
Introduction to

Docker & Docker Swarm

Vikram
IoT Application Dev

github.com/kunchalavikram1427

Kubernetes

https://www.edureka.co/blog/kubernetes-architecture/

The past and the present of Apps Deployment

github.com/kunchalavikram1427

Monolithic Architecture

github.com/kunchalavikram1427

Monolithic Architecture

• Different dependency
requirements for each service

• Long setup times
• Different Dev/Test/Prod

environments

Docker free course | KodeKloud.com

Monolithic Applications

https://www.systango.com/blog/what-should-a-startup-choose-monolith-or-microservices-architecture/

Pros
• Simple to develop
• Simple to deploy – one binary
• Easy Debugging & Error tracing
• Simple to test
• Less Costly

Cons
• Difficult to understand and modify
• Tightly coupled
• Higher start-up and load times
• Redeploy the entire application on each update, and

also continuous deployment is difficult
• Less reliable: A single bug can bring down the entire

application.
• Scaling the application is difficult
• Difficult to adopt new and advanced technology:

Since changes in frameworks or languages will
affect an entire application

• Changes are one section of the code can cause an
unanticipated impact on the rest of the code

github.com/kunchalavikram1427

Microservices Architecture

github.com/kunchalavikram1427

Microservices on VMs

Hypervisor
• A hypervisor is software that creates and runs virtual

machines (VMs) also known as guests.
• It isolates the hypervisor operating system and resources

from the virtual machines and enables the creation and
management of those VMs.

• The hypervisor treats host resources—like CPU, memory,
and storage—as a pool that can be easily reallocated
between existing guests or to new virtual machines.

• Generally, there are two types of hypervisors.
Type 1 hypervisors, called “bare metal,” run directly on the
host’s hardware. Ex: Microsoft Hyper-V or VMware ESXi
hypervisor
Type 2 hypervisors, called “hosted,” run as a software layer
on an operating system. Ex: VirtualBox, VMware Player

github.com/kunchalavikram1427

Microservices on VMs

• Run each service with its own dependencies in separate
VMs

• Each VM has its own underlying OS and hosts a
Microservice

• Strong isolation and resource control between other VMs
and host

• Each VM can have its own dependencies and libraries for
the services. So different services across VMs can have
different versions of same dependency

• Matrix from hell problem is no more

github.com/kunchalavikram1427

Microservices based Applications

Pros
• Decoupled
• Ensures continuous delivery and

deployment of large, complex
applications.

• Better testing — since services are
smaller and faster to test.

• Better deployments — each service
can be deployed independently.

• No long-term commitment to
technology – when developing a
new service, you can start with a
new technology stack.

Cons
• Slow bootup times of VMs
• Increased memory consumption
• Large OS footprint
• Initial Costs are very High and this type of

architecture demands for proficiency in the skills of
the developers.

• Testing is difficult and time-consuming because
there is an additional complexity involved because
of the distributed system.

• Deployment Complexity – there is added
operational complexity of deploying and managing
a system that contains various service types.

github.com/kunchalavikram1427

Docker Containers

github.com/kunchalavikram1427

Docker

Before Docker
A developer sends code to a tester but it doesn’t run on the tester’s system due to
various dependency issues, however it works fine on the developer’s end.

After Docker
As the tester and developer now have the same system running on Docker
container, they both are able to run the application in the Docker environment
without having to face differences in dependencies issue as before.

Dev: It works fine in my system!
Tester: It doesn’t work in my system

github.com/kunchalavikram1427

github.com/kunchalavikram1427

github.com/kunchalavikram1427

Docker

Docker is a software development tool and a virtualization technology that makes it
easy to develop, deploy, and manage applications by using containers.

Container refers to a lightweight, stand-alone, executable package of a piece of
software that contains all the libraries, configuration files, dependencies, and other
necessary parts to operate the application.

Ex: Ubuntu + Python + Dependencies

Ubuntu Base Image

Dependencies

Application

github.com/kunchalavikram1427

VMs vs Docker Containers

github.com/kunchalavikram1427

VMs vs Docker Containers

Virtual Machine Docker Container

Hardware-level process isolation OS level process isolation

Each VM has a separate OS Each container can share OS

Boots in minutes Boots in seconds

VMs are of few GBs Containers are lightweight (KBs/MBs)

Ready-made VMs are difficult to find Pre-built docker containers are easily available

VMs can move to new host easily
Containers are destroyed and re-created
rather than moving

Creating VM takes a relatively longer time Containers can be created in seconds

More resource usage Less resource usage

github.com/kunchalavikram1427

Docker Architecture

• Docker uses a client-server architecture.
• Docker client talks to the Docker daemon,

which does the heavy lifting of building,
running, and distributing your Docker
containers.

• Docker client and daemon can run on the
same system, or you can connect a Docker
client to a remote Docker daemon.

• For a virtual communication between CLI
client and Docker daemon, a REST API is used

github.com/kunchalavikram1427

Docker Architecture

github.com/kunchalavikram1427

Docker Installation

• Docker for Windows: Win10 Pro/Ent only
Uses Hyper-V with tiny Linux VM for Linux
Containers

• Docker Toolbox: Win7/8/8.1 or Win10 Home
Runs a tiny Linux VM in VirtualBox

• Docker for MAC
• Docker for Linux

https://docs.docker.com/get-docker/

Online Emulator: https://labs.play-with-docker.com/

github.com/kunchalavikram1427

Docker basic commands

docker version

github.com/kunchalavikram1427

Docker basic commands

docker info

github.com/kunchalavikram1427

Docker Images & Containers

• Docker Image: Docker image can be compared to a template that is used to
create Docker containers. These are read-only templates that contains application
binaries and dependencies. Docker images are stored in the Docker Registry.

• Docker Container: Docker container is a running instance of a Docker image as
they hold the entire package needed to run the application.

Ubuntu Base Image

Dependencies

Application

Docker Image

Run

Container

github.com/kunchalavikram1427

Docker Images & Containers

• We can run any number of containers based out of an image and Docker makes
sure that each container created has a unique name in the namespace.

