. +

Introduction to A

Docker & Docker Swarm |

+ a— o T
g3 =
-

Vikram
loT Application Dev



Kubernetes & Docker work
| The past and the present of Apps Deployment together to build & run

containerized applications

s
AN

App App w'docker #docker
Libs & Frameworks Libs & Frameworks v ‘

aall
@ docker

App Virtual Machine | Virtual Machine

ypervisor @ docker
— = o

Operating System Operating System

vy ¥ ¥
& e

Traditional Virtualized Container Kubernetes
Deployment Deployment Deployment Deployment

Operating System

github.com/kunchalavikram1427



| Monolithic Architecture e

WAR
— — StoreFrontUI
W' LE N | Account Service i MySql
Al sl ) g Database
InventoryService
Shipping Service

Tomcat

Simple To : Develop, Test, Deploy and Scale

github.com/kunchalavikram1427



| Monolithic Architecture

Web Server Database Messaging Orchestration

» Different dependency

requirements for each service al d e® ¢ DB =&
 Long setup times SXPress

* Different Dev/Test/Prod \ |

environments

Docker free course | KodeKloud.com



Monolithic Applications

* Simple to develop

* Simple to deploy - one binary
» Easy Debugging & Error tracing
* Simple to test

e Less Costly

e

Difficult to understand and modify

Tightly coupled

Higher start-up and load times

Redeploy the entire application on each update, and
also continuous deployment is difficult

Less reliable: A single bug can bring down the entire
application.

Scaling the application is difficult

Difficult to adopt new and advanced technology:
Since changes in frameworks or languages will
affect an entire application

Changes are one section of the code can cause an
unanticipated impact on the rest of the code

github.com/kunchalavikram1427



Microservices Architecture -

fREST  Account Account
API Service DB

Y93 Rest AP

APl Gateway
Mobile App

fREsT Inventory Inventory
API Service DB

&8} p—

i "REST Storefront

FAAN

API WebApp X e = —
Browser 'REST Shipping Shipping
DB

API Service

github.com/kunchalavikram1427



Microservices on VMs

* A hypervisor Is software that creates and runs virtual
machines (VMs) also known as guests.

* |t isolates the hypervisor operating system and resources
from the virtual machines and enables the creation and
management of those VMs.

* The hypervisor treats host resources—like CPU, memory,
and storage—as a pool that can be easily reallocated
between existing guests or to new virtual machines.

» Generally, there are two types of hypervisors.

hypervisors, called “bare metal,” run directly on the
host’s hardware. Ex: Microsoft Hyper-V or VMware ESXIi
hypervisor

hypervisors, called “hosted,” run as a software layer
on an operating system. Ex: VirtualBox, VMware Player

NN GENEN

Application Application
Libs  Deps Libs  Deps

Hardware Infrastructure

github.com/kunchalavikram1427



Microservices on VMs

Run each service with its own dependencies in separate
VMs

Each VM has its own underlying OS and hosts a
Microservice

Strong isolation and resource control between other VMs
and host

Each VM can have its own dependencies and libraries for
the services. So different services across VMs can have
different versions of same dependency

Matrix from hell problem is no more

| | (
@@
- a i

="

‘NN NENEN

Application Application
Libs  Deps Libs  Deps

Hardware Infrastructure

github.com/kunchalavikram1427



Microservices based Applications ~

* Decoupled * Slow bootup times of VMs
* Ensures continuous delivery and * |ncreased memory consumption
deployment of large, complex * Large OS footprint
applications.  |nitial Costs are very High and this type of
» Better testing — since services are architecture demands for proficiency in the skills of
smaller and faster to test. the developers.
» Better deployments — each service ¢ Testing is difficult and time-consuming because
can be deployed independently. there 1s an additional complexity involved because
* No long-term commitment to of the distributed system.
technology — when developing a * Deployment Complexity - there Is added
new service, you can start with a operational complexity of deploying and managing

new technology stack. a system that contains various service types.

github.com/kunchalavikram1427



github.com/kunchalavikram1427



Docker

Before Docker
A developer sends code to a tester but it doesn’t run on the tester’s system due to

various dependency Issues, however it works fine on the developer’s end.

