Veselin Kantsev

Implementing
DevOps on AWS

Bring the best out of DevOps and build, deploy, and
maintain applications on AWS

L[] Packh

Implementing DevOps on AWS

Table of Contents

Implementing DevOps on AWS
Credits
About the Author
About the Reviewer
www.PacktPub.com
Why subscribe?
Customer Feedback
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback

Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. What is DevOps and Should You Care?
What is DevOps?

A common goal
Shared knowledge (no silos)
Trust and shared responsibility
Respect
Automation
Reproducible infrastructure
Metrics and monitoring
Continuous Integration, Delivery, and Deployment
Embracing failure

Should you care
Is this the right time?
Will it work?
Is it worth it?
Do you need it?

Summary
2. Start Treating Your Infrastructure as Code
IaC using Terraform
Configuration

Template design
Resources

Variables

Outputs
Operations
Validation
Dry-run
Deployment

Updates
Removal

IaC using CloudFormation

Configuration
Template design

Parameters
Resources

Outputs
Operations
Template validation
Deploying a Stack
Updating a stack
Deleting a stack
Summary
3. Bringing Your Infrastructure Under Configuration Management
Introduction to SaltStack
Preparation

Writing Configuration Management code
States

Pillars
Grains

Top files
Bootstrapping nodes under Configuration Management (end-to-end [aC)
Summary
4. Build, Test, and Release Faster with Continuous Integration
Prepare IaC

Terraform templates
Variables

Variables (values)
Resources
Create the VPC
Add networking components
Add EC2 node and related resources
Outputs
SaltStack code
States
Pillars

Minion configuration

Deploy [aC

Setup CI
Jenkins initialization
Writing a demo app
Defining the pipeline
Setting up the pipeline

Summary

5. Ever-Ready to Deploy Using Continuous Delivery

Preparing Terraform templates
Resources
Variables
Variables (values)

Outputs
Prepareing Salt code
States
top.sls
jenkins
nginx
Pillars
Minion configuration
Preparing Jenkins code

Packer
demo-app.json

demo-app_vars.json
demo-app_userdata.sh
Serverspec
spec/localhost/demo-app_spec.rb
demo-app
demo-app-cdelivery
Preparing CodeCommit repositories
Deploy Terraform templates
Initializing Jenkins
Configuring Jenkins jobs
demo-app pipeline
demo-app-cdelivery pipeline
Summary

6. Continuous Deployment - A Fully Automated Workflow
Terraform code (resources.tf)

outputs.tf
Deployment

Jenkins pipelines
Continuous Deployment pipeline
cdeployment.sh
Summary

7. Metrics, Log Collection, and Monitoring
Centralized logging

Ingesting and storing logs with Logstash and Elasticsearch
Collecting logs with Elasticsearch Filebeat

Visualizing logs with Kibana
Metrics
Ingesting and storing metrics with Prometheus

Gathering OS and application metrics with Telegraf
Visualizing metrics with Grafana

Monitoring
Alerting with Prometheus
Self-remediation with Prometheus and Jenkins

Summary

8. Optimize for Scale and Cost
Architectural considerations

The VPC
CIDR
Subnets and Availability Zones
VPC limits
The frontend layer
The backend layer
The object storage layer
The load balancing layer
Cross-zone load balancing

ELB pre-warming
The CDN layer

Spot instances
AWS Calculators

Summary
9. Secure Your AWS Environment

Managing access using IAM
Securing the root account
VPC security
Security Groups
Network ACILs
VPN gateway

VPC peering
EC2 security

IAM Roles
SSH access

Individual keys
Entrypoint

ELBs everywhere
HTTPS by default

Encrypted storage
EBS volumes
S3 objects

OS updates

Security auditing

VPC Flow Logs

CloudTrail

Trusted Advisor

AWS Config
Self pen testing
Summary
10. AWS Tips and Tricks
Using VPCs
Keep the Main route table as a fallback

Staying within the VPC
Creating IAM roles in advance

GFOUPS Oover users

Knowing the AWS service limits
Pre-warm EILBs if needed

Using termination protection
Tagging what you can

Deploying across multiple zones
Enhancing your ELB health-checks
Offloading SSL onto the ELB

EIP versus public IP

Mind the full-hour billing

Using Route53 ALIAS records
The S3 bucket namespace is global

- versus . in the S3 bucket name

Randomizing S3 filenames
Initializing (pre-warm) EBS volumes
Summary

Implementing DevOps on AWS

Implementing DevOps on AWS

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

First published: January 2017
Production reference: 1190117
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-014-1

www.packtpub.com

http://www.packtpub.com

Credits

Author Copy Editor

Veselin Kantsev Safis Editing
Reviewer Project Coordinator
Madhu Joshi Judie Jose
Commissioning Editor

Kartikey Pandey Safis Editing
Acquisition Editor Indexer

Namrata Patil Pratik Shirodkar
Content Development Editor)|Graphics

Abhishek Jadhav Kirk D'Penha

Technical Editor Production Coordinator

Mohd Riyan Khan Nilesh Mohite

Proofreader |

e~ B N R R EE—————.

About the Author

Veselin Kantsev is a DevOps professional and a Linux enthusiast who lives in London, UK.

His introduction to Linux was as a System Administrator back in 2006. His focus for the past few
years has been mostly on cloud technologies and the transition of the community from an Ops to a
DevOps culture.

He has worked with companies in various sectors such as Design, Media, and Finance,
specializing in the migration of infrastructure onto AWS and the promotion of DevOps principles
and practices.

About the Reviewer

Madhu Joshi, the VP of Cloud Services at Trillion Technology Solutions, has built high-profile
websites in AWS for DoD, Verato, National Geospatial Agency (NGA), DHS FEMA, ProQuest
Search Solutions, The Coca Cola Company, Food Network, Scripps, Special Olympics, Home
and Garden TV, and Monumental Sports. He designed these sites to handle millions of visitors
per month and has used industry best practices to provide peak capacity required to serve the
global audience. He also has expertise in migrating large applications such as the KickApps
social media platform and financial services from a traditional data center to Amazon's cloud.

I would like to thank Packt Publishing and Judie Jose for giving me the opportunity to
review the book. This has turned out to be a great book, and I want to congratulate the
author on putting on lot of hard work to make the book very useful. I am sure that the
readers will have as much fun as I had reviewing it.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us

at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

A Viapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books

and video courses, as well as industry-leading tools to help you plan your personal development
and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Customer Feedback

Thank you for purchasing this Packt book. We take our commitment to improving our content and
products to meet your needs seriously—that's why your feedback is so valuable. Whatever your
feelings about your purchase, please consider leaving a review on this book's Amazon page. Not
only will this help us, more importantly it will also help others in the community to make an
informed decision about the resources that they invest in to learn.

You can also review for us on a regular basis by joining our reviewers' club. If you're
interested in joining, or would like to learn more about the benefits we offer, please contact
us: customerreviews@packtpub.com.

Preface

DevOps and AWS are two key subjects in the tech industry that have been steadily growing in
popularity in recent years and for a good reason.

DevOps is gradually becoming the de facto methodology or framework and is adopted by
organizations of all sizes. It has enabled technology teams to work more efficiently and made their
work more rewarding by tightening the feedback loop between the developer and the end user.
Team members enjoy a more pleasant, more productive work environment through much
increased collaboration.

In this book, we will first examine the philosophy behind DevOps, then proceed with some
practical examples of its most popular principles.

AWS is nowadays synonymous with Cloud Computing, sitting at the top of the industry charts with
its 31% market share. Starting back in 2006, Amazon Web Services has evolved into a large,
independent, sophisticated ecosystem in the Cloud. It is and has been launching new services at
an astonishing rate. The AWS product categories range from raw compute and database resources
to storage, analytics, Al, game development, and mobile services to IoT solutions.

We will use AWS as a platform to apply DevOps techniques on. In the chapters to follow, we will
see how the convenience and elasticity of AWS greatly complements the innovative approach of
DevOps to system administration and application development.

What this book covers

Chapter 1, What Is DevOps and Should You Care?, introduces the DevOps philosophy.

Chapter 2, Start Treating Your Infrastructure as Code, offers examples on how to deploy
infrastructure as code using Terraform or CloudFormation.

Chapter 3, Bring Your Infrastructure under Configuration Management, demonstrates how to
configure EC2 instances using SaltStack.

Chapter 4, Build, Test, and Release Faster with Continuous Integration, describes the process
of setting up a CI workflow using a Jenkins CI server.

Chapter 5, Ever-Ready to Deploy Using Continuous Delivery, shows how to extend a CI
pipeline to produce deployment-ready EC2 AMIs using Packer and Serverspec.

Chapter 6, Continuous Deployment - A Fully Automated Workflow, Offers a fully automated
workflow and completes the CI/CDelivery pipeline by adding the functionality needed for AMI
deployment.

Chapter 7, Metrics, Log Collection, and Monitoring, introduces Prometheus, Logstash,
Elasticsearch,and related DevOps tools.

Chapter 8, Optimize for Scale and Cost, offers advice on how to plan an AWS deployment with
scalability and cost efficiency in mind.

Chapter 9, Secure Your AWS Environment, covers best practices in order to improve the security
of an AWS deployment.

Chapter 10, AWS Tips and Tricks, contains a selection of useful tips for a beginner to an
intermediate AWS users.

What you need for this book

The practical examples found in this book involve the use of AWS resources, thus an AWS account
will be required.

The client-side tools used in the examples, such as the AWS CLI and Terraform, are supported on
most common operating systems (Linux/Windows/Mac OS).

Who this book is for

This book is for system administrators and developers who manage AWS infrastructure and
environments and are planning to implement DevOps in their organizations. Those aiming for the
AWS Certified DevOps Engineer certification will also find this book useful. Prior experience of
operating and managing AWS environments is expected.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "We need to SSH into the
node and retrieve the admin password stored in
/var/1lib/jenkins/secrets/initialAdminPassword."

A block of code is set as follows:

aws-region = "us-east-1"

vpc-cidr = "10.0.0.0/16"

vpc-name = "Terraform"

aws-availability-zones = "us-east-1b,us-east-1c"

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

aws-region = "us-east-1"

vpc-cidr = "10.0.0.0/16"

vpc-name = "Terraform"

aws-availability-zones = "us-east-1b,us-east-1c"

Any command-line input or output is written as follows:

$ terraform validate
$ terraform plan
Refreshing Terraform state prior to plan...

Plan: 11 to add, 0 to change, 0 to destroy.
$ terraform apply
aws_iam_role.jenkins: Creating...

Apply complete! Resources: 11 added, 0 changed, 0 destroyed.
Outputs:

JENKINS EIP = X.X.X.X

VPC ID = vpcC-XXXXXX

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "We select Pipeline as a job type
and pick a name for it."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what
you liked or disliked. Reader feedback is important for us as it helps us develop titles that you
will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title
in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing
to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get
the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Login or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

Nk wLnN

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

e WIinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The complete set of code can also be downloaded from the following GitHub repository:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You can
download this file from

https://www.packtpub.com/sites/default/files/downloads/ImplementingDevOpsonAWS_ColorIma

https://www.packtpub.com/sites/default/files/downloads/ImplementingDevOpsonAWS_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If
you find a mistake in one of our books-maybe a mistake in the text or the code-we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration and
help us improve subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added to any list
of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
and enter the name of the book in the search field. The required information will appear under the
Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any illegal
copies of our works in any form on the Internet, please provide us with the location address or
website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Chapter 1. What is DevOps and Should You
Care?

DevOps can be seen as an extension of the successful and well established Agile methodology.
Bringing operations into the picture helps the advance from continuous (Agile) development to
integration to deployment, but more importantly it helps build a better working environment, one
with stronger cross-team relationships.

If I had to describe DevOps in one word, it would be collaboration. The genuine willingness of
both the Dev and Ops camps to work together is the foundation, the most important aspect of the

philosophy.

DevOps appears as the meeting point in the following diagram:

Dev Ops

In this chapter we will go through the following topics:

e What is DevOps?
e Questions you should ask yourself before adopting it

What is DevOps?

So, let us examine the various principle characteristics of a DevOps environment.

What follows is a series of generally accepted definitions, invariably mixed with personal
opinions - you have been warned.

A common goal

The alignment of effort toward increasing system performance and stability, reducing the time it
takes to deploy or improving the overall quality of the product, will result in happier customers
and proud engineers.

The goal needs to be repeated, clarified, and simplified until it is fully understood, argued
against, and eventually committed to by everybody.

DevOps shifts focus away from self-interest and toward that goal. It directs praise at group
achievements rather than those of the individual; KPIs and Employee of the Month initiatives
perhaps not so much.

Allow people to look at the bigger picture past the realm of their cubicle. Trust them.

Shared knowledge (no silos)

The chances are you have already heard stories or read books about the notorious organizational
silos.

In the worst case, it would be somebody who refuses to let go and often becomes the main
bottleneck in a development life cycle. They can be fiercely territorial, safe-guarding what
exclusive knowledge they might have in a given field, likely (I speculate) because this provides
them with a sense of importance, further catering to their ego.

On the other hand, there are also examples of people who find themselves in a silo purely due to
unfortunate circumstances. My respect goes out to the many engineers stuck with supporting
inherited legacy systems all by themselves.

Fortunately, DevOps blurs such borders of expertise with concepts like cross-functional teams
and full-stack engineers. It is important to note here that this does not translate into an
opportunity to cut costs by expecting people to be tech ninja experts at every single thing (which
inreal life equates to preceding average). But, as in one of those Venn diagrams, it is the cross-
over between a Dev and an Ops set of skills.

Silos are avoided by encouraging knowledge sharing. Peer reviews, demo stand-ups, or shared
documentation are a few ways to ensure that no task or piece of know-how is limited to a specific
person. You could even adopt Pair Programming. It seems a bit heavy, but it evidently works!

Trust and shared responsibility
Should developers be given production access?

There are good reasons for maintaining strict role-based permissions; one of them is security
another is integrity. This standpoint remains valid for as long as we maintain the stereotype of the
developer who is so used to working in devlocal; to them, concepts such as passphrase-
protected SSH keys or not manually editing all of the files take a back seat.

In the era of DevOps, this is no longer the case. Shared knowledge and responsibility means
operations engineers can rely on their developer colleagues to follow the same code of conduct
when working in critical, production environments.

Dev and Ops teams have access to the same set of tools and environments. Deployments are no
longer a special task reserved for the Ops team and scheduled days in advance.

In a team with such knowledge-sharing habits, I, as an operations engineer, can be confident about
my Dev colleague's ability to perform my tasks, and vice versa.

Developers participate in the on-call rota, supporting the software they produce.

This is not to be seen as an additional burden, but as a sign of trust and an opportunity to increase
collaboration. Nobody is throwing code over the wall anymore. Responsibility and a sense of
autonomy motivates people to do more than is expected of them.

Respect

As we spend more time talking to each other about the challenges we face and the problems we
are trying to solve, our mutual respect grows.

This manifests itself in developers seeking input from the Operations team from the early stages
of the software development process or in Ops tools being built to meet developers' needs.

Ops who think like Devs. Devs who think like Ops
--John Allspaw and Paul Hammond, Velocity

A DevOps environment is built on such respect. It is a place where every opinion matters, where
people can and do openly question decisions in the interest of the best solution to a problem. This
is a powerful indicator of one's commitment toward the common goal I mentioned earlier.

Automation

To draw an overly simplified conclusion from A. Maslow's Theory of Motivation, you are less
likely to think about poetry when hungry. In other words, a team with basic needs will be solving
basic problems.

Automating routine and mundane tasks allows engineers to concentrate on the more complex,
higher-value ones. Also, people get bored, cut corners, and make mistakes — computers tend not
to do so.

Reproducible infrastructure

Describing infrastructure as code has the following advantages:

It can be kept under version control

It is easily shared with others to re-use or reproduce

It serves as a very useful diary of what you did and how exactly you did it
Provisioning cloud environments becomes trivial (for example, with Terraform or
CloudFormation)

¢ [t makes modern Configuration Management possible

At any rate, I suspect anybody managing more than 10 servers is already codifying infrastructure
in some way or another.

Metrics and monitoring

Measure All The Things!

--Actual DevOps slogan

Storage is cheap. Develop the habit of gathering copious amounts of measurements and making
those easily accessible across your organization. The more visibility engineers have into the
performance of their infrastructure and applications, the more adequate their decisions will be in
critical situations.

Graphs can convey a great deal of information, look rather cool on big screens, and the human
mind has been proven excellent at recognizing patterns.

Another important role of metrics data is in performance optimization.

The trickiest part of speeding up a program is not doing it, but deciding whether it's worth
doing at all...Part of the problem is that optimization is hard to do well. 1It's frighteningly
easy to devolve into superstitious ritual and rationalization.

--Mature Optimization, Carlos Bueno

To avoid falling prey to confirmation bias, you need an objective method of assessing your
systems before and after attempting any optimization. Use those metrics; it is hard to argue with
(valid) data.

On the subject of validity, please do calibrate your instruments regularly, sanity-check output and
make sure what you think you are showing is what your colleagues think they are seeing (ref:

https://mars.jpl.nasa.gov/msp98/news/mco990930.html).

https://mars.jpl.nasa.gov/msp98/news/mco990930.html

Continuous Integration, Delivery, and Deployment

The Observe, Orient, Decide, and Act (OODA) loop is a concept developed by Col. J. Boyd
that shows the value in one's ability to adapt to ever-changing circumstances.

Faced with unforgiving (and productive) competition, organizations should be able to rapidly
react to dynamic market conditions.

This is probably best illustrated with the old Kodak and Netflix tales. The former after having
been wildly successful is said to have failed to adapt to the new trends in their sector, causing the
brand to gradually fade away. In contrast, Netflix keeps on skillfully molding their product to
match the new ways in which we consume digital content. They completely transformed their
infrastructure, shared some clever, new and somewhat controversial practices plus a ton of great
software. Be like Netflix.

Continuous Integration and Delivery is essentially OODA in practice. Teams continuously
integrate relatively small code changes, delivering releases more often, thus getting feedback
from their users much quicker. The type of feedback needed by an organization to be able to
adequately respond to an ever changing market.

None of the preceding suggests however that one should aim to become a release hero, rushing
things into Production, setting it on fire twice a week. A CI/CDframework still implies the usual
strict code review and test processes, despite how often you deploy. Though code reviews and
testing require much less time and effort as typically the more frequent the deployments, the
smaller the code changes.

Embracing failure
Naturally, more experimentation is likely to increase the probability of error.

I doubt this fact comes as a surprise to anybody; what might surprise you, however, is the advice
to accept an additional, positive angle to failure.

Recall the video nerds from the previous section. Well, they didn't exactly breeze through all that
change without casualties. I hereby spare you the Edison quotes; however, trial and error is
indeed a valid form of the scientific method, and the DevOps processes serve as a great enabler
to those who would agree.

In other words, an organization should encourage people to keep on challenging and improving
the current state of affairs while also allowing them to openly talk about the times when things
went wrong.

But dealing with experimentation failures is possibly the more romantic side of the story
compared to the cold, harsh reality of day-to-day operations.

Systems fail. I would like to think most of us have come to accept that fact along with the chain of
thought it provokes:

e we do not always know as much as we think we do:

"Knowledge of the outcome makes it seem that events leading to the outcome should
have appeared more salient to practitioners at the time than was actually the case...

After an accident, practitioner actions may be regarded as errors or violations, but
these evaluations are heavily biased by hindsight and ignore the other driving
forces..."

--How Complex Systems Fail, R.I. Cook

Excelsior! Or how, in our long-standing pursuit of social dominance, we seem to have
developed the convenient belief that following an event we not only know exactly what and
how it happened but also why. This peculiar phenomenon has already been explained rather
well by D. Kahneman in Thinking Fast and Slow; I will just add that indeed one often hears
of overconfident characters who point fingers at their colleagues based on what appears to
them as a coherent storyline.

The truth of the matter is this: we were not there. And keeping the details we now know and
those known at the time separated is not an easy task.
e Blaming is of zero value:

Etsy and the likes in our community have shared enough observations to suggest that negative
reinforcement as a strategy for reducing human error is less than optimal.

With the adoption of DevOps, we accept that people generally come to work every day with
the intention to perform to the best of their abilities and in the interest of the organization.
After an outage, we begin our analysis with the assumption that the operator has acted in the
best possible way given the circumstances and information available to them at the time. We
focus on what could have led to them making the given decisions, their thought process, the
flow of events, and whether any of these can be improved.

e Resilience can be accumulated:

"What does not kill us..."mithridatism or Nassim Taleb's concept of antifragility are all
expressive of the idea that we get better at dealing with negative experiences as we
encounter them, and what's more, we should look for them every now and again.

We can train ourselves and our systems to recover from errors faster or even better to
continue operating despite them. One way to achieve this is with controlled (and with
practice, less controlled) outages.

With the right monitoring and auditing tools in place, every abnormal activity offers us a
more intimate view of our applications and infrastructure.

Now that I have bestowed upon you, my dear reader, the secret to a better life through DevOps,
let us concern ourselves with the latter part of the title of this chapter.

Should you care

I fail to see a reason why one should not. Some seven or so years have passed since the inception
of the idea of DevOps, and the amount of evidence of its effectiveness has been growing steadily.
Having the respected Agile framework at its base further adds to its credibility and perhaps helps
explain a good part of its success.

That is not to say there are not considerations to be taken into account however. The critical
thinker within you, would want to ask a question or two prior to embarking on such a cultural
coup d'état.

Is this the right time?

Did you just finish adopting Lean or Agile Development? What else has been going on in the
team? Is now the best time for yet another cry for change?

Altering our habits makes us uneasy; it takes some time to adjust. Your perseverance is laudable,
and pursuing DevOps as the next level of team collaboration is often the right choice.

There is no need to give it up altogether; perhaps put it on hold for a moment.

Will it work?

Look around you. Those faces, those different personalities, can you picture them all together
singing Kumbaya? Maybe yes, maybe no, or not yet.

Please do not e-mail an anonymous staff survey. Get everybody in a room, lay your DevOps
propaganda out, and gauge their reactions.

You will need everyone to fully understand the concepts, acknowledge the challenges, and accept
the sacrifices for this to work. There can neither be exceptions nor ambiguity.

All of this requires a great degree of cultural change, which a team should be prepared for.

Is it worth it?

What would it take to change the current mentality? How much of a disturbance you would need
to cause? What degree of backlash do you expect?

While I am not suggesting this as an excuse to put up with the status quo, I beg you maintain a
pragmatic view of the situation.

Your type of organization might be better suited for a process of evolution rather than a
revolution.

Do you need it?

How would you score your current processes? Would you say your cross-team communication is
satisfactory? You regularly meet business expectations? You have already automated most of your
workflow?

It sounds like you are doing fine as it is; you might already have some DevOps in your team
without realizing it. The point is that it could be a better use of resources if you were to
concentrate on optimizing elsewhere, solving other, more pressing problems at this time.

Now that you have been through a yet another interpretation of the ideas behind DevOps, if you
feel those match your way of thinking and the final few questions did not raise any concerns, then
we can safely transition to the more technical topics where we put principles into practice.

Summary

First, we explored the main ideas contained in the DevOps philosophy, followed by a few
questions aimed at helping you construct a more objective perspective when it comes to adopting
DevOps within your organization.

We have seen that DevOps is an effective combination of some older, proven Agile concepts and
other more recently developed ones, and that it teaches us how to build better teams who write
better software, get results faster, and collaborate effortlessly in an environment that encourages
experimentation without compromising stability.

Now that we have covered the theory, the next chapter takes us into the practical application of
DevOps. We are going to begin with examples of deploying infrastructure as code in the cloud.

Chapter 2. Start Treating Your Infrastructure as
Code

Ladies and gentlemen, put your hands in the air, for Programmable Infrastructure is here!

Perhaps Infrastructure-as-Code (IaC) is not an entirely new concept considering how long
Configuration Management has been around. Codifying server, storage, and networking
infrastructure and their relationships, however, is a relatively recent tendency brought about by
the rise of cloud computing. But let us leave Configuration Management for later and focus our
attention on that second aspect of IaC.

You should recall from the previous chapter some of the benefits of storing all the things as code:

Code can be kept under version control
Code can be shared/collaborated on easily
Code doubles as documentation

Code is reproducible

That last point was a big win for me personally. Automated provisioning helped reduce the time it
took to deploy a full-featured cloud environment from four hours down to one, and the
occurrences of human error to almost zero (one shall not be trusted with an input field).

Being able to rapidly provision resources becomes a significant advantage when a team starts
using multiple environments in parallel and needs those brought up or down on-demand. In this
chapter, we examine in detail how to describe (in code) and deploy one such environment on
AWS with minimal manual interaction.

To implement IaC in the cloud, we will look at two tools or services: Terraform and
CloudFormation.

We will go through examples of the following:

Configuring the tool

Writing an [aC template

Deploying a template

Deploying subsequent changes to the template

Deleting a template and removing the provisioned infrastructure

For the purpose of these examples, let us assume our application requires a Virtual Private
Cloud (VPC) that hosts a Relational Database Services (RDS) backend and a couple of Elastic
Compute Cloud (EC2) instances behind an Elastic Load Balancer (ELB). We will keep most
components behind Network Address Translation (NAT), allowing only the load balancer to be
accessed externally.

IaC using Terraform

One of the tools that can help deploy infrastructure on AWS is HashiCorp's Terraform
(https://www.terraform.io). HashiCorp is that genius bunch that gave us Vagrant, Packer, and
Consul. I would recommend you look up their website if you have not already.

Using Terraform (TF), we will be able to write a template describing an environment, perform a
dry run to see what is about to happen and whether it is expected, deploy the template, and make
any late adjustments where necessary-all of this without leaving the shell prompt.

https://www.terraform.io

Configuration

Firstly, you will need to have a copy of TF (https://www.terraform.io/downloads.html) on your
machine and available on the CLI. You should be able to query the currently installed version,
which in my case is 0.6.15:

$ terraform --version
Terraform v0.6.15

Since TF makes use of the AWS APIs, it requires a set of authentication keys and some level of
access to your AWS account. In order to deploy the examples in this chapter you could create a
new Identity and Access Management (IAM) user with the following permissions:

"autoscaling:CreateAutoScalingGroup",
"autoscaling:CreateLaunchConfiguration",
"autoscaling:DeleteLaunchConfiguration",
"autoscaling:Describe*",
"autoscaling:UpdateAutoScalingGroup",
"ec2:AllocateAddress",

"ec2:AssociateAddress",

"ec2:AssociateRouteTable",
"ec2:AttachInternetGateway",
"ec2:AuthorizeSecurityGroupEgress",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:CreateInternetGateway",
"ec2:CreateNatGateway",

"ec2:CreateRoute",

"ec2:CreateRouteTable",

"ec2:CreateSecurityGroup",

"ec2:CreateSubnet",

"ec2:CreateTags",

"ec2:CreateVpc",

"ec2:Describe*",

"ec2:ModifySubnetAttribute",
"ec2:RevokeSecurityGroupEgress",
"elasticloadbalancing:AddTags",
"elasticloadbalancing:ApplySecurityGroupsToLoadBalancer",
"elasticloadbalancing:AttachLoadBalancerToSubnets",
"elasticloadbalancing:CreateLoadBalancer",
"elasticloadbalancing:CreateLoadBalancerListeners",
"elasticloadbalancing:Describe*",
"elasticloadbalancing:ModifyLoadBalancerAttributes",
"rds:CreateDBInstance",

"rds:CreateDBSubnetGroup",

"rds:Describe*"

Note

Please refer to this file for more information: https://github.com/PacktPublishing/Implementing-
DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/iam_user_policy.json.

One way to make the credentials of the IAM user available to TF is by exporting the following
environment variables:

https://www.terraform.io/downloads.html
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/iam_user_policy.json

$ export AWS_ACCESS_KEY_ID='user_access_key'
$ export AWS_SECRET_ACCESS_KEY='user_secret_access_key'

This should be sufficient to get us started.
Note

Downloading the example code
Detailed steps to download the code bundle are mentioned in the Preface of this book.

The code bundle for the book is also hosted on GitHub at:
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS. We also have other code

bundles from our rich catalog of books and videos available at:

https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS
https://github.com/PacktPublishing/

Template design

Before we get to coding, here are some of the rules:

¢ You could choose to write a TF template as a single large file or a combination of smaller
ones

e Templates can be written in pure JSON or TF's own format

e TF will look for files with. tf or . tf.json extensions in a given folder and load them in
alphabetical order

e TF templates are declarative, hence the order in which resources appear in them does not
affect the flow of execution

A TF template generally consists of three sections: resources, variables, and outputs. As
mentioned in the preceding section, it is a matter of personal preference how you arrange these;
however, for better readability I suggest we make use of the TF format and write each section to a
separate file. Also, while the file extensions are of importance, the filenames are up to you.

Resources
In a way, this file holds the main part of a template, as the resources represent the actual

components that end up being provisioned. For example, we will be using the VPC Terraform
resource, RDS, ELB and a few others to provision what roughly looks like this:

Since template elements can be written in any order, TF determines the flow of execution by
examining any references that it finds (for example, a VPC should exist before an ELB that is said
to belong to it is created). Alternatively, explicit flow control attributes such as depends_on are
used, as we will observe shortly.

To find out more, let us go through the contents of the resources. tf file.

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/Terraform/resources.tf.

First, we tell Terraform what provider to use for our infrastructure:

Set a Provider

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/resources.tf

provider "aws

{
}

region = "${var.aws-region}"

You will notice that no credentials are specified, since we set them as environment variables
earlier.
Now we can add the VPC and its networking components:

Create a VPC
resource "aws_vpc" "terraform-vpc"

{

cidr_block = "${var.vpc-cidr}"

tags

{

Name = "${var.vpc-name}"

}
}
Create an Internet Gateway

resource "aws_internet_gateway" "terraform-igw"
{

vpc_id = "${aws_vpc.terraform-vpc.id}"
}
Create NAT

resource "aws_eip" "nat-eip"
{

vpc = true
}

So far, we have declared the VPC, its Internet and NAT gateways, plus a set of public and private
subnets with matching routing tables.

It will help clarify the syntax if we examined some of those resource blocks, line by line:

resource "aws_subnet" "public-1" {

The first argument is the type of the resource followed by an arbitrary name:

vpc_id = "${aws_vpc.terraform-vpc.id}"

The aws_subnet resource named public-1 has a vpc_id property, which refers to the id
attribute of a different aws_vpc resource named terraform-vpc. Such references to other

resources implicitly define the execution flow, that is to say, the VPC needs to exist before the
subnet can be created:

cidr_block = "${cidrsubnet(var.vpc-cidr, 8, 1)}"

We will talk more about variables in a moment, but the format is var.var_name as shown

here.

Here, we use the cidrsubnet function with the vpc-cidr variable, which returns a cidr_block
to be assigned to the public-1 subnet. Please refer to the TF documentation for this and other
useful functions.

Next, we add a RDS to the VPC:

resource "aws_db_instance" "terraform" {

identifier = "${var.rds-identifier}"

allocated_storage = "${var.rds-storage-size}"
storage_type= "${var.rds-storage-type}"

engine = "${var.rds-engine}"

engine_version = "${var.rds-engine-version}"
instance_class = "${var.rds-instance-class}"

username = "${var.rds-username}"

password = "${var.rds-password}"

port = "${var.rds-port}"

vpc_security_group_ids = ["${aws_security group.terraform-rds.id}"]
db_subnet_group_name = "${aws_db_subnet_group.rds.id}"

}

Here, we mostly see references to variables with a few calls to other resources.

Following the RDS is an ELB:

resource "aws_elb" "terraform-elb"
{
name = "terraform-elb"
security_groups = ["${aws_security_group.terraform-elb.id}"]
subnets = ["${aws_subnet.public-1.id}",
"${aws_subnet.public-2.id}"]

listener
{
instance_port = 80
instance_protocol = "http"

1b_port = 80
1b_protocol = "http"
}

tags
{

Name = "terraform-elb"

}
}

Lastly, we define the EC2 Auto Scaling Group and related resources such as the Launch
Configuration.

For the Launch Configuration we define the AMI and type of instance to be used, the name of the
SSH keypair, EC2 security group(s) and the UserData to be used to bootstrap the instances:

resource "aws_launch_configuration" "terraform-lcfg" {

image_id = "${var.autoscaling-group-image-id}"

instance_type = "${var.autoscaling-group-instance-type}"

key_name = "${var.autoscaling-group-key-name}"

security_groups = ["${aws_security_group.terraform-ec2.id}"]

user_data = "#!/bin/bash \n set -euf -o pipefail \n exec 1> >(logger -s -t
$(basename $0)) 2>&1 \n yum -y install nginx; chkconfig nginx on; service
nginx start"

lifecycle {
create_before_destroy = true

}

The Auto Scaling Group takes the ID of the Launch Configuration, a list of VPC subnets, the
min/max number of instances and the name of the ELB to attach provisioned instances to:

}

resource "aws_autoscaling_group" "terraform-asg" {

name = "terraform"

launch_configuration = "${aws_launch_configuration.terraform-1lcfg.id}"
vpc_zone_identifier = ["${aws_subnet.private-1.id}", "${aws_subnet.private-
2.1id3}"]

min_size = "${var.autoscaling-group-minsize}"

max_size = "${var.autoscaling-group-maxsize}"

load_balancers = ["${aws_elb.terraform-elb.name}"]
depends_on = ["aws_db_instance.terraform"]

tag {

key = "Name"

value = "terraform"
propagate_at_launch = true
}

}

The preceding user_data shell script will install and start NGINX onto the EC2 node(s).

Variables

We have made great use of variables to define our resources, making the template as re-usable as
possible. Let us now look inside variables.tf to study these further.

Similarly to the resources list, we start with the VPC:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/Terraform/variables.tf.

variable "aws-region" {

type = "string"

description = "AWS region"

}

variable "aws-availability-zones" {
type = "string"

description = "AWS zones"

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/variables.tf

}

variable "vpc-cidr" {

type = "string"
description = "VPC CIDR"
}

variable "vpc-name" {
type = "string"
description = "VPC name"
}

The syntax is as follows:

variable "variable_name" {
variable properties

}

variable_name is arbitrary, but needs to match relevant var . var_name references made in other
parts of the template. For example, the aws - region variable will satisfy the ${var . aws-
region} reference we made earlier when describing the region of the provider aws resource.

We will mostly use string variables, but there is another useful type called map that can hold
lookup tables. Maps are queried in a similar way to looking up values in a hash/dict (Please see:

https://www.terraform.io/docs/configuration/variables.html).

Next comes RDS:

variable "rds-identifier" {

type = "string"

description = "RDS instance identifier"
}

variable "rds-storage-size" {

type = "string"

description = "Storage size in GB"
}

variable "rds-storage-type" {

type = "string"

description = "Storage type"

}

variable "rds-engine" {

type = "string"

description = "RDS type"

}

variable "rds-engine-version" {
type = "string"

description = "RDS version"

}

variable "rds-instance-class" {
type = "string"

description = "RDS instance class"
}

variable "rds-username" {

type = "string"

description = "RDS username"

}

https://www.terraform.io/docs/configuration/variables.html

variable "rds-password" {

type = "string"

description = "RDS password"

}

variable "rds-port" {

type = "string"

description = "RDS port number"
}

Lastly, we add our EC2 related variables:

variable "autoscaling-group-minsize" {

type = "string"

description = "Min size of the ASG"

}

variable "autoscaling-group-maxsize" {
type = "string"

description = "Max size of the ASG"

}

variable "autoscaling-group-image-id" {
type="string"

description = "EC2 AMI identifier"

}

variable "autoscaling-group-instance-type" {
type = "string"

description = "EC2 instance type"

}

variable "autoscaling-group-key-name" {

type = "string"

description = "EC2 ssh key name"

}

We now have the type and description of all our variables defined in variables. tf, but no
values have been assigned to them yet.

TF is quite flexible with how this can be done. We could do it any of the following ways:

e Assign (default) values directly in variables.tf:

e variable "aws-region" { type = "string"description = "AWS region"default =
'us-east-1'}

e Not assign a value to a variable, in which case TF will prompt for it at run time

e * Passa -var 'key=value' argument directly to the TF command, like so:

-var 'aws-region=us-east-1'

e Store key=value pairs in a file
e Use environment variables prefixed with TF_VAR, as in TF_VAR_ aws-region

Using a key=value pairs file proves to be quite convenient within teams, as each engineer can
have a private copy (excluded from revision control). If the file is named terraform.tfvars it
will be read automatically by TF; alternatively, -var-file can be used on the command line to
specify a different source.

Here is the content of our sample terraform. tfvars file:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/Terrafornvterraform.tfvars.

autoscaling-group-image-id = "ami-08111162"
autoscaling-group-instance-type = "t2.nano"
autoscaling-group-key-name = "terraform"
autoscaling-group-maxsize = "1"
autoscaling-group-minsize = "1"
aws-availability-zones = "us-east-1b,us-east-1c"
aws-region = "us-east-1"

rds-engine = "postgres"

rds-engine-version = "9.5.2"

rds-identifier = "terraform-rds"
rds-instance-class = "db.t2.micro"

rds-port = "5432"

rds-storage-size = "5"

rds-storage-type = '"gp2"

rds-username = "dbroot"

rds-password = "donotusethispassword"
vpc-cidr = "10.0.0.0/16"

vpc-name = "Terraform"

A point of interest is aws-availability-zones, as it holds multiple values that we interact with
using the element and split functions, as seen in resources. tf.

Outputs

The third, mostly informational part of our template contains the TF Outputs. These allow
selected values to be returned to the user when testing, deploying or after a template has been
deployed. The concept is similar to how echo statements are commonly used in shell scripts to
display useful information during execution.

