	bucket	is	a	subdomain	(not	covered	by	the	SSL	certificate).

On	the	other	hand,	you	have	to	use	dots	if	you	want	to	have	a	custom	domain	(CNAME)	pointed	at
your	bucket.	That	is	to	say,	the	bucket	name	has	to	match	the	said	custom	URL	in	order	for	S3's
virtual-host	style	service	to	work.

For	example,	we	call	our	bucket	images.example.com	and	add	a	DNS	record	of
images.example.com	CNAME	images.example.com.s3.amazonaws.com.

S3	would	then	forward	incoming	request	to	any	bucket	with	a	name	matching	the	host	in	the	HTTP
headers	(refer	to	http://docs.aws.amazon.com/AmazonS3/latest/dev/VirtualHosting.html).

So,	it	would	seem	that	based	on	the	name	we	chose,	we	can	use	either	one	of	the	features	or	the
other	(HTTPS	vs	CNAME).	But	there	is	a	solution	to	this	dilemma:	CloudFront.

Placing	a	CloudFront	distribution	in	front	of	our	bucket	allows	a	custom	domain,	plus	a	custom
SSL	certificate,	to	be	specified.

http://docs.aws.amazon.com/AmazonS3/latest/dev/VirtualHosting.html

Randomizing	S3	filenames
An	important	fact	is	that	S3	takes	filenames	(object	keys)	into	consideration	when	distributing
data.	You	are	likely	to	get	better	performance	when	your	content	does	not	use	a	sequential	naming
convention.	For	more	details	on	the	distribution	mechanism	please	refer	to
http://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-considerations.html

http://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-considerations.html

Initializing	(pre-warm)	EBS	volumes
It	used	to	be	the	case	that	all	EBS	storage	was	meant	to	be	initialized	to	avoid	the	first-time-
access	penalty,	which	becomes	a	noticeable	overhead	as	you	start	dealing	with	larger	and	larger
volumes.	Nowadays,	the	situation	has	improved	as	new	volumes	need	no	pre-warming	(ref:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-initialize.html);	however,	one
should	still	consider	the	added	delay	to	the	boot	process	(if	the	volume	is	needed	at	boot	time)
against	any	potential	performance	gains.

For	very	large	volumes,	initialization	might	be	prohibitive,	but	in	any	other	case,	it	is	certainly
worth	doing.	Or	if	you	run	your	own	database	servers	on	EC2,	then	you	should	definitely	consider
pre-warming	volumes	regardless	of	size.

You	could	use	the	suggested	command-line	steps	to	measure	time	spent	performing	this	type	of
optimization	(refer	to	http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-
initialize.html).

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-initialize.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-initialize.html

Summary
In	this	chapter,	we	looked	at	some	tips,	tricks,	facts,	and	general	information,	which	are	useful	to
keep	in	mind	when	using	AWS.

This	is	naturally	just	a	small	selection	of	such	public	secrets,	and	if	you	are	also	excited	about	the
peculiarities	of	the	AWS	environment	plus	the	creative	hacks	that	users	come	up	with	to	work
around	them	–	I	would	recommend	you	to	check	out	https://aws.amazon.com/blogs/aws/.