After Docker
As the tester and developer now have the same system running on Docker

container, they both are able to run the application in the Docker environment
without having to face differences in dependencies issue as before.

github.com/kunchalavikram1427



AN

THE CODE WORKS
ABSOLUTELY
FINE!

Before Docker

BUT, THE SAME
CODE DOESN'T WORK
ON MY SYSTEM! a

github.com/kunchalavikram1427



After Docker

THE CODE WORKS
ABSOLUTELY
FINE!

/\

NOW, THE CODE
WORKS FOR ME TOO!

github.com/kunchalavikram1427



Docker -

Is a software development tool and a virtualization technology that makes it
easy to develop, deploy, and manage applications by using containers.

refers to a lightweight, stand-alone, executable package of a piece of
software that contains all the libraries, configuration files, dependencies, and other
necessary parts to operate the application. o

o
Ex: Dependencies

[ Dependencies ]

github.com/kunchalavikram1427



| VMs vs Docker Containers N

AN NI NI NN

Application Application

Application Application
Libs  Deps Libs Deps PP PP

Libs  Deps Libs  Deps

github.com/kunchalavikram1427



\VVMs vs Docker Containers -

Virtual Machine Docker Container

Hardware-level process isolation OS level process isolation

Each VM has a separate OS Each container can share OS

Boots in minutes Boots in seconds

VMs are of few GBs Containers are lightweight (KBs/MBs)

Ready-made VMs are difficult to find Pre-built docker containers are easily available

Containers are destroyed and re-created

VMs can move to new host easil )
Y rather than moving

Creating VM takes a relatively longer time Containers can be created in seconds

More resource usage Less resource usage

Application Application
= PP Application Application
Libs  Deps Libs  Deps
PGS s Libs  Deps  Libs Deps

github.com/kunchalavikram1427



| Docker Architecture =

Docker uses a client-server architecture.
Docker client talks to the Docker daemon,
which does the heavy lifting of building,
running, and distributing your Docker
containers.

Docker client and daemon can run on the
same system, or you can connect a Docker
client to a remote Docker daemon.

For a virtual communication between CLI W
client and Docker daemon, a REST API is used

l REGISTRY

HOST serene_mestorf

github.com/kunchalavikram1427



| Docker Architecture

github.com/kunchalavikram1427



| Docker Installation

* Docker for Windows: \Win10 Pro/Ent only
Uses Hyper-V with tiny Linux VM for Linux
Containers

* Docker Toolbox: Win7/8/8.1 or Win10 Home
Runs a tiny Linux VM in VirtualBox

* Docker for MAC

* Docker for Linux

Online Emulator: https://labs.play-with-docker.com/

https://docs.docker.com/get-docker/

github.com/kunchalavikram1427



Docker basic commands

root@k-master:/home/osboxes# docker version

Client:
Version:
API version:
Go version:
Git commit:
Built:
0S/Arch:
Experimental:

Server:

Engine:
Version:

API version:
Go version:
Git commit:
Built:
0S/Arch:

Experimental:

containerd:
Version:
GitCommit:

runc:
Version:
GitCommit:

docker-init:
Version:
GitCommit:

19.03.6

1.40

gol.12.17

369ce74a3c

Fri Feb 28 23:45:43 2020
linux/amd64

false

19.03.6

1.40 (minimum version 1.12)
gol.12.17

369ce74a3c

Wed Feb 19 01:06:16 2020
linux/amd64

false

1.3.3-0ubuntul~18.04.2

spec: 1.0.1-dev

0.18.0

github.com/kunchalavikram1427



Docker basic commands -

root@k-master:/home/osboxes# docker info
Client:
Debug Mode: false

Server:
Containers: 17
Running: 16
Paused: 0
Stopped: 1
Images: 11
Server Version: 19.03.6
Storage Driver: overlay2
Backing Filesystem: extfs
Supports d_type: true
Native Overlay Diff: true
Logging Driver: json-file
Cgroup Driver: cgroupfs
Plugins:
Volume: local
Network: bridge host ipvlan macvlan null overlay
Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog
Swarm: inactive
Runtimes: runc
Default Runtime: runc
Init Binary: docker-init
containerd version:
runc version:
init version:
Security Options:
apparmor
seccomp
Profile: default
Kernel Version: 5.0.0-23-generic
Operating System: Ubuntu 18.04.3 LTS github.com/kunchalavikram1427



Docker Images & Containers =

Docker image can be compared to a template that is used to
create Docker containers. These are read-only templates that contains application
binaries and dependencies. Docker images are stored in the Docker Registry.