• Docker image is a read-only template. Changes made in containers won’t be
saved to the image by default

Docker Image

Container 01

Container 02

Container 03

github.com/kunchalavikram1427

Docker Images & Containers

Containers run each service
with its own dependencies in
separate containers

github.com/kunchalavikram1427

Union File System

• A docker image is a read-only template for creating
containers.

• Changes made to the file system inside the running
container won’t be directly saved on to the image.

• Instead , if a container needs to change a file from the
read-only image that provides its filesystem, it copies
the file up to its own private read-write layer before
making the change

• This is called copy-on-write (COW) mechanism.
• These new or modified files and directories are

'committed' as a new layer.
• docker history command shows all these layers.

github.com/kunchalavikram1427

Docker Registry

• Docker registry is a storage and distribution system for Docker images.
• It is organized into Docker repositories , where a repository holds all the versions

of a specific image.
• By default, the Docker engine interacts with DockerHub , Docker's public

registry instance.
• However, it is possible to run on-premise private repositories

Ex: Harbor

Some Cloud Provider repos
▪ Amazon Elastic Container Registry
▪ Google Container Registry
▪ Azure Container Registry

github.com/kunchalavikram1427

Docker Registry

• https://hub.docker.com/

github.com/kunchalavikram1427

Docker Registry

docker pull ubuntu:19.10

Image name: username/image-name

github.com/kunchalavikram1427

Docker pull

• By default, docker pull will pull an image from docker hub. If you need to pull
from a private repo, use repo URL
docker pull myregistry.local:5000/testing/test-image

docker pull ubuntu

root@k-master:/home/osboxes# docker pull ubuntu
Using default tag: latest
latest: Pulling from library/ubuntu
d51af753c3d3: Pull complete
fc878cd0a91c: Pull complete
6154df8ff988: Pull complete
fee5db0ff82f: Pull complete
Digest:
sha256:747d2dbbaaee995098c9792d99bd333c6783ce56150d1b11e3
33bbceed5c54d7
Status: Downloaded newer image for ubuntu:latest

github.com/kunchalavikram1427

Docker pull

• docker images

github.com/kunchalavikram1427

Docker home directory

/var/lib/docker

docker stores all the images, containers, volumes, networks information in it’s default home
directory github.com/kunchalavikram1427

Docker basic commands

Format: docker <command> <sub-command>

docker help

docker image ls

github.com/kunchalavikram1427

Docker basic commands

docker <command> <sub-command>

docker image --help

docker image ls

github.com/kunchalavikram1427

Docker Container basics

docker container run nginx

What happens in 'docker container run'
1. Docker looks for that image locally in image cache
2. If it doesn't find anything, it looks in remote image repository
3. Downloads the latest version (nginx:latest by default)
4. Creates new container based on that image and prepares to start
5. Container gets attached to a network and gets a virtual IP

inside the private network, typically default bridge network
6. Opens up ports to serve the requests
7. Starts process mentioned in the CMD of image’s Dockerfile

NGINX is open source software for web serving, reverse proxying, caching, load balancing, media streaming, and
more

Running a container

github.com/kunchalavikram1427

Docker Container basics

docker run nginx

• When we run nginx, a container is created and it runs in the foreground
and terminal is attached to its process

• When we exit out of the terminal, the container will be killed
• To avoid this we need to run the container in detached(background) mode

using --detach
docker run --detach nginx

Container

Docker host

github.com/kunchalavikram1427

Docker Container basics

docker ps list all running containers

docker ps –a list all running and exited containers
docker container inspect <container-id> - gives the config and meta data
used to start this container; returns JSON array

github.com/kunchalavikram1427

Docker Container basics

• curl <ip-of-container>

Container

Docker host/VM

172.17.0.2

192.168.0.3

80

You can also find IP by running below command
root@docker-master:/home/osboxes# docker container inspect --format '{{.NetworkSettings.IPAddress}}’ fe559
172.17.0.2

github.com/kunchalavikram1427

Docker Container basics: Port Mapping

• curl <ip-of-container>

Container

Docker host/VM

172.17.0.2

192.168.0.3

80

8080

docker run –detach –p 8080:80 nginx

github.com/kunchalavikram1427

Docker Container

Container

Docker host/VM

172.17.0.2

192.168.0.3

80

8080

• Naming a container: docker run --detach –p 8080:80 --name webhost nginx
• Stop a container: docker container stop <unique container id>
• Start a stopped container: docker start < unique container id>
• Kill a container: docker container kill <unique container id>
• Logs: docker container logs <container name>

docker container logs -f <container name>
• Remove a container: docker container rm <container name>
• Lists specific processes in a specific container

docker top <container>
• Get CPU, Mem usage of the container

docker container stats <container>

github.com/kunchalavikram1427

Docker Container: Getting shell access

Container

Docker host/VM

172.17.0.2

192.168.0.3

• Start new container interactively: Getting container’s shell access
docker container run -it <container-name> bash
docker container run -it --name ubuntu bash

-i : interactive or STD_IN
-t : terminal or STD_OUT

github.com/kunchalavikram1427

Docker Container: Getting shell access

Container

Docker host/VM

172.17.0.2

192.168.0.3

Importance of -i -t flags

Any image that has shell as its starting process expects a terminal(-t)
and standard input(-i) to be attached when starting the container.
If the container doesn’t find the terminal, it simply exits.

github.com/kunchalavikram1427

Docker Container: Getting shell access

Container

Docker host/VM

172.17.0.2

192.168.0.3

• Containers are not full fledged operating systems
• They are meant to run a specific process/application
• Containers run as long as process inside them is alive. When process

completes, the container simply exits

• Ubuntu runs bash as the starting process. When bash process is terminated,
the container gets terminated.

docker image inspect ubuntu

Use image inspect to find default CMD of the image

github.com/kunchalavikram1427

Docker Container

Container

Docker host/VM

172.17.0.2

192.168.0.3

• Use exec to interact with a running container
docker run -it -d --name centos centos
docker exec -it centos bash

Interacting with the running container

Commit changes in container to a image

• By default changes made to container are
lost once container is deleted, to preserve the
changes, commit to an image
docker commit <container-id> <new-image-name>

github.com/kunchalavikram1427

Docker Networking

• Docker gives 3 default networks: bridge, none and host
• When you start Docker, a default bridge network (also called bridge) is

created automatically, and newly-started containers connect to it unless
otherwise specified.

docker network ls

docker network inspect bridge

github.com/kunchalavikram1427

Docker Networking: Bridge

• In Bridge network, all containers get private internal IPs
and they are isolated from host.