Let us add outputs to our template by creating an outputs. tf file:
Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/Terraform/outputs.tf.

output "VPC ID" {

value = "${aws_vpc.terraform-vpc.id}"

}

output "NAT EIP" {

value = "${aws_nat_gateway.terraform-nat.public_ip}"
}

output "ELB URI" {
value = "${aws_elb.terraform-elb.dns_name}"

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/terraform.tfvars
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/Terraform/outputs.tf

}
output "RDS Endpoint" {

value = "${aws_db_instance.terraform.endpoint}"

}

To configure an output, you simply reference a given resource and its attribute. As shown in
preceding code, we have chosen the ID of the VPC, the Elastic IP address of the NAT gateway,
the DNS name of the ELB and the endpoint address of the RDS instance.

This section completes the template in this example. You should now have four files in your
template folder: resources.tf, variables. tf, terraform.tfvars, and outputs. tf.

Operations

We shall examine five main TF operations:

Validating a template
Testing (dry-run)

Initial deployment
Updating a deployment
Removal of a deployment

Note

In the following command line examples, Terraform is run within the folder that contains the
template files.

Validation

Before going any further, a basic syntax check should be done with the terraform validate
command. After renaming one of the variables in resources. tf, validate returns an unknown
variable error:

$ terraform validate

Error validating: 1 error(s) occurred:

* provider config 'aws': unknown variable referenced: 'aws-region-1'. define
it with 'variable' blocks

Once the variable name has been corrected, re-running validate returns no output, meaning
validation has passed.

Dry-run

The next step is to perform a test/dry-run execution with terraform plan, which displays what
would happen during an actual deployment. The command returns a color-coded list of resources
and their properties or more precisely, as follows:

$ terraform plan

Resources are shown in alphabetical order for quick scanning. Green resources
will be created (or destroyed and then created if an existing resource
exists), yellow resources are being changed in-place, and red resources will
be destroyed.

To literally get the picture of what the to-be-deployed infrastructure looks like, you could use
terraform graph:

$ terraform graph > my_graph.dot
DOT files can be manipulated with the Graphviz open source software (Please see

http://www.graphviz.org) or many online readers/converters. The following diagram is a portion
of a larger graph representing the template we designed earlier:

http://www.graphviz.org

Terraform graph
Deployment

If you are happy with the plan and graph, the template can now be deployed using terraform
apply:

$ terraform apply

aws_eip.nat-eip: Creating...

allocation_id: "" => "<computed>"
association_id: "" => "<computed>"

domain: "" => "<computed>"

instance: "" => "<computed>"
network_interface: "" => "<computed>"
private_ip: "" => "<computed>"

public_ip: "" => "<computed>"

vpc: nmmn => ll1ll

aws_vpc.terraform-vpc: Creating...
cidr_block: "" => "10.0.0.0/16"
default_network_acl_id: "" => "<computed>"
default_security_group_id: "" => "<computed>"
dhcp_options_id: "" => "<computed>"
enable_classiclink: "" => "<computed>"
enable_dns_hostnames: "" => "<computed>"
Apply complete! Resources: 22 added, 0 changed, 0 destroyed.

The state of your infrastructure has been saved to the following path. This state is required to
modify and destroy your infrastructure, so keep it safe. To inspect the complete state, use the
terraform show command.

State path: terraform.tfstate

Outputs:
ELB URI = terraform-elb-xxxxxx.us-east-1.elb.amazonaws.com
NAT EIP = Xx.X.X.X

RDS Endpoint = terraform-rds.xxxxxx.us-east-1.rds.amazonaws.com:5432
VPC ID = vpcC-XXXXXX

At the end of a successful deployment, you will notice the outputs we configured earlier and a
message about another important part of TF - the state file (please refer to

https://www.terraform.io/docs/state/):

TF stores the state of your managed infrastructure from the last time TF was run. By default, this
state is stored in a local file named terraform.tfstate, but it can also be stored remotely,
which works better in a team environment.

TF uses this local state to create plans and make changes to your infrastructure. Prior to any
operation, TF does a refresh to update the state with the real infrastructure.

In a sense, the state file contains a snapshot of your infrastructure and is used to calculate any
changes when a template has been modified. Normally, you would keep the terraform.tfstate
file under version control alongside your templates. In a team environment however, if you
encounter too many merge conflicts you can switch to storing the state file(s) in an alternative

location such as S3 (please see: https://www.terraform.io/docs/state/remote/index.html).

Allow a few minutes for the EC2 node to fully initialize, then try loading the ELB URI from the
preceding outputs in your browser. You should be greeted by nginx, as shown in the following
screenshot:

Welcome to nginx on the Amazon Linux AMI!

This page is usad to lest the proper operation of the ngine HTTF server afler it has been nstalled. 1 you can read this page, it means thal the wab sarver installed at this sfe is
working property.

This is the defaull indesx.bzml page hal is distributed with nginx on the Amazon Linux AML It is located M fusc/share/nginz/htnl.

You should now pul your conbend in a localon of your choce and edil ™ root configuralion directive in the nginx configuration file
fetefrpgin/oginy.cont.

NGINX

Updates

As per Murphy 's Law, as soon as we deploy a template, a change to it will become necessary.
Fortunately, all that is needed for this is to update and re-deploy the given template.

Let's say we need to add a new rule to the ELB security group (shown in bold):

1. Update the "aws_security _group" "terraform-elb" resource block in resources.tf:

resource "aws_security_group" "terraform-elb" {
name = "terraform-elb"

description = "ELB security group"

vpc_id = "${aws_vpc.terraform-vpc.id}"

https://www.terraform.io/docs/state/
https://www.terraform.io/docs/state/remote/index.html

ingress {

from_port = "80"

to_port = "80"

protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

ingress {

from_port = "443"

to_port = "443"

protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

egress {
from_port =
to_port = 0
protocol = "-1"

cidr_blocks = ["0.0.0.0/0"]

}
}

0

. Verify what is about to change:

$ terraform plan

~ aws_security_group.terraform-elb

ingress.#: "1" => "2"

ingress.2214680975.cidr_blocks.#: "1" => "1"
ingress.2214680975.cidr_blocks.0: "0.0.0.06/0" => "0.0.0.0/0"
ingress.2214680975.from_port: "80" => "8o"
ingress.2214680975.protocol: "tcp" => "tcp"
ingress.2214680975.security_groups.#: "0" => "o"
ingress.2214680975.self: "0" => "0"
ingress.2214680975.to_port: "80" => "80"
ingress.2617001939.cidr_blocks.#: "o" => "1"

ingress.2617001939.cidr_blocks.0: "" => "0.0.0.0/0"
ingress.2617001939.from_port: "" => "443"
ingress.2617001939.protocol: "" => "tcp"
ingress.2617001939.security_groups.#: "0" => "o"
ingress.2617001939.self: "" => "@"
ingress.2617001939.to_port: "" => "443"

Plan: 0 to add, 1 to change, 0 to destroy.

. Deploy the change:

$ terraform apply

aws_security_group.terraform-elb: Modifying...

ingress.#: "1" => "2"

ingress.2214680975.cidr_blocks.#: "1" => "1"
ingress.2214680975.cidr_blocks.0: "0.0.0.06/0" => "0.0.0.0/0"
ingress.2214680975.from_port: "80" => "80"
ingress.2214680975.protocol: "tcp" => "tcp"
ingress.2214680975.security_groups.#: "0" => "o"

ingress.2214680975.
ingress.2214680975.
ingress.2617001939.
ingress.2617001939.
ingress.2617001939.
ingress.2617001939.
ingress.2617001939.
ingress.2617001939.
ingress.2617001939.
aws_security_group.

SElf: lloll => Iloll
to_port: "80" => "80"
cidr_blocks.#: "e" => "1"

cidr_blocks.0: "" => "0.0.0.0/0"
from_port: "" => "443"

protocol: "" => "tcp"

security groups.#: "0" => "o0"
Self: nmn => Iloll

to_port: "" => "443"

terraform-elb: Modifications complete

Apply complete! Resources: 0 added, 1 changed, 0 destroyed.

Note

Some update operations can be destructive (please refer to

http://docs.aws.amazon.com/ AWSCloudFormation/latest/UserGuide/using-cfn-updating-
stacks-update-behaviors.html). You should always check the CloudFormation documentation
on the resource you are planning to modify to see whether a change is going to cause an
interruption. TF provides some protection via the prevent_destroy life cycle property

(please refer to

https://www.terraform.io/docs/configuration/resources.html#prevent _destroy).

Removal

This is a friendly reminder to always remove AWS resources after you are done experimenting
with them to avoid any unexpected charges.

Before performing any delete operations, we will need to grant such privileges to the
(terraform) IAM user we created in the beginning of this chapter. As a shortcut, you could
temporarily attach the AdministratorAccess managed policy to the user via the AWS Console, as
shown in the following figure:

Users

= Managed Policies
Aaoles

ldentity Frovidars

Account Setlings
Policy Mama

Cradential Repart

Groups Groups Permissions Security Credentials Access Advisor

Policies The following manapged policies are attached 1o this user. You can attach up to 10 managed policies.

AgministratorAcoess Show Policy | Datach Policy | Simulate Policy

Actions

To remove the VPC and all associated resources that we created as part of this example, we will

use terraform destroy:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html
https://www.terraform.io/docs/configuration/resources.html#prevent_destroy

$ terraform destroy

Do you really want to destroy?

Terraform will delete all your managed infrastructure.
There is no undo. Only 'yes' will be accepted to confirm.
Enter a value: yes

Terraform asks for a confirmation then proceeds to destroy resources, ending with the following:

Apply complete! Resources: 0 added, 0 changed, 22 destroyed.

Next, we remove the temporary admin access we granted to the IAM user by detaching the
AdministratorAccess managed policy, as shown in the following screenshot:

Groups Groups Permizsions Security Credentials Access Advisor

Usars
Managed Policies %
Aaoles
Palicies Tha fellowing menaged policles ane atisched o this user. You can attach up to 10 managed policies.
Igentity Providars Attach Policy

Account Setlings
Policy Name Actions

Credential Report
Administratonicorss Show Policy Simulate Policy

Then, verify that the VPC is no longer visible in the AWS Console.

IaC using CloudFormation

CloudFormation is an AWS service for deploying infrastructure as code. As before, we are going
to describe our infrastructure via templates containing parameters (variables), resources, and
outputs.

CloudFormation calls each deployed template a Stack. Creating, listing, updating, and deleting
stacks is possible via the AWS Console, CLI, or API In a small setup, you would probably
deploy each of your stacks individually, but as your architecture becomes more complex, you can
start nesting stacks. You would have a top-level or a parent stack (template) that invokes a
number of sub-stacks. Nested stacks allow you to pass variables between them and, of course,
save you the time of having to deploy each one individually.

Configuration

CloudFormation provides a GUI via the AWS Console; we however, are going to focus on the
AWS CLI since it is most suitable for automating tasks in the future.

Depending on the OS you run, you could download an installer from https://aws.amazon.comv/cli/
or use Python PIP:

$ pip install awscli
$ aws --version
aws-cli/1.10.34

We will need a set of API keys, so let's create a new IAM user called cloudformation with the
following privileges:

"cloudformation:CancelUpdateStack",
"cloudformation:ContinueUpdateRollback",
"cloudformation:Create*",
"cloudformation:Describe*",
"cloudformation:EstimateTemplateCost",
"cloudformation:ExecuteChangeSet",
"cloudformation:Get*",
"cloudformation:List™*",
"cloudformation:PreviewStackUpdate",
"cloudformation:SetStackPolicy",
"cloudformation:SignalResource",
"cloudformation:UpdateStack",
"cloudformation:ValidateTemplate",
"autoscaling:CreateAutoScalingGroup",
"autoscaling:CreateLaunchConfiguration",
"autoscaling:DeleteLaunchConfiguration",
"autoscaling:Describe*",
"autoscaling:UpdateAutoScalingGroup",
"ec2:AllocateAddress",
"ec2:AssociateAddress",
"ec2:AssociateRouteTable",
"ec2:AttachInternetGateway",
"ec2:AuthorizeSecurityGroupEgress",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:CreateInternetGateway",
"ec2:CreateNatGateway",
"ec2:CreateRoute",
"ec2:CreateRouteTable",
"ec2:CreateSecurityGroup",
"ec2:CreateSubnet",

"ec2:CreateTags",

"ec2:CreateVpc",

"ec2:Describe*",

"ec2:Modify*",
"ec2:RevokeSecurityGroupEgress",
"elasticloadbalancing:CreateLoadBalancer",
"elasticloadbalancing:CreateLoadBalancerListeners",
"elasticloadbalancing:Describe*",
"elasticloadbalancing:ModifyLoadBalancerAttributes",

https://aws.amazon.com/cli/

"elasticloadbalancing:SetLoadBalancerPoliciesOfListener",
"rds:CreateDBInstance",

"rds:CreateDBSubnetGroup",

"rds:Describe*"

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/CloudFormation/iam_user_policy.json.

You have the choice of using aws configure, which will prompt you for the API credentials, or
if you prefer not to store them permanently, you could use an environment variable:

$ export AWS_ACCESS_KEY_ID='user_access_key'
$ export AWS_SECRET_ACCESS_KEY='user_secret_access_key'

CloudFormation templates do not store any AWS region information, so to avoid specifying it on
the command line each time. It can be exported as well:

$ export AWS_DEFAULT_REGION='us-east-1'

With those environment variables in place, awscli should be ready for use.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/CloudFormation/iam_user_policy.json

Template design

CloudFormation templates are written in JSON and usually contain at least three sections (in any
order): parameters, resources and outputs.

Unfortunately it is not possible to store these into separate files (with the exception of parameter
values), so in this example we will work with a single template file named main. json.

Templates can be used locally or imported from a remote location (an S3 bucket is a common
choice).
Parameters

Parameters add flexibility and portability to our Stack by letting us pass variables to it such as
instance types, AMI ids, SSH keypair names and similar values which it is best not to hard-code.

Each parameter takes an arbitrary logical name (alphanumeric, unique within the template),
description, type, and an optional default value. The available types are String, Number,
CommaDelimitedList, and the more special AWS-specific type, such as

AWS: :EC2: :KeyPair: :KeyName, as seen in the preceding code.

The latter is useful for validation, as CloudFormation will check whether a key pair with the
given name actually exists in your AWS account.

Parameters can also have properties such as Allowedvalues, Min/MaxLength, Min/MaxValue,
NoEcho and other (please see

http://docs.aws.amazon.com/ AWSCloudFormation/latest/UserGuide/parameters-section-
structure.html).

There is a limit of 60 parameters per template.

Let us examine the parameters found at the top of our template:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json.

"Parameters" : {

"vpcCidr" : {

"Description" : "VPC CIDR",
"Type" : Ilstringll

Iy

"vpcName" : {

"Description" : "VPC name",
"Type" : Ilstringll

Iy

"awsAvailabilityZones" : {

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json

"Description" : "List of AZzZs",

"Type" : "CommaDelimitedList"

Iy

"publicCidr" : {

"Description" : "List of public subnet CIDRs",
"Type" : "CommaDelimitedList"

3,

"rdsInstanceClass" : {

"Description" : "RDS instance class",
"Type" : Ilstringll’

"AllowedValues" : ["db.t2.micro", "db.t2.small", "db.t2.medium"]
Iy

"rdsUsername" : {

"Description" : "RDS username",
"Type" : Ilstringll

Iy

"rdsPassword" : {

"Description" : "RDS password",
"Type" : Ilstringll’

"NoEcho" : "true"

Iy

"autoscalingGroupKeyname" : {
"Description" : "EC2 ssh key name",
"Type" : "AWS::EC2::KeyPair::KeyName"
Iy

"autoscalingGroupImageId" : {
"Description" : "EC2 AMI ID",

"Type" : "AWS::EC2::Image::Id"

}

}

We have used the following:

e CommaDelimitedList, which we will conveniently query later with a special function
e AllowedValues and Minvalue to enforce constraints

® NoEcho for passwords or other sensitive data

e Some AWS-specific types to have CloudFormation further validate input

You will notice that there are no values assigned to any of the preceding parameters.

To maintain a reusable template, we will store values in a separate file (parameters.json):

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/CloudFormation/parameters.json.

[

{

"ParameterKey": "vpcCidr",
"ParameterValue": "10.0.0.0/16"
t

{

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/CloudFormation/parameters.json

"ParameterKey": "vpcName",

"ParametervValue": "CloudFormation"

3

{

"ParameterKey": "awsAvailabilityZones",
"ParameterValue": "us-east-1b,us-east-1c"
3

{

"ParameterKey": "publicCidr",
"ParametervValue": "10.0.1.0/24,10.0.3.0/24"
3

{

"ParameterKey": "privateCidr",
"ParametervValue": "10.0.2.0/24,10.0.4.0/24"
3

{

"ParameterKey": "rdsIdentifier",
"ParametervValue": "cloudformation"

3

{

"ParameterKey": "rdsStorageSize",
"Parametervalue": "5"

3

{

"ParameterKey": "rdsStorageType",
"Parametervalue": '"gp2"

3

{

"ParameterKey": "rdsEngine",
"ParametervValue": "postgres"

3,

Resources

You are already familiar with the concept of resources and how they are used to describe
different pieces of infrastructure.

Regardless of how resources appear in a template, CloudFormation will follow its internal logic
to decide the order in which these get provisioned.

The syntax for declaring a resource is as follows:

"Logical ID" : {
"Type" : Illl’
"Properties" : {}

}

IDs need to be alphanumeric and unique within the template.

The list of CloudFormation resource types and their properties can be found here:

http://docs.aws.amazon.com/ AWSCloudFormation/latest/UserGuide/aws-template-resource-type-
ref.html

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

The max number of resources a template can have is 200. Reaching that limit, you will need to
split a template into smaller ones and possibly look into nested stacks.

Back to our example, as per tradition we start by creating a VPC and its supporting elements such
as subnets, Internet gateway and NAT gateway:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json.

"Resources" : {

|IVpC|l : {

"Type" : "AWS::EC2::VPC",

"Properties" : {

"CidrBlock" : { "Ref" : "vpcCidr" 1},
"EnableDnsSupport" : "true",

"EnableDnsHostnames" : "true",

"Tags" : [{ "Key" : "Name", "value" : { "Ref" : "vpcName" } }]
}

+

"publicSubnet1" : {

"Type" : "AWS::EC2::Subnet",

"Properties" : {

"AvailabilityzZone" : { "Fn::Select" : ["0", {"Ref" : "awsAvailabilityZones"}
1},

"CidrBlock" : { "Fn::Select" : ["0", {"Ref" : "publicCidr"}] 1},
"MapPublicIpOnLaunch" : "true",

"Tags" : [{ "Key" : "Name", "value" : "Public" } 1],
"VpCId" : { IlRefll : IIVpCII }

}

+

"internetGateway" : {

"Type" : "AWS::EC2::InternetGateway",

"Properties" : {

"Tags" : [{ "Key" : "Name", "value" : { "Fn::Join" : [" - ", [{ "Ref"
"vpcName" 3}, "IGW" 1 1 } }]

}

+

"internetGatewayAttachment" : {

"Type" : "AWS::EC2::VPCGatewayAttachment",
"Properties" : {

"InternetGatewayId" : { "Ref" : "internetGateway" },
"VpCId" : { IlRefll : IIVpCII }

}

+

"natEip" : {

"Type" : "AWS::EC2::EIP",

"Properties" : {

"Domain" : "wvpc"

}

+

"natGateway" : {
"Type" : "AWS::EC2::NatGateway",

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json

"Properties" : {

"AllocationId" : { "Fn::GetAtt" : ["natEip", "AllocationId"]},
"SubnetId" : { "Ref" : "publicSubnet1" }

3

"DependsOn" : "internetGatewayAttachment"

3

Note some of the CloudFormation functions used in the preceding code:

e "Fn::Select" in"CcidrBlock" : { "Fn::Select" : ["0", {"Ref"
"publiccCidr"}] 3}, whichallows us to query the CommabDelimitedList type parameters
we set earlier

e "Fn::Join", for concatenating strings

e "Fn::GetAtt", for retrieving resource attributes

Also, the bependson property of the natGateway resource allows us to set explicit conditions on
the order of execution. In this case, we are saying that the Internet Gateway resource needs to be
ready (attached to the VPC) before the NAT Gateway is provisioned.

After the VPC, let's add RDS:

"rdsInstance" : {
"Type" : "AWS::RDS::DBInstance",
"Properties" : {
"DBInstanceIdentifier" : { "Ref" : "rdsIdentifier" 1},
"DBInstanceClass" : { "Ref" : "rdsInstanceClass" },
"DBSubnetGroupName" : { "Ref" : "rdsSubnetGroup" },
"Engine" : { "Ref" : "rdsgEngine" 1},
"EngineVersion" : { "Ref" : "rdsEngineVersion" },
"MasterUserPassword" : { "Ref" : "rdsPassword" },
"MasterUsername" : { "Ref" : "rdsUsername" },
"StorageType" : { "Ref" : "rdsStorageType" },
"AllocatedStorage" : { "Ref" : "rdsStorageSize" },
"VPCSecurityGroups" : [{ "Ref" : "rdsSecurityGroup" }],
"Tags" : [{ "Key" : "Name", "Value" : { "Ref" : "rdsIdentifier" } }]
1}
Then add the ELB:
"elbInstance" : {
"Type" : "AWS::ElasticlLoadBalancing::LoadBalancer",
"Properties" : {
"LoadBalancerName" : '"cloudformation-elb",
"Listeners" : [{ "InstancePort" : "80", "InstanceProtocol" : "HTTP",
"LoadBalancerPort" : "80", "Protocol" : "HTTP" }],
"SecurityGroups" : [{ "Ref" : "elbSecurityGroup" }],
"Subnets" : [{ "Ref" : "publicSubneti1" }, { "Ref" : "publicSubnet2" }],
"Tags" : [{ "Key" : "Name", "Value" : "cloudformation-elb" }]
}
}

And add the EC2 resources:

"launchConfiguration" : {

"Type" : "AWS::AutoScaling::LaunchConfiguration",
"Properties" : {

"ImageId" : { "Ref": "autoscalingGroupImageId" },
"InstanceType" : { "Ref" : "autoscalingGroupInstanceType" },
"KeyName" : { "Ref" : "autoscalingGroupKeyname" },
"SecurityGroups" : [{ "Ref" : "ec2SecurityGroup" }]

We still use a UserData shell script to install the NGINX package; however, the presentation is
slightly different this time. CloudFormation is going to concatenate the lines using a new line
character as a delimiter then encode the result in Base64:

"UserData" : {

"Fn::Base64" : {
"Fn::Join" : [
|l\n|l’

[

"#1/bin/bash",

"set -euf -o pipefail",

"exec 1> >(logger -s -t $(basename $0)) 2>&1",

"yum -y install nginx; chkconfig nginx on; service nginx start"

(S W Y W W R

We use DependsoOn to ensure the RDS instance goes in before autoScalingGroup:

"autoScalingGroup" : {

"Type" : "AWS::AutoScaling::AutoScalingGroup",

"Properties" : {

"LaunchConfigurationName" : { "Ref" : "launchConfiguration" 1},
"DesiredCapacity" : "1",

"MinSize" : "1",

"MaxSize" : "1",

"LoadBalancerNames" : [{ "Ref" : "elbInstance" }],
"VPCZoneIdentifier" : [{ "Ref" : "privateSubneti1" }, { "Ref"
"privateSubnet2" }],

"Tags" : [{ "Key" : "Name", "value" : "cloudformation-asg",
"PropagateAtLaunch" : "true" }]

Iy

"DependsOn" : "rdsInstance"

}
Outputs

Again, we will use these to highlight some resource attributes following a successful deployment.
Another important feature of outputs, however, is that they can be used as input parameters for
other templates (stacks). This becomes very useful with nested stacks.

Note

Once declared, outputs cannot be subsequently updated on their own. You will need to modify at
least one resource in order to trigger an Output update.

We add the vPC 1D, NAT IP address and ELB DNS name as Outputs:
Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json.

"OQutputs" : {

"vpcId" : {

"Description" : "VPC ID",

"Value" : { "Ref" : "vpc" }

+

"natEip" : {

"Description" : "NAT IP address",
"Value" : { "Ref" : "natEip" }

+

"elbDns" : {

"Description" : "ELB DNS",
"Value" : { "Fn::GetAtt" : ["elbInstance", "DNSName"] }
}

}

Currently, a template can have no more than 60 Outputs.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_02_CodeFiles/CloudFormation/main.json

Operations

If you have been following along, you should now have a main.json and a parameters.json in
your current folder. It is time to put them to use, so here are a few operations we are going to
perform:

e Validate a template
e Deploy a stack
e Update a stack
e Delete a stack

Template validation

First things first, a basic check of our JSON template with validate-template:

$ aws cloudformation validate-template --template-body file://main.json

{

"Description": "Provisions EC2, ELB, ASG and RDS resources",
"Parameters": [

{

"NoEcho": false,
"Description": "EC2 AMI ID",
"ParameterKey": "autoscalingGroupImageId"

}

If there's no errors, the CLI returns the parsed template. Note that we could have just as easily
pointed to a remote location using - - template-url instead of -template-body.

Deploying a Stack

To deploy our template (stack), we will use create-stack. It takes an arbitrary name, the
location of the template, and the file containing parameter values:

$ aws cloudformation create-stack --stack-name cfn-test --template-body
file://main.json --parameters file://parameters.json
{

"StackId": "arn:aws:cloudformation:us-east-1:xxxxxx:stack/cfn-test/xxxxxx"

}

CloudFormation starts creating the stack and no further output is returned. To get progress
information on the CLI, use describe-stacks:

$ aws cloudformation describe-stacks --stack-name cfn-test

{
"Stacks": [

{

"StackId": "arn:aws:cloudformation:us-east-xxxxxx:stack/cfn-test/xxxxxx"

"CreationTime": "2016-05-29T20:07:17.813Z",
"StackName": "cfn-test",
"NotificationARNs": [],

"StackStatus": "CREATE_IN_PROGRESS",

"DisableRollback": false

b
]
3

And for even more details, use describe-stack-events.

After a few minutes (based on our small template) StackStatus changes from
CREATE_IN_PROGRESS to CREATE_COMPLETE and we are provided the requested Outputs:

$ aws cloudformation describe-stacks --stack-name cfn-test
"Outputs": [

{

"Description": "VPC ID",

"OutputKey": "vpcId",

"OutputValue": "vpc-xxxxxx"

3

{

"Description": "NAT IP address",
"OutputKey": "natEip",
"QutputvValue": "x.x.x.x"

3

{

"Description": "ELB DNS",
"OutputKey": "elbDns",

"Outputvalue": "cloudformation-elb-xxxxxx.us-east-1.elb.amazonaws.com"
}

1,

"CreationTime": "2016-05-29T20:07:17.813Z",

"StackName": "cfn-test",

"NotificationARNs": [],
"StackStatus": "CREATE_COMPLETE",
"DisableRollback": false

At this point, the e1bDNS URL should return the nginx welcome page, as shown here:

Welcome to nginx on the Amazon Linux AMI!

This page is usad to lest the proper operation of the ngine HTTF server afler it has been nstalled. 1 you can read this page, it means thal the wab sarver installed at this sfe is
working property.

This is the defaull indesx.bzml page hal is distributed with nginx on the Amazon Linux AML It is located M fusc/share/nginz/htnl.

You should now pul your conbend in a localon of your choce and edil ™ root configuralion directive in the nginx configuration file
fetefrpgin/oginy.cont.

NGINX

If not, you might need to allow some more time for the EC2 node to fully initialize.

Updating a stack

CloudFormation offers two ways of updating a deployed stack.

Note

Some update operations can be destructive (please refer to

http://docs.aws.amazon.com/ AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-
update-behaviors.html). You should always check the CloudFormation documentation on the

resource you are planning to modify to see whether a change is going to cause any interruption.
If you would like to quickly deploy a minor change, then all you need to do is modify the template
file and deploy it directly with update-stack:

$ aws cloudformation update-stack --stack-name cfn-test
--template-body file://main.json
--parameters file://parameters.json

Otherwise, a good practice would be to use Change Sets to preview stack changes before
deploying them. For example, let us update the rules in the ELB security group as we did before:
1. Modify the main. json template (add another rule to elbSecurityGroup):

"elbSecurityGroup" : {

"Type" : "AWS::EC2::SecurityGroup",
"Properties" : {
"SecurityGroupIngress" : [{ "ToPort" : "80", "FromPort" : "80",
"IpProtocol" : "tcp", "CidrIp" : "0.0.0.0/0" 3},
{ "ToPort" : "443", "FromPort" : "443", "IpProtocol"
"tcp", "CidrIp" : "0.0.0.0/0" }]

2. Create a Change Set:
$ aws cloudformation create-change-set
--change-set-name updatingElbSecGroup

--stack-name cfn-test --template-body file://main.json
--parameters file://parameters.json

3. Preview the Change Set:
$ aws cloudformation describe-change-set

--change-set-name updatingSecGroup
--stack-name cfn-test

4. Execute the Change Set:

$ aws cloudformation execute-change-set --change-set-name
updatingSecGroup --stack-name cfn-test

Tip

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html

Whether via a Change Set or updating directly, if you are simply modifying parameter values
(parameters. json) you can skip re-uploading the template (main. json) with - -use-
previous-template.

Deleting a stack

In order to tidy up after our experiments, we will need to grant temporary Admin privileges to the
CloudFormation IAM user (the same procedure as in the earlier TF section); run delete-stack:

$ aws cloudformation delete-stack --stack-name cfn-test

Then revoke the Admin privileges.

Summary

In this chapter, we looked at the importance and usefulness of Infrastructure as Code and ways to
implement it using Terraform or AWS CloudFormation.

We examined the structure and individual components of both a TF and a CF template then
practiced deploying those onto AWS using the CLL I trust that the examples we went through have
demonstrated the benefits and immediate gains from the practice of deploying infrastructure as

code.

So far, however, we have only done half the job. With the provisioning stage completed, you will
naturally want to start configuring your infrastructure, and that is what we are going to do in the
next chapter on Configuration Management.

Chapter 3. Bringing Your Infrastructure Under
Configuration Management

As hinted at the end of the previous chapter, there is some more work to be done before we can
claim to have fully implemented IaC.

The first step was to describe the hardware side of our infrastructure in code; now it is time to
look at the software or configuration aspect of it.

Let us say we have provisioned a few EC2 nodes and would like to have certain packages
installed on them, and relevant configuration files updated. Prior to Configuration Management
(CM) tools gaining popularity, such tasks would have been performed manually by an engineer
either following a checklist, running a collection of shell scripts, or both. As you can imagine,
such methods do not scale well as they generally imply one engineer setting up one server at a
time.

In addition, checklists or scripts:

e Are hard to write when it comes to configuring a host plus a full application stack running on
it

e Are usually targeted at a given host or application and are not very portable

e Get progressively harder to comprehend the further you get from the person who originally
wrote them

e Build scripts tend to get executed only once, usually at the time a host is provisioned, thus
configuration starts to drift from that moment on

Fortunately, not many people use these nowadays, as Configuration Management has become a
common practice. Let us examine some of the benefits:

e CM allows us to declare the desired state of a machine once and then reproduce that state as
often as necessary

e Powerful abstraction takes care of specifics such as environment, hardware, and OS type,
allowing us to write reusable CM code

e The declared machine state code is easy to read, comprehend, and collaborate on.

¢ A CM deployment can be performed on tens, hundreds, or thousands of machines
simultaneously

In this age of DevOps, there are a variety of CM tools to choose from. You might have already
heard of Puppet, Chef, Ansible, OpsWorks, or the one we are going to use-SaltStack (the Salt
Open project).

All of these are well developed, sophisticated CM solutions with active communities behind
them. I find it hard to justify any reported claims of one being better than the rest as they all do the
job pretty well, each with its own set of strengths and weaknesses. So which one you use, as is

often the case, is up to personal preference.

Regardless of the tool you end up using, I would like to stress the importance of two points:
naming conventions and code reusability.

Following naming conventions when writing code is an obvious win as it guarantees other people
will be able to understand your work with less effort. In addition to writing code however, CM
involves executing it against your nodes and this is where naming also becomes important.
Imagine you had four servers: leonardo, donatello, michelangelo, and raphael. Two of those are
your frontend layer and two the backend, so you sit down and write your Configuration
Management manifests respectively: webserver-node and database-node. So far, so good, given
the number of hosts you can launch your CM tool and easily tell it to run the relevant manifest
against each of them.

Now imagine 50, then 100 hosts, within a similar flat-naming schema, and you start to see the
problem. As the size and complexity of your infrastructure grows, you will need a host-naming
convention that naturally forms a hierarchy. Hostnames such as webserver-{0..10}, db-{0..5} and
cache-{0..5} can be further grouped into frontend and backend and then represented in a
structured, hierarchical way. Such a way of grouping nodes based on role or other properties is
extremely useful when applying Configuration Management.

Code reusability should already be on your mind when you start writing CM code (manifests).
You will find that there are generally two ways of approaching this task. You could write a large,
say, web server piece which contains instructions on how to set up the firewall, some CLI tools,
NGINX, and PHP on a node, or you could break it down into smaller parts like iptables, utils,
NGINX, PHP, and so on.

In my opinion, the latter design adds some overhead when writing the manifests, but the benefit of
reusability is substantial. Instead of writing large sets of declarations dedicated to each server
type, you maintain a collection of generic, small ones and cherry-pick from them to suit the
machine in question.

To illustrate:

manifests: everything_a_ websrv_needs, everything for_a_db, cache_main

nodes: web01, db01, cache0O1l

CM_execution: webOl=(everything_a_websrv_needs), dbOl=(everything_for_a_db),
cache@l=(cache_main)

Or better:

manifests: iptables, utils, nginx, postgresql, redis, php
nodes: web01, db01, cache0O1l

CM_execution: web01=(iptables,utils,nginx, php), dboil=
(iptables,utils, postgresql), cache@l=(iptables,utils, redis)

Introduction to SaltStack

SaltStack (see https://saltstack.com/), first released in 2011, is an automation suite which offers
Configuration Management plus standard and/or event-driven orchestration. It is commonly used
in a master-minion setup, where a master node provides centralized control across a compute
estate. It is known for its speed and scalability thanks to the fast and lightweight message bus
(ZeroMQ) used for communication between the salt-master and minions. It can also be used in an
agentless fashion, where the minions are controlled over SSH, similarly to how Ansible operates.

SaltStack is written in Python and is easily extensible. You can write your own modules for it,
attach long-running processes to its event bus, and inject raw Python code in unusual places.

The master-minion model is quite powerful, offers a lot of flexibility, and is the recommended
approach if you are looking after anything more than a few dev nodes and want to take advantage
of all the features SaltStack has to offer.

Note

More on how to get a salt-master up and running can be found here:

https://docs.saltstack.com/en/latest/topics/configuration/index.html

In our case, we are going to explore the power of Configuration Management using SaltStack in a
standalone or masterless mode. We will reuse parts of the Terraform template from the previous
chapter to launch a set of EC2 resources, bootstrap a SaltStack minion and have it configure itself
to serve a web application.

Provided all goes well, we should end up with a fully configured web server (EC2 node) behind
a load-balancer (EC2 ELB).

Here is our task-list:

1. Prepare our SaltStack development environment.

2. Write the configuration that we would like SaltStack to apply to our node(s).
3. Compose the Terraform template describing our infrastructure.

4. Deploy the infrastructure via Terraform and let SaltStack configure it.

https://saltstack.com/
https://docs.saltstack.com/en/latest/topics/configuration/index.html

Preparation

SaltStack Configuration Management is performed using the following main components:

o States are the files which describe the desired state of a machine. Here we write
instructions for installing packages, modifying files, updating permissions, and so on.

¢ Pillars are the files in which we define variables to help make States more portable and
flexible.

¢ Grains are pieces of information gathered on the minion host itself. These include details
about the OS, environment, the hardware platform, and others.

e The Salt File Server stores any files, scripts, or other artifacts which may be referenced in
the States.

e The Salt Top file(s) are used to map States and/or Pillars to minions.

In a master-minion setup, all of these components except the Grains would be hosted on and made
available to the minions by the salt-master (other backends are also supported).

We are planning to run Salt in masterless mode however, meaning that we will need a way to
transfer any States, Pillars, and related files from our local environment to the minion. Git? Good
idea. We will write all Salt code locally, push it to a Git repository, and then have it checked out
onto each minion at boot time.

As for choosing a Git hosting solution, Github or Bitbucket are excellent services, but giving our
minion EC2 nodes access to these will involve some key handling. In comparison, Code Commit
(the AWS Git solution) offers a much smoother integration with EC2 instances via IAM Roles.

Let us start by creating a new IAM user and a CodeCommit Git repository. We will be using the
user's access keys to create the repository and a SSH key to clone and work with it:

1. Inthe AWS Console, create an IAM user (write down the generated access keys) and attach
the AWSCode CommitFullAccess built-in / Managed IAM policy to it as shown in the
following screenshot:

Groups Groups Parmiasions Sacurity Credentiale Acceas Advisor

Lhaars
= Managed Policies ~
Foles

Palicies Tha fellowing manapad policias are attached 1o this user. You can attach up to 10 managed policies.

Account Setlings
Policy Nama Actions

Credential Report
b Administrabordcoess Show Policy | Daetach Policy | Smulate Policy

2. On the same page, switch to the Security Credentials tab and click on the Upload SSH

public key as shown in the following screenshot:

Groups Permissions Security Credentials Access Advisor

Access Keys
Sign-In Credentials
S5H keys for AWS CodeCommit

Use SSH public keys to authenticate to AWS CodeCommit repositories. Learmn more about SSH keys

55H Key ID Uploaded Status Actions

APHKAIESWHKZCTTRPTIZEQ 2016-06-11 21:06 UTC+0100 Active Make Inactive | Show SSH Key | Delete

3. Configure awscli:

$ export AWS_ACCESS_KEY_ID='AKIAHNPFBO9EXAMPLEKEY'

$ export AWS_SECRET_ACCESS_KEY=
'rLdrfHIVFIUHY/B7GRFTY/VYSRwezaEXAMPLEKEY'

$ export AWS_DEFAULT_REGION='us-east-1'

4. Create a repository:

$ aws codecommit create-repository --repository-name salt
--repository-description "SaltStack repo"
{

"repositoryMetadata": {

"repositoryName": "salt",

"cloneUrlSsh": "ssh://git-codecommit.us-
east-1.amazonaws.com/v1l/repos/salt",

"lastModifiedDate": 1465728037.589,

"repositoryDescription": "SaltStack repo",

"cloneUrlHttp":
"https://git-codecommit.us-east-1.amazonaws.com/vli/repos/salt",

"creationDate": 1465728037.589,

"repositoryId": "d0628373-d9a8-44ab-942a-xxxxxx",

"Arn": "arn:aws:codecommit:us-east-1:xxxxxx:salt",

"accountId": "xxxxxx"

}
}

5. Clone the new repository locally:

$ git clone ssh://SSH_KEY_ID@git-codecommit.us-
east-1.amazonaws.com/v1l/repos/salt

Cloning into 'salt'...

warning: You appear to have cloned an empty repository.