Docker container Is a running instance of a Docker image as
they hold the entire package needed to run the application.

aﬁ

Run

[ Dependencies ]

Docker Image Container

github.com/kunchalavikram1427



Docker Images & Containers =

We can run any number of containers based out of an image and Docker makes
sure that each container created has a unique name in the namespace.

Docker image Is a read-only template. Changes made in containers won't be
saved to the image by default o

G

[ Dependencies ] Conta|ner 01

/ &

 ; [ Dependencies ] Container 02

.

Docker Image

Container 03

[ Dependencies ]

github.com/kunchalavikram1427



| Docker Images & Containers -

Container Container Container Container
i ) Web Server Database Messaging Orchestration
Containers run each service
with its own dependencies in ﬂ.d@@’ . - -
separate containers express
| E— v
] v
= ‘
— v
.\/‘\rtual Machine Virtual Machine
Application Application
Clibs  Deps  Libs Deps
_— . os

github.com/kunchalavikram1427



Union File System <

A docker image Is a read-only template for creating
containers.

Changes made to the file system inside the running
container won'’t be directly saved on to the image.
Instead , If a container needs to change a file from the

Image

. : s . . . Add Apache
read-only image that provides its filesystem, it copies e
the file up to its own private read-write layer before Add emacs
making the change Base Image

.« . . Ubuntu
This 1s called mechanism.

These new or modified files and directories are
‘committed’ as a new layer.
shows all these layers.

bootfs

cgroups, namespace,
device mapper

Kernel

github.com/kunchalavikram1427



Docker Registry -

IS a storage and distribution system for Docker images.
It Is organized into Docker repositories , where a repository holds all the versions
of a specific Image.
By default, the Docker engine interacts with , Docker’s public
registry instance.

However, It Is possible to run on-premise private repositories
Ex: Harbor

Some Cloud Provider repos

= Amazon Elastic Container Registry
= Google Container Registry

= Azure Container Registry

github.com/kunchalavikram1427



Docker Registry <

@ Docker EE @ Docker CE [=] containers * Plugins

Filters (1) Clear All 1-25 of 51 available images.

Docker Certified X Docker Certified

& Docker Certified

Oracle Java 8 SE (Server JRE) (< DOCKER CERTIFIED

g By Oracle « Updated 4 months ago

Verified Publisher _ _
Docker Certified And Verified Fublisher Content Oracle J ava 8 SE ( Server J RE)

Official Images
Official Images FPublished By Docker

Categories
. MySQL Server Enterprise Editi ~; DOCKER CERTIFIED
Analytics ysQ p dition & po

o By Oracle « Updated a year ago
Application Frameworks

i~afi The world's most popular open source database system . .
Application Infrastructure Pop : y github.com/kunchalavikram1427



Docker Registry

ubuntu Image name: username/image-name

Docker Official Images NN

~
Ubuntu is a Debian-based Linux operating system based on free software. ~ ~
~
Linux - ARM 64 ( latest]>

~N
~N
~

docker pull ubuntu

Description Reviews

Supported tags and respective Dockerfile links

, bionic-202084083 , bionic

, e0an-20200418 , eoan

, focal-20200423, focal , latest, rolling dOCker pu” ubuntu.lg 10
, Eroovy-20200505 , groovy , devel