• Port forwarding forwards outside traffic to the containers.
• Containers on the default bridge network can only access

each other by IP addresses, unless you use the --link
option, which is considered legacy.

• You can also create user-defined custom bridge network
• User-defined bridge networks are superior to the default

bridge network.
• On a user-defined bridge network, containers can resolve

each other by name or alias(DNS)

Create a bridge network: docker network create --driver bridge my-net
Attach a container to it: docker run -d --name web --net my-net nginx

github.com/kunchalavikram1427

Docker Networking: Bridge
Understanding DNS resolution in bridge network

• When containers are run in default bridge network they cannot find
each other using their container names.

• Simply put, DNS resolution through container names will not work
under default bridge network

In the below example, 2 containers are created under the default bridge network
Note that ping to second container from the first container using the second container’s name didn’t resolve(DNS server is not
available under default bridge network)

github.com/kunchalavikram1427

Docker Networking: Bridge
Understanding DNS resolution in bridge network

• Now a new bridge network is created and containers are attached to
that network.

• In this case, containers find each other using their container
names(DNS resolution through container names)

github.com/kunchalavikram1427

Docker Networking: Port Mapping

Port forwarding enables access to
applications running inside containers from
outside world

192.168.0.3

192.168.0.3:80

docker run –p 80:5000 nginx
docker run –p 8000:5000 nginx
docker run –p 8001:5000 nginx
docker run –p 3306:3306 mysql
docker run –p 8306:3306 mysql
docker run -p 8306:3306 mysql

Port is already allocated

github.com/kunchalavikram1427

Docker Networking: Host

• In host network, all containers directly get connected to
host.

• Multiple containers cannot run on same hosts because of
port conflicts on host side

docker run -d --name web -net host nginx

192.168.0.101

80 80

github.com/kunchalavikram1427

Docker Networking: None

• This offers a container-specific network stack that lacks a
network interface.

• Containers run in pure isolation
• This container only has a local loopback interface (i.e., no

external network interface)

docker run -d --name web --net none nginx

github.com/kunchalavikram1427

Docker Networking: Overlay

• Bridge networks apply to containers running on the same Docker daemon
host. For communication among containers running on different Docker
daemon hosts, we should use an overlay network which spans across the
entire cluster

github.com/kunchalavikram1427

Docker Volumes

• Images are a series of read-only layers
• A container is merely an instantiation of those read-only layers with a single read-write

layer on top.
• Any file changes that are made within a container are reflected as a copy of modified

data from the read-only layer.
• The version in the read-write layer hides the underlying file

but does not remove it.
• When deleting a container, the read-write layer

containing the changes are destroyed and gone forever!
• In order to persist these changes we use docker volumes
Advantages:
1. To keep data around when a container is removed
2. To share data between the host filesystem

and the Docker container
github.com/kunchalavikram1427

Docker Volumes

Two types of volume mounts: Named and Bind

Named Volume: Mounting a volume created using ‘docker volume create’
command and mounting it from default volume location /var/lib/docker/volumes
docker volume create my-vol
docker run -d --name nginx -v myvol:/app nginx
docker run -d --name nginx --mount source=myvol2,target=/app nginx

Container

Docker host
/var/lib/docker/volumes/myvol

/app

github.com/kunchalavikram1427

Docker Volumes

Two types of volume mounts: Named and Bind

Bind Volume: External mounting(external hard disks etc.)
Bind mounts may be stored anywhere on the host system. They usually start with
‘/’
docker run –name web -v /root/html:/var/www/html/ nginx

Container

Docker host
/root/html

/var/www/html

github.com/kunchalavikram1427

Docker volumes commands

docker volume create <volume_name>
docker volume ls
docker volume inspect <volume_name>
docker volume rm <volume_name>
docker volume prune

Named Volume Bind Volume
github.com/kunchalavikram1427

Docker Volumes

Demo: Hosting a static website using nginx

docker run -d --name web –p 80:80 nginx

docker exec -it web bash
root@768faf801706:/# ls /usr/share/nginx/html
50x.html index.html

docker run -d --name web -p 80:80 -v $PWD:/usr/share/nginx/html nginx

Container

Docker host
$PWD/index.html

/usr/share/nginx/html

github.com/kunchalavikram1427

Building Images

• Hosting a static website was easier as base image nginx has all dependencies to host.
• What if we are required to host an application which requires lot of dependencies

which base image do not provide? We build the image!!!

docker run –it --name my-app ubuntu bash
root@beb164a51e6a:/# apt update
root@beb164a51e6a:/# apt install python
root@beb164a51e6a:/# pip install flask
root@beb164a51e6a:/# exit

Let’s say a flask application has to be built

apt update

apt install python

pip install flask

app.py

docker commit my-app my-flask-app

container-name image-name

github.com/kunchalavikram1427

Dockerfile

• Dockerfile is essentially the build instructions to build your image
• It is a text document that contains all the commands a user could call on the

command line to assemble the image
• Using docker build users can create an automated build that executes several

command-line instructions in succession

Name of the file is Dockerfile without any extensions

github.com/kunchalavikram1427

Dockerfile contents

• FROM defines the base image used to start the build process
• MAINTAINER defines a full name and email address of the image creator
• COPY copies one or more files from the Docker host into the Docker image
• EXPOSE exposes a specific port to enable networking between the container and the outside

world
• RUN runs commands while image is being built from the dockerfile and saves result as a new

layer
• VOLUME is used to enable access from the container to a directory on the host machine
• WORKDIR used to set default working directory for the container
• CMD command that runs when the container starts
• ENTRYPOINT command that runs when the container starts

http://tutorials.jenkov.com/docker/dockerfile.html
github.com/kunchalavikram1427

Dockerfile

FROM python:alpine3.7
COPY . /app
WORKDIR /app
RUN pip install flask
EXPOSE 5000
CMD python ./app.py