https://aws.amazon.com/blogs/aws/

	Implementing DevOps on AWS
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. What is DevOps and Should You Care?
	What is DevOps?
	A common goal
	Shared knowledge (no silos)
	Trust and shared responsibility
	Respect
	Automation
	Reproducible infrastructure
	Metrics and monitoring
	Continuous Integration, Delivery, and Deployment
	Embracing failure
	Should you care
	Is this the right time?
	Will it work?
	Is it worth it?
	Do you need it?
	Summary
	2. Start Treating Your Infrastructure as Code
	IaC using Terraform
	Configuration
	Template design
	Resources
	Variables
	Outputs
	Operations
	Validation
	Dry-run
	Deployment
	Updates
	Removal
	IaC using CloudFormation
	Configuration
	Template design
	Parameters
	Resources
	Outputs
	Operations
	Template validation
	Deploying a Stack
	Updating a stack
	Deleting a stack
	Summary
	3. Bringing Your Infrastructure Under Configuration Management
	Introduction to SaltStack
	Preparation
	Writing Configuration Management code
	States
	Pillars
	Grains
	Top files
	Bootstrapping nodes under Configuration Management (end-to-end IaC)
	Summary
	4. Build, Test, and Release Faster with Continuous Integration
	Prepare IaC
	Terraform templates
	Variables
	Variables (values)
	Resources
	Create the VPC
	Add networking components
	Add EC2 node and related resources
	Outputs
	SaltStack code
	States
	Pillars
	Minion configuration
	Deploy IaC
	Setup CI
	Jenkins initialization
	Writing a demo app
	Defining the pipeline
	Setting up the pipeline
	Summary
	5. Ever-Ready to Deploy Using Continuous Delivery
	Preparing Terraform templates
	Resources
	Variables
	Variables (values)
	Outputs
	Prepareing Salt code
	States
	top.sls
	jenkins
	nginx
	Pillars
	Minion configuration
	Preparing Jenkins code
	Packer
	demo-app.json
	demo-app_vars.json
	demo-app_userdata.sh
	Serverspec
	spec/localhost/demo-app_spec.rb
	demo-app
	demo-app-cdelivery
	Preparing CodeCommit repositories
	Deploy Terraform templates
	Initializing Jenkins
	Configuring Jenkins jobs
	demo-app pipeline
	demo-app-cdelivery pipeline
	Summary
	6. Continuous Deployment - A Fully Automated Workflow
	Terraform code (resources.tf)
	outputs.tf
	Deployment
	Jenkins pipelines
	Continuous Deployment pipeline
	cdeployment.sh
	Summary
	7. Metrics, Log Collection, and Monitoring
	Centralized logging
	Ingesting and storing logs with Logstash and Elasticsearch
	Collecting logs with Elasticsearch Filebeat
	Visualizing logs with Kibana
	Metrics
	Ingesting and storing metrics with Prometheus
	Gathering OS and application metrics with Telegraf
	Visualizing metrics with Grafana
	Monitoring
	Alerting with Prometheus
	Self-remediation with Prometheus and Jenkins
	Summary
	8. Optimize for Scale and Cost
	Architectural considerations
	The VPC
	CIDR
	Subnets and Availability Zones
	VPC limits
	The frontend layer
	The backend layer
	The object storage layer
	The load balancing layer
	Cross-zone load balancing
	ELB pre-warming
	The CDN layer
	Spot instances
	AWS Calculators
	Summary
	9. Secure Your AWS Environment
	Managing access using IAM
	Securing the root account
	VPC security
	Security Groups
	Network ACLs
	VPN gateway
	VPC peering
	EC2 security
	IAM Roles
	SSH access
	Individual keys
	Entrypoint
	ELBs everywhere
	HTTPS by default
	Encrypted storage
	EBS volumes
	S3 objects
	OS updates
	Security auditing
	VPC Flow Logs
	CloudTrail
	Trusted Advisor
	AWS Config
	Self pen testing
	Summary
	10. AWS Tips and Tricks
	Using VPCs
	Keep the Main route table as a fallback
	Staying within the VPC
	Creating IAM roles in advance
	Groups over users
	Knowing the AWS service limits
	Pre-warm ELBs if needed
	Using termination protection
	Tagging what you can
	Deploying across multiple zones
	Enhancing your ELB health-checks
	Offloading SSL onto the ELB
	EIP versus public IP
	Mind the full-hour billing
	Using Route53 ALIAS records
	The S3 bucket namespace is global
	- versus . in the S3 bucket name
	Randomizing S3 filenames
	Initializing (pre-warm) EBS volumes
	Summary