, trusty-20191217 , trusty

, Xenial-20208326 , xenial ' '
github.com/kunchalavikram1427




| Docker pull

* By default, docker pull will pull an image from docker hub. If you need to pull
from a private repo, use repo URL
docker pull myregistry.local:5000/testing/test-image

docker pull ubuntu

root@k-master:/home/osboxes# docker pull ubuntu
Using default tag: latest

latest: Pulling from library/ubuntu

d51af753c3d3: Pull complete

fc878cd0a91c: Pull complete

6154df8ffa88: Pull complete

feesdboffg2f: Pull complete

Digest:
sha256:747d2dbbaaee995098c9792d99bd333c6783ce56150d1b11e3
33bbceed5c54d7

Status: Downloaded newer image for ubuntu:latest

github.com/kunchalavikram1427



Docker pull

root@k-master:/home/osboxes# docker images

REPOSITORY

mongo

ubuntu

B

nginx
k8s.gcr.io/kube-proxy
k8s.gcr.io/kube-controller-manager
k8s.gcr.io/kube-apiserver
k8s.gcr.io/kube-scheduler
B

quay.io/coreos/flannel

B

k8s.gcr.io/pause
k8s.gcr.1io/coredns

B

k8s.gcr.io/etcd

TAG

latest
latest

latest
18.
18.
18.
18.

vl.
vl.
vl.
vl.

vO.

3.2
1.6

12.

.7

NNNN

0-amd64

3.4.3-0

IMAGE ID
3f3daf863757
1d622ef86b13

602e111c0O6bb
0d40868643chH
ace0a8cl7ba9
6ed75ad404bd
a3099161e137

4e9f801d2217

80d28bedfe5d
67da37a9a360

303ce5db0e90

CREATED

P
3

A pArphW

W W

weeks
weeks

weeks
weeks
weeks
weeks
weeks

months

months
months

months

ago
ago

ago
ago
ago
ago
ago

ago

ago
ago

ago

SIZE
388MB
73.9M

127MB
117MB
162MB
173MB
95.3M
52.8M

683kB
43.8M

288MB

github.com/kunchalavikram1427



Docker home directory

root@k-master:

total 104

drwx------ 2
drwx--x--x 4
drwx------ 19
drwx------ 3
drwxr-x--- 3
drwx------ 78
drwx------ 4
drwx------ 2
drwx------ 2
drwx------ 2
drwx------ 2
drwx------ 2

root@k-master:

/var/lib/docker# 1s

root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root

4096
4096
20480
4096
4096
40960
4096
4096
4096
4096
4096
4096

May
May
May
May
May
May
May
May
May
May
May
May

/var/lib/docker# [}

08
08

08
08
22
08
09
08
22
08
08

:32
132
22:
:32
: 32
122
: 32
:31
: 32
122
: 32
:32

11

builder
buildkit
containers
image
network
overlay2
plugins
runtimes
swarm
tmp
trust
volumes

docker stores all the images, containers, volumes, networks information in it's default home

directory

github.com/kunchalavikram1427



Docker basic commands

Format;

<command> <sub-command>

Options:

-D, --debug

--tls

builder
config
container
context
— engine
image
network
node
plugin
secret
service
stack
swarm

--config string
-c, --context string

-H, --host list
-1, --log-level string

Management Commands:

Manage
Manage
Manage
Manage
Manage
Manage
Manage
Manage
Manage
Manage
Manage
Manage
Manage

--tlscacert string
--tlscert string
--tlskey string
--tlsverify
-v, --version

builds

root@k-node02: /home/osboxes# docker help
Usage: docker [OPTIONS] COMMAND

A self-sufficient runtime for contailners

Location of client config files (default "/root/.docker")

Name of the context to use to connect to the daemon (overrides DOCKER_HOST env var
context use")

Enable debug mode

Daemon socket(s) to connect to

Set the logging level ("debug"|"info"|"warn"|"error"|"fatal") (default "info")
Use TLS; implied by --tlsverify

Trust certs signed only by this CA (default "/root/.docker/ca.pem")

Path to TLS certificate file (default "/root/.docker/cert.pem")

Path to TLS key file (default "/root/.docker/key.pem")

Use TLS and verify the remote

Print version information and quit

Docker configs
containers
contexts

the docker engine

images

networks

Swarm
plugin

nodes
s

Docker secrets

servic

(=]