Checking connectivity... done.

Here, SSH_KEY_1ID is the one we saw after uploading a public key in step 2.

Note

For more options on connecting to CodeCommit see

http://docs.aws.amazon.com/codecommit/latest/userguide/setting-up.html

We are ready to start populating our empty, new Salt repository.

http://docs.aws.amazon.com/codecommit/latest/userguide/setting-up.html

Writing Configuration Management code

For SaltStack to help us configure our node as a web server, we need to tell it what one of those
should look like. In Configuration Management terms, we need to describe the desired state of the
machine.

In our example, we will be using a combination of SaltStack States, Pillars, Grains, and Top files
to describe the processes of:

e (Creating Linux user accounts
¢ Installing services (NGINX and PHP-FPM)
¢ Configuring and running the installed services

States

A State contains a set of instructions which we would like to be applied to our EC2 minion(s).
We will use /srv/salt/states on the minion as the root of the Salt State tree. States can be
stored in there in the form of a single file, for example /srv/salt/states/mystate.sls, or
organized into folders like so /srv/salt/states/mystate/init.sls . Later on, when we
request that mystate is executed, Salt will look for either a state_name.sls ora
state_name/init.sls in the root of the State Tree. I find the second approach tidier as it
allows for other state-related files to be kept in the relevant folder.

We begin the Configuration Management of our web server node with a state for managing Linux
user accounts. Inside our Salt Git repository, we create states/users/init.sls:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/users.

veselin:
user.present:
- fullname: Veselin Kantsev
- uid: {{ salt['pillar.get']('users:veselin:uid') }}
- password: {{ salt['pillar.get']('users:veselin:password') }}
- groups:
- wheel

ssh_auth.present:
- user: veselin
- source: salt://users/files/veselin.pub
- require:
- user: veselin

sudoers:
file.managed:
- name: /etc/sudoers.d/wheel
- contents: '%wheel ALL=(ALL) ALL'

We will use YAML to write most Salt configuration. You will notice three different state modules
used in the preceding section:

e user.present: This module ensures that a given user account exists on the system or
creates one if necessary

e ssh_auth.present: A module for managing the SSH authorized_keys file of a user

e file.managed: A module for creating/modifying files

Note

SaltStack's state modules offer rich functionality. For full details of each module see
https://docs.saltstack.com/en/latest/ref/states/all/

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/users
https://docs.saltstack.com/en/latest/ref/states/all/

To avoid hardcoding certain values under user.present, we make use of the SaltStack Pillars
system. We will examine a pillar file shortly, but for now just note the syntax of referencing pillar
values inside our state.

Two other points of interest here are the source of our key file and the require property. In this
example, a salt:// formatted source address refers to the Salt File Server which by default
serves files from the State Tree (for supported backends, please see
https://docs.saltstack.com/en/latest/ref/file_server/). The require statement enforces an order of
execution, ensuring that the user account is present before trying to create an authorized_keys
file for it.

Note

SaltStack follows an imperative execution model until such custom ordering is enforced, invoking
a declarative mode (see https://docs.saltstack.com/en/latest/ref/states/ordering.html).

Thanks to the readability of YAML, one can easily tell what is going on here:

1. We create a new Linux user.

2. We apply desired attributes (uid, password, group, and so on).

3. We deploy an SSH authorized_keys file for it.

4. We enable sudo for the wheel group of which the user is a member.

Perhaps you could try edit this state and add a user for yourself? It will be useful later after we
deploy.

We will now move on to an NGINX installation via states/nginx/init.sls.

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/nginx.

We install NGINX using the pkg.installed module:

pkg.installed: []

Set the service to start on boot (enable: True), enable reloading instead of restarting when
possible (reload: True), ensure the NGINX pkg has been installed (require:) before running
the service (service.running:)

nginx:
service.running:
- enable: True
- reload: True
- require:
- pkg: nginx

https://docs.saltstack.com/en/latest/ref/file_server/
https://docs.saltstack.com/en/latest/ref/states/ordering.html
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/nginx

Then put a config file in place (file.managed:), ensuring the service waits for this to happen
(require_in:) and also reloads each time the file is updated (watch_in:):

/etc/nginx/conf.d/default.conf:
file.managed:
- source: salt://nginx/files/default.conf
- require:
- pkg: nginx
- require_in:
- service: nginx
- watch_in:
- service: nginx

Note the require/require_in, watch/watch_in pairs. The difference between each of these
requisites and its _in counterpart lies in the direction in which they act.

For example:

nginx:
service.running:
- watch:
- file: nginx_config
nginx_config:
file.managed:
- name: /etc/nginx/nginx.conf
- source: salt://...

Has the same effect as:

nginx:

service.running: []
nginx_config:
file.managed:

- name: /etc/nginx/nginx.conf

- source: salt://...

- watch_in:
- service: nginx

In both cases, the NGINX service restarts on config file changes; however, you can see how the
second format can be potentially quite useful the further you get from the service block-say in a
different file, as we will see in the next state.

Add in some PHP (states/php-fpm/init.sls):
Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/php-fpm.

include:
- nginx

php-fpm:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/php-fpm

pkg.installed:
- name: php-fpm
- require:
- pkg: nginx

service.running:
- name: php-fpm
- enable: True
- reload: True
- require_in:
- service: nginx...

Here you can better see the usefulness of an _in requisite. After we include the nginx state at the
top, our require_in makes sure that nginx does not start before php-fpm does.

With NGINX and PHP-FPM now configured, let us add a quick test page
(states/phptest/init.sls).

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/phptest.

We set a few variables pulled from Grains (more on those shortly):

{% set publqgic_ipv4 = salt['cmd.shell']('ec2-metadata --public-ipv4 | awk '{
print $2 }'') %}

{% set grains_ipv4 = salt['grains.get']('ipv4:0') %}

{% set grains_os = salt['grains.get']('os') %}

{% set grains_osmajorrelease = salt['grains.get']('osmajorrelease') %}

{% set grains_num_cpus = salt['grains.get']('num_cpus') %}

{% set grains_cpu_model salt['grains.get']('cpu_model') %}

{% set grains_mem_total salt['grains.get']('mem_total') %}

Then we deploy the test page and add contents to it directly:

phptest:
file.managed:
- name: /var/www/html/index.php
- makedirs: True
- contents: |
<?php
echo '<p style="text-align:center;color:red">
Hello from {{ grains_ipv4 }}/{{ public_ipv4 }} running PHP '
phpversion() . ' on {{ grains_os }} {{ grains_osmajorrelease }}.

 I come with {{ grains_num_cpus }} x {{ grains_cpu_model }}
and {{ grains_mem_total }} MB of memory. </p>';
phpinfo(INFO_LICENSE);
?>

We will use this page post-deployment to check whether both NGINX and PHP-FPM are
operational.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/CodeCommit/salt/states/phptest

Pillars

Now let us look at the main mechanism for storing variables in Salt-the Pillars. These are:

e YAML tree-like data structures

e Defined/rendered on the salt-master, unless running masterless in which case they live on the
minion

e Useful for storing variables in a central place to be shared by the minions (unless they are
masterless)

e Helpful for keeping States portable

e Appropriate for sensitive data (they can also be GPG encrypted; see

https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html)

We will be using /srv/salt/pillars as the root of our Pillar tree on the minion. Let us go back
to the users state and examine the following lines:

- uid: {{ salt['pillar.get']('users:veselin:uid') }}
- password: {{ salt['pillar.get']('users:veselin:password') }}

The uid and password attributes are set to be sourced from a pillar named users. And if we
check our Pillar Tree, we find a /srv/salt/pillars/users.sls file containing:

users:
veselin:
uid: 5001
password: '1wZ0gQOO00$HEN/gDGS85dEZM7QZV1Fz/"

It is now easy to see how the users:veselin:password reference inside the state file matches
against this pillar's structure.

Note

For more details and examples on pillar usage, see:
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html

https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html

Grains

Unlike Pillars, Grains are considered static data:

They get generated minion-side and are not shared between different minions
They contain facts about the minion itself

Typical examples are CPU, OS, network interfaces, memory, and kernels

It is possible to add custom Grains to a minion

We have already made good use of Grains within our preceding test page
(states/phptest/init.sls), getting various host details such as CPU, memory, network, and
OS. Another way of using this data is when dealing with multi-OS environments. Let us look at
the following example:

pkg.installed:

{% if grains['os'] == 'Cent0S' or grains['os'] == 'RedHat' %}
- name: httpd...
{% elif grains['os'] == 'Debian' or grains['os'] == 'Ubuntu' %}

- name: apache2
{% endif %}

As you see, Grains, much like Pillars, help make our States way more flexible.

Top files

We now have our States ready, even supported by some Pillars and ideally would like to apply
all of those to a host so we can get it configured and ready for use.

In SaltStack, the Top File provides the mapping between States/Pillars and the minions they
should be applied onto. We have a Top file (top.s1s) in the root of both the state and pillar trees.
We happen to have a single environment (base), but we could easily add more (dev, ga, prod).
Each could have a separate state and pillar trees with separate Top files which get compiled into
one at runtime.

Note

Please see https://docs.saltstack.com/en/latest/ref/states/top.html for more information on multi-
environment setups.

Let us look at a top.sls example:
base:
%1 :

- core_utils
- monitoring_client
- log_forwarder

'webserver-*':

- nginx

- php-fpm
'"dbserver-*"':

- pgsgl_server

- pgbouncer

We are declaring that in our base (default) environment:

¢ All minions should have the core set of utilities, the monitoring and log forwarding agents
installed

e Minions with an ID matching webserver -*, get the nginx and php-fpm States (in addition
to the previous three)

e Database nodes get applied: the common three plus pgsql_server and pgbouncer

Minion targeting gets even more interesting when you include Pillars, Grains, or a mix of these
(see https://docs.saltstack.com/en/latest/ref/states/top.html#advanced-minion-targeting).

By specifying such state/pillar to a minion association, from a security standpoint we also create
a useful isolation. Say our Pillars contained sensitive data, then this is how we could limit the
group of minions who are allowed access to it.

Back to our Salt repository, where we find two top.sls files:

e salt/states/top.sls:

https://docs.saltstack.com/en/latest/ref/states/top.html
https://docs.saltstack.com/en/latest/ref/states/top.html#advanced-minion-targeting

base:

I*I:
- users
- nginx
- php-fpm
- phptest
® salt/pillars/top.sls:

base:

1.

- users

We can allow ourselves to target *, as we are running in masterless mode and essentially all our
States/Pillars are intended for the local minion.

We enable this mode with a few settings in a minion configuration file
(/etc/salt/minion.d/masterless.conf).

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_03_CodeFiles/CodeCommit/salt/minion.d/masterless.conf.

These effectively tell the salt-minion process that the Salt Fileserver, the state tree and the pillar
tree are all to be found on the local filesystem. You will see how this configuration file gets
deployed via UserData in a moment.

Note

More on running masterless can be found at:
https://docs.saltstack.com/en/latest/topics/tutorials/standalone_minion.html

This concludes our SaltStack internals session. As you get more comfortable, you may want to
look into Salt Engines, Beacons, writing your own modules and/or Salt Formulas. And those are
only some of the ninja features being constantly added to the project.

At this stage we already know how to use Terraform to deploy and now SaltStack to configure.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_03_CodeFiles/CodeCommit/salt/minion.d/masterless.conf
https://docs.saltstack.com/en/latest/topics/tutorials/standalone_minion.html

Bootstrapping nodes under Configuration
Management (end-to-end IaC)

Without further delay, let us get our old VPC re-deployed along with a configuration-managed
web service inside it.

Terraform will spawn the VPC, ELB, and EC2 nodes then bootstrap the SaltStack workflow with
the use of EC2 UserData. Naturally, we strive to reuse as much code as possible; however, our
next deployment requires some changes to the TF templates.

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_03_CodeFiles/Terraform.

resources. tf:

e We do not need the private subnets/route tables, NAT, nor RDS resources this time, so we
have removed these, making the deployment a bit faster.
e We will be using an IAM Role to grant permission to the EC2 node to access the
CodeCommit repository.
o We have declared the role:

resource "aws_iam_role" "terraform-role" {
name = "terraform-role"path = "/"...

o We have added and associated a policy (granting read access to CodeCommit) with that
role:

resource "aws_iam_role_policy" "terraform-policy" {
name "terraform-policy"
role "${aws_iam_role.terraform-role.id}"...

o We have created and associated an instance profile with the role:

resource "aws_iam_instance_profile" "terraform-profile" {
name = "terraform-profile"
roles = ["${aws_iam_role.terraform-role.name}"]

o We have updated the Auto Scaling launch-configuration with the instance profile ID:

resource "aws_launch_configuration" "terraform-lcfg"
{...1iam_instance_profile =
"${aws_iam_instance_profile.terraform-profile.id}"

e We have updated the UserData script with some SaltStack bootstrap instructions, to install
Git and SaltStack, checkout and put our Salt code in place and finally run Salt:

user_data = <<EOF

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/Terraform

#!/bin/bash

set -euf -0 pipefail

exec 1> >(logger -s -t $(basename $0)) 2>&1

Install Git and set CodeComit connection settings

(required for access via IAM roles)

yum -y install git

git config --system credential.helper

'"laws codecommit credential-helper $@'

git config --system credential.UseHttpPath true

Clone the Salt repository

git clone https://git-codecommit.us-east-1.amazonaws.com/v1l/repos/
salt/srv/salt; chmod 700 /srv/salt

Install SaltStack

yum -y install https://repo.saltstack.com/yum/amazon/
salt-amzn-repo-latest-1.ami.noarch.rpm

yum clean expire-cache; yum -y install salt-minion;
chkconfig salt-minion off

Put custom minion config in place (for enabling masterless mode)
cp -r /srv/salt/minion.d /etc/salt/

Trigger a full Salt run

salt-call state.apply

EOF

We have moved our EC2 node (the Auto Scaling group)

to a public subnet and allowed incoming SSH traffic

so that we can connect and play with Salt on it:
resource "aws_security_group" "terraform-ec2" {ingress {
from_port = "22"

to_port = "22"

...resource "aws_autoscaling_group" "terraform-asg" {

Qéé_zone_identifier = ["${aws_subnet.public-1.id}",

variables.tf:

We have removed all RDS related variables.
outputs.tf:

We have removed RDS and NAT related outputs.
iam_user_policy. json:

This document will become useful shortly as we will need to create a new user for the
deployment. We have removed RDS permissions and added IAM ones from it.

We are now ready for deployment. Pre-flight check:
e Updated Terraform templates

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_03_CodeFiles/Terraform

AWS/tree/master/5585_03_CodeFiles/Terraform) are available locally in our designated
terraform folder

e Created/updated our Terraform IAM account with the new set of permissions as per
iam_user_policy.json

e Ensured we have a copy of the terraform ec2 keypair (for SSH-ing later)

e All our SaltStack code has been pushed up to the Salt CodeCommit repository (Please refer

to: https://git-codecommit.us-east-1.amazonaws.com/v1/repos/salt)

Let us export our credentials and launch Terraform:

export AWS_ACCESS_KEY_ID='user_access_key'

export AWS_SECRET_ACCESS_KEY='user_secret_access_key'

export AWS_DEFAULT_REGION='us-east-1'$ cd Terraform/$ terraform validate
terraform plan...Plan: 15 to add, 0 to change, 0 to destroy.

terraform apply...Outputs:

ELB URI = terraform-elb-xxxxxx.us-east-1.elb.amazonaws.com

VPC ID = vpcC-XXXXXX

N O OO e

Allow 3-5 minutes for output t2.nano to come into shape and then browse to the ELB URI from
the following output:

terraform-edb- -Us-east-1.elb.amazonaws. com

Halla from 10.0.3.187 running PHP 5.3.25 on Amazon 20186,
| come with 1 x Inel{R) Xeon{R) CPU E5-2676 v3 @ 2. 40GHz and 481 MB of mamary

PHP License

This program is free software; you can redstribule it andior modity il under the berms of the PHP Licerse as published
Ery the PHP Group and induded in the dalnbution in the lile: LICEMSE

This program is distriouted in the hope that il wil be usshl, but WITHOUT ANY WARFANTY, withoul even the implied
waranty of MERCHANTABILITY or FITHESS FOR A PARTICULAR PURPOSE.

H yous did nol recai A copy of e PHP licansa, or have any quesiions about PHP licansing, plaass conlact
Hoarae® pho ret

Victory!

Try increasing the autoscaling-group-minsize and autoscaling-group-maxsize in
terraform. tfvars, then re-applying the template. You should start seeing different IPs when the
page is refreshed.

Given the preceding test page, we can be reasonably confident that Salt bootstrapped and applied
our set of States successfully.

We did, however, enable SSH access in order to be able to experiment more with Salt, so let us
do that.

We see the public IP of the node on our test page. You could SSH into it with either the
terraform ec2 keypair or the default ec2-user Linux account, or if you dared create one for
yourself in the users/init.sls state earlier, you could use it now.

https://git-codecommit.us-east-1.amazonaws.com/v1/repos/salt

Once connected, we can use the salt-call command (as root) to interact with Salt locally:
e How about some Pillars:
salt-call pillar.items
e Or let us see what Grains we have:
salt-call grains.items
¢ Runindividual States:
salt-call state.apply nginx
e Or execute a full run, that is of all assigned States as per the Top file:

salt-call state.apply

After playing with our new deployment for a bit, I suspect you are going to want to try adding or
changing States/Pillars or other parts of the Salt code. As per the IaC rules we agreed upon
earlier, every change we make goes through Git, but let us examine what options we have for
deploying those changes afterwards:

e Pull the changes down to each minion and run salt-call
e Provision new minions which will pull down the latest code
e Push changes via a Salt-master

It is easy to see that the first option will work with the couple of nodes we use for testing, but is
quickly going to become hard to manage at scale.

Provisioning new minions on each deployment is a valid option if masterless Salt setup is
preferred; however, you need to consider the frequency of deployments in your environment and
the associated cost of replacing EC2 nodes. One benefit worth nothing here is that of blue/green
deployments. By provisioning new minions to serve your code changes, you get to keep the old
ones around for a while which allows you to shift traffic gradually and roll back safely if needed.

Having a Salt-master would be my recommended approach for any non-dev environments. The
Salt code is kept on it, so any Git changes you make, need to be pulled down only once. You can
then deploy the changed States/Pillars by targeting the minions you want from the Salt-master. You
could still do blue/green for major releases or you could choose to deploy to your current minions
directly if it is just a minor, safe amendment, or perhaps something critical that needs to reach all
minions as soon as possible.

Another powerful feature of the Salt-master is orchestration, more specifically-remote execution.
With all your minions connected to it, the salt-master becomes a command center from which you
have more or less full control over them.

Executing commands on the minions is done via modules from generic ones such as cmd . run,
which essentially allows you to run arbitrary shell commands to more specialized ones such as

nginx, postfix, selinux, or zfs. The list is quite long as you can see here:

https://docs.saltstack.com/en/latest/ref/modules/all/index.html.

And if you recall the earlier section on hosthames and naming conventions, this is where one can
appreciate their value. It is quite convenient to be able to execute statements like:

salt 'webserver-*' nginx.status
salt 'db-*' postgres.db_list

You can also use Pillars and/or Grains to add tags to your hosts, so you could further group them
per location, role, department, or something similar.

In brief, here are a few key points of masterless versus a salt-master arrangement:

Salt Master Masterless

e No salt-master node to maintain
Not having a single node which

e A powerful, centralized control platform (must be

secured adequately) which allows for quick, provides full access to the rest of
parallel access to a vast network of minions them is more secure in some sense
e Advanced features such as Salt Engines, Runners, || e Simpler Salt operation
Beacons, the Reactor System e After the initial Salt execution, the
e API access minions can be considered
immutable

For many FOR LOOP gurus out there, parallel execution tools like Salt are very appealing. It
allows you to rapidly reach out to nodes at a massive scale, whether you simply want to query
their uptime, reload a service, or react to a threat alert by stopping sshd across your cluster.

Note

Before you go, please remember to delete any AWS resources used in the preceding examples
(VPC, ELB, EC2, IAM, CodeCommit, and so on) to avoid unexpected charges.

https://docs.saltstack.com/en/latest/ref/modules/all/index.html

Summary

In this chapter, we examined the second part of Infrastructure as Code, namely Configuration
Management.

We learned about a few different components of the CM solution SaltStack: States, Pillars,
Grains, and the Top File. We learned how to use them and how to write code for them.

We then combined our previous knowledge of how to deploy infrastructure using Terraform with
that of how to configure it using SaltStack, resulting in our first end-to-end IaC deployment.

Next, we are going to look into Continuous Integration: what it is and how to setup a CI pipeline
on AWS.

Chapter 4. Build, Test, and Release Faster with
Continuous Integration

The emphasis of this chapter will be the value of quick iteration: Quick over quality iteration, as
per Boyd's law (you might recall the OODA principle mentioned in Chapter 1, What Is DevOps
and Should You Care?).

By iteration, I am referring to a software development cycle, from the moment a piece of code is
written, published (committed to version control), compiled (if needed), tested and finally
deployed.

Continuous Integration (CI) defines the routines that should be adopted by developers plus the
necessary tools to make this iteration as fast as possible.

Let us start with the human factor:

e Use version control (for example Git)
e Commit smaller changes, more often

e Test locally first

e Do peer code reviews

e Pause other team activity until an issue is resolved

Then add a bit of automation (a CI server):

e Monitor for version control changes (for example Git commits)
e Pull down changed code
e Compile and run tests

o On success, build an artefact

o On failure, notify the team and pause the pipeline

e Repeat

Committing smaller changes helps detect problems earlier and potentially solves them much more
easily; and a developer receives feedback on their work more frequently which builds confidence
that their code is in a good state.

Testing locally, where possible, greatly reduces team distraction caused by the CI pipeline
tripping over minor issues.

Code reviews are beneficial at many levels. They eliminate bad coding habits as peers ensure
code complies with agreed standards. They increase visibility; peers get a ot more exposure to
the work of others. They help catch the errors which a machine would miss.

The Toyota Way teaches us to Stop the Line whenever a problem is detected. In terms of CI, this
translates into halting the pipeline on errors and concentrating resources on fixing these. At first

this might seem like an obvious way to reduce productivity and slow down the whole process, but
it's been proven again and again that the initial overhead is ultimately worth it. This way you keep
your technical debt to a minimum; improve code as-you-go, preventing issues from accumulating
and re-surfacing at a later stage. Now is a good time to restate the test locally point made earlier.
You would likely not want to interrupt your colleagues with something trivial, which could have
been spotted easily before committing.

As you succeed in building this team discipline (the hard part), it is time to add some automation
flavor by setting up a CI pipeline.

The CI server tirelessly monitors your code repository and reacts to changes by performing a set
of tasks over and over again. I believe it is evident how this saves engineers a great amount of
time and effort, not to mention the fact that they avoid having to address the monotone nature of
such work.

A pipeline, say in Jenkins, would normally consist of a number of stages: individual stages can
represent the checking out of the latest code, running build tasks on it, performing tests then
building artefacts, where each stage runs subject to the previous one completing successfully.

This generally describes how a combination of engineer habits and some tooling can greatly
improve a software development cycle. Continuous Integration helps us collaborate better, write
better code, ship more often and get feedback quicker.

Users want new features released fast, developers want to see the result of their work out there -
everybody wins.

We have discussed the theory, now let us bring our focus to the title of this chapter. We are going
to use our acquired Terraform and Salt skills to deploy a CI environment on AWS featuring a
Jenkins (v2) CI server.

Jenkins (ref: https://jenkins.io) is a popular, well established open source project focusing on
automation. It comes with a long list of integrations, catering to a variety of platforms and
programming languages. Meet Jenkins: https://wiki.jenkins-
ci.org/display/JENKINS/Meet+Jenkins.

The deployment of our CI environment can be broken down into three main stages:

1. Prepare an Infrastructure as Code deployment:

o Write Terraform templates to provision a VPC and an EC2 instance

o Write Salt States to install Jenkins, NGINX and other software onto the EC2 instance
2. Deploy IaC:

o Deploy the Terraform templates and Salt States
3. Setup CIL:

o Configure a Jenkins pipeline for Continuous Integration of a demo application

https://jenkins.io
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins

Prepare IaC

In accordance with our Infrastructure as Code principles, this deployment will also be mostly
template driven. We will try to reuse some of the Terraform and Salt code from previous
chapters.

Terraform templates

For this particular setup we can simplify our template as we will only need the VPC, some
networking bits, and an EC2 instance.

Let's browse through the files in our TF repository:

Variables

The few variables we need can be grouped into VPC and EC2 related ones:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04 CodeFiles/Terraform/variables.tf.

VPC

variable "aws-region" {
type = "string"
description = "AWS region"

}

variable "vpc-cidr" {
type = "string"
description = "VPC CIDR"

}

variable "vpc-name" {
type = "string"
description = "VPC name"

}

variable "aws-availability-zones" {
type = "string"
description = "AWS zones"

}

EC2

variable "jenkins-ami-id" {
type="string"
description = "EC2 AMI identifier"
}
variable "jenkins-instance-type" {
type = "string"
description = "EC2 instance type"
}
variable "jenkins-key-name" {
type = "string"
description = "EC2 ssh key name"

}
Variables (values)

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/Terraform/variables.tf

Following the bare variable definitions, we now supply some values:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/Terraform/terraform.tfvars.

VPC

We'll keep our deployment in US East:

aws-region = "us-east-1"

vpc-cidr = "10.0.0.0/16"

vpc-name = "Terraform"

aws-availability-zones = "us-east-1b,us-east-1c"
EC2

A Nano instance will be sufficient for testing. Ensure the referenced key-pair exists:

jenkins-ami-id = "ami-6869aa05"
jenkins-instance-type = "t2.nano"
jenkins-key-name = "terraform"
Resources

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/Terraform/resources.tf.

Create the VPC

As a matter of standard (good) practice we create all our resources inside a VPC:

Set a Provider
provider "aws" {

region = "${var.aws-region}"
3

Create a VPC
resource "aws_vpc" "terraform-vpc" {

cidr_block = "${var.vpc-cidr}"
tags {

Name = "${var.vpc-name}"
}

}
Add networking components

We add a gateway, a route table, and an Internet facing subnet from where our Jenkins instance
will be launched:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/Terraform/terraform.tfvars
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/Terraform/resources.tf

IGW
Create an Internet Gateway

resource "aws_internet_gateway" "terraform-igw" {
vpc_id = "${aws_vpc.terraform-vpc.id}"
}

Route table

Create public route tables
resource "aws_route_table" "public" {

vpc_id = "${aws_vpc.terraform-vpc.id}"
route {
cidr_block = "0.0.0.0/0"
gateway_id = "${aws_internet_gateway.terraform-igw.id}"
}
tags {
Name = "Public"
}
}
Subnet

Create and associate public subnets with a route table
resource "aws_subnet" "public-1" {

vpc_id = "${aws_vpc.terraform-vpc.id}"
cidr_block = "${cidrsubnet(var.vpc-cidr, 8, 1)}"
availability zone = "${element(split(",",var.aws-availability-zones),

count.index)}"
map_public_ip_on_launch = true

tags {
Name = "Public"

}
}

resource "aws_route_table_association" "public-1" {
subnet_id = "${aws_subnet.public-1.id}"
route_table_id = "${aws_route_table.public.id}"

}
Add EC2 node and related resources

The security group for our Jenkins node needs to permit HT'TP/S access plus SSH for
convenience, so that we can access the command line if needed:

Security Group

resource "aws_security_group" "jenkins" {

name = "jenkins"
description = "ec2 instance security group"
vpc_id = "${aws_vpc.terraform-vpc.id}"

ingress {

from_port = "22"

to_port = "22"

protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

ingress {
from_port = "80"
to_port = "80"
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

ingress {
from_port = "443"
to_port = "443"
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

egress {
from_port =
to_port = 0
protocol = "-1"
cidr_blocks ["0.0.0.0/0"]

}

}

IAM Role

We will use an IAM Role to grant Jenkins access to AWS services:

resource "aws_iam_role" "jenkins" {
name = "jenkins"
path = Il/ll
assume_role_policy = <<EOF
{
"Version": "2012-10-17",
"Statement": [
{
"Action": "sts:AssumeRole",
"Principal": {
"Service": "ec2.amazonaws.com"
Iy
"Effect": "Allow",
Ilsidll: mn

IAM Role Policy

This policy will allow Jenkins to read from a codecommit repository and perform all actions
(except deleting) on an s3 bucket:

resource "aws_iam_role_policy" "jenkins" {
name = "jenkins"

role = "${aws_iam_role.jenkins.id}"
policy = <<EOF
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"codecommit:Get*",
"codecommit:GitPull",
"codecommit:List*"
1,
"Resource": "*"
3
{
"Effect": "Allow",
"NotAction": [
"s3:DeleteBucket"
1,
"Resource": "*"
}
]
}
EOF
}
IAM Profile

resource "aws_iam_instance_profile" "jenkins" {
name = "jenkins"
roles = ["${aws_iam_role.jenkins.name}"]

}

EC2 instance

Here we define a single instance along with its bootstrap UserData script:

resource "aws_instance" "jenkins" {
ami = "${var.jenkins-ami-id}"
instance_type = "${var.jenkins-instance-type}"
key_name = "${var.jenkins-key-name}"
vpc_security_group_ids = ["${aws_security_group.jenkins.id}"]
iam_instance_profile = "${aws_iam_instance_profile.jenkins.id}"
subnet_id = "${aws_subnet.public-1.id}"
tags { Name = "jenkins" }

Here we set the attributes needed to launch an EC2 instance, such as the instance type, the AMI to
be used, security group(s), subnet and so on.

Next, we add the bootstrap shell script to help us install required packages, checkout Git
repositories and run Salt:

user_data = <<EOF
#!/bin/bash
set -euf -0 pipefail
exec 1> >(logger -s -t $(basename $0)) 2>&1
Install Git and set CodeComit connection settings
(required for access via IAM roles)
yum -y install git
git config --system credential.helper 'laws codecommit credential-helper $@'
git config --system credential.UseHttpPath true
Clone the Salt repository
git clone https://git-codecommit.us-east-1.amazonaws.com/vl/repos/salt
/srv/salt; chmod 700 /srv/salt
Install SaltStack
yum -y install https://repo.saltstack.com/yum/amazon/salt-amzn-repo-latest-
1.ami.noarch.rpm
yum clean expire-cache; yum -y install salt-minion; chkconfig salt-minion off
Put custom minion config in place (for enabling masterless mode)
cp -r /srv/salt/minion.d /etc/salt/
Trigger a full Salt run
salt-call state.apply
EOF

lifecycle { create_before_destroy = true }

}

Elastic IP

Finally, we provision a static IP for Jenkins:

resource "aws_eip" "jenkins" {

instance = "${aws_instance.jenkins.id}"
vpc = true

}

Outputs

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/Terraform/outputs.tf.

Some useful outputs to provide us with the address of the Jenkins node:

output "VPC ID" {

value = "${aws_vpc.terraform-vpc.id}"
}
output "JENKINS EIP" {

value = "${aws_eip.jenkins.public_ip}"

}

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/Terraform/outputs.tf

And that is our VPC infrastructure defined. Now we can move onto Salt and the application stack.

SaltStack code

You'll remember our favorite Configuration Management tool from the previous chapter. We will
use SaltStack to configure the EC2 Jenkins node for us.

States
Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_04 CodeFiles/CodeCommit/salt/states.

top.sls

We are working with a single minion, and all our states apply to it:

base:
1.
- users
- yum-s3
- jenkins
- nginx
- docker
users

We add a Linux user account, configure its SSH keys and sudo access:

veselin:
user.present:
- fullname: Veselin Kantsev
- uid: {{ salt['pillar.get']('users:veselin:uid') }}

yum-s3

As part of our CI pipeline, we will be storing RPM artefacts in S3. Cob (ref:
https://github.com/henrysher/cob) is a Yum package manager plugin which makes it possible to
access S3 based RPM repositories using an IAM Role.

We deploy the plugin, its configuration and a repository definition (disabled for now) as managed
files:

yum-s3_cob.py:
file.managed:

- name: /usr/lib/yum-plugins/cob.py

- source: salt://yum-s3/files/cob.py

yum-s3_cob.conf:
file.managed:
- name: /etc/yum/pluginconf.d/cob.conf

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/states
https://github.com/henrysher/cob

- source: salt://yum-s3/files/cob.conf

yum-s3_s3.repo:
file.managed:
- name: /etc/yum.repos.d/s3.repo
- source: salt://yum-s3/files/s3.repo

Jenkins

Here comes the lead character — Mr Jenkins. We make use of Docker in our CI pipeline, hence the
include following. Docker allows us to run the different pipeline steps in isolation, which makes
dependency management much easier and helps keeps the Jenkins node clean.

include:
- docker

Also we ensure Java and a few other prerequisites get installed:

jenkins_prereq:
pkg.installed:
- pkgs:
- java-1.7.0-openjdk
- gcc
- make
- createrepo

Then, install Jenkins itself:

jenkins:
pkg.installed:
- sources:
- jenkins: http://mirrors.jenkins-ci.org/redhat-stable/jenkins-2.7.1-
1.1.noarch.rpm
- require:
- pkg: jenkins_prereq

NGINX

We will use NGINX as a reverse proxy and an SSL termination point. That is not to say that
Jenkins cannot serve on its own, it is just considered better practice to separate the roles:

include:
- jenkins

nginx:
pkg.installed: []

{%.for FIL in ['crt', 'key'] %}
/etc/nginx/ssl/server.{{ FIL }}:

{%.endfor %}

Docker

It is about time we mentioned Docker, given its (deserved) popularity nowadays. It is very well
suited to our CI needs, providing isolated environments for the various tests and builds that may
be required:

docker:
pkg.installed: []

service.running:

- enable: True
- reload: True

Pillars
Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/pillars.

top.sls

Our standalone minion gets it all:
base:
%1 :

- users
- nginx

users

Setting a password hash and a consistent UID for the Linux account:

users:
veselin:

uid: 5001

password:

NGINX

We store the SSL data in this Pillar:

nginx:
crt: |
————— BEGIN CERTIFICATE-----
————— END CERTIFICATE-----
key: |

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/pillars

Minion configuration

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/minion.d.

masterless.conf

We are still using Salt in standalone (masterless) mode, so this is our extra minion configuration:

file_client: local
file_roots:
base:
- /srv/salt/states
pillar_roots:
base:
- /srv/salt/pillars

Thanks to all of the preceding codes, we should be able to run Terraform and end up with a
Jenkins service ready for use.

Let us give that a try.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt/minion.d

Deploy IaC

We start by creating a Terraform EC2 key-pair and a Terraform IAM user as in previous chapters
(do not forget to write down access/secret API keys). Then we grant permissions to the IAM user
to perform actions with the EC2, IAM, S3 and CodeCommit services:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/Terraform/iam user_policy.json.

{
"Version": "2012-10-17",

"Statement": [

"Effect": "Allow",

"NotAction": [
"codecommit:DeleteRepository"

1,

"Resource": "*"

+

{
"Effect": "Allow",
"NotAction": [

"s3:DeleteBucket"

1,
"Resource": "*"

+

{

"Sid": "Stmt1461764665000",

"Effect": "Allow",

"Action": [
"ec2:AllocateAddress",

Then we associate a SSH public key with the user (as per the screenshots in the previous chapter)
to allow codecommit repository access.
Next, we need to setup our AWS CLI environment with the keys we produced earlier:

$ export AWS_ACCESS_KEY_ID='user_access_key'
$ export AWS_SECRET_ACCESS_KEY='user_secret_access_key'
$ export AWS_DEFAULT_REGION='us-east-1'

Now we should be able to use the CLI tool and create our SaltStack repository:

$ aws codecommit create-repository --repository-name salt
--repository-description "SaltStack repo"
{

"repositoryMetadata": {
"repositoryName": "salt",

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/Terraform/iam_user_policy.json

"cloneUrlSsh":
"ssh://git-codecommit.us-east-1.amazonaws.com/v1l/repos/salt",

We clone the repository locally:

$ git clone ssh://SSH_KEY_ID@git-codecommit.us-east-
1.amazonaws.com/vl/repos/salt

Cloning into 'salt'...

warning: You appear to have cloned an empty repository.

Checking connectivity... done.

(where SSH_KEY_1D is the one we saw after uploading a public key here)

Finally, you can copy the ready salt code examples for this chapter, commit and push to the
codecommit repository.

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_04 CodeFiles/CodeCommit/salt

With the SaltStack repo in sync, we can proceed with Terraform and the bootstrap process. Inside
our TF templates folder we run the familiar command sequence:

$ terraform validate
$ terraform plan
Refreshing Terraform state prior to plan...

Plan: 11 to add, 0 to change, 0 to destroy.
$ terraform apply
aws_iam_role.jenkins: Creating...

Apply complete! Resources: 11 added, 0 changed, 0 destroyed.

Outputs:
JENKINS EIP = X.X.X.X
VPC ID = VPC-XXXXXX

At the end we get the IP of our Jenkins node which we would need to resolve into a hostname (for
example via the nslookup cmd). Load that in your browser and you should be greeted by Jenkins.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_04_CodeFiles/CodeCommit/salt

Setup CI

After a successful Terraform deployment, it is time to move onto service configuration. More
specifically, Jenkins and the integration pipeline.