Dockerfile
app.py

flask_app

Build the image:

docker build -t flaskapp .
(make sure you are in the directory of docker file and Dockerfile has no name
extensions)
-t – Tag the image with a name
. – Dot indicates look for Dockerfile from PWD/Present Working Directory

FROM ubuntu
RUN apt-get update
RUN apt-get install -y python python-pip wget
RUN pip install Flask
COPY app.py /home/app.py
WORKDIR /home
CMD python app.py

(or)

Source:
https://github.com/kunchalavikram1427/Docker_public/tree/
master/Examples/Dockerfile-flask

github.com/kunchalavikram1427

Dockerfile

FROM python:alpine3.7
COPY . /app
WORKDIR /app
RUN pip install flask
EXPOSE 5000
CMD python ./app.py

docker run -d --name flask -p 80:5000 flaskapp

docker images

Flask listens on port 5000 by default. You can also configure it to a different port
github.com/kunchalavikram1427

Dockerfile
Demo: Building a single landing page dynamic website using flask

FROM python:alpine3.7
COPY . /app
WORKDIR /app
RUN pip install flask
EXPOSE 5000
CMD python ./appv3.py

import socket
from flask import Flask,request, render_template

def getIP():
hostname = socket.gethostname()
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(("8.8.8.8", 80))
ip = s.getsockname()[0]
print(ip)
s.close()
return str(hostname),str(ip)

app = Flask(__name__)
@app.route("/")
def hello():

hostname,ip = getIP()
return render_template('index.html',hostname=hostname,ip=ip)

if __name__ == "__main__":
app.run(host="0.0.0.0", port=int("5000"), debug=True)

Dockerfile

ap
pv

3
.p

y

Source:
https://github.com/kunchalavikram1
427/Docker_public/tree/master/Exa
mples/Dockerfile-flask-example

Dockerfile
appv3.py
static/image.jpg
templates/index.html

flask_app

We will pass these
variables to index.html file

index.html file should in
templates directory and image
should be in static directory

github.com/kunchalavikram1427

Dockerfile
Demo: Building a single landing page dynamic website using flask

<!DOCTYPE html>
<html>
<title>Smart City</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://www.w3schools.com/w3css/4/w3.css">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Raleway">
<style>
body,h1 {font-family: "Raleway", sans-serif}
body, html {height: 100%}
.bgimg {
background-image: url('/static/smartcity.jpg');
min-height: 100%;
background-position: center;
background-size: cover;

}
</style>
<body>

<div class="bgimg w3-display-container w3-animate-opacity w3-text-white">
<div class="w3-display-topleft w3-padding-large w3-xlarge">
Connected City

</div>
<div class="w3-display-middle">
<h1 class="w3-jumbo w3-animate-top" style="text-align:center"> Connected City </h1>
<hr class="w3-border-grey" style="margin:auto;width:40%">
<p class="w3-large w3-center"> Website processed by container: {{ hostname }} with IP: {{ ip }} </p>

</div>
<div class="w3-display-bottomleft w3-padding-large">
Powered by Github

</div>
</div>

</body>
</html>

in
de

x.
ht

m
l

docker build –t <username>/flask-app .
docker push <username>/flask-app
<username> - Your docker hub account name

Build Image and Push to docker hub

docker run -d --name <user-name>/flask-app -p
80:5000 flaskapp

Run the container

192.168.0.2

github.com/kunchalavikram1427

Docker Compose

• Docker Compose is used to run multiple containers as a single service.
• For example, an application requires both NGNIX and MySQL containers, you could

create one file which would start both the containers as a service(docker compose) or
start each one separately(docker run)

• All services are to be defined in YAML format

https://takacsmark.com/docker-compose-tutorial-beginners-by-example-basics/

Docker host/VM

172.17.0.3

192.168.0.3

3306

front-end

172.17.0.2

80

8080

back-end

compose file: docker-compose.yml

Bring up the app: docker-compose up –d
Bring down the app: docker-compose down

github.com/kunchalavikram1427

Docker Compose

version: '3' # if no version is specified then v1 is assumed.
services: # containers. same as docker run

service_name: # container name. this is also DNS name inside network
image: # name of the image
command: # Optional, replace the default CMD specified by the image
environment: # same as -e in docker run
ports: # same as –p in docker run
volumes: # same as -v in docker run

service_name2:

volumes: # Optional, same as docker volume create

networks: # Optional, same as docker network create
Docker host/VM

172.17.0.3

192.168.0.3

3306

front-end

172.17.0.2

80

8080

back-end

Compose file syntax

github.com/kunchalavikram1427

Docker Compose versions

Version 1
• Compose files that do not declare a version are considered “version 1”
• Do not support named volumes, user-defined networks or build arguments
• Every container is placed on the default bridge network and is reachable from every other container

at its IP address. You need to use links to enable discovery between containers
• No DNS resolution using container names

Version 2
• Links are deprecated. DNS resolution through container names
• All services must be declared under the ‘services’ key
• Named volumes can be declared under the volumes key, and networks can be declared under the

networks key
• New bridge network to connect all containers

Version 3
• Support for docker swarm

github.com/kunchalavikram1427

Docker Compose
version: '3.3'
services:
wordpress:
image: wordpress
depends_on:
- mysql

ports:
- 8080:80

environment:
WORDPRESS_DB_HOST: mysql
WORDPRESS_DB_NAME: wordpress
WORDPRESS_DB_USER: wordpress
WORDPRESS_DB_PASSWORD: wordpress

volumes:
- ./wordpress-data:/var/www/html

networks:
- my_net

mysql:
image: mariadb
environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

volumes:
- mysql-data:/var/lib/mysql

networks:
- my_net

volumes:
mysql-data:

networks:
my_net:

wordpress:
image: wordpress
depends_on:

- mysql
ports:

- 8080:80
environment:

WORDPRESS_DB_HOST: mysql
WORDPRESS_DB_NAME: wordpress
WORDPRESS_DB_USER: wordpress
WORDPRESS_DB_PASSWORD: wordpress

volumes:
- ./wordpress-data:/var/www/html

networks:
- my_net

mysql:
image: mariadb
environment:

MYSQL_ROOT_PASSWORD: wordpress
MYSQL_DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

volumes:
- mysql-data:/var/lib/mysql

networks:
- my_net

volumes:
mysql-data:

networks:
my_net:

Docker host/VM

3306 80

8080
github.com/kunchalavikram1427

Docker Compose
version: '3.3'
services:
wordpress:
image: wordpress
depends_on:
- mysql

ports:
- 8080:80

environment:
WORDPRESS_DB_HOST: mysql
WORDPRESS_DB_NAME: wordpress
WORDPRESS_DB_USER: wordpress
WORDPRESS_DB_PASSWORD: wordpress

volumes:
- ./wordpress-data:/var/www/html

networks:
- my_net

mysql:
image: mariadb
environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

volumes:
- mysql-data:/var/lib/mysql

networks:
- my_net

volumes:
mysql-data:

networks:
my_net:

Docker host/VM

3306 80

8080

Services file: docker-compose.yml

Bring up: docker-compose up –d
Bring down: docker-compose down
Process state: docker-compose ps

github.com/kunchalavikram1427

Docker Compose

Docker host/VM

33
06

8
0

808
0

github.com/kunchalavikram1427

Docker Compose

version: '3.3'
services:
wordpress:
image: wordpress
depends_on:
- mysql

ports:
- 8080:80

environment:
WORDPRESS_DB_HOST: mysql
WORDPRESS_DB_NAME: wordpress
WORDPRESS_DB_USER: wordpress
WORDPRESS_DB_PASSWORD: wordpress

volumes:
- ./wordpress-data:/var/www/html

networks:
- my_net

mysql:
image: mariadb
environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

volumes:
- mysql-data:/var/lib/mysql

networks:
- my_net

volumes:
mysql-data:

networks:
my_net:

Docker host/VM

3306 80

8080

Image build

To build only images: docker-compose build
build + deploy: docker-compose up -d

version: "3"
services:

wordpress:
build:

context: .
dockerfile: Dockerfile-wordpress
image: wordpress
container_name: wordpress

If the image has to be built before deployment, include dockerfile in compose file

docker-compose.yml
Dockerfile-wordpress

webapp

github.com/kunchalavikram1427

Docker Compose
version: '3.3'
services:
wordpress:
image: wordpress
depends_on:
- mysql

ports:
- 8080:80

environment:
WORDPRESS_DB_HOST: mysql
WORDPRESS_DB_NAME: wordpress
WORDPRESS_DB_USER: wordpress
WORDPRESS_DB_PASSWORD: wordpress

volumes:
- ./wordpress-data:/var/www/html

networks:
- my_net

mysql:
image: mariadb
environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

volumes:
- mysql-data:/var/lib/mysql

networks:
- my_net

volumes:
mysql-data:

networks:
my_net:

Docker host/VM

3306 80

8080

docker network create –driver bridge my_net
docker volume create mysql-data

docker run --name wordpress –p 8080:80 –v ./wordpress-data:/var/www/html \
–net my_net –e WORDPRESS_DB_HOST = mysql \
-e WORDPRESS_DB_NAME: wordpress \
-e WORDPRESS_DB_USER: wordpress \
-e WORDPRESS_DB_PASSWORD: wordpress \
wordpress

docker run --name wordpress –p 3306 –v mysql-data:/var/lib/mysql –net my_net
-e MYSQL_ROOT_PASSWORD: wordpress \
-e MYSQL_DATABASE: wordpress \
-e MYSQL_USER: wordpress \
-e MYSQL_PASSWORD: wordpress \
mariadb

Deployment through imperative commands

github.com/kunchalavikram1427

NEXT

Docker Swarm

github.com/kunchalavikram1427

Docker
Swarm

Vikram
IoT Application Dev

github.com/kunchalavikram1427

Container Orchestration

What is container orchestration?
Container orchestration is all about managing the lifecycles of containers, especially in large, dynamic
environments.
✓ Provisioning and deployment of containers
✓ Scaling up or removing containers to spread application load evenly across host infrastructure
✓ Movement of containers from one host to another if there is a shortage of resources in a host, or if a

host dies
✓ Load balancing of service discovery between containers

• Containers are ephemeral by nature.
• They stop when process inside them finishes, or ends because of an error.
• Also a single container per service may not be sufficient enough to handle the growing traffic to the

application.
• In all the above scenarios we need a tool that can bring up the stopped containers or spin up new

one’s to handle the growing traffic and to ensure Load balancing & High availability of the
application all the time.

• This is where container orchestration comes into play!!!

github.com/kunchalavikram1427

Docker Swarm

• Swarm is Docker’s built in container orchestrator solution, its main purpose is to manage
containers in a cluster, i.e. a set of connected machines that work together.

• When a new machine joins the cluster, it becomes a node in that swarm.
• Using Docker Swarm we can achieve high availability, load balancing and Decentralized access of

our applications.
• Swarm comes built into the Docker Engine, you don’t need to install anything to get started.

What can one do by using Docker Swarm?
✓ Deploying new containers to replace failed ones
✓ Scale the number of containers for load balancing
✓ Rolling out application updates among the containers in rolling

update fashion
✓ Rollback of applications to older versions
✓ Bring down a node for maintenance without any application

downtime

github.com/kunchalavikram1427

Docker Swarm Architecture

• Manager: manages the cluster
• Worker: runs tasks assigned by

scheduler
• Scheduler: schedules containers onto

nodes depending upon rules and
filters

• Discovery service: helps Swarm
Manager discover new nodes and
fetch the available nodes

• Store: stores state of cluster; like
cluster and swarm services info.
Essentially a key-value db

Swarm Manager

Scheduler
Discovery
Service

Docker Daemon

Swarm worker

Docker Daemon

Swarm worker

Store

APIs over HTTPAPIs over HTTP

Docker client

192.168.0.3

192.168.0.4 192.168.0.5

-- container github.com/kunchalavikram1427

Docker Swarm: Overlay driver

• Bridge networks apply to containers running on the same Docker daemon host. For
communication among containers running on different Docker daemon hosts like in
swarm, we should use an overlay network