Docker stacks

Swarm

github.com/kunchalavikram1427



Docker basic commands -

<command> <sub-command>

Manage images

Commands:
build
history
import
inspect
load
1s
prune
pull
push
rm
save
tag

root@k-node02: /home/oshoxes# docker image --help

Usage: docker image COMMAND

Build an image from a Dockerfile

Show the history of an image

Import the contents from a tarball to create a filesystem image
Display detailed information on one or more images

Load an image from a tar archive or STDIN

List images

Remove unused images

Pull an image or a repository from a registry

Push an image or a repository to a registry

Remove one or more images

Save one or more images to a tar archive (streamed to STDOUT by default)
Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE

github.com/kunchalavikram1427



Docker Container basics
Running a container

What happens in ‘docker container run’

1.
. If it doesn't find anything, it looks In remote image repository

. Downloads the latest version (nginx:latest by default)

. Creates new container based on that image and prepares to start
. Container gets attached to a network and gets a virtual IP

oo &~ W N

o))

Docker looks for that image locally in image cache

Inside the private network, typically default bridge network

. Opens up ports to serve the requests
. Starts process mentioned in the CMD of image’s Dockerfile

github.com/kunchalavikram1427



Docker Container basics -

(' )

root@docker-master:/home/osboxes# docker run nginx
Unable to find image 'nginx:latest' locally .
latest: Pulling from library/nginx Container
54fec2fa59d0: Pull complete
dedebf@9aefe: Pull complete
f9dc69ach465: Pull complete
Digest: sha256:404ed8de56dd47adadadf9e2641blbabad5c
Status: Downloaded newer image for nginx:latest \\\F)OCkETITOSt 4//

 When we run nginx, a container is created and it runs in the foreground
and terminal is attached to its process
* When we exit out of the terminal, the container will be killed

* To avoid this we need to run the container in detached(background) mode
using --detach

github.com/kunchalavikram1427



Docker Container basics -

list all running containers

root@docker-master:/home/osboxes# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
feb55958cc7b3 nginx "nginx -g 'daemon of.." 42 seconds ago Up 39 seconds 80/tcp jovial_borg
root@docker-master:/home/osboxes# |

list all running and exited containers
- gives the config and meta data
used to start this container; returns JSON array

root@docker-master:/home/osboxes# docker inspect fe55958cc7b3 "Gateway": "172.17.0.1",
[ “GlobalIPv6Address": ""

{ "GlobalIPv6PrefixLen": 0,
“Id": "fe55958cc7bh3e6aa20c907e2047ea7ce503bd6ad67649dada30: "IPAddress”: "172.17.0.2%,
"Created": "2020-05-15T04:31:42.68932019Z", “IPPrefixLen”: 16,
“Path": "nginx", "IPveGateway": ""

"MacAddress"”: "02:42:ac:11:00:02",

Argﬁ_: [ "Networks": {
n ’ . "bl’idge": {
daemon off; "IPAMConfig": null,
1, "Links": null,
S‘ta‘ltle 2 o o o "Aliases": null,
Status": "running”, "NetworkID": "1f61a79805d0f5657c7b12861b5f0e27a811c656Th85be
"Running": true, "EndpointID": "0d3d69306el69e8feeelb9031b8b4Sb5e8f07a7b710c4
"Paused": false, "Gateway": "172.17.0.1",
"Restarting": false, "IPAddress": "172.17.0.2",
"O00MKilled": false, "IPPrefixLen®: 16,
"Dead": false, "(IHPVEG?;S”ZL& r
By ] obalIPv ress": "",
"E]);{'jlt(.:o;g}?'e "GlobalIPv6PrefixLen": 0,
"Error: o "MacAddress": "02:42:ac:11:00:02", github.com/kunchalavikram1427

"DriverOpts": null



Docker Container basics -

<ip-of-container> [ ‘D

root@docker-master:/home/osboxes# curl 172.17.0.2:80 =
<!DOCTYPE html> NGINX 80
<html>
<head> .
<title>Welcome to nginx!</title> COﬂtaIner
<style>
body {

width: 35em;

margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif;

}
</style>
</head> \_Docker host/VM -
<body>
<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully 19216803
working. Further configuration is required.</p>