Jenkins initialization

With Jenkins running for the first time, we need to complete a short setup routine. First, we need
to SSH into the node and retrieve the admin password stored in
/var/lib/jenkins/secrets/initialAdminPassword:

Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a password has been written
to the log (not sure where to find it?) and this file on the server:

fvar/lib/jenkins/secrets/initialAdminPassword

Please copy the password from either location and paste it below

Administrator password

Continue
J

We are mainly interested in the pipeline group of plugins which is included with the suggested
ones:

Getting Started

Customize Jenkins

Plugins extend Jenkins with additional features to support many different needs.

Install suggested Select plugins to

plugins install

Install plugins the Jenkins Select and install plugins
community finds most most suitable for your needs.
useful.

After the plugins installation has completed, it's time to create our first user:

Getting Started

Create First Admin User

Usermama: vesalin
Passwiornd

Canlirm password: seeesess

Full name: Veselin Kanlse

E-mall address: veselindkantsev.com

Jenkins 2.7.1 Continue as admin

Save and Finish

With this the initialization process is complete and Jenkins is ready for use:

Getting Started

Jenkins is ready!

Your Jenkins setup is complete.

Start using Jenkins

Writing a demo app

Before configuring the CI pipeline, it will help to have something to do some integration on. A
basic Hello World type of PHP code will do, so with a sincere apology to all PHP developers out
there, I present you with the source of our demo app:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_04_CodeFiles/CodeCommit/demo-app.

src/index.php:
<?php

function greet($name) {
return "Hello $name!";
}

$full_name = "Bobby D";
greet ($full_name);

Clapping fades...
And naturally, a unit test for it:
tests/indexTest.php:

<?php
require_once "src/index.php";

class IndexTest extends PHPUnit_ Framework TestCase

public function testGreet() {
global $full_name;
$expected = "Hello $full_name!";
$actual = greet($full_name);
$this->assertEquals($expected, S$actual);

}
}

There is a third file in our demo-app folder curiously named Jenkinsfile which we will
discuss shortly.

Now let us get our code into a repository:

$ aws codecommit create-repository --repository-name demo-app
--repository-description "Demo app"

{

"repositoryMetadata": {
"repositoryName": "demo-app",
"cloneUrlSsh":

"ssh://git-codecommit.us-east-1.amazonaws.com/v1l/repos/demo-app"

Then we clone it locally (replace SSH_KEY_ID as before):
$ git clone ssh://SSH_KEY_ID@git-codecommit.us-east-

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_04_CodeFiles/CodeCommit/demo-app

1.amazonaws.com/v1l/repos/demo-app

Finally, we place our demo-app code into the empty repository, commit and push all changes to
codecommit.

Defining the pipeline

It is time to decide on what the CI pipeline is meant to do for us. Here is a list of useful steps as a
start:

1. Checkout application source code from Git

2. Run tests against it by running PHPUnit inside a Docker container (on the Jenkins host)
3. Build application artefacts by executing FPM within a container on the Jenkins host

4. Upload artefacts to an external store (for example, a Yum repository)

Translated into Jenkins pipeline code:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/CodeCommit/demo-app/Jenkinsfile.

#!groovy
node {

stage "Checkout Git repo"
checkout scm

stage "Run tests"
sh "docker run -v \$(pwd):/app --rm phpunit/phpunit tests/"
stage "Build RPM"
sh "[-d ./rpm] || mkdir ./rpm"
sh "docker run -v \$(pwd)/src:/data/demo-app -v \$(pwd)/rpm:/data/rpm --
rm tenzer/fpm fpm -s dir -t rpm -n demo-app -v \$(git rev-parse --short HEAD)
--description "Demo PHP app" --directories /var/www/demo-app --package
/data/rpm/demo-app-\$(git rev-parse --short HEAD).rpm /data/demo-
app=/var/www/"

stage "Update YUM repo"
sh "[-d ~/repo/rpm/demo-app/] || mkdir -p ~/repo/rpm/demo-app/"
sh "mv ./rpm/*.rpm ~/repo/rpm/demo-app/"
sh "createrepo ~/repo/"
sh "aws s3 sync ~/repo s3://MY_BUCKET_NAME/ --region us-east-1 --delete"

stage "Check YUM repo"
sh "yum clean all"
sh "yum info demo-app-\$(git rev-parse --short HEAD)"

}

Generally speaking, defining a pipeline consists of a setting out a series of tasks/stages. Let us
review each of the preceding stages:

e We start with a Git checkout of our demo-app code. The repository address is assumed to be
the one of the Jenkinsfile.
o At the next stage we take advantage of Docker's isolation and spin up a container with

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/CodeCommit/demo-app/Jenkinsfile

everything needed for PHPUnit (ref: https://phpunit.de) to run a test against our demo -app
source code. Take a look in the tests/ folder under ${GIT_URL}/Examples/Chapter -
4/CodeCommit/demo-app/ if you would like to add more or modify it further.

o If the tests pass, we move onto building an RPM artefact using a neat, user-friendly tool
called FPM (ref: https://github.com/jordansissel/fpm), again in a Docker container. We use
the short git commit hash as the version identifier for our demo-app.

e We move our RPM artefact to a designated repository folder, create a YUM repository out of
it using createrepo and sync all that data to an Amazon S3 bucket. The idea is to use this
S3 based YUM repository later on for deploying our demo-app.

e Finally, as a bonus, we check that the package we just synced can be retrieved via YUM.

Our pipeline is now defined but before we can run it, we need to satisfy one (S3) dependency. We
need to create a S3 bucket to store the RPM artefacts that the pipeline would produce. Then we
need to update parts of the Jenkins and Saltstack code with the address of that S3 bucket.

To interact with S3, we shall use the AWS CLI tool within the environment we configured for
Terraform earlier:

$ aws s3 mb s3://MY_BUCKET_NAME

The bucket name is up to you, but keep in mind that the global S3 namespace is shared, so the
more unique the name the better.

Next, we update our pipeline definition (Jenkinsfile). Look for the line containing
MY_BUCKET_NAME:

sh "aws s3 sync ~/repo s3://MY_BUCKET_NAME/ --region us-east-1
--delete"

We also need to update SaltStack (again replacing MY_BUCKET_NAME):

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_04_CodeFiles/CodeCommit/salt/states/yum-s3/files/s3.repo.
[s3-repo]

name=S3-repo

baseurl=https://s3.amazonaws.com/MY_BUCKET_NAME

enabled=1
gpgcheck=0

This repo file will be used in the last stage of our pipeline, as we will see in a moment. At this
point you will need to commit and push both changes: the Jenkinsfile to the demo-app
repository and the s3. repo file to the SaltStack one. Then you would SSH into the Jenkins node,
pull and apply the Salt changes.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_04_CodeFiles/CodeCommit/salt/states/yum-s3/files/s3.repo

Setting up the pipeline

Back to the Jenkins interface. After logging in, we click on the create new jobs link on the
welcome page:

Jenkins @ vesclinKantsev | log out

& Poopis Welcome to Jenkins!

Phanse Graals new jobs wo gel siated

Bigkl Exacuior Sialus

We select Pipeline as a job type and pick a name for it:

Enter an item name

demo_pipeline

Required figld

Fr
k. eastyle project

— This i5 the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be evan used lor
something other than software build

Pipeline
.ru') Orchestrates long-running activities that can span multiple build slaves. Suitable for building pipelines (formeary known as workflows) and/for
arganizing complex activities that do not easily fit in free-style job type

Multi-configuration project
@« il | Suitable for projects that need a large number of different configurations, such as testing on multiple environmants, platform-specific buikds, elc

External Job

This type of job allows you to record the execution of a process run culside Jenkins, even on a remote maching. This is designed so that you can
ugse Jankins as a dashboard of your existing aulomation system. See the documentation for more details

. Folder
1 Crealas a conlainer lhat stores nastad items in it. Usatul lor grouping things together, Unlike view, which is just a filer, a folder creatlas a separate
namespaca, so you can have multiple things of the same name as long as they are in different foldars

Multibranch Pipeline

Creates a set of Pipeline projects according to detected branches in one SCM repository

The next screen takes us to the job configuration details. At the top we choose to Discard old
builds in order to keep our Jenkins workspace compact. We are saying, only keep details of the
last five executions of this job:

General Build Triggers Advanced Project Options Pipeding

Pipaling name demo_pipealing

Description
F
[Plain text] Preview
Discard old builds i
Strategy Log Rotation H
Days to keep buikds
if nat empty, build records are only kept up to this number of days
Max & of builds to keep 5§
if nat empty, only up to this number of build records are kept
Advanced...
GitHub project
This project is parameterized ﬁ
Throttle builds [7]
| Executa concurrent builds il necessary
Quiet period 7]

Under Build Triggers we choose to poll our Git repository for changes every 5 minutes:

Build Triggers

Trigger builds remotely (e.g.. from scripts) @
Build after other projects are built @
Build periodically i
Build when a changa is pughed 1o GitHub @
@ Poll SCM (7]
Soheduls HE“*** @'

Would last have run at Wednesday, July 20, 2016 8:10:40 PM UTC,; would next run at Wednesday, July 20, 2016 8:15:40
BM UTC.

Ignore post-commit hooks ﬁ'

Underneath, we choose Pipeline script from SCM, set SCM to Git and add the URL of our

demo-app repository (that is https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-
app) to be polled:

Pipeline
Definition Pipeline script from SCM H
SCM Git + g
Repositories 7]
Repository UAL | hitps/fgit-codecommit.us-east-1.amazor '.i*'
Credentials -nomne - § | e Ads
Advanced...
Add Repository
Brancheas to build n
Branch Specifier (blank for 'any’) | “/master L 7]
Add Branch
Repository browser (Auto) s B

Additional Behaviours Add =

Script Path Jenkinsfile L2}

Pipeline Syntax

No need for extra credentials as these will be fetched via the EC2 IAM Role. Note the Script
Path referencing the Jenkins file we mentioned earlier. This is a great new feature which gives us
pipeline as code functionality as described here: https://jenkins.io/doc/pipeline/#loading-

pipeline-scripts-from-scm.

With that we can keep our application code and the Jenkins pipeline definition conveniently
together under revision control.

After we save the pipeline job, Jenkins will start polling the Git repository and trigger an
execution whenever a change is detected (or you can click on Build Now to force a run).

Each successful build will result in an RPM package uploaded to our YUM repository. Go ahead
and experiment, breaking the build by changing the demo-app source code so that the test fails.

https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app
https://jenkins.io/doc/pipeline/#loading-pipeline-scripts-from-scm

To troubleshoot, look at the Build History list, select the job that failed and examine its Console
Output:

Jomking dame. pipaline EMABLE AUTC REFRESH
& Bachk 1o Dashboand ¥ ¥ A ¥
Pipeline demo_pipeline
Status
Fadd description
Changes
ey
Li:] Buiig Now g Hecant Changes
@ Delete Pipeling
. - .
Canligure Efage View
[] sit Paliing Log
—— Checkaut Git P bk Bulld APM Update YUM Check YUM
i repa P rapo
. Full Stage View
d= 25 25 25 s
£} Fipsiing Syntax J— - G - L=
@ Build History (Tl [
@ Jul 24, 2016 4:45 PM 4
Rl hul 24, MHE 4:43 PM it
= Changes diuras
Permalinks
B conscle Outpu
s Last buikl (8115 12 br agg
Edil Build Inlormaticn + Laststable buid (#11). 12 hr age
& Last il buisd (#1107, 12 br gge
(5) Dwinte Bl « Last walcd [#10), 12 b ago
& Lastung ful bastd (24905, 12 br amo
0 G Buidd Dala o Lot complabed bulld (#11), 12 br ao0
a Mo Tags
¥ Raplay
- Pags penarabed; Jad 75 2016 535011 AMUTC BEST AF eriing ver, 2.7, 1

Now that you are familiar with our example pipeline, I encourage you to expand it: Add more
stages to it, make some of the tasks execute in parallel, enable chat or email notifications, or link
pipelines so they trigger each other.

You will appreciate the benefits of implementing a CI server as you continue to convert more of
your daily, manual routines to Jenkins jobs.

You can be sure your teammates will love it too.

Note

Please remember to delete any AWS resources used in the preceding examples (VPC, EC2, S3,
IAM, CodeCommit, etcetera) to avoid unnecessary charges.

Summary

In this chapter we studied examples of how to launch and configure a Continuous Integration
environment on AWS.

We used our previous Terraform and SaltStack knowledge to prepare the AWS infrastructure.

With the help of Jenkins CI we composed a pipeline that would take application source code, run
tests against it, build an RPM package and deposit that into a remote YUM repository for later
use.

Our next topic will be on Continuous Delivery, an extension to Continuous Integration which takes
us a step closer to being ready to deploy our application to a production environment with
confidence.

Chapter 5. Ever-Ready to Deploy Using
Continuous Delivery

Thanks to the Continuous Integration setup we examined in the previous chapter, we now have a
way of continuously producing deployable artifacts from our source code.

Our next goal will be to upgrade the pipeline from a Continuous Integration to an Integration plus
Delivery one. To illustrate, we are in the middle of a three stage workflow:

That is to say, following a successful Integration run, we trigger the Delivery stage that will do
the following:

¢ Launch a vanilla EC2 instance
e Apply configuration management to it:
o Install the demo-app RPM we produced
o Install other required packages to turn it into a web server

Test the applied configuration (using Serverspec)

Produce an AMI out of the configured instance (using Packer)
Launch an EC2 instance from the produced AMI

Run additional tests against the new EC2 instance

This pipeline will ensure that the application RPM installs correctly, our configuration
management gets applied as expected, and our new AMI artifact is fit for purpose. At the end we
should be left with a sparkling, prebaked, production-ready AMI of a web server with our demo -
app onit.

To accomplish these tasks, we are going to introduce two new tools to the mix - Packer and
Serverspec (more details as we go).

We will be able to reuse a significant part of our work so far, given that we are building on top of
it. As before, we will start by preparing our code, deploying it to AWS, and configuring our
Jenkins Pipeline.

Feel free to skip some of the following steps if you have kept the AWS environment from the

previous chapter running. Although I think that it might be better to start from scratch to avoid any
confusion.

Preparing Terraform templates

In addition to the usual VPC, IGW, and subnet that we need for Jenkins, we are going to deploy
NAT and ELB for our demo-app web server scenario.

Resources
Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/Terraform/resources.tf.

We start with VPC, IGW, and NAT:

resource "aws_vpc" "terraform-vpc" {
cidr_block = "${var.vpc-cidr}"

resource "aws_internet_gateway" "terraform-igw" {
vpc_id = "${aws_vpc.terraform-vpc.id}"
}

resource "aws_eip" "nat-eip" {
vpc = true
}

resource "aws_nat_gateway" "terraform-nat" {
allocation_id = "${aws_eip.nat-eip.id}"
subnet_id = "${aws_subnet.public-1.1id}"
depends_on = ["aws_internet_gateway.terraform-igw"]

We add a public subnet for Jenkins and ELB, plus a private one to be used by the EC2 web
server:

resource "aws_route_table" "public" {
vpc_id = "${aws_vpc.terraform-vpc.id}"

resource "aws_route_table" "private" {
vpc_id = "${aws_vpc.terraform-vpc.id}"

Next is [AM. We need a role for Jenkins:

resource "aws_iam_role" "jenkins" {
name = "jenkins"
path = Il/ll
assume_role_policy = <<EOF

{

And another one for the demo-app web server:

resource "aws_iam_role" "demo-app" {
name "demo-app"
path = II/II
assume_role_policy = <<EOF

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/Terraform/resources.tf

They will be sharing a common policy, allowing them to access CodeCommit, where we keep our
infrastructure and application code and S3, where we store our RPM artifacts:

resource "aws_iam_policy" "common" {

name = '"common"
path = "/"
policy = <<EOF
{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"codecommit:Get*",
"codecommit:GitPull",
"codecommit:List*"

1,

"Resource": "*"

"Effect": "Allow",
"NotAction": [

"s3:DeleteBucket"
1,

"Resource": "*"

The newcomer, Packer, is going to require a separate policy to allow for the manipulation of EC2
resources. We are going to use it to start/stop/terminate instances and create AMIs:

resource "aws_iam_policy" "jenkins" {
name = "jenkins"
path = "/"
policy = <<EOF

"Version": "2012-10-17",
"Statement": [

"Effect": "Allow",

"Action": [
"ec2:AttachVolume",
"ec2:CreateVolume",
"ec2:DeleteVolume",
"ec2:CreateKeypair",
"ec2:DeleteKeypair",
"ec2:DescribeSubnets"

"Resource": "*",
"Effect": "Allow",

"Action": "iam:PassRole",
"Resource": ["${aws_iam_role.demo-app.arn}"]

The need to allow PassRole represents an IAM security feature which helps prevent
users/services granting themselves more privileges than they are supposed to have (refer

to: https://blogs.aws.amazon.comv/security/post/ Tx3MOIFB5XBOCQX/Granting-Permission-to-
Launch-EC2-Instances-with-IAM-Roles-PassRole-Permission).

We are going to need a security group for ELB, accepting HTTP traffic from the World:

resource "aws_security_group" "demo-app-elb" {
name = "demo-app-elb"
description = "ELB security group"
vpc_id = "${aws_vpc.terraform-vpc.id}"

ingress {
from_port = "80"
to_port = "8o"
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

Then, ELB itself:

resource "aws_elb" "demo-app-elb" {
name = "demo-app-elb"
security_groups = ["${aws_security_group.demo-app-elb.id}"]
subnets = ["${aws_subnet.public-1.id}"]

listener {
instance_port = 80
instance_protocol = "http"
1b_port = 80
1b_protocol = "http"

We create a security group for Jenkins permitting SSH and HTTP/S traffic from anywhere:

resource "aws_security_group" "jenkins" {

name = "jenkins"

description = "ec2 instance security group"

vpc_id = "${aws_vpc.terraform-vpc.id}"
ingress {

from_port = "80"

to_port = "8o"

protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

ingress {
from_port = "443"
to_port = "443"
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

https://blogs.aws.amazon.com/security/post/Tx3M0IFB5XBOCQX/Granting-Permission-to-Launch-EC2-Instances-with-IAM-Roles-PassRole-Permission

The next one is for the web server, accepting HTTP from ELB and SSH from Jenkins:

resource "aws_security_group" "demo-app" {

name = "demo-app"

description = "ec2 instance security group"
vpc_id = "${aws_vpc.terraform-vpc.id}"
ingress {

from_port = "80"

to_port = "80"

protocol = "tcp"

security_groups = ["${aws_security_group.demo-app-elb.id}"]

}

ingress {
from_port = "22"
to_port = "22"
protocol = "tcp"
security_groups = ["${aws_security_group.jenkins.id}"]

To bootstrap the Jenkins node, we need the user-data we used in the past, with one important
addition:

resource "aws_instance" "jenkins" {
user_data = <<EOF

Install SaltStack

yum -y install https://repo.saltstack.com/yum/amazon/salt-amzn-repo-latest-
1.ami.noarch.rpm

yum clean expire-cache; yum -y install salt-minion; chkconfig salt-minion off
Put custom minion config in place (for enabling masterless mode)

cp -r /srv/salt/minion.d /etc/salt/

echo -e 'grains:\n roles:\n - jenkins' > /etc/salt/minion.d/grains.conf

You will note that after we have installed SaltStack and put the masterless minion configuration in
place, we also add a custom Grains file. The roles list that it holds will help us assign the Salt
States later on (since we are now going to have two different types of hosts under configuration
management: jenkins and our demo-app web server).

Variables
Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/Terraform/variables.tf.

No change from Chapter 4, Build, Test, and Release Faster with Continuous Integration, we set
just a few VPC- and EC2 (Jenkins)-related variables.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/Terraform/variables.tf

Variables (values)
Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/Terraform/terraform.tfvars.

Same as our previous deployment, we specify the values for the VPC and Jenkins variables.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/Terraform/terraform.tfvars

Outputs
Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/Terraform/outputs.tf.

Some new outputs reflect the additional resources. The ELB endpoint and the ID of our
Private subnet and the demo-app security group:

output "ELB URI" {
value = "${aws_elb.demo-app-elb.dns_name}"
}

output "Private subnet ID" {
value = "${aws_subnet.private-1.id}"
}

output "Demo-app secgroup" {
value = "${aws_security_group.demo-app.id}"
}

This is certainly not an exhaustive list, and if we need more information later, we can always
retrieve a detailed description of our deployed infrastructure via the terraform show command.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/Terraform/outputs.tf

Prepareing Salt code

We will be using SaltStack to apply configuration management on both our Jenkins and demo-app
web server nodes. We will be using Grains to define which States/Pillars apply to which host.
Let us have a look at the code:

States
Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/states.

top.sls

The top file shows us that some states are shared between all hosts/roles while others are
assigned based on the role:

base:

1.

- users
- yum-s3

'roles:jenkins':
- match: grain
- jenkins
- nginx.jenkins
- docker
- packer

'roles:demo-app':
- match: grain

- php-fpm
- nginx.demo-app
- demo-app

You are already familiar with the users and the yum-s3 States. Now this is a good time to add an
account and an SSH key for yourself.

jenkins
We install the service as before plus a couple of extra tools:

jenkins_prereq:
pkg.installed:
- pkgs:

jq
- ht

tpd-tools

We will be using jq to parse JSON output and ab from the httpd-tools package for basic HTTP
load testing.

nginx

This time we split the NGINX State into three parts:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/states

init.sls

This installs the main package and sets up the service daemon:

nginx:
pkg.installed: []

service.running:
- enable: True
- reload: True
- require:
- pkg: nginx

jenkins.sls

This deploys the NGINX configuration and related file needed for the Jenkins service:

include:
- nginx

/etc/nginx/conf.d/jenkins.conf:
file.managed:
- source: salt://nginx/files/jenkins.conf

demo-app.sls

This deploys the NGINX configuration and related file needed for the demo-app web server:

include:
- nginx

/etc/nginx/conf.d/demo-app.conf:
file.managed:
- source: salt://nginx/files/demo-app.conf

In both cases, we include init.sls also known as NGINX, which provides shared functionality,
Docker remains the same, whereas Packer is a new addition which we will get to play with
shortly:

packer:
archive.extracted:

- name: /opt/
- source:

'https //releases.hashicorp.com/packer/0.10.1/packer_0.10.1_linux_amd64.zip'

source_hash: md5=3a54499fdf753e7e7c682f5d704f684f

- archive_format: zip
- if_missing: /opt/packer

cmd.wait:
- name: 'chmod +x /opt/packer'
- watch:
- archive: packer

The archive module conveniently downloads and extracts the Packer zip file for us. After that we

ensure that the binary is executable with cmd.wait, which gets triggered on package change (that
is watch archive).

php-fpm

We need PHP in order to be able to serve our PHP application (demo-app):

include:
- nginx

php-fpm:
pkg.installed:
- name: php-fpm
- require:
- pkg: nginx

service.running:
- name: php-fpm
- enable: True
- reload: True
- require_in:
- service: nginx

And finally, the demo-app State, which installs a selected version the application rpm. We will
discuss how we populate /tmp/APP_VERSION a bit later:

{% set APP_VERSION = salt['cmd.run']('cat /tmp/APP_VERSION') %}

include:
- nginx

demo-app:
pkg.installed:
- name: demo-app
- version: {{ APP_VERSION }}
- require_in:
- service: nginx

Pillars
Note

Please refer to_https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/pillars.

We will reuse the nginx and users Pillars from the previous chapter.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/pillars

Minion configuration
Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/minion.d.

While masterless.conf remains the same as before, we are extending the minion configuration
with a custom role Grain, which we set via UserData for Jenkins and a config file for the demo -
app web server (discussed later in the chapter).

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit/salt/minion.d

Preparing Jenkins code

Before we proceed with Jenkins, allow me to introduce the two new helpers — Packer and
Serverspec.

Packer
Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/packer.

As described:

"Packer is a tool for creating machine and container images for multiple platforms from a
single source configuration.”

--https://www.packer.io

Essentially, Packer is going to, well, pack things for us. We will feed it a template, based on
which it will launch an EC2 instance, perform requested tasks (over SSH), then create an AMI
from it. Packer can talk to various platforms (AWS, GCE, OpenStack, and so on) to provision
resources via local shell, remote (SSH), Salt, Ansible, Chef, and others. As a HashiCorp product,
it does not come as a surprise that Packer uses a templating system very similar to Terraform's.

demo-app.json

Here, we define what and how it should be provisioned. At the top, we set our variables:

"variables": {
"srcAmiId": null,
"amiName": null,
"sshUser": null,
"instanceProfile": null,
"subnetId": null,
"vpcId": null,
"userDataFile": null,
"appVersion": null

We have exported the actual values to a variables file (see later). Setting a value to null here,
makes it required. We could also fix values here or make use of environment variables (refer to

https://www.packer.io/docs/templates/user-variables.html). Once defined, you can refer to
variables with this syntax: {{user “srcAmiId }}.

The next section lists the builders, in our case, AWS EC2:
"puilders": [{

"type": "amazon-ebs",

"region": "us-east-1",

"source_ami": "{{user “srcAmiId }}",
"instance_type": "t2.nano",
"ssh_username": "{{user “sshUser }}",

"ami_name": "{{user “amiName}}-{{timestamp}}",

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/packer
https://www.packer.io/docs/templates/user-variables.html

"jam_instance_profile": "{{user “instanceProfile }}",

"subnet_id": "{{user “subnetId }}",
"vpc_id": "{{user “vpcId }}",
"user_data_file": "{{user ‘userDataFile }}",
"run_tags": {
"Name": "Packer ({{user “amiName }}-{{timestamp}})",
"CreatedBy": "Jenkins"
Iy
"tags": {
"Name": "{{user “amiName }}-{{timestamp}}",
"CreatedBy": "Jenkins"
3

3]

We are asking for an EBS-backed nano instance in the US-East-1 region. It is to be bootstrapped
via UserData (see later in the text) and tagged as "CreatedBy": "Jenkins".

Naturally, after launching the instance, we would like to provision it:

"provisioners": [

{
Iltypell: "Shell",
"inline": [
"echo 'Waiting for the instance to fully boot up...'",
"sleep 30" ,
"echo "Setting APP_VERSION to {{user “appVersion }}"",
"echo "{{user “appVersion }}" > /tmp/APP_VERSION"
]
}

Here, our first provisioners is a shell command to be executed over SSH by Packer (refer to
https://www.packer.io/docs/provisioners/shell.html). It pauses for 30 seconds to allow the node
to complete its boot process, then creates the APP_VERSION file needed by the Salt php- fpm
State.

Next, we run SaltStack:

{
"type": "salt-masterless",
"skip_bootstrap": true,
"local_state_tree": "salt/states",
"local_pillar_roots": "salt/pillars"
}

Packer already knows how to run Salt via the salt-masterless provisioner. It only needs a
source of States and Pillars (refer to: https://www.packer.io/docs/provisioners/salt-
masterless.html). We define a relative path of salt/, which is part of a checked out Git
repository (see demo-app-cdelivery here). We are opting to install Salt via UserData, hence
skip_bootstrap: true.

We will get to Serverspec in a moment, but here is how we run it:

https://www.packer.io/docs/provisioners/shell.html
https://www.packer.io/docs/provisioners/salt-masterless.html

Iltypell: Ilfilelll

"source": "serverspec",
"destination": "/tmp/"
Iy
{
Iltypell: "ShEll",
"inline": [
"echo 'Installing Serverspec tests...'",
"sudo gem install --no-document rake serverspec",
"echo 'Running Serverspec tests...'",
"cd /tmp/serverspec && sudo /usr/local/bin/rake spec"
]
}

The file provisioners is used to transfer data between the remote instance and Packer (refer to

https://www.packer.io/docs/provisioners/file.html). We push the local "serverspec/" folder
containing our Serverspec tests to "/tmp" on the remote side. Then, run a few shell commands to

install the Serverspec ruby gem and run the tests.

demo-app_vars.json

The values for the variables we defined earlier (alternatively, you could set these as a list of -
var 'key=value' cmd line arguments):

{

"srcAmiId": "ami-6869aa05",

"amiName": "demo-app",

"sshUser": "ec2-user",

"instanceProfile": "demo-app",

"subnetId": "subnet-4dic2467",

"vpcId": "vpc-bdéfobda",

"userDataFile": "packer/demo-app_userdata.sh"
}

demo-app_userdata.sh

The EC2 UserData to bootstrap our test instance:
#!/bin/bash

set -euf -o0 pipefail
exec 1> >(logger -s -t $(basename $0)) 2>&1

Install SaltStack

yum -y install https://repo.saltstack.com/yum/amazon/salt-amzn-repo-latest-
1.ami.noarch.rpm

yum clean expire-cache; yum -y install salt-minion; chkconfig salt-minion off

Put custom grains in place
echo -e 'grains:\n roles:\n - demo-app' > /etc/salt/minion.d/grains.conf

Much like the one we use for Jenkins. It gets SaltStack installed and puts the roles Grain in place.

https://www.packer.io/docs/provisioners/file.html

Serverspec
Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/serverspec.

Straight out of the front page:

"RSpec tests for your servers configured by CFEngine, Puppet, Ansible, Itamae or anything
else. With Serverspec, you can write RSpec tests for checking your servers are configured
correctly. Serverspec tests your servers' actual state by executing command locally, via
SSH, via WinRM, via Docker API and so on. So you don't need to install any agent softwares
on your servers and can use any configuration management tools, Puppet, Ansible,
CFEngine, Itamae and so on. But the true aim of Serverspec is to help refactoring
infrastructure code."

--http://serverspec.org

We are going to use Serverspec to assert the final state of the EC2 instance after all other
configuration tasks have been completed. It should help verify that any nonconfiguration
management changes have taken effect (for example, shell commands) and that configuration
management has been applied correctly (for example, no race conditions/overlaps/conflicts in
States). This does introduce some overhead and some will rightly question whether it is needed in
addition to a SaltStack run, so it remains a personal preference. I see it as a second layer of
verification or a safety net.

The content under the serverspec/ folder has been created by running serverspec-init (refer
to http://serverspec.org), selecting UNIX and then SSH. We replace the sample spec.rb file with
our own:

spec/localhost/demo-app_spec.rb
require 'spec_helper'

versionFile = open('/tmp/APP_VERSION')
appVersion = versionFile.read.chomp

describe package("demo-app-#{appVersion}") do
it { should be_installed }
end

describe service('php-fpm') do
it { should be_enabled }
it { should be_running }

end

describe service('nginx') do
it { should be_enabled }

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/serverspec
http://serverspec.org

it { should be_running }
end

describe user('veselin') do

it { should exist }

it { should have_authorized_key 'ssh-rsa ..."' }
end

Serverspec performs tests on supported resource types (refer to
http://serverspec.org/resource_types.html).
In the preceding brief example we assert that:

e A specific version of our demo-app package has been installed
e PHP-FPM and NGINX are running and enabled on boot
e The SSH authorized_keys file for a given user has the expected contents

Our Serverspec tests can be run from the containing folder like so:

cd /tmp/serverspec && sudo /usr/local/bin/rake spec

It will parse any files it finds ending in _spec.rb. We use sudo only because, in this case, we are
trying to read a private file (authorized_keys).

And back to Jenkins. We are already familiar with the concept of a Jenkinsfile (as used by our
Integration job). In this example, we will be adding a second (Delivery) pipeline using the same
approach.

Let us examine both pipeline jobs.

http://serverspec.org/resource_types.html

demo-app
Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app/Jenkinsfile.

This is our old Integration job that downloads the application code, runs tests against it, produces
an RPM package and uploads the package to a YUM repository. We are going to add one more
stage to this process:

stage "Trigger downstream"
build job: "demo-app-cdelivery",
parameters: [[$class: "StringParameterValue", name: "APP_VERSION", value:
"${gitHash}-1"]], wait: false

This final stage triggers our next job that is the Delivery pipeline and passes an APP_VERSION
parameter to it.

The value of this parameter is the gitHash which we have been using so far as a version string
for our demo-app RPM package.

The -1 you see appended to the gitHash represents the rpm’'s minor version number which you
can safely ignore at this time.

Setting wait to false means that we don't want to keep the current job running, waiting for the
subsequently triggered one to complete.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app/Jenkinsfile

demo-app-cdelivery
Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/Jenkinsfile.

Now the fun part. The Delivery job has been passed an APP_VERSION and is ready to start, let us
follow the process described in the Jenkinsfile.

We start by cleaning up our workspace, checking out the demo-app-cdelivery repository, then
adding the SaltStack code on top of it. We need both codebases in order to launch an instance and
configure it to be a web server:

#1groovy
node {
step([$class: 'WsCleanup'])

stage "Checkout Git repo"
checkout scm

stage "Checkout additional repos"
dir("salt") {
git "https://git-codecommit.us-east-1.amazonaws.com/vl/repos/salt"

}

After this, we are ready to run Packer:

stage "Run Packer"

sh "/opt/packer validate -var="appVersion=$APP_VERSION" -var -
file=packer/demo-app_vars.json packer/demo-app.json"

sh "/opt/packer build -machine-readable -var="appVersion=$APP_VERSION"
var-file=packer/demo-app_vars.json packer/demo-app.json | tee
packer/packer.log"

First, we validate our template and then execute, requesting a machine-readable output. Packer is
going to spin up an instance, connect over SSH to it, apply all relevant Salt States, run Serverspec
tests, and produce an AMI of what is essentially a web server that has the demo-app and all its
prerequisites installed.

Then, we go ahead and launch a second EC2 instance; this time, form the AMI we just created:

stage '"Deploy AMI"
def amiId = sh returnStdout: true, script:"tail -nl1 packer/packer.log |
awk '"{printf \$NF}'"

def ec2Keypair = "terraform"
def secGroup = "sg-2708ef5d"
def instanceType = "t2.nano"
def subnetId = "subnet-4dic2467"

def instanceProfile = "demo-app"

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/Jenkinsfile

echo "Launching an instance from ${amiId}"
sh "aws ec2 run-instances \
--region us-east-1 \
--image-id ${amiId} \
--key-name ${ec2Keypair} \
--security-group-ids ${secGroup} \
--instance-type ${instanceType} \
--subnet-id ${subnetId} \
--iam-instance-profile Name=${instanceProfile} \
| tee .ec2_run-instances.log \
def instanceId = sh returnStdout: true, script: "printf \$(jq
.Instances[0].InstanceId < .ec2_run-instances.log)"

The variables seen at the top we get from Terraform (terraform show).

We use the aws cli to launch the instance inside the Private VPC subnet, attach the demo-app
security group, the Terraform key, and demo - app instance profile to it. You will notice that we
need not pass any EC2 credentials here as Jenkins is already authorized via the IAM role we
assigned to it earlier.

Next, we retrieve the instanceId by parsing the aws c1i JSON output with jq (refer to
https://stedolan.github.io/jq).

After we have launched the instance, we set its tags, register it with ELB, and loop until its ELB
status becomes InService:

sh "aws ec2 create-tags --resources ${instancelId} \
--region us-east-1 \
--tags Key=Name,Value="Jenkins (demo-app-$APP_VERSION)"
Key=CreatedBy,Value=Jenkins \ \

echo "Registering with ELB"

def elbId = "demo-app-elb"

sh "aws elb register-instances-with-load-balancer \
--region us-east-1 \
--load-balancer-name ${elbId} \
--instances ${instanceId} \

echo "Waiting for the instance to come into service"

sh "while ["x\$(aws elb describe-instance-health --region us-east-1 --
load-

balancer-name ${elbId} --instances ${instanceId} |

jg .InstanceStates[].State | tr -d '"')" I= "xInService"]; do : ; sleep
60;
done"

Now that the node is ready to serve, we can launch our improvised Load Test using AB:

stage "Run AB test"
def elbUri = "http://demo-app-elb-1931064195.us-east-

https://stedolan.github.io/jq

1.elb.amazonaws.com/"

sh "ab -c5 -n1000 -d -S ${elbUri} | tee .ab.log"

def non2xx = sh returnStdout: true, script:"set -o pipefail;(grep 'Non-
2xx"' .ab.log | awk '{printf \$NF}') || (printf 0)"

def writeErr = sh returnStdout: true, script:"grep 'Write errors' .ab.log
| awk '{printf \$NF}'"

def failedReqs = sh returnStdout: true, script:"grep 'Failed requests'
.ab.log | awk '{printf \$NF}'"

def rps = sh returnStdout: true, script:'"grep 'Requests per second'
.ab.log | awk '{printf \$4}' | awk -F. '{printf \$1}'"

def docLen = sh returnStdout: true, script:'"grep 'Document Length'
.ab.log | awk '{printf \$3}'"

echo "Non2xx=${non2xx}, WriteErrors=${writeErr},
FailedReqgs=${failedReqs}, ReqsPerSec=%${rps}, DocLength=%${docLen}"

sh "if [${non2xx} -gt 10] || [${writeErr} -gt 10] || [${failedReqs}
-gt 10] || [${rps} -1t 1000] || [${docLen} -1t 10]; then \
echo "ERR: AB test failed" | tee -a .error.log; \
fi\

At the end of the AB test, the various reported metrics are compared with preset thresholds and
logged.

The EC2 instance is no longer needed, so it can be terminated:

stage "Terminate test instance"
sh "aws ec2 terminate-instances --region us-east-1 --instance-ids
${instanceId}"

In the final stage, the job's exit code is determined by the AB test results:

stage "Verify test results"
sh "if [-s '.error.log']; then \

cat '.error.log'; \
:> 'error.log'; \
exit 100; \

else \
echo 'Tests OK'; \

fi\

Preparing CodeCommit repositories

Ideally, we would put all the preceding code under revision control, so let us create some
repositories. We need an IAM user with enough privileges to do that:

Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/Jenkinsfile.