• If you create swarm services and do not specify a network, they are connected to default
ingress network, which is also of overlay type

• Overlay network spans across the entire swarm cluster, allowing communication between
containers across multiple nodes

https://docs.docker.com/engine/swarm/ingress/

docker network ls

github.com/kunchalavikram1427

Docker Swarm: Start a cluster

root@docker-master # docker swarm init --advertise-addr 192.168.0.100
Swarm initialized: current node (pet61mspmyfvk6lz0klisd9e9) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join --token SWMTKN-1-3kabuqlekspyqdk02vj0strami9mcysj8lw4klp5cwmh3wm4ej-
9rlom6m90chce1tgi0ke58t4l 192.168.0.100:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

docker swarm init --advertise-addr MANAGER_IP

root@docker-slave01 # docker swarm join --token SWMTKN-1-
3kabuqlekspyqdk02vj0strami9mcysj8lw4klp5cwmh3wm4ej-9rlom6m90chce1tgi0ke58t4l 192.168.0.100:2377
This node joined a swarm as a worker.
root@docker-slave01:/home/osboxes#

master node

worker node

github.com/kunchalavikram1427

Docker Swarm

docker node ls

Docker master

192.168.0.100

front-end

80

8080
Docker worker 1

192.168.0.101

front-end

80

8080
Docker worker 2

192.168.0.102

front-end

80

8080

overlay driver

root@docker-master # docker network ls | grep overlay
qh17ylskxm31 ingress overlay swarm

github.com/kunchalavikram1427

Docker Service

docker service create --replicas 5 -p 80:80 --name web nginx

• To deploy an application image when Docker Engine is in swarm mode, you create a service.
• A service is the image for a microservice like an HTTP server, a database, or any other type of

executable program that you wish to run in a distributed environment.
• A service needs container image to use, the port where the swarm makes the service available

outside the swarm, an overlay network for the service to connect to other services in the
swarm and the number of replicas of the image to run in the swarm.

Create a service

github.com/kunchalavikram1427

Docker Service

docker service ls

Docker master

192.168.0.100

8080
Docker worker 1

192.168.0.101

8080
Docker worker 2

192.168.0.102

8080

overlay driver

80 80 80 80 80

github.com/kunchalavikram1427

Docker Swarm Visualizer

Deploy a visualizer

https://github.com/dockersamples/docker-swarm-visualizer

docker service create \
--name=viz \
--publish=8080:8080/tcp \
--constraint=node.role==manager \
--mount=type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \
dockersamples/visualizer

Dashboard available at http://<node-ip>:8080
*node-ip: any IP of node participating in cluster

*although the pod is bound to master, it can be reached from all nodes because of ingress routing mesh

github.com/kunchalavikram1427

Docker Service

docker service ps web

docker node ps docker-slave01

Name of the
service

Name of the node

github.com/kunchalavikram1427

Docker Service

docker service ps web

192.168.0.100 192.168.0.101 192.168.0.104

Master Slave -01 Slave -02

docker service create --replicas 5 -p 80:80 --name web nginx

github.com/kunchalavikram1427

Docker Service

Scale a service

docker service update –image <new_image> --update-parallelism 2 --update-delay 10s
<service_name>
docker service update --image nginx:1.18 --update-parallelism 2 --update-delay 10s web

docker service scale <service_name>=8
docker service scale web=10

docker service update --image <image_name>:<version> <service_name>
docker service update --image nginx:1.18 web

Update a service

Rolling update

github.com/kunchalavikram1427

Docker Service

Let’s say, a node is down because of an issue

docker service ps web

docker service ls

In this case the affected containers in that node are recreated in available nodes in the cluster

github.com/kunchalavikram1427

Docker Service

• Let’s say, a node has to be brought down for maintenance

Drain a node: docker node update --availability drain <node-name>
Undrain a node: docker node update --availability active <node-name>

In this case we drain a node of its workloads onto other nodes for graceful termination

• Let’s say, the node is up and running after maintenance

By default, swarm doesn’t re-deploy the containers the node was previously running. We
need to force the cluster to share the load among the available nodes

Force workload balance: docker service update --force <service_name>

Rollback an update: docker service update --rollback <service_name>

Remove a service: docker service rm <service_name>

Docker Swarm: Overlay driver

https://docs.docker.com/engine/swarm/ingress/

Creating overlay network

docker network create --driver overlay my_overlay

docker service create --replicas 5 -p 80:80 --network my_overlay --name web nginx

Inspecting the service:
docker service inspect web

github.com/kunchalavikram1427

Docker Service
Demo: Swarm service

FROM python:alpine3.7
COPY . /app
WORKDIR /app
RUN pip install flask
EXPOSE 5000
CMD python ./app.py

In order to use a custom image in swarm cluster, make sure to push this image to docker hub or private repo so that the swarm nodes will pull the
image, or, make sure this image is available locally on all nodes by manually building the image from dockerfile. Swarm will not schedule containers
on to those nodes which fail to pull the image or do not have this image locally!

import socket
from flask import Flask
def getIP():

hostname = socket.gethostname()
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(("8.8.8.8", 80))
ip = s.getsockname()[0]
print(ip)
s.close()
return hostname,ip

app = Flask(__name__)
@app.route("/")
def hello():

hostname,ip = getIP()
out = "Hello from hostname: " + hostname + " with host ip: " + ip
return out

if __name__ == "__main__":
app.run(host="0.0.0.0", port=int("5000"), debug=True)

docker build –t <username>/flask-app .
docker push <username>/flask-app

Dockerfile

ap
p.

py

github.com/kunchalavikram1427

Docker Service
Demo: Swarm service

docker service create --replicas 5 -p 80:5000 --name web kunchalavikram/sampleflask:v2

visit
http://<node-ip>:80
and refresh the page to
see the load balancing
effect

github.com/kunchalavikram1427

Docker Service

https://levelup.gitconnected.com/load-balance-and-scale-node-js-containers-with-nginx-and-docker-swarm-9fc97c3cff81

Demo: Swarm service

Find similar swarm load-balancing demo at below link

github.com/kunchalavikram1427

Docker Networking

Ingress Network

docker run –d –p 80:5000 --name web1 flask
docker run –d –p 80:5000 --name web2 flask

Flask
Webapp

5000

80

Docker host

192.168.0.24

Flask
Webapp

5000

172.17.0.4 172.17.0.5

192.168.0.24:80

Is it possible to run 2 containers with same host port
published in non swarm mode?