You can also find IP by running below command

root@docker-master:/home/osboxes#
172.17.0.2

github.com/kunchalavikram1427



Docker Container basics: Port Mapping <

<ip-of-container> / ‘D

root@docker-master:/home/osboxes# curl 172.17.0.2:80
<!DOCTYPE html> R ---------------emeeeee-s
<html> :
<head> . i
<title>Welcome to nginx!</title> Contalner :
<style> :
body { i
width: 35em; :

margin: @ auto; !
font-family: Tahoma, Verdana, Arial, sans-serif; E

}

</style> |
ey \_Docker host/VM -_/
<hl>Welcome to nginx!</hl>

<p>If you see this page, the nginx web server is successfully 192 168 0 3
working. Further configuration is required.</p> : "

& Welcome to nginx! X +

< C'  @® Notsecure | 192.168.0.3:8080

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

github.com/kunchalavikram1427



| Docker Container &

 Naming a container: docker run --detach —p 8080:80 --name webhost nginx
e Stop a container: docker container stop <unique container id>
e Start a stopped container: docker start < unique container i1d>
 Kill a container: docker container kill <unique container id>
e logs: docker container logs <container name>
docker container logs -f <container name>
* Remove a container: docker container rm <container name>

 Lists specific processes in a specific container /f \
docker top <container> & J‘
e Get CPU, Mem usage of the container e T
docker container stats <container> \Container
172.17.0.2 :
\_Docker host/VM -_/

192.168.0.3 github.com/kunchalavikram1427



Docker Container: Getting shell access :

: Getting container’s shell access
docker container run -it <container-name> bash ~

-
s

-1 ; Interactive or STD__IN
-t : terminal or STD__OUT

Container

\ Docker host/VM /

192.168.0.3

root@docker-master: /home/osboxes# docker run -it ubuntu bash

root@da8d3a230533:/# uname -a
Linux da8d3a230533 5.0.0-23-generic #24~18.04.1-Ubuntu SMP Mon Jul 29 16:12:28 UTC 2019 x86_64 x86 64 x86 64 GNU/Linux

root@da8d3a230533:/# hostname

da8d3a230533

root@da8d3a230533:/# exit

exit

root@docker-master:/home/osboxes# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
da8d3a230533 ubuntu "bash" 14 seconds ago Exited (@) 4 seconds ago

root@docker-master: /home/osboxes# I

github.com/kunchalavikram1427



Docker Container: Getting shell access

Importance of -1 -t flags

Any image that has shell as its starting process expects a terminal(-t)
and standard input(-i) to be attached when starting the container.

If the container doesn’t find the terminal, it simply exits.

root@proxyserver:/home/osboxes# docker run ubuntu

Unable to find image 'ubuntu:latest' locally

latest: Pulling from library/ubuntu

d51af753c3d3: Pull complete

fc878cdBa91c: Pull complete

6154dT8ff988: Pull complete

fee5dbOff82f: Pull complete

Digest: sha256:747d2dbbaaee995098c9792d99bd333c6783¢ce56150d1b11e333bbceed5c54d7
Status: Downloaded newer image for ubuntu:latest

root@proxyserver:/home/osboxes# docker ns -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
77157250b32fF ubuntu "/bin/bash’ 11 seconds ago Exited (0) 10 seconds ago

root@roxyserver:/home/osboxes# [J

PORTS

root@roxyserver:/home/osboxes# docker run -it ubuntu
root@837¢4268bc30:/# |

-

\_

N
s

Container

Docker host/VM /

192.168.0.3

github.com/kunchalavikram1427



Docker Container: Getting shell access :

Containers are 1ot full fledged operating systems
They are meant to run a specific process/application
Containers run as long as process inside them is alive. When process

completes, the container simply exits

Ubuntu runs bash as the starting process. \When bash process Is terminated,
the container gets terminated.

root@docker-master:/home/osboxes# docker image inspect ubuntu | grep CMD Container

"CMD [\"/bin/bash\"]1"
root@docker-master:/home/osboxes# I

\ Docker host/VM /
192.168.0.3

github.com/kunchalavikram1427

Use image inspect to find default CMD of the image




Docker Container

Use exec to interact with a running container

By default changes made to container are
lost once container Is deleted, to preserve the
changes, commit to an image

e

Container

kDocker host/VM

@.&

%

192.168.0.3

github.com/kunchalavikram1427



Docker Networking =

* Docker gives 3 default networks: bridge, none and host
* When you start Docker, a default bridge network (also called bridge) is
created automatically, and newly-started containers connect to it unless

otherwise specified.