{
"Version": "2012-10-17",

"Statement": [

"Effect": "Allow",

"NotAction": [
"codecommit:DeleteRepository"

1,

"Resource": "*"

+

{
"Effect": "Allow",
"NotAction": [

"s3:DeleteBucket"

1,
"Resource": "*"

+

{

"Sid": "Stmt1461764665000",

"Effect": "Allow",

"Action": [
"ec2:AllocateAddress",
"ec2:AssociateAddress",

We create a terraform IAM user with the preceding policy that grants us privileges to carry out
the CodeCommit tasks and also do the Terraform deployment later (remember to write down the
API keys).

Please refer to the previous chapter on how to export the API keys and create three CodeCommit
repositories: salt, demo-app, and demo-app-cdelivery.

You will need to clone the repositories locally and populate each with the code we prepared

earlier respectively (refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_05_CodeFiles/CodeCommit).

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_05_CodeFiles/CodeCommit/demo-app-cdelivery/Jenkinsfile
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_05_CodeFiles/CodeCommit

Deploy Terraform templates

Create a terraform EC2 key pair, then run terraform plan, terraform validate, and finally
terraform apply inside the Terraform templates folder (if needed, please refer to the previous
chapter for details on how to do all of this).

Initializing Jenkins

Once Terraform has finished the deployment, you will get the Jenkins EIP value in the outputs. Do
a hostname lookup on it and load the resulting address in your browser. You should see the
Getting Started page (screenshots and instructions in previous chapter):

e Unlock jenkins
¢ Install suggested plugins
e Create an Admin user

Configuring Jenkins jobs

Prior to recreating the Continuous Integration pipeline job, we need a S3 bucket for our YUM
repository. Create a bucket (unless you've kept the old one around), update the demo -
app/Jenkinsfile script accordingly then commit and push Git changes upstream.

demo-app pipeline

Refer to the Setting up the pipeline steps from the previous chapter to create the Continuous
Integration job. Let us call it demo-app this time around. The script path remains the same

(https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app).

You should now have this:
sradd description
All +
5 W MName 1 Last Success Last Failure Last Duration
(YA NiA /A 5*__)
lcon: SML
Legend 1) ASS tor all '__I ASS lor [ailures '__, BSS lor just latest builds
The pipeline is going to fail as we do not have our YUM repository configured yet:
Pipeline demo_app
,FEIC‘IU det l'.'rl'h‘lll"nl"
ihiAREL)
—g# Becent Changes
Stage View
Checkout Git i ek Build RPM Update YUM Check YUM
repo repo repo
21s is 3s 28 25
D
s 21s 2s
2038 »

The repository contents have already been uploaded to S3 by this first job run. Now we need to
update the salt/states/yum-s3/files/s3.repo file with the S3 URL and set the repository to
enabled. Commit and push the Salt changes to the Git repository, then pull and apply on the
Jenkins node.

A subsequent pipeline run takes us a step further:

https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app

‘:ﬁ—ﬁ? Recent Changes
i

Stage View

Pipeline demo_

app

Checkout Git
repo

243

27s

21s

Run tests

1s

Build RPM

ds

Update YUM
repo

25

[#add descripton

Check YUM Trigger
repo downstream
25 G4ms
Bdms
failed
25
failed

This time the failure is because our downstream job is not quite ready yet. Let us fix that next.

demo-app-cdelivery pipeline

From the Jenkin's dashboard, we select New Item:

Jenkins

JENKINS

Mew ltem

&} People e ¢

: : s w Name Last Success
Build History
- @ & demo app NIA

Vianage Jenkins

A\

lcon: SML

Credentials

&‘ My Views
R

We shall call it demo-app-cdelivery:

Enter an item name

demo-app-cdelivery

Hagquirad e

il Freestyle project

T8 This is the central feature of Jenkins, Jenkins will build your project, l'tl'.\’!'ll'::"llﬁa any SCM with any build F-_'_.'F-r-l'!m_ and this can be even used for

somethi ng other than software build

Pipeline
fu') Orchestrates long-running activities that can span multiple build slaves. Suitable lor building pipelines (formerly known as workflows) andiorn
organizing complex activities that do not easily Nitin free-style job type.

This job will be triggered by another one, so no need to poll SCM. Also, we have a parameter
being passed to this pipeline:

Build Triggers <
~| Poll SCM i
Discard old builds (7]
Strategy Log Rotation H
Days 1o keep builds
if not empty, build records are only kept up to this number of days
Max # of builds to keep | §
if moi empty, only up o this number of build records are kepl

B Do not allow concurrant builds
| GitHub project
Thiz project |s parameaterized i

String Parameter “ i

Name AFF_VERSION (7]

Default Value @

Description @

[Plain texd] Freview L
Add Paramater -
Throtlle builds i

" Quiet period i
| Trigger builds remotely (e.g., Irom scripls) vf}j

Finally, we set the location of the Jenkinsfile (https://git-codecommit.us-east-
1.amazonaws.com/v1/repos/demo-app-cdelivery):

https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app-cdelivery

Pipeline

Definition Pipeline scripi from SCM H
SCM Git : B
Repositories L2
Repository URL hitps:/git-codecommit.us-east-1. amazonaws.com/y L2
Cradentials - Mone - 3 = Ads
Advanced.,
Add Repository
Branches to build n
Branch Specifier (blank for 'any’ | “/master rfJ‘-‘
Add Branch
Repository browser [Audo) — L1}
Additional Behaviours Add -
Seript Path Jenkinsfile L7}

Pipeling Syntax

Do you remember the VPC details we specified in the Packer variables file and also the
Jenkinsfile for this pipeline? We need to set those to match our current VPC:

e Update the variables in packer/demo-app_vars.json
o srcAmiId could be the latest AmazonLinux AMI
o subnetId is the ID of the Private subnet
o vpcId
e Update demo-app-cdelivery/Jenkinsfile:
o In the Deploy AMI stage:
m secGroupis the ID of the demo-app security group
m subnetIdis the ID of the Private VPC subnet as mentioned earlier

o In Run AB test
m elbuUriis the endpoint address of the demo-app-elb ELB

e Commit and push your changes.

Here, we are with our two pipelines ready for action:

.,i‘:lﬂf_! descripton
All -
5 w Name | Last Success Last Failure Last Duration
M/A /A NIA i)
o fig] demo app M/A 21 min - #2 37 sec 2
lcon: SML _)
Legend F o BSS for all B BSS for faiures B BSS for just latest builds

Let us trigger a demo-app run by changing the $full_name in demo-app/src/index.php. You
should see it running after detecting the Git change. At the end of the run, it should trigger the
downstream demo-app-cdelivery pipeline, and after another approximately10 minutes, there
should be a brand new demo-app AMI waiting for you (check the AWS console).

Note

Please remember to delete any AWS resources used in the mentioned examples (VPC, EC2, S3,
IAM, CodeCommit, and so on) to avoid unnecessary charges.

Summary

In this chapter, we extended our Jenkins pipeline to deploy and test our application artifact on an
EC2 instance in a VPC environment. You learned how to use Packer to template the provisioning
of instances as well as how to use Serverspec to apply extra verification of our infrastructure.

In the next chapter, we are going to finalize our Jenkins pipeline setup by adding the Continuous
Deployment element to it. We will examine ways to deploy AMIs created during the Delivery
stage into a production environment.

Chapter 6. Continuous Deployment - A Fully
Automated Workflow

Welcome to the final stage of the CI workflow - the Continuous Deployment.

We are now ready to take the AMI we produced during the Continuous Delivery step and deploy
that to production.

For this process, we are going to use blue/green deployment approach. Our production
environment is going to consist of ELB and two Auto scaling Groups (blue and green):

Y

S 7
W@ w,
& \ (24 "5_1.-'

=)
.\{\A}

AUTOSCALING GROUP

If we assume that the blue group holds our current production nodes, then upon deployment, we
do the following:

1. Attach ELB to the green group

2. Scale the green group up using the new AMI

3. Check for errors

4. Scale the blue group down, effectively shifting traffic to the instances of the new AMI

As we are building on top of our existing CI pipelines, there are only a few changes we need to
make to the code from the previous chapter. We need to add a few extra Terraform resources; let
us take a look at those.

Terraform code (resources.tf)
Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_06_CodeFiles/Terraformvresources.tf .

We add a second public and a matching private subnet so that we can distribute the production
instances across multiple availability zones.

The aws_subnet resource creates a subnet named public-2. It takes attributes such as a VPC ID,
CIDR BLOCK and AZs, the values of which we pull from variables. To compute the CIDR and
AZ values we use Terraform's interpolation functions (ref:

https://www.terraform.io/docs/configuration/interpolation.html):

resource "aws_subnet" "public-2" {

vpc_id = "${aws_vpc.terraform-vpc.id}"
cidr_block = "${cidrsubnet(var.vpc-cidr, 8, 3)}"
availability zone = "${element(split(",",var.aws-availability-zones),

count.index + 1)}"
map_public_ip_on_launch = true

tags {
Name = "Public"

}
}

Next, we associate the newly created subnet with a routing table:
resource "aws_route_table_association" "public-2" {

subnet_id = "${aws_subnet.public-2.id}"
route_table_id = "${aws_route_table.public.id}"

}

Then repeat for the Private subnet:

resource "aws_subnet" "private-2" {

vpc_id = "${aws_vpc.terraform-vpc.id}"
cidr_block = "${cidrsubnet(var.vpc-cidr, 8, 4)}"
availability zone = "${element(split(",",var.aws-availability-zones),

count.index +1)}"
map_public_ip_on_launch = false

tags {
Name = "Private"
}
}

resource "aws_route_table_association" "private-2" {
subnet_id = "${aws_subnet.private-2.id}"

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_06_CodeFiles/Terraform/resources.tf
https://www.terraform.io/docs/configuration/interpolation.html

route_table_id = "${aws_route_table.private.id}"

}

In this VPC, we are going to end up with subnets 1 and 3 public, and 2 and 4 private.

The next change is the addition of a prod ELB and a security group for it:

resource "aws_security_group" "demo-app-elb-prod" {
name = "demo-app-elb-prod"
description = "ELB security group"
vpc_id = "${aws_vpc.terraform-vpc.id}"

ingress {
from_port = "80"
to_port = "80"
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

Note the protocol value of "-1", meaning "all":

egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
}
}
resource "aws_elb" "demo-app-elb-prod" {
name = "demo-app-elb-prod"
security_groups = ["${aws_security_group.demo-app-elb-prod.id}"]
subnets = ["${aws_subnet.public-1.id}", "${aws_subnet.public-2.id}"]
cross_zone_load_balancing = true
connection_draining = true
connection_draining_timeout = 30
listener {
instance_port = 80
instance_protocol = "http"
1b_port = 80
1b_protocol = "http"
}
tags {
Name = "demo-app-elb-prod"
}
}

Let us also update the demo-app security group Ingress rules to allow traffic from the ELB. To
help visualize, here is our earlier diagram with more labels:

demo-app-elb-prod

Y

'QI{'- X e?\ oy aﬂﬂr

\ .:. I 1 bl [-'I||.|“|i-':r‘|| “'“.I .r|;‘.|i|.l::I

And in code:

resource "aws_security_group" "demo-app" {
name = "demo-app"
description = "ec2 instance security group"
vpc_id = "${aws_vpc.terraform-vpc.id}"
ingress {

from_port = "80"
to_port = "80"
protocol = "tcp"
security_groups = ["${aws_security_group.demo-app-elb.id}",
"${aws_security_group.demo-app-elb-prod.id}"]
}

Then we introduce our blue/green Auto Scaling Groups (ASG) and a temporary launch
configuration:

resource "aws_launch_configuration" "demo-app-lcfg" {
name = "placeholder_launch_config"
image_id = "${var.jenkins-ami-id}"
instance_type = "${var.jenkins-instance-type}"
iam_instance_profile = "${aws_iam_instance_profile.demo-app.id}"
security_groups = ["${aws_security_group.demo-app.id}"]

resource "aws_autoscaling_group" "demo-app-blue" {

name = "demo-app-blue"
launch_configuration = "${aws_launch_configuration.demo-app-lcfg.id}"
vpc_zone_identifier = ["${aws_subnet.private-1.id}", "${aws_subnet.private-
2.id}"]
min_size = 0
max_size = 0
tag {
key = "ASG"
value = "demo-app-blue"
propagate_at_launch = true
}
}
resource "aws_autoscaling_group" "demo-app-green" {
name = "demo-app-green"
launch_configuration = "${aws_launch_configuration.demo-app-lcfg.id}"
vpc_zone_identifier = ["${aws_subnet.private-1.id}", "${aws_subnet.private-
2.id}"]
min_size = 0
max_size = 0
tag {
key = "ASG"
value = "demo-app-green"
propagate_at_launch = true
}
}

The launch configuration here is really only a placeholder, so that we can define the Auto Scaling
Groups (which is why we reuse the Jenkins variables). We are going to create a new, real launch
configuration to serve the demo-app later on as part of the pipeline.

outputs.tf
Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_06_CodeFiles/Terraform/outputs.tf.

A minor addition to the outputs, to give us the Production ELB endpoint:

output "ELB URI PROD" {
value = "${aws_elb.demo-app-elb-prod.dns_name}"

}
Deployment

It is time for exercise. Using the earlier-mentioned templates and the rest of the familiar code
from https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_06_CodeFiles plus your previous experience you should be able to bring
up a VPC plus a Jenkins instance with two pipelines, exactly as we did in the chapter on
Continuous Delivery. Do not forget to update any deployment-specific details such as the
following:

The SSH public key in salt:states:users:files
The authorized key in the serverspec test specification
The S3 URIin salt:states:yum-s3:files:s3.repo
The S3 bucket name in demo-app/Jenkinsfile

The variables in packer :demo-app_vars.json

The variables in demo-app-cdelivery/Jenkinsfile

I would recommend you to disable the SCM Polling in the demo-app job so that we don't trigger
a run before all our downstream jobs have been configured.

Assuming that all went well, we are back where we left off:

ENABLE AUTO REFRESH

Sradd description

Al +
5 w Name | Last Success Last Fallure Last Duration
damo-app Mi& M MIA .._,:}
demo-app-cdelivery NI MiA NIA &)

leon: S ML) :
Legend o RSS for all a1 RSS for failures] BESS for just latesi builds

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_06_CodeFiles/Terraform/outputs.tf
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_06_CodeFiles

Jenkins pipelines

Earlier we have our Integration and Delivery pipelines chained together, taking code and
producing and AMI artifact. Our next task is to design a third pipeline to take that AMI and
deploy it into our production environment.

Before we can create the new job in Jenkins, we need to make the code for it available via Git:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment.

We will examine the files in detail shortly, for now just create and populate a demo-app-
cdeployment CodeCommit repository. Similar to our other repositories, the new one would have

an URL such as https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app-
cdeployment.

With that in hand, we proceed to create the pipeline:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment
https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app-cdeployment

Enter an item name

| demo-app~cd Ep|ﬂ‘f|"l'l6l"lt
= Required field

wﬂ\‘ Freestyle project
Y This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for
something other than software build.

| Orchestrates long-running activities that can span multiple build slaves. Suitable for building pipelines (formerly known as workflows) andior
organizing complex activities that do not easily fit in free-style job type,

e
. Pipeline
-y

External Job
\ 2 ! This type of job allows you to record the execution of a process run oulside Jenking, even on a remote machine. This is designed so that you can
~ use Jenkins as a dashboard of your existing automation systam.

. Multi-configuration project
! Suitable for projects that need a large numbear of different configurations, such as testing on multiple emdronments, platform-specific builds, etc.

. Folder

| Creates a container that stores nested items in it. Useful for grouping things together. Unlike view, which is just a filter, a folder creates a separate
namespace, 50 you can have multiple things of the same name as long as they are in different folders.

A Multibranch Pipeline
“v:g‘ ,J Creates a set of Pipeline projects according to detected branches in one SCM repository.

create a new item from other existing, you can use this oplion:

am Tvoe 1o aulacar

It will need to take an AMI ID parameter (to be passed on from the Delivery job):

General Advanced Project Opticr

GitHub project

B This project is parameterized

L2
String Parameter n (73
Marre | AMIIDY | ®
Default Value @
Dascription ﬁ
[Flain text] Preview -
Add Parameter «
Then of course, it needs the Jenkinsfile location (https://git-codecommit.us-east-
1.amazonaws.com/v1/repos/demo-app-cdeployment):
Pipeline
Definition Fipeline script from SCM]
SCM Git s @
Repositories @
Repository UBL hitps-/git-codacommit.us-east-1.amazonaws.comivi ﬁ
Credentials none - § &= Add

Advanced...

Add Repository

Branches to build n

Branch Specifier (blank for "any") “/master L3
Add Branch
Repository browser (Auto)] @

Additional Behaviours Add =

Script Path | Jenkinsfile

Pipelin ntax

https://git-codecommit.us-east-1.amazonaws.com/v1/repos/demo-app-cdeployment

With that final job ready, our Jenkins dashboard looks like this:

©00 -,

lcon: SML

Mame |

demo-app

dema-app-cdelivery

demo-apo-cdeployment

Last Success

MiA

NFA

MIA

Last Failure

MNIA

N/A

MIA

Eadg description

Last Duration
/A
MN/A

MiA

OB

Legend E)BSSforal [BSS forfailures [E) BSS for just latest builds

Continuous Deployment pipeline

Back to the code, as promised:

Note

Please refer to https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment/Jenkinsfile.

Our Jenkinsfile is rather simple:
#lgroovy
node {

step([$class: 'WsCleanup'])

stage "Checkout Git repo" {
checkout scm

}

stage "Deploy AMI" {
sh returnStdout: false, script: "bash ./cdeployment.sh ${AMI_ID}"
}

}

We simply check out the associated repository and execute a shell script. Naturally, we could
have coded the whole task in Groovy, but I personally am more used to Bash, hence the resulting
cdeployment. sh.

We briefly described the deployment task in the beginning of this chapter. Generally speaking, we
are going to be serving the application code from two separate clusters of instances and swap
traffic from one to the other. We will use the extensive and user friendly AWS CLI to carry out
most operations plus Bash to process any input/output data.

Let us dive into the script for more details.
cdeployment.sh
Note

Please refer to_https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment/cdeployment.sh.

At the top, we define the names of our Auto Scaling Groups, the Production ELB, and the ID of
the AMI, which we will be working with (passed on from the upstream pipeline):

#!/bin/bash
set -ef -o pipefail

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment/Jenkinsfile
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_06_CodeFiles/CodeCommit/demo-app-cdeployment/cdeployment.sh

blueGroup="demo-app-blue"
greenGroup="demo-app-green"
elbName="demo-app-elb-prod"
AMI_ID=${1}

A couple of helper functions:

function techo() {
echo "[$(date +%s)] " ${1}
}

function Err() {
techo "ERR: ${1}"
exit 100

}

Namely, the techo (timestamped echo) for a more informative output and ERR for when we
encounter problems.

If we need to abort a deployment and restore our infrastructure to its original state, we will use
this:

function rollback() {
techo "Metrics check failed, rolling back"
aws autoscaling update-auto-scaling-group --auto-scaling-group-name
${newActiveGroup} \
--min-size 0
techo "Instances ${1} entering standby in group ${newActiveGroup}"
aws autoscaling enter-standby --should-decrement-desired-capacity \
--auto-scaling-group-name ${newActiveGroup} --instance-ids ${1}
techo "Detaching ${elbName} from ${newActiveGroup}"
aws autoscaling detach-load-balancers --auto-scaling-group-name
${newActiveGroup} \
--load-balancer-names ${elbName}
Err "Deployment rolled back. Please check instances in StandBy."

}

In our case, we would abort if we detect an increase in the error count of certain metrics. We
would put the newly deployed instances in Standby mode then detach the ELB from the given
Auto Scaling Group.

Every time we launch new instances, we should pause to allow those to fully initialize then verify
what they have done so far and the following wait_for_instances()function will help us with
this task.

Wait for the expected number of instances to launch:

techo ">>> Waiting for instances to launch"
asgInstances=()

while [${#asgInstances[*]} -ne ${1}];do
sleep 10

asgInstances=($(aws autoscaling describe-auto-scaling-groups \
--auto-scaling-group-name ${newActiveGroup} | jq

.AutoScalingGroups[0].Instances[].InstanceId | tr -d '"'))
techo "Launched ${#asgInstances[*]} out of ${1}"
done

Wait for them to become available:

techo ">>> Waiting for instances to become available"
asgInstancesReady=0
iterList=(${asgInstances[*]})

while [${asgInstancesReady} -ne ${#asgInstances[*]}],do
sleep 10
for i in ${iterList[*]};do

asgInstanceState=$(aws autoscaling describe-auto-scaling-instances \

--instance-ids ${i} | jg .AutoScalingInstances[0].LifecycleState
d Illl)

if [[${asgInstanceState} == "InService"]];then
asgInstancesReady="$((asgInstancesReady+1))"
iterList=(${asgInstances[*]/${i}/})
fi
done
techo "Available ${asgInstancesReady} out of ${#asgInstances[*]}"
done

Let the ELB declare them InService:

techo ">>> Waiting for ELB instances to become InService"
elbInstancesReady=0
iterList=(${asgInstances[*]})

while [${elbInstancesReady} -ne ${#asgInstances[*]}],do
sleep 10
for i in ${iterList[*]};do
elbInstanceState=$(aws elb describe-instance-health \
--load-balancer-name ${elbName} --instances ${i} | jgq
.InstanceStates[].State | tr -d '"")

if [[${elbInstanceState} == "InService"]];then
elbInstancesReady=$((elbInstancesReady+1))
iterList=(${asgInstances[*]/${i}/})
fi
done
techo "InService ${elbInstancesReady} out of ${#asgInstances[*]}"
done

tr -

Next, since we know the region we will be working with, we set it in advance to avoid having to

append it to each AWS CLI command:

export AWS_DEFAULT_REGION="us-east-1"

Before going any further, we make sure that there is a valid AMI 1D to work with:

[[${AMI_ID} = ami-*]] || Err "AMI ID ${AMI_ID} is invalid"

We will be working with two Auto Scaling Groups and one ELB, we check the properties of each
group and extract the ELB name:

blueElb=%$(aws autoscaling describe-auto-scaling-groups --auto-scaling-group-
names ${blueGroup} | \

jg .AutoScalingGroups[O].LoadBalancerNames[0] | tr -d '"")
greenElb=%$(aws autoscaling describe-auto-scaling-groups --auto-scaling-group-
names ${greenGroup} | \

jg .AutoScalingGroups[O].LoadBalancerNames[0] | tr -d '"")

Next, we ensure that only one of the groups has the Production ELB associated with it:

[["${blueElb}" !'= "${greenElb}"]] || Err "Identical ELB value for both
groups"
if [["${blueElb}" == "${elbNamel}"]]; then

activeGroup=${blueGroup}
newActiveGroup=${greenGroup}

elif [["${greenElb}" == "${elbName}"]]; then
activeGroup=${greenGroup}
newActiveGroup=${blueGroup}

fi
[-n "${activeGroup}"] || Err "Missing activeGroup"
[-n "${newActiveGroup}"] || Err "Missing newActiveGroup"

techo "Active group: ${activeGroup}"
techo "New active group: ${newActiveGroup}"

At this point, we have established which of the two groups is currently serving traffic (Active)
and the one to take over from it (newActive).

Ideally, the newActive will be empty, before we deploy any instances within it:

asgInstances=($(aws autoscaling describe-auto-scaling-groups \
--auto-scaling-group-name ${newActiveGroup} | jq

.AutoScalingGroups[0].Instances[].InstanceId | tr -d '"'))
[${#asgInstances[*]} -eq @] || Err "Found instances attached to
${newActiveGroup}!"

If that is so, we can proceed to get some stats from the Active group:

activeDesired=$(aws autoscaling describe-auto-scaling-groups \
--auto-scaling-group-name ${activeGroup} | jq

.AutoScalingGroups[0@].DesiredCapacity)

activeMin=$(aws autoscaling describe-auto-scaling-groups \
--auto-scaling-group-name ${activeGroup} | jq

.AutoScalingGroups[0].MinSize)

activeMax=$(aws autoscaling describe-auto-scaling-groups \
--auto-scaling-group-name ${activeGroup} | jq

.AutoScalingGroups[0].MaxSize)

scaleStep=$(((30 * ${activeDesired}) /100))

Desired/Min/Max are the standard Auto Scaling values that we will end up transferring onto the
newActive group. The scaleStep, in this case, 30% of the instances presumably in service, is
the initial number of instances we would like to introduce (allowing them to receive live traffic)
during the deployment.

It would be rather strange if our Active group is empty, otherwise should it have a low count, we
round up the scaleStep to at least 1:

[${activeDesired} -gt ©] || Err "Active group ${activeGroup} is set to 0O
instances!"
[${scaleStep} -gt @] || scaleStep=1

Those were the prerequisites; now let us start the deployment by slowly scaling up the
newActive group.

We would need a launch configuration. To create one, we can either pass all needed parameters
ourselves or let EC2 copy most of those by providing an example instance from our Active

group:

activeInstance=$(aws autoscaling describe-auto-scaling-groups \
--auto-scaling-group-name ${activeGroup} | jq

.AutoScalingGroups[@].Instances[0].InstanceId | tr -d '"")
[[${activeInstance} = i-*]] || Err "activeInstance ${activelInstance} is
invalid"

launchConf="demo-app-${AMI_ID}-$(date +%s)"

aws autoscaling create-launch-configuration --launch-configuration-name
${launchConf} \
--image-id ${AMI_ID} --instance-id ${activeInstance}

Attach the newly created launch configuration to the group as follows:

techo ">>> Attaching ${launchConf} to ${newActiveGroup}"
aws autoscaling update-auto-scaling-group --auto-scaling-group-name
${newActiveGroup} \

--launch-configuration-name ${launchConf}

Add ELB as follows:

techo ">>> Attaching ${elbName} to ${newActiveGroup}"
aws autoscaling attach-load-balancers --auto-scaling-group-name
${newActiveGroup} \

--load-balancer-names ${elbName}

Start scaling up as follows:

techo ">>> Increasing ${newActiveGroup} capacity (min/max/desired) to
${scaleStep}"
aws autoscaling update-auto-scaling-group --auto-scaling-group-name

${newActiveGroup} \
--min-size ${scaleStep} --max-size ${scaleStep} --desired-capacity
${scaleStep}

Wait for a moment or two, for the instances to boot:

wait_for_instances ${scaleStep}

Our initial batch of instances should now have been deployed, attached to the Production ELB,
and started serving traffic. Before we launch even more copies of the new AMI, we ought to
check that we have not caused any issues so far. One way to do this is to pause the deployment for
a few minutes and examine metrics, such as number of non-200 responses, exceptions, or requests
per second. For simplicity, in this example, we assume that this has been done; in real life, you
would query your monitoring system(s) or perhaps pull samples of CloudWatch ELB/EC2
statistics.

If we do not detect any anomalies, we scale the newActive group further to match the size of the
Active one:

techo ">>> Checking error metrics"

sleep 5

doRollback=false

${doRollback} && rollback "${asgInstances[*]}"

techo ">>> Matching ${newActiveGroup} capacity (min/max/desired) to that of
${activeGroup}"
aws autoscaling update-auto-scaling-group --auto-scaling-group-name
${newActiveGroup} \

--min-size ${activeMin} --max-size ${activeMax} --desired-capacity
${activeDesired}

As you would expect, another check is in order:

wait_for_instances ${activeDesired}

This time, we could simulate a problem and trigger a rollback:

techo ">>> Checking error metrics"

sleep 5

doRollback=true

${doRollback} && rollback "${asgInstances[*]}"

The rollback function should take care of the rest. If we keep doRollback as false, our
deployment continues as planned and we shift traffic completely from the Active to the
newActive group by scaling the former down:

techo ">>> Reducing ${activeGroup} size to 0"
aws autoscaling update-auto-scaling-group --auto-scaling-group-name
${activeGroup} \

--min-size O --max-size O --desired-capacity 0

And detach ELB from it;

techo ">>> Detaching ${elbName} from ${activeGroup}"
aws autoscaling detach-load-balancers --auto-scaling-group-name

${activeGroup} \

--load-balancer-names ${elbName}

Now, let us see our script in action. First, we should simulate an Active group by manually
scaling up, say the blue one, and attach the Production ELB to it:

Auto Scaling Group: demo-app-blue
Datails Activity History Scaling Policias Instances
Launch Configuration | placeholdar_launch_config
Load Balancers dema-app-alb-prod ®
Target Groups
Desired 3
Min 1
Max &
Health Check Type EC2
Health Check Grace Period 300

Muanitoring

MNaotifications Tags

Availability Zone(s)
Subnet|s)

Dafault Cooldown

Placement Group

Suspended Processes

Scheduled Actions

- ..

us-aast-1b, us-east-ic

subnet-b6e2048b(10.0.2.0/24) | Privata | x|
us-east-1kb

subnet-f32711ba(10.0.4.024) | Private | x|
us-gast-1c

ao0o

In a few moments, you should have three instances and ELB in blue:

Create Auto Scaling group Actions ¥

demo-app-green placeholder_launch_co... 0

Auto Scaling Group: demo-app-blua

Details Activity History Scaling Policies Instances

Launch Configuration
Load Balancers

Target Groups

Desired 3

Min 1

Max 5

Heatth Check Type

Health Check Grace Period

placeholder_launch_config
dema-app-alb-prod

Fitter: | O, Filter / X
Nama = Launch Configuration - Instances -
B democ-app-blue placeholder_launch_co... 3

Manitoring

o & 0

1 to 2 of 2 Auto Scaling Groups
Max - Awvailability Zones Default Cooldown Health Chack

5 us-gast-1b, us-east-1c 300 i

1] us-eagt-1b, us-east-1c 300 300

_ N -
Notifications Tags Scheduled Actions
Edit
Availability Zone{s) us-east-1b, us-east-1c
Subnet(s) Subnet-bEe?DdSb subnet-T3271ba
Default Cooldown 300

Placement Group

Suspended Processes

Now, let us re-enable SCM polling for the demo-app job and trigger a run by pushing a code
change to its CodeCommit repo. You should see the pipeline running, invoking the two
downstream ones along the way.

If you choose to simulate a metrics problem and cause a rollback, then the deployed instances
should end up in the Standby mode:

Lo 5 TR T LT Actions ¥
- A
Filter: L . 1 to 2 of 2 Auto Scaling Groups
MNamea = Launch Configuration Instances Desired - Min M Availability Zones - Default Coaldown - Health Chack
demo-app-blug placeholder_launch_co. a 3 1 5 us-gasl-1b, us-easl-1c 300 300
@ demo-epp-green demo-app-ami-bb3aS0... 14 o [i] 1 us-east-1b, us-east-ic 300 300
Auto Scaling Group: demo-app-green _J =g =
Details Activity History Scaling Policies Instances Manitoring Notifications Tags Scheduled Actions
Actions ~ 0
Filter: Any Health Status ¥ Any Lifecycle State ~] ‘ 1 to 1 of 1 Instances
Instance 1D ~ Lifecycle Launch Configuration Mame < Awallability Zone Health Status Protected from
i-14bf3abd Standby demo-app-ami-bo3eS0ac- 1472087125 us-sast-1c Healthy

In this case, the rollback was triggered after the initial deployment of one instance
(scalestep=1). Theoretically, the next step would be to investigate the instance looking for a
possible cause for the error metrics.

If the instance is deemed healthy, then we would need to complete the deployment manually by
bringing the instance into service, scaling the group up further, then scaling the other group down
(essentially completing the remaining steps in the cdeployment script).

Otherwise, the instance can be put into service, then the group scaled down to zero, bringing the
infrastructure back to its original state with the blue group remaining as Active.

Should you have chosen not to cause any rollbacks, the deployment ought to proceed as planned
and in the end the green group would have taken over the blue one, indicating a successful
deployment:

CEITTTE o on .

Fiiter: | O, Filter Auto Scaling group: * 1 to 2 of 2 Auto Scaling Groups
Name = Launch Configuration - Instances - Desired - Min - Max - Availability Zones = Default Cooldown - Health Check
demo-app-blua placeholder_launch_co... 0 o 1] 1] us-e8si-1b, us-east-1c 300 300

@ demo-app-green demo-app-ami-083B511... 3 3 1] ug-easl-1b, us-east-1c 300 300

Auto Scaling Group: demo-app-green _ Nl

Detalls Activity History Scaling Policles Instances Monitoring Matifications Tags Scheduled Actions

Launch Configuration demo-app-ami-0&3b5111-14T2888T05
Load Balancers demd-app-elb-prod

Target Groups
Desired 3 Availability Zone(s) us-east-1b, us-east-1c
Min 1 Subnet(s) Subnet-bEe2048b, subnet-F32THba
Max 5 Default Cooldown 300
Health Check Type EC2 Placement Group
Health Check Grace Period 300 Suspended Processes

At this point, if you load the ELB URI in your browser, you should get a response from our demo -
app as served from the newly deployed AML

Congratulations!

Summary

In this chapter, we finalized our Jenkins CI solution by adding the Deployment component to it.
We made extensive use of the AWS CLI to orchestrate a blue/green deployment process. The
resulting pipeline or a collection of such allows us to continuously integrate our application's
code changes and build an AMI containing those, which is then deployed to a given environment
after certain tests have been passed and criteria met.

The next chapter takes us in a new direction, introducing the topic of monitoring, metrics, and log
collection. We will take a look at tools that can help us stay aware of the state of our
infrastructure at any given time, visualize performance, and react to issues.

Chapter 7. Metrics, Log Collection, and
Monitoring

e megeneratornay

That's it. This chapter could well have ended here but I shall carry on for the benefit of those
amongst us who would prefer things in more detail.

A great deal of the DevOps practice(s) evolve around the idea of being able to review and react
to the state of your infrastructure at any given time — should you need to.

That is not to say, setup e-mail notifications for every time the date changes on your host, but a
stream of sensible, usable amount of event data which would allow an operator to make a
reasonably informed decision under stress and/or uncertainy.

If you have been paying attention in life so far, you would have noticed many a wise man talking
about balance, the golden middle.

You should aim to configure your monitoring system in a way that you are notified of events of
potential interest and in a timely manner. The notifications should arrive in a format that is hard to
overlook, and should provide enough detail for an operator to be able to make an informed guess
at what is going on.

At the same time, the said monitoring system must cause the least amount of alert fatigue (as

outlined in this concise Datadog article: https://www.datadoghg.com/blog/monitoring-101-
alerting).

Unfortunately for our friendship, finding that middle ground which suits your case (your
infrastructure and the people looking after it) is an adventure which you will have to go on alone.

https://www.datadoghq.com/blog/monitoring-101-alerting

We could however spend some quality time together, discussing a few of the tools that could make
it even more enjoyable!

Checklists are sophisticated, so here is one:

e Centralized logging:
o Ingesting and storing logs with Logstash and Elasticsearch
o Collecting logs with Elasticsearch Filebeat
o Visualizing logs with Kibana

e Metrics:
o Ingesting and storing metrics with Prometheus

o Gathering OS and application metrics with Telegraf
o Visualizing metrics with Grafana

e Monitoring:
o Alerting with Prometheus
o Self-remediation with Prometheus and Jenkins

Naturally, we would require a few hosts to form our playground for all of the preceding checklist.
There has been sufficient practice in deploying VPC EC2 instances on AWS in previous chapters,
thus I hereby exercise the great power of delegation and assume the existence of:

e A VPC with an IGW, NAT gateway, 2x private and 2x public subnets

e 2x standalone, vanilla Amazon Linux EC2 instances (say t2.small) within the public
subnets

e 1x Auto Scale Group (t2.nano) within the private subnets

e 1x Internet-facing ELB passing HTTP traffic to the Auto Scale Group

Centralized logging

Since the olden days, mankind has strived to use its limited attention span only on what really
matters in life, and without having to look for it too hard — if possible. So we started with copying
log files around, evolution brought us centralized (r)syslog and today (we learn from our
mistakes) we have Logstash and Elasticsearch.

Elasticsearch is a distributed, open source search and analytics engine, designed for
horizontal scalability, reliability, and easy management. It combines the speed of search
with the power of analytics via a sophisticated, developer-friendly query language covering
structured, unstructured, and time-series data.

Logstash is a flexible, open source data collection, enrichment, and transportation pipeline.
With connectors to common infrastructure for easy integration, Logstash is designed to
efficiently process a growing list of log, event, and unstructured data sources for
distribution into a variety of outputs, including Elasticsearch.

--https://www.elastic.co/products

https://www.elastic.co/products

Ingesting and storing logs with Logstash and Elasticsearch

We will be using Logstash to receive, process and then store log events into Elasticsearch.

For the purposes of the demos in this chapter, we'll be installing and configuring services
manually, directly on the hosts. When done experimenting, you should, of course, use
configuration management instead (wink).

Let us start by installing the two services on one of the standalone EC2 instances (we shall call it
ELK):

yum -y install
https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribut
ion/rpm/elasticsearch/2.4.1/elasticsearch-2.4.1.rpm

https://download.elastic.co/logstash/logstash/packages/centos/logstash-
2.4.0.noarch.rpm

Edit /etc/elasticsearch/elasticsearch.yml:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/elk/etc/elasticsearch/elasticsearch.yml

cluster.name: wonga-bonga
index.number_of_shards: 1
index.number_of_replicas: 0
index :

refresh_interval: 5s

It is important to select a unique name for the Elasticsearch cluster, so that the node does not join
somebody else's inadvertently, should there be any on your LAN. For development, we only ask
for a single shard and no replicas. Impatience dictates a five second refresh rate on any ES
indices.