No!!! It results in port conflict. Docker daemon doesn’t allow
same host port for multiple containers in non swarm mode

Then how does docker allow running multiple instances of
same application(with same host port mapping) in a node

inside a swarm cluster?
docker service create --replicas 5 -p 80:5000 --name web flask

Ingress Routing Mesh
github.com/kunchalavikram1427

Docker Networking

Ingress Network

Flask Webapp

5000

80

Docker host

192.168.0.24

Flask Webapp

5000

172.17.0.4 172.17.0.5

192.168.0.24:80

Ingress Network

Load Balancer

• Ingress network has a built in load balancer
that redirects traffic from published port on
host to the mapped container ports

• This allows multiple containers inside a docker
host to use same host port without port
collisions

• No external setup is needed, the load balancer
works out of the box with the ingress network

docker service create --replicas 5 -p
80:5000 --name web flask

github.com/kunchalavikram1427

Docker Networking

Ingress Routing Mesh docker service create --replicas 2 -p 80:5000 --name web flask

Flask
Webapp

5000

80

Docker Worker

192.168.0.25

172.17.1.2

192.168.0.25:80

Flask
Webapp

5000

80

Docker Master

192.168.0.24

172.17.0.4

192.168.0.24:80

80

Docker Worker

192.168.0.26

192.168.0.26:80

Load Balancer Load Balancer Load BalancerRouting Mesh Routing Mesh

Ingress Network

github.com/kunchalavikram1427

Docker Networking

Ingress Routing Mesh

docker service create --replicas 2 -p 80:5000 --name web flask

The swarm internal networking mesh allows every node in the cluster to accept connections to any
service port published in the swarm by routing all incoming requests to available nodes hosting a service
with the published port.

github.com/kunchalavikram1427

Docker Service
Ingress Routing Mesh

• All nodes participate in an ingress routing
mesh. The routing mesh enables each node in
the swarm to accept connections on published
ports for any service running in the swarm,
even if there’s no task running on the node.

• The routing mesh routes all incoming requests
to published ports on available nodes to an
active container.

• In this scenario, we have 3 nodes and 4 replicas
of web containers. The web containers are
scheduled onto only Host 1 and Host 2. But still
we can reach the web services from Host 3
because of swarm routing mesh

https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/engine/swarm/ingress/

github.com/kunchalavikram1427

Docker Service
Load Balancer (ingress routing mesh)

The ingress network is a special overlay network that facilitates load balancing among a service's nodes. When any swarm node receives a request on a published port, it hands that request off to a
module called IPVS. IPVS keeps track of all the IP addresses participating in that service, selects one of them, and routes the request to it, over the ingress network. github.com/kunchalavikram1427

Docker Swarm
Persistent Storage

https://theworkaround.com/2019/05/15/docker-swarm-persistent-storage.html

• Persistent storage is storing the data of the container beyond its lifecycle.
• For single host containers, Bind or Named mounts works fine, but in order to share storage volumes

across multiple Docker hosts, such as a Swarm cluster, we need distributed FS or Network FS.

✓ Because programs running on your cluster aren’t
guaranteed to run on a specific node, data can’t be
saved to any arbitrary place in the file system.

✓ If a program tries to save data to a file for later,
but is then relocated onto a new node, the file will
no longer be where the program expects it to be.

✓ Distributed/Network FS allows applications to
have a common storage volume to store and
retrieve the data beyond its lifecycle.

Use of Distributed/Network FS

github.com/kunchalavikram1427

Docker Swarm
Persistent Storage in single node

https://thenewstack.io/methods-dealing-container-storage/

• Named Mount
• Bind Mount

github.com/kunchalavikram1427

Docker Swarm
Persistent Storage across cluster

https://theworkaround.com/2019/05/15/docker-swarm-persistent-storage.html

• NFS
• GlusterFS
• Ceph
• Convoy
• RexRay
• PortWorx
• StorageOS

Requires distributed/network file
storage

GlusterFS

github.com/kunchalavikram1427

Docker Stacks

• Docker stack is used to deploy a complete application stack to the swarm.
• Production grade docker-compose
• Docker-compose is better suited for development scenarios and is a single host

deployment solution
• Uses the same syntax as docker-compose file, but with a new section ‘deploy’ added

to manifest file
• Docker stack ignores “build” instructions. You can’t build new images using the stack

commands. It needs pre-built images to exist

Docker worker 1

192.168.0.101

front-end

80

80

3306

back-end

Docker master

192.168.0.100

front-end

80

80

3306

back-end

Docker worker 2

192.168.0.102

front-end

80

80

3306

back-end

overlay driver

github.com/kunchalavikram1427

Docker Stack
version: '3.3'
services:
wordpress:
image: wordpress
depends_on:
- mysql

ports:
- 80:80

deploy:
replicas: 2
placement:
constraints:
- node.role == manager

environment:
WORDPRESS_DB_HOST: mysql
WORDPRESS_DB_NAME: wordpress
WORDPRESS_DB_USER: wordpress
WORDPRESS_DB_PASSWORD: wordpress

volumes:
- wordpress-data:/var/www/html

networks:
- my_net

mysql:
image: mariadb
deploy:
replicas: 1
placement:
constraints:
- node.role == worker

environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

volumes:
- mysql-data:/var/lib/mysql

networks:
- my_net

networks:
my_net:

volumes:
mysql-data:
wordpress-data:

wordpress:
image: wordpress
depends_on:

- mysql
ports:

- 80:80
deploy:

replicas: 2
placement:
constraints:
- node.role == manager

environment:
WORDPRESS_DB_HOST: mysql
WORDPRESS_DB_NAME: wordpress
WORDPRESS_DB_USER: wordpress
WORDPRESS_DB_PASSWORD: wordpress

volumes:
- wordpress-data:/var/www/html

networks:
- my_net

mysql:
image: mariadb
deploy:

replicas: 1
placement:
constraints:
- node.role == worker

environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

volumes:
- mysql-data:/var/lib/mysql

networks:
- my_net

volumes:
mysql-data:
wordpress-data:

networks:
my_net:

https://docs.docker.com/engine/swarm/services/#placement-
constraints
https://thenewstack.io/methods-dealing-container-storage/

Constraints allow containers to
be bound to a specific node.
When these containers are
down because of an issue,

swarm re-deploys another one
in the same node thus ensuring

data persistency all the time

github.com/kunchalavikram1427

Docker Stacks

Deploy a stack: docker stack deploy -c <compose.yml> <stack-name>
List stacks: docker stack ls
List processes: docker stack ps <stack-name>
List services: docker service ls
Delete stack: docker stack rm <stack-name>

version: '3.3'
services:
wordpress:
image: wordpress
depends_on:
- mysql

ports:
- 80:80

deploy:
replicas: 2
placement:
constraints:
- node.role == manager

environment:
WORDPRESS_DB_HOST: mysql
WORDPRESS_DB_NAME: wordpress
WORDPRESS_DB_USER: wordpress
WORDPRESS_DB_PASSWORD: wordpress

volumes:
- wordpress-data:/var/www/html

networks:
- my_net

mysql:
image: mariadb
deploy:
replicas: 1
placement:
constraints:
- node.role == worker

environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

volumes:
- mysql-data:/var/lib/mysql

networks:
- my_net

networks:
my_net:

volumes:
mysql-data:
wordpress-data: https://docs.docker.com/engine/swarm/services/#placement-constraintsgithub.com/kunchalavikram1427

Docker Swarm

LoadBalancer

• One of the key benefits of docker swarm is increasing application availability through redundancy
• Application can be reached from all the available nodes in the cluster using <node-ip>:port
• But how do end user access this application thorough a common endpoint i.e., DNS name? It is

through an External LoadBalancer/Reverse Proxy
• HAProxy load balancer routes external traffic into the cluster and load balancing its across the available

nodes
• Other popular load balancers include Nginx and Traefik

Traefik github.com/kunchalavikram1427

10.12.16.22

Round Robin Load balancing

Load Balancer

Docker Swarm

HAProxy LoadBalancer

www.flask-app.com

DNS Server

1

2

3

github.com/kunchalavikram1427

Docker Swarm

HAProxy LoadBalancer

docker service create --replicas 5 -p 80:5000
--name web kunchalavikram/sampleflask:v2

Demo

1. create a service of 5
flask replicas

3VMs are used for swarm cluster and 1VM for running HAProxy. These are just demo considerations. Not intended for production

2. Create fake DNS entries
(since we don’t have DNS server, we will update
/etc/hosts file in any machine, outside/inside the
cluster, with fake DNS name that points to IP of
HAProxy server. We will use this name to access
the flask application)

github.com/kunchalavikram1427

Docker Swarm

HAProxy LoadBalancer

• Provision a VM
• apt install haproxy –y
• systemctl stop haproxy
• add configuration to

/etc/haproxy/haproxy.cfg
• systemctl start haproxy &&

systemctl enable haproxy

Setup HAProxy

/etc/haproxy/haproxy.cfg

http://flaskapp.com

swarm nodes IP and
application port

C:\Windows\System32\drivers\etc\hosts
192.168.0.105 flask-app.com
ipconfig /flushdns

Create a Fake DNS Entry that points to IP of
HAProxy Machine

windows

/etc/hosts
192.168.0.105 flask-app.com

linux

192.168.0.105

github.com/kunchalavikram1427

References
• Hypervisors

https://phoenixnap.com/kb/what-is-hypervisor-type-1-2
• Docker

https://takacsmark.com/getting-started-with-docker-in-your-project-step-by-step-tutorial/
https://container.training/

• Docker-compose
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/compose-versioning/

• Docker Swarm
https://knowledgepill.it/posts/docker_swarm_compendium/?fbclid=IwAR2JWNRHrmfKlauScuEmcW1hwI7IxLJdf6_KUWN8GQiSqxc5pXmkw9RDEaM
https://takacsmark.com/getting-started-with-docker-in-your-project-step-by-step-tutorial/
https://container.training/
https://rominirani.com/docker-swarm-tutorial-b67470cf8872

• Docker Networking
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/engine/swarm/ingress/

• Routing Mesh
https://mstechbits.wordpress.com/2019/06/06/load-balancing-docker-containers/amp/
https://techcommunity.microsoft.com/t5/containers/docker-s-routing-mesh-available-with-windows-server-version-1709/ba-p/382382#
https://github.com/docker/docker.github.io/blob/master/engine/swarm/networking.md

• Placement Constraints in Swarm mode
https://docs.docker.com/engine/swarm/services/#placement-constraints

• Traefik
https://boxboat.com/2017/10/10/managing-multiple-microservices-with-traefik-in-docker-swarm/
https://www.digitalocean.com/community/tutorials/how-to-use-traefik-as-a-reverse-proxy-for-docker-containers-on-ubuntu-18-04

• HAProxy
https://www.haproxy.com/blog/haproxy-on-docker-swarm-load-balancing-and-dns-service-discovery/

• GlusterFS
https://sysadmins.co.za/container-persistent-storage-for-docker-swarm-using-a-glusterfs-volume-plugin/
https://medium.com/running-a-software-factory/setup-3-node-high-availability-cluster-with-glusterfs-and-docker-swarm-b4ff80c6b5c3
https://blog.ruanbekker.com/blog/2019/03/05/setup-a-3-node-replicated-storage-volume-with-glusterfs/?referral=github.com

• Ceph
https://ceph.io/

github.com/kunchalavikram1427

github.com/kunchalavikram1427

Credits

• All authors from references section

• Mumshad Mannambeth’s Free Docker
Course on Kodekloud
https://kodekloud.com/p/docker-for-
the-absolute-beginner-hands-on

• YouTube Videos

• Various blogs

github.com/kunchalavikram1427