Create a Logstash patterns folder:

mkdir /opt/logstash/patterns

Create a sample NGINX pattern /opt/logstash/patterns/nginx (ref:

https://www.digitalocean.com/community/tutorials/adding-logstash-filters-to-improve-
centralized-logging):

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/elk/opt/logstash/patterns/nginx

NGUSERNAME [a-zA-Z\.\@\-\+_%]+
NGUSER %{NGUSERNAME}

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/elk/etc/elasticsearch/elasticsearch.yml
https://www.digitalocean.com/community/tutorials/adding-logstash-filters-to-improve-centralized-logging
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/elk/opt/logstash/patterns/nginx

NGINXACCESS %{IPORHOST:clientip} %{NGUSER:ident} %{NGUSER:auth} \[%
{HTTPDATE: timestamp}\] "%{WORD:verb} %{URIPATHPARAM:request} HTTP/%
{NUMBER:httpversion}" %{NUMBER:response} (?:%{NUMBER:bytes}|-) (?:"(?:%
{URI:referrer}|-)"|%{QS:referrer}) %{QS:agent}

Create /etc/logstash/conf.d/main.conf:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/elk/etc/logstash/conf.d/main.conf

input {
beats {
port => 5044
}
}

filter {
if [type] == "nginx-access" {
grok {
match => { "message" => "%{NGINXACCESS}" }
}
}
}

output {
elasticsearch {
hosts => "localhost:9200"
manage_template => false
index => "%{[@metadata][beat]}-%{+YYYY.MM.dd}"
document_type => "%{[@metadata][type]}"

}
}

Logstash allows us to configure one or more listeners (inputs) in order to receive data, filters to
help us process it and outputs specifying where that data should be forwarded once processed.

We expect logs to be delivered by Elasticsearch Filebeat on TCP: 5044. If the log event happens
to be of type nginx-access, we have it modified according to the NGINXACCESS pattern then
shipped to Elasticsearch on localhost TCP: 9200 for storage.

Finally, let us start the services:

service elasticsearch start
service logstash start

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/elk/etc/logstash/conf.d/main.conf

Collecting logs with Elasticsearch Filebeat

We have the systems in place; let us push somes from the ELK node that we are on.

We will use Filebeat to collect local logs of interest and forward those to Logstash (incidentally
also local in this case):

Filebeat is a log data shipper. Installed as an agent on your servers, Filebeat monitors the
log directories or specific log files, tails the files, and forwards them either to Elasticsearch
or Logstash for indexing.

--https://www.elastic.co/quide/en/beats/filebeat/current/filebeat-overview.html

Installation:

yum -y install https://download.elastic.co/beats/filebeat/filebeat-1.3.1-
X86_64.rpm

While functionality is provided to ship directly to ES, we are planning to use Logstash so we
need to disable the Elasticsearch output and enable the logstash one in
/etc/filebeat/filebeat.yml:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/elk/etc/filebeat/filebeat.yml

output:
#elasticsearch:
hosts: ["localhost:9200"]
logstash:

hosts: ["localhost:5044"]

We could also list a few more log files to collect:

filebeat:
prospectors:

paths:

- /var/log/*.1log
- /var/log/messages
- /var/log/secure

Then start the service:

service filebeat start

Fun, but let us launch a few other EC2 instances for even more of it!

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/elk/etc/filebeat/filebeat.yml

We shall use the Auto Scale Group we mentioned earlier. We will install Filebeat on each
instance and configure it to forward selected logs to our Logstash node.

First, ensure that the security group of the Logstash instance allows inbound connections from the
Auto Scale Group (TCP: 5044).

Next, we use an EC2 User Data script to bootstrap the Filebeat binary and configuration onto
each of the EC2 instances in our Auto Scale Group (we will call them webservers):

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07 CodeFiles/webserver/user_data.sh

#!1/bin/bash

yum -y install https://download.elastic.co/beats/filebeat/filebeat-1.3.1-
X86_64.rpm
yum -y install nginx

cat << EOF > /etc/filebeat/filebeat.yml
filebeat:
prospectors:
paths:
- /var/log/*.1log
- /var/log/messages
- /var/log/secure

paths:
- /var/log/nginx/access.log
document_type: nginx-access
registry_file: /var/lib/filebeat/registry
output:
logstash:
hosts: ["10.0.1.132:5044"]
EOF

service nginx start
service filebeat start

With that in place, go ahead and scale the group up. The new web server instances, should start
streaming logs promptly.

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/webserver/user_data.sh

Visualizing logs with Kibana
We have our logs collected by Filebeat and stored in Elasticsearch, how about browsing them?

Kibana, right on time:

Kibana is an open source analytics and visualization platform designed to work with
Elasticsearch. You use Kibana to search, view, and interact with data stored in
Elasticsearch indices. You can easily perform advanced data analysis and visualize your
data in a variety of charts, tables, and maps.

--https://www.elastic.co/quide/en/kibana/current/introduction.html

Install the package:

yum -y install https://download.elastic.co/kibana/kibana/kibana-4.6.1-
X86_64.rpm

Start the service:

service kibana start

The default port is TCP: 5601, if allowed in the relevant security group, you should be able to see
the Kibana dashboard:

Ikibana

dices Adwancnd Diyects Stzhm
Incdes Fatiems
T e Configure an index pattern

o 10 usa Kibena you must configane of least one inces patienn. Indo: patinms am wsed to identify the ElasScsearch indax ho run saarch and analyics against. Thiy o akso csad b configum
L

B Incdlex containg time-based evans
Usa vent limes to creabs indax nemes [DEPRECATED|

Indax nama or patbern
Pt

Maseat-"

Do nol axpand index patiem whan sesrching ot mcommandsd)

Tima=Thald nama @& ol b

Dtirastamp

Set the index pattern to filebeat-* and click Create.

Kibana is now ready to display our Filebeat data. Switch to the Discover tab to see the list of
recent events:

Dashizosnd Settinga i Last 15 minubss

Balasted Fiakda Cctsiar Bth AR, 1H:4%50 PES - Oetrtar 18 3016, 105832 T88 — by 0 peccnds
4

Aokl Fisids ﬂ =

irreatams &

i}

ke 7 N

"

LI Himastams pore 30 secon

_soom -

=1 Tima _Sourse

* Dokober @vh 2016, 15:49:05.600 oepages Oct B 17:48:5% ip-18-8-1-132 Fetciirit.dfkibona: Attempting 'stort’ on kibona @wersisn: 1 Beisestaspr October 5t

- h 2006, 1E:40:05 6 sourcws Sver/leg messagss offests 36 851 flalda bast. boatnsms: ip-1R-9-1-137 bawst.osssr ip-L0-

il #-1-1%2 typa: log loput_types log cowst: 1 Bostr 1p-10-8-1-1%2 tagss beots_inowt codecploinoosplied _ids AvelosgtBGtd

Reia Bmiaje? _vyper log _index: Filebeot-2816.10.88 _scorss

st

noul_fype v Detober dzh 2016, 15:40:05.688 peasage: Oct B 17:48:55 1p-18-@-1-132 Jetc/init.dikibana: kibang is already running #versios: 1| #timsstesg: October Bth 2

il @6, 14:49:05. 600 best bosvnamsi ip-18-9-1-137 bast.name ip-18-9-1-137 offsst: 36,030 osanis 1 impub_vypes log

at fimldm: sourcar Seorslog/eessoges typss log Sostr ip-18-8-1-137 teges beobs inswt codec plotroopplied _id: Avelobgt
Poidbeloied _wppsi log _isdesms Filebeot-2016,10.08 _seowes

LT]

g * October Ach 2016, 18:46:20.507 oppuages Oct B 17:46:17 ip-18-@-1-132 declient[2078]: bound to 19.8.1.137 -- rentsal Ln 1623 seconds. Svermioa: 1

T fiimsnamgs October Bth 2006, 18:46:20.997 odfsss: 36 518 iypes log eowsts 1 best bostnass: ip-10-8-1-137 best.nsss: i

p-18-8:1-132 input_type: log fislda: source: Svarflogieessages boats p-18-B-1-137 emge: bests_iepub_codec plain_opp
lied _ids AVeliz mdGSdis(Majex _wyped log _lodssi filebest-2006.10.88 _ssorer

In addition to the standard Syslog messages, you will also notice some NGINX access-log
entries, with various fields populated as per the filter we specified earlier:

- BRI
139 hits
October Sth 2016, 18:17:07.116 - Octaber Sth 2018, 16:32:07.116 — by 30 seoonds
I |
18:18:00 19:19.00 19:20:00 1B:21:00 B2E00 15:23:00 18:24:00 82500 15:26:00 18:27:00 BB 19:20:00 18:30:00 83100 153200
timasiamp par 30 seconds
F
Time _BOUrce
b October Oth 2016, 19:32:81.731 pogpage: 10.8.3.78 - - [P9/0ct/2816:18:32:90 +2308] "GET / HTTP/L.1" 289 3778 "-" "ELB-Health{heckers/Z.@" *-" @wersien: 1
Peimantamp: October 9th 2816, 19:32:01.231 beat.bostnase: ip-18-0-2-227 beat.sess: ip-18-0-2-222 offaet: 262,316
input_typer log oount: 1 fieldss - sourcer SworSlogdngincsaccess, log types ngirm-occess bosts ip-10-9-2-222 cage:r b
eats_input_codec_plain apglied ecliemtipe 18.8.3.78 ildent: - auths: - tivestssps 0cE/2006:18:32:00 D808 werbs GET oe
Bk ralae 1.1 = et i AR meta TP T "I B-MHag] +RH ! 7 an ia AN +mE DTRi sk

Logs: done. Now, how about some metrics?

Metrics

For ingesting, storing and alerting on our metrics, we shall explore another, quite popular open-
source project called Prometheus:

Prometheus is an open-source systems monitoring and alerting toolkit originally built at
SoundCloud.

Prometheus's main features are:

-a multi-dimensional data model (time series identified by metric name and key/value pairs)
- a flexible query language to leverage this dimensionality

- no reliance on distributed storage; single server nodes are autonomous

- time series collection happens via a pull model over HTTP

- pushing time series is supported via an intermediary gateway

- targets are discovered via service discovery or static configuration

- multiple modes of graphing and dashboarding support

--https://prometheus.io/docs/introduction/overview/emphasis>

Even though it is the kind of system that takes care of pretty much everything, the project still
follows the popular UNIX philosophy of modular development. Prometheus is composed of
multiple components, each providing a specific function:

- the main Prometheus server which scrapes and stores time series data
- client libraries for instrumenting application code

- a push gateway for supporting short-lived jobs

- a GUI-based dashboard builder based on Rails/SQL

- special-purpose exporters (for HAProxy, StatsD, Ganglia, etc.)

- an (experimental) alertmanager

- a command-line querying tool

--https://prometheus.io/docs/introduction/overview/

Ingesting and storing metrics with Prometheus

Our second EC2 instance is going to host the Prometheus service alongside Jenkins (we will
come to that shortly), thus a rather appropriate name would be promjenkins.

As a start, download and extract Prometheus and Alertmanager in /opt/prometheus/server
and /opt/prometheus/alertmanager respectively (ref: https://prometheus.io/download).

We create a basic configuration file for the Alertmanager in
/opt/prometheus/alertmanager/alertmanager.yml (replace e-mail addresses as needed):

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/alertmanager/alertmanager.yi

global:
smtp_smarthost: 'localhost:25'
smtp_from: 'alertmanager@example.org'

route:
group_by: ['alertname', 'cluster',6 'service']
group_wait: 30s
group_interval: 5m
repeat_interval: 1h
receiver: team-X-mails

receivers:
- name: 'team-X-mails'
e-mail configs:
- to: 'team-X+alerts@example.org'
require_tls: false

This will simply e-mail out alert notifications.

Start the service:

cd /opt/prometheus/alertmanager
(./alertmanager 2>&1 | logger -t prometheus_alertmanager)&

Ensure the default TcP: 9093 is allowed, then you should be able to get to the dashboard at
http://$public_IP_of_promjenkins_node:9093/#/status:

https://prometheus.io/download
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/alertmanager/alertmanager.yml

Status

Up since

Build info

branch
buildDate
buildUser
govarsion
revision

version

Config

global:
smtp_smarthost: "Llocalhost:25'

2016-10-09 21:02:16

mastaer

20161006-09:57:11

root@Sb0b04dda 730

gol.6.3

a705ae8882 T0d 10021 822f05f3edTeac1 31T

0.5.0-beta.0

smtp_from: 'alertmanagergexample.org’

Back to the Prometheus server, the default /opt/prometheus/server/prometheus.yml will

suffice for now. We can start the service:

cd /opt/prometheus/server

(./prometheus -alertmanager.url=http://localhost:9093 2>&1 | logger -t

prometheus_server)

Open up TCP:9090, thentry http://$public_IP_of_promjenkins_node:9090/status:

Runtime Information

Uptime 2016-10-09 20:14:44.970371246 +0000 UTC

Build Information

Varsion 1.2.0

Revision 522c93361459686fe368715ffeGBc2ee34eabcle
Branch master

BuildUser root@ci0EBddaf2at

BuildDate 201681007-12:53:55

GoVersion gol1.6.3

We are ready to start adding hosts to be monitored. That is to say targets for Prometheus to
scrape.

Prometheus offers various ways in which targets can be defined. The one most suitable for our

case is called ec2_sd_config (ref: https://prometheus.io/docs/operating/configuration/#
<ec2_sd_config>). All we need to do is provide a set of API keys with read-only EC2 access

(AmazonEC2ReadOnlyAccess IAM policy) and Prometheus will do the host discovery for us
(ref: https://www.robustperception.io/automatically-monitoring-ec2-instances).

We append the ec2_sd_config settings to: /opt/prometheus/server/prometheus.yml:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/prometheus.yml

- job_name: 'ec2'
ec2_sd_configs:
- region: 'us-east-1'
access_key: 'xxxx'
secret_key: 'xxxx'
port: 9126
relabel configs:
- source_labels: [__meta_ec2_tag_Name]
regex: Awebserver
action: keep

We are interested only in any instances in the us-east-1 region with a name matching the
Awebserver regex expression.

https://prometheus.io/docs/operating/configuration/#<ec2_sd_config>
https://www.robustperception.io/automatically-monitoring-ec2-instances
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/prometheus.yml

Now let us bring some of those online.

Gathering OS and application metrics with Telegraf

We will be using the pull method of metric collection in Prometheus. This means that our clients
(targets) will expose their metrics for Prometheus to scrape.

To expose OS metrics, we shall deploy InfluxData's Telegraf (ref:
https://github.com/influxdata/telegraf).

It comes with a rich set of plugins, which will provide for a good deal of metrics. Should you
need more, you have the option to write your own (in Go) or use the exec plugin which will
essentially attempt to launch any type of script you point it at.

As for application metrics, we have two options (at least):

¢ Build a metrics API endpoint in the application itself
e Have the application submit metrics data to an external daemon (StatsD as an example)

Incidentally, Telegraf comes with a built-in StatsD listener, so if your applications already happen
to have StatsD instrumentation, you should be able to simply point them at it.

Following on from the ELK example, we will extend the EC2 user data script to get Telegraf on
our the Auto Scale Group instances.

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07 CodeFiles/webserver/user_data.sh

We append:

yum -y install https://dl.influxdata.com/telegraf/releases/telegraf-
1.0.1.x86_64.rpm

cat << EOF > /etc/telegraf/telegraf.conf
[global_tags]
[agent]
interval = "10s"
round_interval = true
metric_batch_size = 1000
metric_buffer_limit = 10000
collection_jitter = "0Os"
flush_interval = "10s"
flush_jitter = "Os"
precision = ""
debug = false
quiet = false
hostname = ""
omit_hostname = false
[[outputs.prometheus_client]]
listen = ":9126"

https://github.com/influxdata/telegraf
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/webserver/user_data.sh

[[inputs.cpu]]
percpu = true
totalcpu = true
fielddrop = ["time_*"]
[[inputs.disk]]
ignore_fs = ["tmpfs", "devtmpfs"]
[[inputs.diskio]]
[[inputs.kernel]]
[[inputs.mem]]
[[inputs.processes]]
[[inputs.swap]]
[[inputs.system]]
EOF

service telegraf start

The important one here is outputs.prometheus_client with which we turn Telegraf into a
Prometheus scrape target. By all means check the default configuration file if you'd like to enable

more metrics during this test (ref:

https://github.com/influxdata/telegraf/blob/master/etc/telegraf.conf)

Next, check that TCP: 9126 is allowed into the Auto Scale Group security group, then launch a
couple of nodes. In a few moments, you should see any matching instances listed in the targets

dashboard (ref: http://$ public_IP_ of_promjenkins_node:9090/targets):

Targets

ec2

Endpoint

1.0.2. 8005128

prometheus

Endpoint

State Labets
P nooe
P nens

Stote Labels
P nene

Last Scrape
8.309a ago

1.8028 ago

Lost Scrope

A.088s age

Error

We see the new hosts under the ec2 scrape job which we configured earlier.

https://github.com/influxdata/telegraf/blob/master/etc/telegraf.conf

Visualizing metrics with Grafana

It is true that Prometheus is perfectly capable of visualizing the data we are now collecting from
our targets, as seen here:

W e issage_userlepus"epu-total”, heel="ip-10-0-4-251", nelance="10.0L4 251 51 30" job="ucl")
£fas_USA00_USSrlapus"epu-Iainl", hosls"ip-10-0-2-807 instanon =" 10,0250 25" jobe" 022"

In fact, this is the recommended approach for any ad-hoc queries you might want to run.

Should you have an appetite for dashboards however, you would most certainly appreciate
Grafana - The 8th Wonder (ref: http://grafana.org)

Check this out to get a feel for the thing: http://play.grafana.org

I mean, how many other projects do you know of with a play URL?!
1. So, yes, Grafana, let us install the service on the promjenkins node:

yum -y install https://grafanarel.s3.amazonaws.com/builds/
grafana-3.1.1-1470047149.x86_64.rpm
service grafana-server start

The default Grafana port is TCP:3000, auth admin:admin. After updating the relevant
security group, we should be able to see the screen at: http://$
public_IP_of_promjenkins_node:3000:

http://grafana.org

2. After logging in, first we need to create a Data Sources for our Dashboards:

{9 - & Data Sources

Edit data source

Config Dashboards

MName prometheus Defauilt

Type Prometheus

Http settings
U http:/Nocalhost: 9090
Access proxy

Http Auth Basic Auth With Credentials

3. Back at the home screen, choose to create a new dashboard, then use the green button on the
left to Add Panel then a Graph:

9 - &2 New dashboard - B #&

Collapse row
Add Panel Dashboard list

Set height Graph
Move Plugin list

Row editor Singlestat

Delete row Table

Tent

4. Then, adding a basic CPU usage plot looks like this:

{3 - B8 New dashboard - B Back to dashboard € Zoom@ut ¥ (D Last & hours

Panal Tithe

17580 1780 1800 e Do 1930 200 Fik] Fabi]
— U USDE LS GEu="Gou-total” host="ip- 1 0-0-2-80" instance="10.0.2 BUrB 20" job="0c2"] = opu_usage usericpus "cpu-ioinl” hosi="lpr 10-0-4-351" instance="10.0.4 231 8124 job="eGE"]

Gfﬂ,ﬂh Gerera Matrics Axies, Legend Displary Time ranga

ey SPU_usage_usar|cpu="cpu-Sotal'} Matrie: leashup

Lagend format

Panel data souce prometheus - + Add query

At this point I encourage you to browse http://docs.grafana.org to find out more about
templating, dynamic dashboards, access control, tagging, scripting, playlist, and so on.

]

http://docs.grafana.org

Monitoring

We have our metrics flowing into Prometheus. We also have a way of exploring and visualizing
them. The next step should probably be to configure some sort of alerts, so that we show other

people we are doing real work.

Alerting with Prometheus

ALERTING OVERVIEW

Alerting with Prometheus is separated into two parts. Alerting rules in Prometheus servers
send alerts to an Alertmanager. The Alertmanager then manages those alerts, including
silencing, inhibition, aggregation and sending out notifications via methods such as e-mail,
PagerDuty and HipChat.

The main steps to setting up alerting and notifications are:
- Setup and configure the Alertmanager
- Configure Prometheus to talk to the Alertmanager with the-alertmanager.url flag

- Create alerting rules in Prometheus

--https://prometheus.io/docs/alerting/overview/

Let us break this down.

We already have Alertmanager running with some minimal configuration in
/opt/prometheus/alertmanager/alertmanager.yml.

Our Prometheus instance is aware of it as we passed the -
alertmanager.url=http://localhost:9093 flag.

What is left is to create alerting rules. We'll store these ina rules/ folder:

mkdir /opt/prometheus/server/rules

We need to tell Prometheus about this location, so we add a rule_files section to
prometheus.yml:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/prometheus.yml

rule files:
- "rules/*.rules"

This way we can store separate rule files, perhaps based on the type of rules they contain?

As an example, let us have a keepalive and a disk usage alert:

Note

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/prometheus.yml

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/tree/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/rules

/opt/prometheus/server/rules/keepalive.rules:

ALERT Keepalive
IF up ==
FOR 1m
ANNOTATIONS {
summary = "Instance {{$labels.instance}} down",
description = "{{$labels.instance}} of job {{$labels.job}} has been down
for more than 1 minute."

}

/opt/prometheus/server/rules/disk.rules:

ALERT High_disk_space_usage
IF disk_used_percent > 20

FOR 1m
ANNOTATIONS {
summary = "High disk space usage on {{ $labels.instance }}",
description = "{{ $labels.instance }} has a disk_used value of {{ $value

}3% on {{ $labels.path }})",
}

As you'll notice, we are being impatient with the FOR 1m and >20, meaning notifications will fire
after just 60 seconds of alert detection and the alert threshold is only 20% of space used.

In a more realistic scenario, we should wait a bit longer to filter any transient issues and use
severities to distinguish between critical alerts and warnings (ref:

https://github.com/prometheus/alertmanager).

Reload Prometheus with the new rules in place. Now let us suppose that one of the web server
nodes goes down:

Targets
ec2
Endpoint State Labals Last Scrape Error
hittpe10.0.2.80:91 26/matrics P [mane | 7.535 ago
hittpf 100,425 91 26/metrics [ONVIN [mna | 17.862s ago context deadiine exceaded
prometheus
Endpaint State Labels Last Scrape Error
hilpedflocalhost: 9090 metrics up E3 3.B42% ago

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/tree/master/5585_07_CodeFiles/promjenkins/opt/prometheus/server/rules
https://github.com/prometheus/alertmanager

Switching to the Alerts tab we see:

Alerts
Eeapale (1 actie]

MLERT Heespalive
IF vp == @
FOR 1m
MMROTATIONS {description="{{$labels. instancel} of job {({$labels,job}} has been down for mere than 1 minute.”, sussary="Instamce {{$labels.instancel} dewn™}

Labais State Active Snce Wl

| st bompaire’ | imtemcan™10.614.381:0138° | jobe*wci | moritions* cosdelat- moritoe” |

FERG 20ME-10-15 15:17:22. B0 +0000 UTC

High_disk_space_usage [0 actie|

ALERT High_disk_space_usage
IF disk_used_percent = 28

FOR 1m
",

MEBOTATIONS {description="{{ §labels, instance b} has & disk_used walue of {{ $vales 3} on {{ $labels.path summary="High disk space usage on {{ Slsbels, isstance F3=}

In the Alertmanager respectively: (http://$
public_IP_of_promjenkins_node:9093/#/alerts):

FILTER
Recsivam Higa silanced

e N-maits

* | menirer = “coselab-seniter Sinog Today ot 4:18 PM

fnstance = “18.8.4, 1510026 | | jeb = "ec2® |

At this point an e-mail notification should have gone out as well.

Self-remediation with Prometheus and Jenkins

The dream of every operator is an ecosystem that looks after itself.

Imagine for a moment an environment in which, instead of receiving alerts prompting for action,
we received mere notifications or reports of actions taken on our behalf.

For example, no more "CRITICAL: Service X is not responding. Please check." but "INFO:
Service X was unresponsive at nn:nn:nn and was restarted after N seconds at nn:nn:nn" instead.

Well, technically, this should not be too difficult to achieve if we were to provide enough context
to the tools we use today. It is not uncommon to find alerts which tend to get resolved in the same
manner under the same conditions and those are to be considered prime candidates for
automation.

To demonstrate, let us assume we inherited this old, no longer supported application. A cool app
overall, but it does not have the habit of tidying up after itself, so would occasionally fill up its
tmp directory.

Let us also assume that while we are not particularly excited about having to connect to this app's
server to delete tmp files at random times of the day, our friend, Mr. Jenkins - does not mind at
all.

Conveniently, Jenkins allows jobs to be triggered via a relevant J0B_URL and at the same time
Prometheus supports webhook calls as a method of alert notification.

Here is the plan:

1. Prometheus will make a webhook call to Jenkins whenever a disk_space alert is fired with
the alert details passed as parameters.

2. Jenkins will use the parameters to determine which host to connect to and clean up the
application's tmp directory.

We would need to:

1. Create a parameterized Jenkins job which can be triggered remotely.

2. Allow Jenkins to ssh into the application's host.

3. Setup a webhook receiver in Prometheus which calls the Jenkins job when a certain alert is
fired.

First a quick Jenkins installation onto our promjenkins node:

yum install http://mirrors.jenkins-ci.org/redhat-stable/
jenkins-2.7.1-1.1.noarch.rpm
service jenkins start

TCP: 8080 needs to be open, then you should be able to reach the Jenkins service at
http://$public_IP_of_promjenkins_node:8080.

Under Manage Jenkins | Manage Users create an account for Prometheus:

Jenkins
b Diack io Dashooar
i Users
i S king. This is s sub st of g lia]. witich aiso AoMains suk-credies Lssrs who rally jucl mads soma commits on $0me projecs and have no dinsct
& o s
Uenr ki Hprra
LS
al e o
& = ;

Then, under Manage Jenkins | Configure Global Security, select Jenkins' own user database
and Matrix-based Security, then add both accounts.

Tip

Untick Prevent Cross Site Request Forgery exploits if you find that it causes issues when
making curl request to Jenkins.

Grant yourself Overall Administer rights and Prometheus Overall Read plus Job Build/Read:

| Configure Global Security

A Enaine sacurty
TOF prark o P g Fissxt Rindam @ Disali
Chaabile rmember me

Security Realm

Serid

To be able to ssh into the app (web server) nodes we need a key for the Jenkins user:

su - -s /bin/bash jenkins

$ ssh-keygen -trsa -b4096

Generating public/private rsa key pair.

Enter file in which to save the key (/var/lib/jenkins/.ssh/id_rsa):
Created directory '/var/lib/jenkins/.ssh'

While we are here, let us create an ssh config file for the Jenkins user (~/.ssh/config)
containing:
Host 10.0.*

StrictHostKeyChecking no

UserKnownHostsFile=/dev/null
User ec2-user

This is to allow our non-interactive jobs to ssh to instances for the first time.

We also need to take the generated public key and add it to the Auto Scale Group user data , so
that it gets onto our web server instances. We will be using the standard (Amzn-Linux) ec2-user
account to connect:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07 CodeFiles/webserver/user_data.sh

Add Jenkins's key

cat << EOF >> /home/ec2-user/.ssh/authorized_keys
{{JENKINS_PUB_KEY_GOES_HERE}}

EOF

Now let us create the Jenkins job (freestyle project) with a few parameters:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/webserver/user_data.sh

General

Namae alertname :t‘f
Default Value ':‘ji
Description ¥

String Parameter “ ¥

Mame alertoount 1
Default Value L7
Description L]

[Plain text] Preview

String Parameter n [

Name instance i_i
Default Value i
Description LY

[Plain text] Praviaw

String Parameter (7
Apply -
n Name labals LT

We will discuss those four parameters (alertname, alertcount, instance, labels) later. In
the Build section, select Execute shell and enter exit 0 as a placeholder until we are ready to
configure the job further. Save and let's get back to Prometheus.

As we mentioned earlier, we will be using the webhook receiver to trigger the Jenkins job. While
the receiver allows us to set a URL to call, it does not seem to allow for any parameters to be
included. To accomplish this, we will use a small helper application called prometheus-am-

executor (ref: https://github.com/imgix/prometheus-am-executor).

The executor sits between the Alertmanager and an arbitrary executable. It receives the webhook
call from the Alertmanager and runs the executable, passing a list of alert variables to it. In our
case, we will be executing a shell script which processes those variables and constructs a curl

https://github.com/imgix/prometheus-am-executor

call in the format that Jenkins expects.

Let us install the helper app alongside Prometheus and the Alertmanager:
yum -y install golang

mkdir /opt/prometheus/executor && export GOPATH=$_
go get github.com/imgix/prometheus-am-executor

On success, you should have a binary in /opt/prometheus/executor/bin. Now the script
(executable) that we mentioned:

Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/executor/executor.sh

#!1/bin/bash

if [["$AMX_STATUS" != "firing"]]; then
exit 0
fi

main() {
for i in $(seq 1 "$AMX_ALERT_LEN"); do
ALERT_NAME=AMX_ALERT_${i}_LABEL_alertname
INSTANCE=AMX_ALERT_${i}_LABEL_instance
LABELS=$(set|egrep "AAMX_ALERT_S${i} LABEL_"|tr '\n' ' '|base64 -w0)
PAYLOAD="{"'parameter': [{'name':'alertcount', 'value':'${i}'},
{'name':'alertname', 'value':'${!ALERT_NAME}'}, {'name':'instance',
'value': '${!INSTANCE}'}, {'name':'labels', 'value':'${LABELS}'}]}"
curl -s -X POST http://localhost:8080/job/prometheus_webhook/build --user
'"prometheus:password' --data-urlencode json="${PAYLOAD}"
done
wait

¥

maln n $@Il

In essence we are constructing an HTTP call to our Jenkins job URL at
http://localhost:8080/job/prometheus_webhook/build passing the alertcount,
alertname, instance and labels parameters. All values come from the AMX environment

variables which the prometheus-am-executor exposes (ref: https://github.com/imgix/prometheus-
am-executor).

Now we need to reconfigure the Alertmanager to use webhooks:
Note

Please refer to: https://github.com/PacktPublishing/Implementing-DevOps-on-
AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/alertmanager/alertmanager.yi

global:

https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/executor/executor.sh
https://github.com/imgix/prometheus-am-executor
https://github.com/PacktPublishing/Implementing-DevOps-on-AWS/blob/master/5585_07_CodeFiles/promjenkins/opt/prometheus/alertmanager/alertmanager.yml

smtp_smarthost: 'localhost:25'
smtp_from: 'alertmanager@example.org'

route:
group_by: ['alertname', 'cluster',6 'service']
group_wait: 10s
group_interval: 30s
repeat_interval: 1m
receiver: team-X-mails

routes:
- receiver: 'jenkins-webhook'
match:
alertname: "High_disk_space_usage"

receivers:
- name: 'team-X-mails'
e-mail configs:
- to: 'veselin+testprom@kantsev.com'
require_tls: false
send_resolved: true

- name: 'jenkins-webhook'
webhook_configs:
- url: http://localhost:8888

So, we have added a new sub-route which would match on alertname:
High_disk_space_usage and use the jenkins-webhook receiver.

Reload Alertmanager and let us start the executor. Assuming that the executor . sh has been
placed in /opt/prometheus/executor:

cd /opt/prometheus/executor
./bin/prometheus-am-executor -1 ':8888' ./executor.sh
2016/10/16 17:57:36 Listening on :8888 and running [./executor.sh]

We have the executor running (port 8888) and ready to accept requests from the Alertmanager.

Before triggering any test alerts, let's go back to our Jenkins job. You are now familiar with the
parameters it expects and the ones that we pass via the webhook | executor | jenkins setup that
we have, so we can replace the contents of the placeholder Build step with this shell script:

echo "alertname: ${alertname}"
echo "alertcount: ${alertcount}"
echo "instance: ${instance}"

export $(echo ${labels}|base64 -d)
NODE=$(echo ${instance}|cut -d: -f1)
LABEL_DIR=AMX_ALERT_${alertcount}_LABEL_path
APP_DIR='/opt/myapp/tmp'

if [${!LABEL_DIR} == ${APP_DIR}];then
ssh ${NODE} "sudo rm -f ${APP_DIR}/*.tmp"

fi
To test all of this, we need to ssh into one of the ASG (web server) instances which Prometheus
is monitoring and setup a pretend App temporary folder like so:

dd if=/dev/zero of=/tmp/dd.out bs=1M count=256
mkfs.ext4 /tmp/dd.out

mkdir -p /opt/myapp/tmp

mount -oloop /tmp/dd.out /opt/myapp/tmp/

This should give us a small filesystem to play with. Next, we fill it up:

dd if=/dev/zero of=/opt/myapp/tmp/dd.tmp bs=1M count=196

This is way over the 20% we have set in the High_disk_space_usage and should trigger it. In
turn the executor should call Jenkins and run our job:

() Console Output

started by user Prometheus

Building in workspace /war/lib/jenkins/workspace/prometheus webhook
[prometheus _webhook] 3 /binfah -xe ftmp/hudson2570330293061564239.80
+ @cho 'alertname: High disk space usage

alertname: Migh disk space usage
+ echo 'alerteount: 1

alertcount: 1

+ echo 'instance: 10.0.4.134:9126
instance: 10.0.4.134:9126

++ bazebfd =-d

++ acho
QUIYXOFMRVIUNzFETEFCRUXEYWxlenRuYW1 L PUhpE2hf2Clzal %zoGP Vil c 2 FRZSEETVhEQUXFULREMVSNQUIFTF9nc IR S cGUYEXhOHCBETVh EQUFULR M IMOUIFTF 90kl
HOPWIWLTEWLTAtNCOxM20gOU 1 Y XOFHRYIUX zFETEFCRU f aWS zdGFuY 2U9MTAUMCA DL EZNDoSHTL 2 IEFHWF SBTEVSVF B x X 0xBOkVME2prY L1 ¥ 2 IgOU 1 ¥ KOFHRVIUX 2 FETEFC

RUxfbWIuaXRve J1Jb2R1IbGFALWIVERL B3 TgCU 1Y EOFMEVIULEF ETEFCRUXEcGFRaD0vEIB0LE L5 TKBWLIRtcCA=
+ export AMX ALERT 1 LABEL alertname=High disk space usage AMX ALERT 1 LABEL fstype=extd4d AMX ALEAT 1 LABEL host=ip=10=0=4=114

AMY ALERT 1 LABEL instance=10.0.4.134:9126 AMX_ALERT 1 LABEL job=ec? AMK ALERT 1 LABEL monitor=codelab-monitor
AMX ALERT 1 LABEL path=/opt/myapp/tmp

¢ AMYX ALERT 1 LABEL alertname=High disk space usage

+ RMX ALERT_1 LABEL fatype=ext4

+ AMX ALERT 1 LABEL host=ip=10=0=4=134

+ AMY ALERT 1 LAREL instance=10.0.4.134:9126

+ AMX ALERT 1 LABEL job=ac?

+ AMX ALERT 1 LABEL monitorw=codelab=-monitor

i

AMY ALERT 1 LABEL_ path=/opt./myapp/tmp

++ cut =d: =fl

++ echo 10.0.4.134:9126

+ HODE=10.0.4.134

+ LABEL DIR=AMX ALERT 1 LABEL path

+ APPF DIR=/S/opt/myapp/tmp

+ '[' foptfmyapp/ftmp == fopt/myappftmp ']’

+ szh 10.0.4.134 'sudo rm -f fopt/myapp/tmp/*®.tmp’

Warning: Permanently added "10.0.4.134° (ECDS&) to the list of known hosts.
Finished: SUCCESS

We can see Jenkins connecting to the affected instance over SSH, then clearing our fake
application tmp directory.

It is important to note that while we allow ourselves root access for the purpose of this example,
in any other circumstances you would either ensure that Jenkins could handle the given tmp

directory as a non-privileged user, or if you would absolutely have to use sudo and then limit the
commands and command line arguments that can be used.

Summary

In this chapter we looked at a way of centralizing our logs with Logstash and Elasticsearch then
browsing them in Kibana. We configured a metrics collection and visualization with the help of
Prometheus, Telegraf and Grafana. Finally, we added monitoring via Prometheus and self-
remediation using Jenkins.

The next chapter takes us into the area of optimization. We shall discuss cost considerations and
approaches to demand-based scaling.

Chapter 8. Optimize for Scale and Cost

On the subject of optimization, we shall start from the top, that is to say the earliest stage: the
design stage.

Imagine iterating over your architecture plan time and time again, until you have convinced
yourself and your colleagues that this is the best you can do with the information available at that
time. Now imagine that, unless you have a very unusual use case, other people have already done
similar iterations and have kindly shared the outcome.

Back to reality and fortunately, we were not far off. There is indeed a collective AWS knowledge
base in the form of blog posts, case studies, and white papers available to anybody embarking on
their first cloud deployment.

We are going to take a distilled sample of that knowledge base and apply it to a common
architecture example, in an attempt to achieve maximum scalability, whilst remaining cost
efficient.

The example is going to be one of a typical frontend (NGINX nodes), backend (DB cluster) and a
storage layer deployment within a VPC:

Whilst, technically, our whole deployment is on the Internet, the visual segregation above is to
emphasize the network isolation properties of a VPC.

Architectural considerations

Let us now examine this deployment one component at a time, starting with the VPC itself.

The VPC

I am proceeding under the assumption that if you are still holding this book, you have likely
accepted the way of the VPC.

CIDR

How many VPCs are you foreseeing having? Would they be linked (VPC peering) or would you
be bridging other networks in (VPN)?

The answers to these questions play a role when choosing the CIDR for a VPC. As a general rule
it is recommended to avoid common (household router) network addresses such as 192.168.1.0
or 10.0.0.0.

Keep track of and assign different CIDRs if you have more than one VPC, even if you don't have
an immediate need to peer them.

Consider a CIDR that will allow for large enough subnets to accommodate potential instance
scaling with minimal fragmentation (number of subnets).

Subnets and Availability Zones

Availability Zones (AZs) are how we add resilience to a deployment, so we should have at least
two of those. There might be configurations in which you have to use three, for example where a
cluster quorum is needed, such as ZooKeeper. In that case, it is advisable to keep quorum
members in separate zones in order to handle network partitions better. To accommodate this and
to keep charges low, we could create subnets in three zones, deploy quorum clusters in all three,
and other components (say NGINX hosts) in only two of those.

Let us illustrate an example where we have a Zookeeper and a web server (NGINX) component
within our VPC. We have decided to use three AZs and maintain two sets of subnets: public and
private. The former routing through the IGW, the latter via NAT:

Here we have the ELB spanning across all three AZs and public subnets respectively. In the
private subnet space, we find two web servers plus our cluster of three ZooKeeper nodes giving
us a good balance of resilience at optimal cost.

VPC limits

AWS enforces certain initial limits on every account, which might catch you by surprise when
your environment starts scaling up. Important ones to check are: Instances, EBS and Networking
limits found on the EC2 dashboard:

EC2 Dashboand : N
: ECZ Service Limits L]
Events
Tags Amazon ECE provides different resources that you can use, such as instances and volumes, Whan you create your AWS acoount, AWS sets limits for these resouwtes on
a per-region basis. This @ lists your EC2 service imits in US East (M, Virginia).
B gy pag ¥ g
= Instance Limits
it Name Current Limit Action
Zpot Requests
Feserved Instancas Funnirg On-Demand EC2 instances 20 Requast imil Increasa
Schaduled i .. Aurming On-Demand &1.medium instancas 20 Fesguasl imil increass
Dudicated Hosts
Aunning On-Demand o1.xlarge instances. x Request limit increase
Al Aunning On-Demand 3. 2xlarge Instancas 20 Risquest limit increass
Bluridia Theks Aunning Cn-Demand e3.4xkarge inatances a0 Reuast imil increase
- Aunning On-Demand c3.Bxlarge instancas 20 Request imil incresss
Viplurnes
Saapshols Aurming On-Demand cl.large nstances i) Request limil inceasa

When requesting an increase, select a number that is high enough to provide a buffer for scaling,
but not inadequately high as after all the limits are there to protect against accidental/erroneous
overprovisioning.

The frontend layer

With the subnets in place, we can start thinking about our VPC inhabitants.

The frontend or application layer consists of our Auto Scaling Groups and the first decision that
we'll face would be that of an EC2 instance type.

The profile of the frontend application would very much dictate the choice between a memory,
compute or a storage optimized instance. With some help from fellow developers (in the case of
an in-house application) and a suitable performance testing tool (or service) you should be able
to ascertain which system resource does the given application make most use of.

Let us assume we have picked the C4 Compute Optimized instance class which AWS suggests
for webservers. The next question will be - what size?

Well, one way to guess our way through, is to take the average number of requests per second that
we would like to be able to support, deploy the minimum number of instances we can afford (two
for resilience) of the smallest size available in the chosen class and run a load test against them.
Ideally the average utilization across the two nodes would remain under 50% to allow for traffic
spikes and events of failure where the remaining host takes all the load. If the results are far
below that mark, then we should look for a different class with smaller instance types for better
value. Otherwise we keep increasing the C4 size.

Next comes the question of Auto Scaling. We have the right class and instance size to work with,
and now we need scaling thresholds. Firstly, if you are fortunate enough to have predicable loads,
then your problems end here with the use of Scheduled Actions:

Create Scheduled Action %

Name

Auto Scaling Group test-asg

Provide at least one of Min, Max and Desired Capacity

Min
Max
Desired Capacity

Recurrence Every day E
Start Time go : oo |[UTC

End Time Set End Time

You can simply tell AWS scale me up at X o'clock then back down at Y. The rest of us, we have to
set alarms and thresholds.

We've already decided that a 50% average utilization (let us say CPU) is our upper limit and by
that time we should already have scaling in progress. Otherwise, if one of our two nodes fails, at
that rate the other one will have to work at maximum capacity. As an example a CloudWatch
alarm could be >40% average CPU used for five minutes, triggering an Auto Scaling Group
action to increase the group size by 50% (which is one instance).

Tip

In order to prevent unnecessary scaling events, it is important to adjust the value of the Cooldown
period. It should reflect the expected time a newly launched instance will take to become fully
operational and start affecting the CloudWatch metric.

For even finer control over how Auto Scaling reacts to the alarm we could use Step Scaling (ref:

http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scale-based-on-demand.html). Step

Adjustments allow for a varied response based on the severity of the threshold breach. For
example, if the load increases from 40% to 50%, then scale up with only a single instance, but if
the hop is from 40% to 70%, go straight to two or more.

Tip

With Step Scaling the Cooldown period is set via the Instance Warmup option.

http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scale-based-on-demand.html

While we aim to scale up relatively quickly to prevent any service disruption, scaling down
should be timely to save hourly charges, but not premature which could cause a scaling loop.

The CloudWatch alarm for scaling down should act over a much longer period of time than the
five minutes we observed earlier. Also the gap between the threshold for scaling up and the one
for scaling down should be wide enough not to have instances launch, only to be terminated
shortly after.

EC2 Instance utilization is just one example of a trigger; it is also worth considering ELB metrics
such as sum of total request, non-2XX responses or response latency. If you choose to use any of
those, ensure that your scale down alarms react to the INSUFFICIENT_DATA state which is
observed during periods of no traffic (perhaps late at night).

The backend layer

Behind the application we are likely to find a database cluster of some sort. For this example, we
have chosen RDS (MySQL/PostgreSQL). However, the scaling and resilience ideas can be easily
translated to suit a custom DB cluster on EC2 instances.

Starting with high-availability, in terms of RDS, the feature is called a Multi-AZ deployment.
This gives us a Primary RDS instance with a hot STANDBY replica as a failover solution.
Unfortunately, the Standby cannot be used for anything else, that is to say we cannot have it, for
example, serving read-only queries.

A Multi-AZ setup within our VPC would look like this:

In the case of a PRIMARY outage, RDS automatically fails over to the STANDBY, updating
relevant DNS records in the process. According to the documentation, a typical failover takes one
to two minutes.

The triggers include the Primary becoming unavailable (thus failing AWS health-checks), a
complete AZ outage, or a user interruption such as an RDS instance reboot.

So far, with Multi-AZ we have a reasonably resilient, but perhaps not very scalable setup. In a
busy environment it is common to dedicate a primary DB node for writes, while reading is done
off of replicas. The inexpensive option would be to add a single replica to our current
arrangement:

Here we write to PRIMARY and read from REPLICA, or for read-intensive applications reads
can go to both.

If our budget allows, we can take this a step further and provide a REPLICA in both subnets in
which we deploy frontend/application nodes:

Latency across AWS zones is already pretty low, but with such a per-zone RDS distribution, we
reduce it even further. All hosts would write to the PRIMARY. However they can assign a higher
priority to their local (same zone) REPLICA when reading.

And since we are on a spending spree, additional RDS performance boost can be gained with
provisioned IOPS. This is something to consider if you are running a heavy workload and in need
of high RDS Storage /0.

Although indirectly, caching is another very effective way to increase RDS scalability by
alleviating the load.

Popular software choices here are Memcached and Redis. Either is simple to setup locally (on
each application host). If you would like to benefit from a shared cache then you could run a
cluster on EC2 or use the AWS managed ElastiCache service. With the latter, we can have again a
Multi-AZ configuration plus multiple replicas for resilience and low-latency:

You will notice that the failover scenario differs from RDS in that there is no standby instance. In
the event of a PRIMARY failure ELASTICACHE promotes the most up-to-date REPLICA
instead.

Tip

Note that after the promotion the PRIMARY endpoint remains the same, however the promoted
Replica's address changes.

The object storage layer

In the effort of achieving effortless scalability, we must put emphasis on building stateless
applications where possible. Not keeping state on our application nodes would mean storing any
valuable data away from them. A classic example is WordPress, where user uploads are usually
kept locally, making it difficult to scale such a setup horizontally.

While it is possible to have a shared file system across your EC2 instances using Elastic File
System (EFS), for reliability and scalability we are much better off using an object storage
solution such as AWS S3.

It is fair to say that accessing S3 objects is not as trivial as working with an EFS volume,
however the AWS tools and SDKs lower the barrier considerably. For easy experimenting, you
could start with the S3 CLI. Eventually you would want to build S3 capabilities into your
application using one of the following:

e Java/.NET/PHP/Python/Ruby or other SDKs (ref: https://aws.amazon.com/tools/)
e REST API (ref: http://docs.aws.amazon.com/ AmazonS3/latest/dev/RESTAPLhtml)

In previous chapters we examined IAM Roles as a convenient way of granting S3 bucket access
to EC2 instances. We can also enhance the connectivity between those instances and S3 using
VPC Endpoints:

A VPC endpoint enables you to create a private connection between your VPC and another
AWS service without requiring access over the Internet, through a NAT device, a VPN
connection, or AWS Direct Connect. Endpoints are virtual devices. They are horizontally
scaled, redundant, and highly available VPC components that allow communication
between instances in your VPC and AWS services without imposing availability risks or
bandwidth constraints on your network trdffic.

--http://docs.aws.amazon.com/ AmazonVP(C/latest/UserGuide/vpc-endpoints.html

If you have clients in a different geographic location uploading content to your bucket, then S3
transfer acceleration (ref: http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-
acceleration.html) can be used to improve their experience. It is simply a matter of clicking
Enable on the bucket's settings page:

https://aws.amazon.com/tools/
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAPI.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html

Bucket: test-bucket-jduxne
Region: US Standard

Creation Date: Sun Nov 20 15:32:53 GMT+000 2016
Owner: veselin

» Permissions

» Static Website Hosting

» Logging

» Events

» Versioning

v Lifecycle

» Cross-Region Replication
» Tags

» Requester Pays

* Transfer Acceleration

Amazon 53 Transfer Acceleration makes data transfers into and out of Amazon 53 buckets as much
as 300% faster, and only charges if there is a performance improvement. Simply enable this feature
for buckets you want to accelerate and update the bucket name in your applications. Please visit the
Speed Comparison Tool to view estimated performance improvements by region.

Enable

We have now covered speed improvements; scalability comes built into the S3 service itself and
for cost optimization we have the different storage classes.

S3 currently supports four types (classes) of storage. The most expensive and most durable being
the Standard class, which is also the default. This is followed by the Infrequent Access class
(Standard_IA) which is cheaper, however keep in mind that it is indeed intended for rarely
accessed objects otherwise the associated retrieval cost would be prohibitive. Next is the
Reduced Redundancy class which, despite the scary name, is still pretty durable at 99.99%. And
lastly, comes the Glacier storage class which is akin to a tape backup in that objects are
archived and there is a 3-5 hour retrieval time (with 1-5 minute urgent retrievals available at a
higher cost).

You can specify the storage class (except for Glacier) of an object at time of upload or change it
retrospectively using the AWS console, CLI or SDK. Archiving to Glacier is done using a bucket
lifecycle policy (bucket's settings page):

» Permissions

» Static Website Hosting
» Logging

» Events

» Versioning

~ Lifecycle

You can manage the lifecycle of objects by using Lifecycle rules, Lifecycle rules enable you to
automatically transition objects to the Standard - Infrequent Access Storage Class, and/or archive
objects to the Glacier Storage Class, and/or remove objects after a specified time period. Rules are
applied to all the objects that share the specified prefix.

Versioning is not currently enabled on this bucket.
You can use Lifecycle rules to manage all versions of your objects. This includes both the Current

version and Previous versions.

> Add rule

£ o

We need to add a new rule, describing the conditions under which an object gets archived:

Lifecycle Rules

Step 1: Choose Rule Targst

Step 2: Configure Rule
Step 3: Review and Namsa

Lifecycle rules will help you manage your storage costs by controlling the ifecycle of your objects. Create erecgcla rules to automatically
transition your objects to the Standard - Infrequent Access Storage Elan.a. mlwm to the Glacier Storage Class, and remove them
after & specified time pariod.

Choose different options below to see what works best for your use case, No rule will take effect until you activate them at the end of this
wizard,

Action on Objects
Transition to the Standard - Infrequent Access Storage Class Days after the object's creation date

Standard - Infreqguent Acosss hars a 30-day minimum redention pericod and a 128KB minimum object size. Lifecycle policy will not transition objects that are
ligag than 128KB. Reler hare 1o learn mone about Stancand - Infrequent Access,

Archive to the Glacier Storage Class Days after the object's creation date

This nie could reduce your storage costs. Refer hers 1o learn mone about Glacier pricing. Mote that objects archived 1o the Glacier Storage Class ans not
mmediately Arcessbi

Permanently Delete Days after the object's creation divte

Action on Incomplete Multipart Uploads
End and Clean up Incomplete Multipart Uploads Days after an upload initiation date

This nie will end and clean up multipart upicads that ane not completed within a predefined number of days afer initation. Leam more.

Incidentally, Lifecycle rules can also help you clean up old files.

The load balancing layer

The days of the Wild Wild West when one used to setup web servers with public IPs and DNS
round-robin have faded away and the load balancer has taken over.

We are going to look at the AWS ELB service, but this is certainly not the only available option.
As a matter of fact, if your use case is highly sensitive to latency or you observe frequent, short
lived traffic surges then you might want to consider rolling your own EC2 fleet of load balancing
nodes using NGINX or HAProxy.

The ELB service is priced at a flat per-hour fee plus bandwidth charges, so perhaps not much we
can do to reduce costs, but we can explore ways of boosting performance.

Cross-zone load balancing

Under normal conditions, a Classic ELB would deploy its nodes within the zones which our
backend (application) instances occupy and forward traffic according to those zones. That is to
say, the ELB node in zone A will talk to the backend instance in the same zone, and the same
principle applies for zone B:

This is sensible as it clearly ensures lowest latency, but there are a couple of things to note:

e An equal number of backend nodes should be maintained in each zone for best load spread
e Clients caching the IP address for an ELB node would stick to the respective backend

instance

To improve the situation at the expense of some (minimal) added latency, we can enable Cross-
Zone Load Balancing in the Classic ELB's properties:

Filter: L test-elb-classic b4 1to1of1

@ Name = DMS name - State - WPCID < Avallability Zones
test BESIC test-alb-classic- B | WC-8. us-a8si-10, us-east-1c
-elb-classi t-alb-classic-B0564TATT 3TD4ccA t-1b, t-1
Edit security groups
Attributes

Idle timeout: 60 seconds

Edit idle timeout

Access logs: Disabled

Configure Access Logs

Cross-Zone Load Disabled

Balancing:
" Change Cross-zone Load Balancing setting

This will change the traffic distribution policy, so that requests to a given ELB node will be
evenly spread across all registered (status: InService) backend instances, changing our earlier
diagram to this:

An unequal number of backend nodes per zone would no longer have an impact on load
balancing, nor would external parties targeting a single ELB instance.

ELB pre-warming

An important aspect of the ELB service is that it runs across a cluster of EC2 instances of a given
type, very much like our backend nodes. With that in mind, it should not come as a surprise that
ELB scales based on demand, again much like our Auto Scaling Group does.

This is all very well when incoming traffic fluctuates within certain boundaries, so that it can be
absorbed by the ELB or increases gradually, allowing enough time for the ELB to scale and
accommodate. However, sharp surges can result in ELB dropping connections if large enough.

This can be prevented with a technique called pre-warming or essentially scaling up an ELB
ahead of anticipated traffic spikes. Currently this is not something that can be done at the user end,
meaning you would need to contact AWS Support with an ELB pre-warming request.

The CDN layer

CloudFront or AWS's CDN solution is yet another method of improving the performance of the
ELB and S3 services. If you are not familiar with CDN networks, those, generally speaking,
provide faster access to any clients you might have in a different geographic location from your
deployment location. In addition, a CDN would also cache data so that subsequent requests won't
even reach your server (also called origin) greatly reducing load.

So, given our VPC deployment in the US, if we were to setup a CloudFront distribution in front
of our ELB and/or S3 bucket, then requests from clients originating in say Europe would be
routed to the nearest European CloudFront Point-of-Presence which in turn would either serve a
cached response or fetch the requested data from the ELB/S3 over a high-speed, internal AWS
network.

To setup a basic web distribution we can use the CloudFront dashboard:

Select a delivery method for your content. (2]

Web

Create a web distribution if you want to:
« Speed up distribution of static and dynamic content, for example, .html, .css, .php, and graphics files.
« Distribute madia files using HTTP or HTTPS.
« Add, update, or delete objects, and submit data from web forms,
= Lse live streaming to stream an event in real time.

You store your files in an origin - either an Amazon 53 bucket or a web server. After you create the distribution, you can add more origins to the distribution.

RTMP

Create an RTMP distribution to speed up distribution of your streaming media files using Adobe Flash Media Server's RTMP protocol. An RTMP distribution
allows an end user to begin playing a media file bafore the file has finished downloading from a CloudFront edge location. Note the following:

« To create an RTMP distribution, you must store the media files in an Amazon 53 bucket.
« To use CloudFront live streaming, create a web distribution.

Cancel

Once we Get Started then the second page presents the distribution properties:

Create Distribution i
Origin Settings

Origin Domain Name i]
o — Amazon 53 Buckets —
Origin Path tast-bucket-jduxna. 53 amazonaws.com o
— Elastic Load Balancers —
Origin ID | test-elb-1073804180.us-east-1_elb.amazonaw: (1]
Origin Custom Headers Header Name Value i)

Default Cache Behavior Settings

Path Pattern Default () (]
Viewer Protocol Policy @ HTTP and HTTPS o
Redirect HTTP to HTTPS
HTTPS Only
Allowed HTTP Methods @ GET, HEAD o

GET, HEAD, OFTIONS
GET, HEAD, OPTIONS, PUT, POST, PATCH, DELETE

Cached HTTP Methods GET, HEAD (Cached by default) o
Forward Headers w (i]
Object Caching @ Use Origin Cache Headers (i)
Customize
Learn Mona

Conveniently, resources within the same AWS account are suggested. The origin is the source of
data that CloudFront needs to talk to, for example the ELB sitting in front of our application. In the
Alternate Domain Names field we would enter our website address (say www . example.org),
the rest of the settings can remain with their defaults for now.

After the distribution becomes active all that is left to do is to update the DNS record for
www . example.org currently pointing at the ELB to point to the distribution address instead.

Spot instances

Our last point is on making further EC2 cost savings using Spot instances. These represent unused
resources across the EC2 platform, which users can bid on at any given time. Once a user has
placed a winning bid and has been allocated the EC2 instance, it remains theirs for as long as the
current Spot price stays below their bid, else it gets terminated (a notice is served via the

instance meta-data, ref: http://docs.aws.amazon.comv AWSEC2/latest/UserGuide/spot-
interruptions.html).

These conditions make Spot instances ideal for workflows, where the job start time is flexible
and any tasks can be safely resumed in case of instance termination. For example, one can run
short-lived Jenkins jobs on Spot instances (there is even a plugin for this) or use it to run a
workflow which performs a series of small tasks that save state regularly to S3/RDS.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html

AWS Calculators

Lastly, a simple yet helpful tool to give you an idea of how much your planned deployment would
cost: http://calculator.s3.amazonaws.com/index.html (remember to untick the FREE USAGE
TIER near the top of the page)

And if you were trying to compare the cost of on-premise to cloud, then this might be of interest:
https://aws.amazon.com/tco-calculator/.

http://calculator.s3.amazonaws.com/index.html
https://aws.amazon.com/tco-calculator/

Summary

In this chapter we examined different ways in which to optimize both the scalability and running
costs of an AWS deployment.

We started with the underlying VPC and its core properties such as the CIDR, subnets and how to
plan for growth. We covered methods of improving the performance of the frontend, backend,
storage and load balancing components. Then we looked at AWS Spot instances as a very cost
efficient solution for executing lower-priority, batch processing jobs.

In the next chapter we move into the realm of security and explore the topic of how to better
harden an AWS environment.

Chapter 9. Secure Your AWS Environment

Security is unsurprisingly a very hot topic in The Cloud Computing - should you be doing it?
debate.

On one side we have the my-hardware-is-my-castle group of people, who find it deeply unnatural
to even think of delegating your compute environment to some abstract entity that assures you that
you own the capacity of X number of machines at any given time, but which you cannot see or
touch. Not to mention the question of your data.

On the other, we find the people who do not really mind the mystical concept of the cloud at all.
Their main interest is in having instant access to somewhat unlimited amount of compute
resources at a reasonable cost. Unfortunately, they might occasionally concentrate too much on
getting a job done quickly, ignoring some valid, healthy concerns that the former group puts
forward.

Then there is the middle ground - those of us who recognize the sacrifices one has to accept when
moving to the cloud as well as the various solutions to make up for those. That is to say, with
well-designed applications plus carefully planned-out architecture, your environment can remain
adequately secure regardless of the underlying type of hosting platform.

We are going to examine a few of these solutions and practices in attempt to make our AWS
environment more secure.

We shall cover:

Managing access using IAM
VPC security

EC2 security

Security auditing

Let us begin.

Managing access using IAM

AWS Identity and Access Management (IAM) is a web service that helps you securely

control access to AWS resources for your users. You use IAM to control who can use your

AWS resources (authentication) and what resources they can use and in what ways
(authorization).

ref: http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

We will be using IAM for managing access (be it user or application) to services under our AWS
account.

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Securing the root account

When a new AWS account is opened, it comes with a single user (the account owner) also
referred to as the root login. This almighty user has all the powers, including the option of
terminating the AWS account. For this reason, it is often advised that the root login is only used
for high-level account management purposes while any day-to-day operations are done via IAM
user accounts.

We shall follow this recommendation, so the very first thing we do after registering an AWS
account is to login as rooet, disable any unnecessary authentication mechanisms and create
ourselves a lower-privileged IAM user account.

Let us browse to the AWS Console (ref: https://console.aws.amazon.com/console/home):

amazon

webservices

Account: |
User Name:

Password:

MFA users, enter your code on the next screen.

|

Sign In

Sign-in using root account credentials

Notice the small print underneath the Sign In button. This is the link we need to follow in order to
access the root account, which takes us to a slightly different login page as shown in the following
screenshot:

https://console.aws.amazon.com/console/home

amazon

web services

Sign In or Create an AWS Account
What is your email (phone for mobile accounts)?

E-mail or mobile number:
I am a new user.

I am a returning user
and my password is:

L Sign in using our secure server w

Forgot your password?

Here, use your main Amazon credentials; you should see the familiar Console page. click on the
name in the top-right corner:

T} AWS ~ Services ~ | N. Virgira = Support ~

Amazon Web Services Wy Account Jps Leam moe
Compute Developer Tools Intarnet of Things Biling & Cost Management j coliaction of
‘} EC2 CDNCW"I‘III AWS loT S TIOFS K
Viunl Searwnrs in e Cloud wita it Foagusaiter Canict D 1 B Sl ach projoct,
® EC2 Contaner Service el in your
Fear ane? Warsgs ol Gama Devalopment Sign Qut
Elastic B ._ Garmel#t
-r Ran and M ity Dhaphory it Sl S asied Mulbplirssr Qarses
Lk Create a Group Tag Editor
ambda
ﬁ R Gt witheu! Thinking abow: Benvies Management Tools Maobile Sanices
.., Server Mu_.|r alion CloudWalch Muabile Hub Additional Resources
Wigrae On-pUEMISEs Serees i AWS Monior Fesourons and Applications ’ Bk, Teat, and Monior Mobile Apes
CloudForrmalion Eugnllu o - -
5-:!:-|:;J;: & Conlent Delivery ;:‘;'*;1'-'. ':'I-\'-‘-'.t‘ Resmurmas wir Tempianm r"l |:| ““”"F" et A D Bttt ::::I:;.:f_:;ﬁi;,miou OF ViR oL
il Trail i EV';‘E ..irl'l'l & 5 g AR
Scalabis Sormge i the Clous Track Liser Actvity ond AP Usage W Tos! Andeni, (0. mnd Wieh Apps on Final Devicas in mining 0 e Inohi bt v
o Cloud
ﬁ CluudFrl:ll'ﬂ Config = . o 0
aal Corrient Dholivary Network * o P Ml:ll:ll|B Analytics AWS Conscle Mobile App &
] E Csbin, View ared Expors App Ansfytcs View your resources an the go with our
;_ HEBIE.‘G Fila 5'!'5_'35"" e . 'UI:IE"'I .-\ e SNS AWE Conscle mablia app, avallabia from
¥ el Fily Syetem for EG2 alions wh
gp 3 G . Puisih Meifisation Seric Amazon Appstons, Google Play, ar
C-Iacmr Sanvice Catalng Tunss,
Archiss Sorage S Cloug t Gt and Uss Stancdardand Prodects

Choosing Security Credentials takes us to our root account security options:

Dashboard 2
. Your Security Credentials

U=a this page bo manage the credentials for your AWS accounl To manape credentials for AWS Identity and Access Managerment [LAM) usars, use tha 1AM Console,

Tix lesarn rore about the types of AWS credentials and how they'ne used, see AWS Security Credentials in AWS General Relerenca.
Groups + Password
Users + Multi-Factor Authentication (MFA)
Roles

Access Keys (Access Kay ID and Secrat Access Key)

Palicles

CloudFront Key Pairs
Identity Providers

Accourt Setlings S e taen

+ + + +

CGredential Aepan Account |dentifiers

Encryplion Keys

Enable Multi-Factor Authentication (MFA); there really isn't a good reason not to. You could
purchase a hardware token device or simply use an app on your phone such as the Google
Authenticator.

Delete the keys under Access Keys. These are used for API access, which you are very likely not
going to need for account management tasks.

Next, click on the Account Settings link on the left, to update the current password policy. With
the various password management tools available today, choosing a complex password and
changing it often is no longer an inconvenience, so go crazy:

Dashboard ~ Password Policy

A password policy is a set of rules that define the type of password an |AM user can set. For
more information about password policies, go to Managing Passwords in Using 1AM.

Details) o)
Madify your existing password policy below.

Groups
Minimum password length: 50
Users

@ Require at least one uppercase letter &

Roles

[;'] Require at least one lowercase letter €
Policies 2

[v] Require at least one number o
Identity Providers [Require at least one non-alphanumeric character @
Account Settings [vw| Allow users to change their own password @
Credential Report @ Enable password expiration €

Password expiration period (in days): a0

(] Prevent password reuse (i]

Encryption Keys

Number of passwords to remember: 5

[_] Password expiration requires administrator reset €

Apply password policy Delete password policy

On the same page, we can disable any regions we are not going to be using:

Rk = Security Token Service Regions

Palicles You can enable additional regions from which you can request tempaorary credentials. Activate only the regions you intend to use. Learn More .

Ky Provicin Regions 3 Status 3 Actions 3

AN S LIS East (. Virginia) Always Active ©

Credential Report US East [Ohig) Inactive Activate
US West (M. California) Inactive Acthate

Encryption Keys US West (Qregon) Inactive Activate
EL {Irelamnd) Active Deactivate
EU (Frankiurt) Inactive Activate
Asia Pacific (Singapone) Inactive Activate
Asia Pacific (Tokyo) Inactive Activate
Asia Pacific {Sydrey) Inactive Activate
Asia Pacific {Seoul) Inactive Activate
Asia Pacific (Mumbai) Inactive Activate

South America (Sao Paula) Inactive Activate

Now we proceed to create the [AM accounts for daily AWS usage. We will organize our users
into groups. We start with a user in a group which has administrator privileges, which can then be
used to manage almost all aspects of the AWS account.

On the left, select Groups and create a new group, granting it administrator access. Then under
Users, create an account for yourself and make it a member of that group.

During the user creation process you would have had the option to create API access keys (you
could also do it at a later stage too), which are useful if you are planning to use the AWS CLI or
programmatic access in general. Once created, select the user and switch to the Security
Credentials tab:

Dashboard

Groups Permissions Seourity Credentinks Access Advisor

Groups Access Koys =
Usars Use aconss keys to make secune REST or Query protocol requasts 1o any AWS service AP, For your protection, you shouki never share your secret keys with
& anyona. In addition, Industry best practice racommends frequant key molation. Leam more aboul Access Keys
Aoles
Create Access Key
Palicies
dentity Providers Acoess Key ID Croated Last Used Last Used Service Last Used Region Status Actions
AJ4FELIW MLEE! 16-11-05 15:0 /i f YA A Maie Inactive | Delee

Account Sattings AKIAMFPFELWEQUMNLEEPYD 2016 5 15:00 UTC MAA YA BfA, Active Irnactiv e
Cradantial Raport

Sign-in Credentials gy
Encryplion Keys User Name lesi Manage Pasaword

Password

Last Usad WA

Mult-Factor Mo

Manage MFA Davice
Authentication Device -

Signing Cerfificates MNome Manage Signing Cariificates

S5H keys for AWS CodeCommit F

Here you have the option to create an Access Keys pair, if you did not do so earlier, as well as
set a password for using the AWS Console. As mentioned earlier, you should take the opportunity
to enable MFA (to take this a step further, have a look at
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-
require.html). Also if you are planning to use the CodeCommit service over SSH, this is where
you upload your public key.

This is it, from now on you can login to the AWS Console using the username and password of the
IAM account you just created, keeping the root for special occasions.

As a side note for those who might already maintain a user database external to AWS, there are
ways to integrate it using Federation.

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html

Note

For more details, see either of these links: https://aws.amazon.com/iam/details/manage-federation
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html

https://aws.amazon.com/iam/details/manage-federation
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html

VPC security

If you have deployed your resources in a VPC, you are already moving in the right direction. Here
we are mostly going to concern ourselves with network security and the tools or features a VPC
provides for enhancing it.

Security Groups

These represent our first layer of defense as stated in the AWS documentation. Security Groups
(SG) get assigned to EC2 instances (generally speaking) and provide a type of stateful firewall,
which supports allow rules only.

They are very flexible and an EC instance can have multiple such groups assigned to it. The rules
can be based on host IP addresses, CIDRs or even on other Security Groups, for example, allow
inbound HTTP: 86 from group ID sg-12345.

Usually, within a VPC we would create an SG per role, such as web server, db, cache. Instances
of the same component would then be assigned the respective SG, thus regulating traffic between
the different components of a platform.

Tip

It is often tempting to allow traffic based on the VPC CIDR address, resting on the fact that the
VPC is largely an isolated environment. Resist that as much as possible and limit access to
components that actually need it.

The db SG should allow traffic from/to the web server SG, but possibly not from the cache one.

Network ACLs

The second layer comes in the form of Network ACLs.

The ACLs are stateless, they apply to the underlying subnet that an instance lives in and their rules
are evaluated based on priority, just like an old fashioned firewall. As a bonus, you can also set
deny policies.

Tip

Network ACLs sit at the edge of the VPC, hence are evaluated before traffic reaches any Security

Groups. This feature plus the ability to set deny rules make them very suitable for reacting to
potential DDOS threats.

Overall, both types of traffic management have their place in our VPC security design. ACLs
should store a set of broader, less frequently changing rules, complemented by flexible Security
Groups for fine-grained control.

VPN gateway

If it so happens that you are using a VPC as an extension to your on-premise infrastructure, it
would make a lot of sense to have the two sides more tightly connected.

Instead of restricting external access via Security Groups or ACLs, you could create a secure
VPN channel, benefiting from the implied encryption.

You can connect your VPC to your office network using either a hardware or a software VPN
solution (ref: http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html).

For more demanding use-cases, one could even route their VPN traffic over a high-speed direct
link to AWS using the AWS Direct Connect service (ref:

http://docs.aws.amazon.comv/directconnect/latest/UserGuide/Welcome.html).

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
http://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html

VPC peering

In a similar situation, where instead of your office network you have another VPC which needs to
communicate with your, let us call it primary one, you could use VPC peering:

A VPC peering connection is a networking connection between two VPCs that enables you
to route traffic between them using private IP addresses. Instances in either VPC can
communicate with each other as if they are within the same network. You can create a

VPC peering connection between your own VPCs, or with a VPC in another AWS account
within a single region.

AWS uses the existing infrastructure of a VPC to create a VPC peering connection; it is
neither a gateway nor a VPN connection, and does not rely on a separate piece of

physical hardware. There is no single point of failure for communication or a bandwidth
bottleneck.

ref: http://docs.aws.amazon.com/AmazonVP(/latest/PeeringGuide/vpc-peering-
overview.html

Your VPCs will be able to communicate directly (within the same region) so you will not need to

expose any services that do not explicitly need to be exposed. In addition, you can conveniently
keep using private addresses for communication.

http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-overview.html

EC2 security

Diving deeper into our VPC, we are now going to look at ways to enhance the security around our
EC2 instances.

IAM Roles

IAM EC2 Roles are the recommended way to grant your application access to AWS services.

As an example, let us assume we had a web app running on our web server EC2 instance and it
needs to be able to upload assets to S3.

A quick way of satisfying that requirement would be to create a set of IAM access keys and
hardcode those into the application or its configuration. This however means that from that
moment on it might not be very easy to update those keys unless we perform an app/config
deployment. Furthermore, we might for one reason or another end up re-using the same set of keys
with other applications.

The security implications are evident: reusing keys increases our exposure if those get
compromised and having them hardcoded greatly increases our reaction time (it takes more effort
to rotate such keys).

An alternative to the preceding method would be to use Roles. We would create an EC2 Role,
grant it write access to the S3 bucket and assign it to the web server EC2 instance. Once the
instance has booted, it is given temporary credentials which can be found in its metadata and
which get changed at regular intervals. We can now instruct our web app to retrieve the current
set of credentials from the instance metadata and use those to carry out the S3 operations. If we
were to use the AWS CLI on that instance, we would notice that it fetches the said metadata
credentials by default.

Tip

Roles can be associated with instances only at launch time, so it is a good habit to assign one to
all your hosts even if they do not need it right away.

Roles can be used to assume other roles, making it possible for your instances to temporarily
escalate their privileges by assuming a different role within your account or even across AWS

accounts (ref: http://docs.aws.amazon.com/STS/latest/ APIReference/API AssumeRole.html).

http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

SSH access

The most common way to interact with an EC2 instance would be over SSH. Here are a couple of
ideas to make our SSH sessions even more secure.

Individual keys

When a vanilla EC2 instance is launched it usually has a set of PEM keys associated with it to
allow initial SSH access. If you also work within a team, my recommendation would be not to
share that same key pair with your colleagues.

Instead, as soon as you, or ideally your configuration management tool, gain access to the
instance, individual user accounts should be created and public keys uploaded for the team
members (plus sudo access where needed). Then the default ec2-user account (on Amazon
Linux) and PEM key can be removed.

Entrypoint

Regardless of the purpose that an EC2 instance serves, it is rarely the case that you must have
direct external SSH access to it.

Assigning public IP addresses and opening ports on EC2 instances is often an unnecessary
exposure in the name of convenience and somewhat contradicts the idea of using a VPC in the
first place.

SSH can unarguably be useful however. So, to maintain the balance between the forces, one could
setup an SSH gateway host with a public address. You would then restrict access to it to your
home and/or office network and permit SSH connections from that host towards the rest of the
VPC estate.

The chosen node becomes the administrative entry point of the VPC.

ELBs everywhere

Latency is of importance. You will find brilliant engineering articles online from expert AWS
users who have put time and effort into benchmarking ELB performance and side-effects.

Perhaps not surprisingly their findings show that there is a given latency penalty with using an
ELB, as opposed to serving requests directly off of a backend web server farm. The other side to
this however is the fact that such an additional layer, be it an ELB or a cluster of custom HAProxy
instances, acts as a shield in front of those web servers.

With a balancer at the edge of the VPC, web server nodes can remain within the private subnet
which is not a small advantage if you can afford the said latency trade-off.

HTTPS by default

Services like the AWS Certificate Manager, make using SSL/TLS encryption even easier and
more affordable. You get the certificates plus automatic renewals for free (within AWS).

Whether traffic between an ELB and the backend instances within a VPC should be encrypted is
another good question, but for now please do add a certificate to your ELBs and enforce HTTPS
where possible.

Encrypted storage

Logically, since we are concerned with encrypting our HTTP traffic, we should not ignore our
data at rest.

The most common type of storage on AWS must be the EBS volume with S3 right behind it. Each
of the two services supports a strong and effortless implementation of encryption.

EBS volumes

First, it should be noted that not all EC2 instance types support encrypted volumes. Before going
any further, please consult this table:

http://docs.aws.amazon.com/ AWSEC2/1atest/UserGuide/EBSEncryption.html#EBSEncryption_suj

Also, let us see what does get encrypted and how:

When you create an encrypted EBS volume and attach it to a supported instance type, the
following types of data are encrypted:

- Data at rest inside the volume
- All data moving between the volume and the instance
- All snapshots created from the volume

The encryption occurs on the servers that host EC2 instances, providing encryption of
data-in-transit from EC2 instances to EBS storage.

ref: http://docs.aws.amazon.com/AWSECZ2/latest/User Guide/EBSEncryption.html

Note that the data gets encrypted on the servers that host EC2 instances, that is to say the
hypervisors.

Naturally, if you wanted to go the extra mile you could manage your own encryption on the
instance itself. Otherwise, you can be reasonably at peace knowing that each volume gets
encrypted with an individual key which is in turn encrypted by a master key associated with the
given AWS account.

In terms of key management, AWS recommends that you create a custom key to replace the one
which gets generated for you by default. Let us create a key and put it to use.

On the IAM dashboard, select Encryption Keys on the left:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_supported_instances
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

Groups I1AM Resources
Users Users: 1 Roles: 0
o | 1 i Prowi :
Roles Groups dentity Providers: 0
Customer Managed Policies: D

Policies
Identity Providers Security Status 5 out of 5 completa
Account Settings Activate MFA on your root account v
SRS Fpot Create individual IAM users v

Use groups to assign permissions W
Encryption Keys

Apply an 1AM password policy v

Rotate your access keys v

Choose to Create Key and fill in the details:

S-’E"d“? KeyinUSEastiN.— Create Alias and Description
irginia)
Provide an alias and a description for this key. These properties of the key can be changed later. Learn more.

Step 1: Create Alias and Description
Alias (required) ebs_test_key

Step 2: Define Key Administrative
Parmissions
Description Test key
Step 3: Define Key Usage
Permissions

+ Advanced Options

Step 4: Praview Key Policy

Key Material Origin o KMS External
Help me choose

Then you can define who can manage the key:

Create Kay in US East (M

Sep 1: Creale Alias and
Diascription

Stap 2: Define Key Admnisirathsa
Pamnissions

§: Preview Kay P

Define Key Administrative Permissions
= Key Administrators

Choose the [AM users and rokas thal can adminisber this key through the KMS APL You may need 1o add sdditional permissions lor the users or roles 1o
adminisber this key from this console. Learn more.

Shawing 1 resubts

Mame 3 Path 3 Type =
[wf wesalin i Liser
= Key Deletion

[+ ABow key administrators to dalete this key. @

As well as who can use it:

Create Key in LIS East (N
Virginia)

Stap 1: Greate Alias and
Descriplion

Step 2- Define Key Administrative
Pormissons

Step 3: Dedine Key Lisage
Permissians

Stap 4: Praview Key Policy

Define Key Usage Permissions

= This Account

Choosa the [AM users and roles that can use this key 1o encrypt and decrypt data from within applications and when using AWS services integrated with KMS.
Learm momn

Showing 1 results

Mame 3 Path & Type

| weselin ! Lisar

» External Accounts

And the result should be visible back on that dashboard among the list of keys:

Dasrooand

Iderlity Providers
Aooount Settings

Cradgantial Aeport

| Encryption Keys

Your master key was created successfully. Alias: ehs test ey

Croate key Koy actions
Groups
Fitter: LIS East (M, Virginiaj » ehs
Lisers
Fiales | Aligs KeyID 3 Status Creation Date &
Policies ahs_bast kay A19af381 2254 -A8608-aTdo-a83b8., Enabind 2015=17-06 18517 UTG

[+]
o
]

Showing 1 results

Now if you were to switch to the EC2 Console and choose to create a new EBS volume, the
custom encryption key should be available as an option:

Create Volume

Volume Type
Size (GiB)

IOPS

Throughput (MB/s)
Availability Zone
Snapshot ID

Encryption

Master Key
Key Details

Description Default ma
Account This accou

Ak

General Purpose SSD (GP2)

100 (Min: 1 GiB, Max: 16384 GiB)
300 / 3000 (Baseline of 3 IOPS per GiB with a
minimum of 100 IOPS, burstable to
3000 IOPS)
Not Applicable
us-east-1b 3

Encrypt this volume
(default) aws/ebs w

(default) aws/ebs
ebs_test_key

r key is defined

You can now proceed to attach the new encrypted volume to an EC2 instance as per the usual

process.

S3 objects

S3 allows the encryption of all, or a selection of objects within a bucket with the same AES-256
algorithm as EBS here.

A few methods of key management are available (ref:
http://docs.aws.amazon.com/ AmazonS3/latest/dev/serv-side-encryption.html):

¢ You can import your own, external set of keys
¢ You can use the KMS service to generate custom keys within AWS
¢ You can use the S3 service default (unique) key

Encrypting existing data can be done on the folder level:

m Croate Folder Actions ~ Q MNona Proporties Transfers e
All Buchela |/ yum-repo-gos
e o .0 oo b 2 items selected x
B reoodns
L= = " i Buoket yur-mpo-oeo
Slecied;
= Datails

For ol selected Rems:

Srorage Class: i@ Standard Standard - [nfreguent Access Reduced Redundancy
Standard storage will rew Be used

Server Side Encryption: Mone ENAES-256
AES-FIE encrypticn will fiow Be used
[
or by selecting individual files:
.
m Create Folder Actions ~ Q Hane Properties Transbers i
All Buckets | yum-repo-zxc / npm / demo-app
Hame Siorage Class Size 2 1
Object: demo-app-34a4537.rpm x

B [cerc-anp-344837.0m Suandard 1.8 KB

[core-aep-azr0mmd e Srntired 17KA Bk i ks ks

Foldon domo-a
[demc-aoe-aisea17.rom Sandard 1.8 KB [re—r— ~F-fn MnasdT rpm
D darres- s DEAMA reem Srandard LT KB Lirin: 15:-:“»:.-.-».1 BT TR O T T e s e -app- S T o
Lasst Mefifiect: un Mow 08 17:45:17 GMT000 2016
[cemc-aop-biszoee.mm Suandard 1.7 KB praseifariivg
D i - b i e Erandird 1.8 KB ETag: 20TBT3bAa BN B ROcha R
Expiry Datec Hers

D demic-app-CI06S 1o.pm Standard 1.7 KB Ezpiration Fuls: KA

[Saandard 1.7 KB

[eme-acp-o7 3. pm Seandard 18 KB ~ Details

Storage Class: i Standand Standard - Infreguent Acoess Reduced Redundancy
Server Side Ercryplion: — Mone @ AES-256
o

New data is encrypted on demand by either specifying a header (x-amz-server-side-
encryption) in the PUT request or by passing any of the - -sse options if using the AWS S3 CLL

http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

It is also possible to deny any upload attempts which do not specify encryption by using a bucket
policy (ref: http://docs.aws.amazon.com/ AmazonS3/latest/dev/UsingServerSideEncryption.html).

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html

OS updates

If you follow any security bulletins, you would have noticed the frequency with which new
security flaws are being published. So, it is probably not much of an exaggeration to state that OS
packages become obsolete days if not hours after a fully up-to-date EC2 instance has been
provisioned. And unless the latest vulnerability is affecting BASH or OpenSSL, we tend to take
comfort in the fact that most of our hosts reside within an isolated environment (such as a VPC),
postponing updates over and over again.

I believe we all agree this is a scary practice, which likely exists due to the anxiety that
accompanies the thought of updating live, production systems. There is also a legitimate degree of
complication brought about by services such as Auto Scaling, but this can be turned to an
advantage. Let us see how.

We'll separate a typical EC2 deployment into two groups of instances: static(non-autoscaled)
and autoscaled. Our task is to deploy the latest OS updates to both.

In the case of static instances, where scaling is not an option due to some application specific or
other type of limitation, we will have to resort to the well-known approach of first testing the
updates in a completely separate environment then updating our static production hosts (usually
one at a time).

With Auto Scaling however, OS patching can be a much more pleasant experience. You will
recall Packer and Serverspec from previous chapters, where we used these tools to produce and
test AMIs. A similar Jenkins pipeline can also be used for performing OS updates:

1. Launch the source AMI.

Perform a package update.

Run tests.

Package a new AML

Proceed with a phased deployment in production.

kW

To be comfortable with this process, we certainly need to put a decent amount of effort into
ensuring that tests, deployment and rollback procedures are as reliable as practically possible,
but then the end justifies the means.

Security auditing

AWS offers some good tools to help you keep your security policies in shape. Those will provide
you with detailed audit reports including advice on how to improve any potential risk areas. In
addition, you can configure service logs, so you get a better understanding what goes on within

your deployment or AWS account as a whole.

VPC Flow Logs

This service lets you capture information about the network traffic flowing through a VPC. The
generated logs (unfortunately not quite real-time yet) contain src/dst port, src/dst address,
protocol and other related details (for a full list please see:

http://docs.aws.amazon.com/ AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records).
Apart from making for some pretty cool graphs to help identify network bottlenecks, the data can
also be used for spotting unusual behavior. You could, for example, devise an in-house IDS by
parsing the Flow Logs and forwarding any suspicious entries to your monitoring solution.

In the VPC Console, select a VPC and switch to the Flow Logs tab:

Actions - S EE - H]
4, test 4 1to1af1VPC
Hame - VPCID State VPC CIDR DHCP options set Route table MHatwork ACL Tenancy
B testwpc wpo-a3T04cod avadable 10.0.000016 dopt-61bfad04 rib-cO4ediab acl-Tabaddif Default
vpe-a3Ti4cod (10.0.0.0/186) | test-vpe _B—_Q=
Summary Flow Logs Tags
You can create flow logs on your resources 1o capture IP traffic flow information for the network interfaces for your resources, Learn more about flow logs
Create Flow Log
Flow Log ID Filter CloudWatch Logs Group IAM Role ARN Creation Tima Status Inherited From
o Logs faurd

Click on Create Flow Log: you will need to fill a few parameters such as the IAM Role to be
used (click on Set Up Permissions to create one) and the desired name of the Destination Log
Group.

In a few minutes, the said log group should appear under the Logs section in the CloudWatch
dashboard:

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records

CloudWatch CloudWatch Log Groups
Dashboards

Alarms 1 Actions

Filter: x
0K (1] Log Groups Expire Events After Metric Filters
Billing wongabonga MNever Expire 0 filters
Events
Rules
| Logs
Metrics NEW

Within that group, you will find a log stream per EC2 instance (per network interface to be more
precise) containing the captured traffic details.

CloudTrail

The CloudTrail service is used for recording API activity within an AWS account. This includes
requests done via the AWS Console, the CLI, the SDK or other services which issue calls on your
behalf. The trail can be helpful for both security auditing and troubleshooting. Collected data is
stored in S3 as encrypted objects, along with signed hashes to help ensure no tampering has
occurred.

To enable the service, we go to the CloudTrail dashboard looking for a Get Started or an Add
new trail button:

Turn on CloudTrail

53 bucket*

Log file prefix

cloudtrail-xmdjwp

Trail name* test_trail
Apply trail to all regions © Yes Mo (i]
Create a new 53 bucket © Yes Mo

Enable log file validation © Yes Mo i)
Send SNS notification for Yes @ Mo i}
every log file delivery
* Required field Cancel m

We have chosen to collect data from all regions, storing it in a new S3 bucket with validation
turned on. It is also possible to receive notifications on each log delivery, which can be useful for
any further processing jobs.

Back on the dashboard, we click on the new trail to review its settings:

AP activity history

» 53
| Trails
Create a new 53 bucket Yes O Mo
L
53 bucket* cloudtrail-xmdjwp i)
Log file prefix Li]
ocation: JAWSLog DEBE25A/ CloudTrail/us-east-1
Encrypt log files @ Yes No i}
Create a new KMS key © Yes No
KMS key* cloudirall i)
M3 and 53 bucke! must be in the same ragior

Enable log file validation

Send SNS notification for
avary log file delivery

* Required field

We enable encryption, then enter a name for the new KMS key. After approximately 15 minutes,
we should see events appearing under the API activity history dashboard tab:

| API activity history
Trails

API activity history

The following list includes the lest T days of AP activity for supported services, The list only includes AP| activity for create, modify, and delete AP| calis,
d For read-only AP activity, go 1o your Amazon S3 bucket or CloudWatch Logs.

You can filter the list using the available attributes, and you can choose an evant 1o Ses mone datail about the event. Leam morne.

[|

Filter: Select atiribute Enter ok vakas Time range: Salect time range th

Event time User name Event name Resource type RAesource name
¥ 2016-11-08, 08:16:03 .., wesalin UpdateTra CloudTrail Trail and 2 ... teat_trail and 3 mone
¥ 2016-11-08, 08:16:02 .., wesalin PutBuckatPolicy 53 Buckeat cloudtrail-mmdiwp
1] 2018-11-0B8, 09:16:21 .., wiselin LipdateTrad CloudTrad Trail and 2 .., arm:aws:clouckfralbus-e, |
k 20 6-11-08, 09:15:20 ... wasalin PutBucketPolicy 53 Buchet cloudtrail-xmdjwg
b 2016-11-08, 091307 ... wasalin CreataTrail CloudTrail Trail and 1 ... tast_trail and 2 mona
P 2016-11-0D8, 09:13:07 ... wasalin StartLogging CloudTrall Trall test_trail
k 2016-11-08, 09:13:07 ... wasalin PutBuckatPolicy 53 Buchet cloudtrall-smdjwp
» 2016-11-06, 08:13:06 ... wesslin CreateBucket 53 Buchet cloudtrail-xmdjwp
¥ 2016-11-0DB, 08:08:53 ., wesalin Consaolelogin

Expanding any of these entries would provide additional information such as the access_key
used for the given API call and source IP.

In the S3 bucket we would find two subfolders: CloudTrail which holds the API logs and
CloudTrail-Digest for the file hashes.

Trusted Advisor

The Advisor is enabled by default and periodically reviews your AWS account in order to
identify any risk or areas of improvement.

It provides insights about cost, performance, security and HA as seen on the dashboard:

Dt Trusted Advisor Dashboard - &0
Cost Optimization
Performance Cost Optimization Parformance Sacurity Fault Tolerance
Security ' |
Fault Tolerance @ a “
Preferences J
08 0A 00 18 0A 00 38 0A 00 0 0A 00O

We are mainly interested in the security tips at this time:

Dashboard

Security - L0
Cist Optimization "
Performanca
| N
n 38 0A 00
Fault Tolarance
Prefarences
SECL.II‘H'_&" Checks
3 1AM Use Provious stan: Grean. | o

Checks for your use of AWS Identity and Access Managemant [LAM)

At least one LAM user has been created for this acoount,

Reaimsfvd. & minute ago -
2 MFA on Root Aocount Provious sials: Grean L2 C

Chechs the rool accownt and warns # multi-tactor authentication (MFA) is not enabled,

MFA is enablad on the oot account.

: . . Rgfmshod: 8 minute ago
b Security Groups - Specific Ports Unrestricted Pravious siahss, Grean X

Chechs sacurity groups for rules that allow unrestricted accass (0.0.0.0/0) 1o specific ports.

0 of D security group rules allow unrestricled access 1o a spacific por.

Things appear to be green, following the steps we took to secure the root account earlier in the
chapter.

In addition to this view, weekly e-mail reports can be configured under the Preferences tab.

AWS Config

With Config we can track, inspect, and alert on resource changes that have occurred within our
deployment.

When first enabled, the service performs an inventory of the resources found within the region
and starts recording any changes.

Once a resource change is detected, for example a new rule is added to a security group, Config
allows us to view a timeline with details about the current and any previous changes to that
resource.

Another powerful feature is change inspection. Within Config we can define a set of rules to be
evaluated against each resource change and alerts generated where necessary.

Let us try both use-cases.

Click on Get Started on the Config dashboard, then choose a Bucket name and a Role name:

All resources « FRecord all resources supported in this region

Include global resources (e.g., AWS [AM resources) €

5 ific es
| step 1: Settings e

Amazon S3 bucket*

Your bucket receives configuration history and configuration snapshot files, which contain details for th

® Create a bucket
Choose a bucket from your account

Choose a bucket from another account @

Bucket name* | config-buckat-hxneud| ! !

Amazon SNS topic
Streamn configuration changes and notifications to an Amazon SNS topic.

AWS Config role®

Grant AWS Config read-only access to your AWS resources so that it can record configuration informa
informaticn to Amazon 53 and Amazon SNS.

® Create a role

Choose a role from your account

Role nama* config-role-us-aast-1

One the next page we can choose a few rules to get us started:

AWS Config rules Q

o4 Sat
Stop 1: Setlings AWS Config can check the configuration of your resounces againal rikes thal vou define. Chosas ane of mam of the following rules 1o ged glarted. Afer satting up

) AWS Config, you can customize these rules, set up ather rules provided by AWS Config, or create your own nuies
| Step 2: AWS Config rules .y kil

Leam mare about AWS Config rnules and pricng details

53-buckat-versaoning-enabled cloudtrad-enablad sip-atiachad
Chechks whether versioning is enabled for Checks whether AWS CloudTral is enabled Checis whether all EFP addresses allocabed
your 53 buckats i your AWS account 1o & VPG are aftached to EGE instances or
ri-uss EMIS.

Add « Add Agid
ancrypted-volumes root-account-mfa-enabled
Chechs whether ERS wolumes that are in an Chechs whather the oot user af your AWS
afteched state am encrypited SR MRS multi-tactor suthentication

for cormala Sgn-in.

« Add & Add

We have chosen to monitor CloudTrail, EBS volumes and MFA settings. Finalize the setup and go
back to the Rules tab in the dashboard where we can add some more.

Note
Please note that at the time of writing, there is a cost of $2 per active rule per month.

Click on Add rule and look for the restricted-ssh rule which will monitor security groups for
open SSH access. With the new rule in place, we can make a few resource changes and see how
Config reacts to these. As an example, disable CloudTrail and create a temporary security group
which allows incoming SSH from anywhere.

After a short while we can see the effect on the AWS Config dashboard:

Rules Status @

4 Aules represant your desired configuration satlings. AWS Config evaluates whether your resourca configurations comply with relevant rules and summarnizes the
Settings results in the fallowing table

© Add rule =

FRula narma - Compliance - Ediit rule
cloudbrail-enabled 1 noncorngdiant resouwce(s) f
resstrictnd-ssh 1 noncompliant resource(s) rFa
root-account-mis-anablad Compliart f‘
ancryplad-volimes B FESSDLINCES N SCODE ,

We can click on the restricted-ssh entry for more details. Locate the noncompliant entry in the list
and click the AWS Config timeline icon:

EC2 SecurityGroup sg-946652ee Manage resources @
on November 09, 2016 10:05:01 PM GMT (UTC+00:00)
th
09 Nzt || 09 Rovusi 078 o
9:15:53 PM 10:05:01 PM | E
I ""'ar-qva

We can see the two recorded states of the resource. Clicking on the Change shows us what has
happened:

v Changes o

Configuration Changes o
Field From To
Configuration.lpPermissions.0 ¥ Object

ipProtocol: "tcp"

fromPort: 22

toPort: 22

¥ userldGroupPairs: Array [0]
[]

¥ ipRanges: Array [1]
0: "0.0.0.0/0"

¥ prefixlListIds: Array [0]
[]

Here we see the reason why our security group resource has been flagged as noncompliant.

In addition to the AWS-provided Config rules, you could write your own in the form of Lambda

functions (ref: http://docs.aws.amazon.com/config/latest/developerguide/evaluate-
config develop-rules.html).

http://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules.html

Self pen testing

Here we examine self pen testing as an inexpensive alternative or as a preparation step prior to
you hiring a third party for the official test (considering that each penetration testing iteration is
usually chargeable).

The goal is a system which allows for on-demand and/or regular vulnerability scanning against
our VPC deployment both internally and externally.

Two community projects that can help us with this task are OpenVAS (ref:
http://www.openvas.org) and OpenSCAP (ref: https://www.open-scap.org).

A relatively easy way of setting up such an automated scanner would be to use a prebaked AMI
and some user data. In essence, you would install either or both of the preceding frameworks on a
vanilla EC2 instance and create an AMI out of it. Then launch a new instance of that AMI
(perhaps per schedule) and, using user data, you would start the scanner, pass it the destination
URI to be scanned, then e-mail any scan reports or save to S3.

Scheduling is achieved using an Auto Scale Group, which simply launches a node, then terminates
it after N hours (however long it takes to perform the scan). Alternatively, you could use
CloudWatch events together with some Lambda functions (ref:

https://aws.amazon.com/premiumsupport/knowledge-center/start-stop-lambda-cloudwatch).
Note

Please note that vulnerability scanning or similar activity needs to be approved by AWS Support
first (ref: https://aws.amazon.com/forms/penetration-testing-request).

Following the advice throughout this chapter is one step towards creating a more secure
environment, but we can by no means consider the job done. It has been said that security is a
process, not a product and as such it should perhaps be a daily task on one's list.

It is recommended that you subscribe to relevant security feeds or mailing lists.

AWS maintains a few of its own:

e https://aws.amazon.com/blogs/security
e https://aws.amazon.comy/security/security-bulletins/
e https://alas.aws.amazon.com/

http://www.openvas.org
https://www.open-scap.org
https://aws.amazon.com/premiumsupport/knowledge-center/start-stop-lambda-cloudwatch
https://aws.amazon.com/forms/penetration-testing-request
https://aws.amazon.com/blogs/security
https://aws.amazon.com/security/security-bulletins/
https://alas.aws.amazon.com/

Summary

In this chapter we covered some ideas on how to improve the overall security of an AWS
account.

We looked at AWS services which can be used for auditing and alerting on suspicious activity
plus open-source tools that can be useful for regular vulnerability scanning.

In the next chapter we will look at a list of popular (and less so) AWS tips and tricks.

Chapter 10. AWS Tips and Tricks

In this chapter, I would like to provide you with a selection of random bits of advice. Some of
them are derived from my own experience with using AWS; others are found in the AWS
whitepapers or related blogs.

Note

A few links on the subject:

https://d0.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://wblinks.com/notes/aws-tips-i-wish-id-known-before-i-started/
https://launchbylunch.comv/posts/2014/Jan/29/aws-tips/

https://d0.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://wblinks.com/notes/aws-tips-i-wish-id-known-before-i-started/
https://launchbylunch.com/posts/2014/Jan/29/aws-tips/

Using VPCs

Apart from the initial, minor setup overhead, it is generally accepted that you are better off
deploying your infrastructure inside a VPC. AWS even provides you one by default and tends to
deploy resources in it unless you ask otherwise. A VPC gives you more flexibility when operating
EC2 instances, better control of your networking, and enhanced security. Also, it is free.

Keep the Main route table as a fallback

If you follow the previous tip, you will notice that a new VPC comes with a route table marked as
Main:

VPC Dashboard Croate Route Table [JTTTTRNE T = 4 @
Fiter by VPC:
wpe-a3T0dced (10.00. § 1 » 119 3 of 3 Route Tables
Mams * Riouts Table D Explicitly Assooial Main = NPC
Your VPCs pirtviate ri-Mald 159 2 Bubnais Mo vpo-a3704cod (10.0.0.016) | best-vpe
Subnats pubiic rib-dosid ba 2 Subnets No vpo-a3704c0d 10000016} | testpe
Poute Tables] ri-cldad el 0 Subnets Yus vpe-a3T et (10,000 0018} | besl-wpe

Iriermet Galeways

DHCP Options Sats

Elastic IPs
Endpaints
MAT Gabmways
rib-cOdedOal _N—N=
Paarirg Conneclions
Surmrnary Routes Subnet Associaticns Routs Propagation Tags

Smcurity Groups Destination Torged Status Propagated

TOCLONM B loeal A Hi

I would recommend that it is left as it is, with a single, local route, and create additional route
tables for any custom routing needs instead.

This way, the main or default route table becomes a sort of a safety net for any subnets that get
created but remain unassociated, be it by mistake or intent.

Staying within the VPC

As tempting as it may be, try to avoid exposing your VPC resources, as this defeats the purpose.
This is to say, instead of assigning public IPs to your EC2 instances, which might give you quick
and easy access, use a designated ssh-gateway host (also known as a bastion or a jump host) to
hop through.

You would assign a public (Elastic) IP only this single machine, ensure its security group is
locked down to the static IPs of your home and/or work place, and use it to connect (say over ssh)
to any other instances within your VPC.

Creating IAM roles in advance

We have already discussed EC2 instance roles as a much better way of providing credentials to
your application.

A good practice is to always create and assign an IAM role to your instances, even if it is not
needed at the time and holds no permissions.

This is because IAM roles can only be assigned when an EC2 instance is being launched.

Groups over users

As you create your first deployment, you might not necessarily have that many users needing
access to your AWS account.

Nevertheless, it is still a good idea to assign permissions to an IAM group and make your IAM
users members of it, as opposed to granting privileges to each user as they come.

In the long term, it is often the case that team members tend to require (reuse) the same list of
permissions.

Knowing the AWS service limits

An AWS account comes with certain limits that can be found in the AWS console:

EC2 Dashboard g P
ECZ Service Limits L]
Events
Tags Amazon EC2 provides differant resources that you can usa, such as instances and volumes, Whan you create your AWS acoount, AWS sais limits for these resowrtes on
a par ion basis. This page lists your EC2 service imits in US East (M, Virgnia],
Ricsivia ey g ¥ g

Instance Limits

nstances

Name Current Limit Action

Spot Requests
Basarvad Instancas Funning On-Demand EC2 instances 1 b Feaquast imil Increass
Scheduled Instances g ¢ e
% - Aurming On-Demand ¢1.medium instancas 20 Request limil incresss
Dadicated Hosts

Aunning On-Demand o1.xlarge instances. x Request limit increase
il Aunning On-Oemand c3. 2xlarge instances o Fipquest imit incronse
Bundie Tasks Running On-Demare &3, 4xkange inatances 1] Risguast imil increass

Aunning On-Demand ¢3.Bxlamge instances 20 Fsgusst imil increass
Viplurnes
Srapshols Aunning On-Demand cl.large instances] Requaest imA incmass

These are meant to protect the customer as well as the provider against any unintentional use. The
following are examples:

¢ A coding error in your CloudFormation template, resulting in an unexpected amount of
storage or other resources being provisioned

e A misconfigured Auto Scaling Group, launching tens or hundreds of instances

e Your user making an API call to request an unusual number of instances

As we can see, the said limits are an overall good idea, most of the time.

If you find yourself in a production environment, getting ready for a major event and the traffic
spike that comes with it, you certainly want to be aware of your current AWS service limits. Most
instance types are initially limited to 20, VPC EIPs to 5, and storage types to 20 TB.

Ideally, you would review these as soon as you get an idea of your expected usage baseline
(allowing for bursting) and contact AWS Support requesting a limit increase where needed.

Pre-warm ELBs if needed

On the subject of traffic spikes, while ELBs are impressively performant, there might be
occasions where you will need to pre-warm them.

As you probably already know, an ELB is a collection of EC2 instances managed by AWS,
running proprietary load balancing software.

An algorithm ensures that the number of ELB EC2 instances grows or shrinks in response to the
traffic pattern of your application. This process of adaptive scaling is done based on averaged
traffic measurements taken over time and as such is not very rapid.

To ensure that this feature does not become a problem, AWS allows you to request an ELB to be
pre-warmed, that is to say, scaled-up ahead of time.

If you are on the premium support plan, you could probably wait until a few hours prior to the
event; otherwise, you should contact the support team sooner to account for the extra response
time.

You will be asked a series of questions relating to the expected requests per second, average
payload size, event duration, and other traffic properties, which will help AWS Support
determine whether pre-warming is necessary at all.

Using termination protection

ECZ Dashboard R Sl
Events \ e
Tags 1, | search : promjecking (7] 1to 1 of 1
FAaports
Limits B Mame Instance 1D Instance Type - Availability Zose - Instance Stale + Siatus Checks - Alaw Slatus
E B ieel-prompning a1 @ siopped None e
Instances
Spot RBequosts Launch Mors Like This
Arserved Instancas iriskaros Stale
Scheduled Instances g Add/Edit Tags

Dedicated Hosts mage 3
Hetwaorking 3 Changa Instance Type

CloudWisich Moribaring ¥
Akt

Burle Tasks

Wi Cearsge Uiser Data
Changs Sruidown Bahavior
Instance: | i-0b:31106aTTefadeel {bast-promjenking Gt System Log _N =

Volumes
Snapshols Description Status Chacks Menitoring Taga

It goes without saying that one should not keep state on machines if it can be helped.

After all, the beauty of AWS is that it allows you to not focus so much on individual instances any
more. It promotes a cluster or service culture where the health of the endpoint is of importance.

For the rare cases where we must have one of those management or similar type of non-
autoscaling node, however, you have nothing but to gain from protecting yourself against
accidentally making the wrong API call or a console click.

Tagging what you can

This sounds like a chore, but it does indeed pay back later. Whether for the much better clarity on

your AWS bill or the extra flexibility you get when managing your resources, tags are always
useful.

Instrument your tools to apply tags whenever an asset is provisioned, then start scanning your
estate regularly for any untagged resources.

Deploying across multiple zones

Unarguably, deploying within the same physical location should yield the lowest latency.

In the majority of use cases however, the added few milliseconds in return for a multiple increase
in resilience are worth it.

Try to span your deployment across two availability zones at least.

Enhancing your ELB health-checks

The stock ELB health checks allow you to check raw TCP responses or go higher in the stack and
look for an HTTP/200 response.

Either is good. A basic check should get you started but as your application and its dependencies
evolve, you might need to enrich your health checks too.

Let us suppose that you were serving a web application that relies on a cache and a database
backend.

If the ELB was checking TcP: 80 then as long as your HTTP daemon is running, it will receive an
OK. If you were checking for an HTTP/200, instead that would verify access to the application's
file(s) on disk but likely not much more.

Instead, you could benefit much more from pointing the ELB at a dedicated health check endpoint
within your application, which verifies all its dependencies (disk: OK, cache: OK, db: OK)
before returning a green light. But beware of impacting the overall application performance: the
more frequently the health check is called, the more lightweight it ought to be.

Offloading SSL onto the ELB

AWS now issues free SSL certificates as part of the Certificate Manager service which also
takes care of renewals. This seems like a pretty good reason on its own.

Managing certificates on the ELB itself is much more convenient in comparison to doing the same
across a number of EC2 backend instances. Also, there must be at least a small amount of CPU
performance to be gained by delegating the SSL operations.

EIP versus public IP

A few points about the two types, in case you have not used these much.

Public IPs:

* You choose whether an instance should have a public IP at the time you are launching it
e The address will persist across reboots but not a stop/start
o These come at no extra cost

Elastic IPs:

You can associate/disassociate an EIP with an instance at any time after it has been launched
An EIP remains associated across reboots or start/stop operations

EIPs incur cost (when kept unused)

EIPs can be migrated between EC2 instances

In light of the IPv4 deficit we are facing today, AWS is cleverly trying to incentivize sensible
provisioning by charging for any dormant EIP resources.

Tip

Be a gentleman/lady and release your IPs when you are done with them.

Mind the full-hour billing

It is great that AWS allows you to pay-for-what-you-use and as-you-go. Something to keep in
mind, however, is that AWS meters usage in hourly increments.

So, say you were running a number of batch jobs, launching and terminating an instance every 10
minutes. After an hour and 10 minutes, you would have launched and terminated six instances (6x
smallest increment of 1h) resulting in 6 hours of billable usage despite the fact the neither of them
lasted more than 10 minutes.

At any rate, to avoid surprises, it is highly recommended you to set up billing alerts. These are
simple CloudWatch alarms which can notify you when your estimated bill has reached a
threshold.

Using Route53 ALIAS records

This is a special in-house type of DNS record specific to the Route53 service.
For an AWS user an Alias record is a great alternative to a CNAME (for supported resources).

Some of the main advantages are:

e Aliases resolve directly to an IP address, saving the extra lookup which a CNAME would
require

e Alias records are supported at the zone apex, so you could create an alias which uses the top
of a domain (for example mydomain. com)

e Alias records allow advanced Route53 features such as weighted/latency/geo routing and
failovers

e There is no AWS cost associated with Alias lookups

Note

NB: A Route53 Alias record can currently only point to a limited set of AWS resources. For more

information please see: http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-
record-sets-choosing-alias-non-alias.html

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html

The S3 bucket namespace is global

This means that if you get a name conflict when creating a bucket, it is likely because somebody
else in the AWS universe has beaten you to it.

Devise a naming schema that offers some uniqueness; perhaps, use your organization's name or a
random prefix/suffix to the bucket name.

S3 bucket deletion tends to propagate slowly. Pay attention to the region in which you are creating
your bucket. If you get it wrong, you will need to delete then wait for 20-30 minutes in my
experience before you can recreate it in the right place.

- versus . in the S3 bucket name

It seems that there is often the question of whether one should name buckets as images-example-
com Or images.example.com.

Two things to consider are:

e Would you like to use S3 over HTTPS?
e Would you like to use a custom domain name instead of the default S3 bucket URL?

Strictly speaking, buckets with dots in the name will show an SSL mismatch warning when you
address them over HTTPS using the default bucket URL

This is due to the fact that S3 operates on the .amazonaws.com domain, and any extra dots will
make it seem as if a bucket is a subdomain (not covered by the SSL certificate).

On the other hand, you have to use dots if you want to have a custom domain (CNAME) pointed at
your bucket. That is to say, the bucket name has to match the said custom URL in order for S3's
virtual-host style service to work.

For example, we call our bucket images.example.com and add a DNS record of
images.example.com CNAME images.example.com.s3.amazonaws.com.

S3 would then forward incoming request to any bucket with a name matching the host in the HTTP

headers (refer to http://docs.aws.amazon.comy AmazonS3/latest/dev/VirtualHosting.html).

So, it would seem that based on the name we chose, we can use either one of the features or the
other (HTTPS vs CNAME). But there is a solution to this dilemma: CloudFront.

Placing a CloudFront distribution in front of our bucket allows a custom domain, plus a custom
SSL certificate, to be specified.

http://docs.aws.amazon.com/AmazonS3/latest/dev/VirtualHosting.html

Randomizing S3 filenames

An important fact is that S3 takes filenames (object keys) into consideration when distributing
data. You are likely to get better performance when your content does not use a sequential naming
convention. For more details on the distribution mechanism please refer to

http://docs.aws.amazon.com/ AmazonS3/latest/dev/request-rate-perf-considerations.html

http://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-considerations.html

Initializing (pre-warm) EBS volumes

It used to be the case that all EBS storage was meant to be initialized to avoid the first-time-
access penalty, which becomes a noticeable overhead as you start dealing with larger and larger
volumes. Nowadays, the situation has improved as new volumes need no pre-warming (ref:
http://docs.aws.amazon.com/ AWSEC2/1atest/UserGuide/ebs-initialize.html); however, one
should still consider the added delay to the boot process (if the volume is needed at boot time)
against any potential performance gains.

For very large volumes, initialization might be prohibitive, but in any other case, it is certainly
worth doing. Or if you run your own database servers on EC2, then you should definitely consider
pre-warming volumes regardless of size.

You could use the suggested command-line steps to measure time spent performing this type of

optimization (refer to http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-
initialize.html).

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-initialize.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-initialize.html

Summary

In this chapter, we looked at some tips, tricks, facts, and general information, which are useful to
keep in mind when using AWS.

This is naturally just a small selection of such public secrets, and if you are also excited about the
peculiarities of the AWS environment plus the creative hacks that users come up with to work

around them — I would recommend you to check out https://aws.amazon.com/blogs/aws/.

https://aws.amazon.com/blogs/aws/

	Implementing DevOps on AWS
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. What is DevOps and Should You Care?
	What is DevOps?
	A common goal
	Shared knowledge (no silos)
	Trust and shared responsibility
	Respect
	Automation
	Reproducible infrastructure
	Metrics and monitoring
	Continuous Integration, Delivery, and Deployment
	Embracing failure
	Should you care
	Is this the right time?
	Will it work?
	Is it worth it?
	Do you need it?
	Summary
	2. Start Treating Your Infrastructure as Code
	IaC using Terraform
	Configuration
	Template design
	Resources
	Variables
	Outputs
	Operations
	Validation
	Dry-run
	Deployment
	Updates
	Removal
	IaC using CloudFormation
	Configuration
	Template design
	Parameters
	Resources
	Outputs
	Operations
	Template validation
	Deploying a Stack
	Updating a stack
	Deleting a stack
	Summary
	3. Bringing Your Infrastructure Under Configuration Management
	Introduction to SaltStack
	Preparation
	Writing Configuration Management code
	States
	Pillars
	Grains
	Top files
	Bootstrapping nodes under Configuration Management (end-to-end IaC)
	Summary
	4. Build, Test, and Release Faster with Continuous Integration
	Prepare IaC
	Terraform templates
	Variables
	Variables (values)
	Resources
	Create the VPC
	Add networking components
	Add EC2 node and related resources
	Outputs
	SaltStack code
	States
	Pillars
	Minion configuration
	Deploy IaC
	Setup CI
	Jenkins initialization
	Writing a demo app
	Defining the pipeline
	Setting up the pipeline
	Summary
	5. Ever-Ready to Deploy Using Continuous Delivery
	Preparing Terraform templates
	Resources
	Variables
	Variables (values)
	Outputs
	Prepareing Salt code
	States
	top.sls
	jenkins
	nginx
	Pillars
	Minion configuration
	Preparing Jenkins code
	Packer
	demo-app.json
	demo-app_vars.json
	demo-app_userdata.sh
	Serverspec
	spec/localhost/demo-app_spec.rb
	demo-app
	demo-app-cdelivery
	Preparing CodeCommit repositories
	Deploy Terraform templates
	Initializing Jenkins
	Configuring Jenkins jobs
	demo-app pipeline
	demo-app-cdelivery pipeline
	Summary
	6. Continuous Deployment - A Fully Automated Workflow
	Terraform code (resources.tf)
	outputs.tf
	Deployment
	Jenkins pipelines
	Continuous Deployment pipeline
	cdeployment.sh
	Summary
	7. Metrics, Log Collection, and Monitoring
	Centralized logging
	Ingesting and storing logs with Logstash and Elasticsearch
	Collecting logs with Elasticsearch Filebeat
	Visualizing logs with Kibana
	Metrics
	Ingesting and storing metrics with Prometheus
	Gathering OS and application metrics with Telegraf
	Visualizing metrics with Grafana
	Monitoring
	Alerting with Prometheus
	Self-remediation with Prometheus and Jenkins
	Summary
	8. Optimize for Scale and Cost
	Architectural considerations
	The VPC
	CIDR
	Subnets and Availability Zones
	VPC limits
	The frontend layer
	The backend layer
	The object storage layer
	The load balancing layer
	Cross-zone load balancing
	ELB pre-warming
	The CDN layer
	Spot instances
	AWS Calculators
	Summary
	9. Secure Your AWS Environment
	Managing access using IAM
	Securing the root account
	VPC security
	Security Groups
	Network ACLs
	VPN gateway
	VPC peering
	EC2 security
	IAM Roles
	SSH access
	Individual keys
	Entrypoint
	ELBs everywhere
	HTTPS by default
	Encrypted storage
	EBS volumes
	S3 objects
	OS updates
	Security auditing
	VPC Flow Logs
	CloudTrail
	Trusted Advisor
	AWS Config
	Self pen testing
	Summary
	10. AWS Tips and Tricks
	Using VPCs
	Keep the Main route table as a fallback
	Staying within the VPC
	Creating IAM roles in advance
	Groups over users
	Knowing the AWS service limits
	Pre-warm ELBs if needed
	Using termination protection
	Tagging what you can
	Deploying across multiple zones
	Enhancing your ELB health-checks
	Offloading SSL onto the ELB
	EIP versus public IP
	Mind the full-hour billing
	Using Route53 ALIAS records
	The S3 bucket namespace is global
	- versus . in the S3 bucket name
	Randomizing S3 filenames
	Initializing (pre-warm) EBS volumes
	Summary