root@docker-master:/home/osboxes# docker network 1s

NETWORK ID NAME DRIVER SCOPE
1f61a79805d0 bridge bridge local
5a0881810dc4 host host local
babbe27/e8abd none null local

root@docker-master:/home/oshoxes# docker network inspect bridge

[
{
"Name": "bridge",
"Id": "1f61a79805d0f5697c7b12861b5f0e27a811c656Tb85be3cbb90T89T62090f89",
"Created": "2020-05-15T00:31:00.229136167-04:00",
"Scope": "local",
"Driver": "bridge",
"EnablelPve": false,
"IPAM": {
"Driver": "default",
"Options": null,
"Config": [
{
"Subnet”: "172.17.0.0/16",
"Gateway": "172.17.0.1"
}
|

- github.com/kunchalavikram1427



Docker Networking: Bridge

In Bridge network, all containers get private internal IPs
and they are isolated from host.

Port forwarding forwards outside traffic to the containers.

Containers on the default bridge network can only access
each other by IP addresses, unless you use the

option, which is considered legacy.

You can also create user-defined custom bridge network

User-defined bridge networks are superior to the default

bridge network.

* On auser-defined bridge network, containers can resolve
each other by name or alias(DNS)

Create a bridge network:
Attach a container to It:

Web Web
Container Container
i |
172.17.0.2) I 172.17.0.3
| O |
r dockerO -i
172.17.0.4 : : 172.17.0.5
Web Web
Container Container

-

github.com/kunchalavikram1427



Docker Networking: Bridge

Understanding DNS resolution in bridge network

* When containers are run in default bridge network they cannot find

each other using their container names.

* Simply put, DNS resolution through container names will not work

under default bridge network

In the below example, 2 containers are created under the default bridge network

Web

Container

172.17.0.2

1
Web

Container

= )
<

I
I
1
I
I
172.17.0.41

Note that ping to second container from the first container using the second container’s name didn’t resolve(DNS server is not

available under default bridge network)

root@roxyserver:/home/osboxes# docker run -d -it --name cl kunchalavikram/ubuntu_with_ping
af3b1lf94947a31blabe5d01b5df078b440935324ec867f1f468dbla79ff718cf
root@roxyserver:/home/osboxes# docker run -d -it --name c2 kunchalavikram/ubuntu_with_ping
feb7ada®4e5de274a5594c44cad30dbeabb9e86a7cf38adf33328504b3876281
root@proxyserver:/home/osboxes# docker ps

CONTAINER ID IMAGE COMMAND CREATED
feb7adab4e5d kunchalavikram/ubuntu with ping "/bin/bash" 6 seconds ago
at3b1f94947a kunchalavikram/ubuntu with ping "/bin/bash" 12 seconds ago

root@roxyserver:/home/osboxes# docker exec -it cl bash
root@af3b1f94947a:/# ping c2

ping: c2: Name or service not known
root@f3b1t94947a:/# |}

STATUS
Up 4 seconds
Up 10 seconds

PORTS

-
Web
Container
- 172.17.0.3
172.17.0.5
Web
Container
NAMES
c2
cl

github.com/kunchalavikram1427



Docker Networking: Bridge =

Understanding DNS resolution in bridge network el et

* Now a new bridge network is created and containers are attached to ...
that network. e

* |n this case, containers find each other using their container .
names(DNS resolution through container names) =

root@ roxyserver:/home/osboxes# docker network create -d bridge my_net
cfd33cdal3575304a589acbb9683e805cd49a7fa300bfd97d9641142d59e73c3

root@proxyserver:/home/osboxes# docker run -d -it --net my_net --name cl kunchalavikram/ubuntu_with_ping
51162f20533613a385a0471beb093a01latf014dd331d6f46b9d9ffcblcf231fas

root@roxyserver:/home/osboxes# docker run -d -it --net my_net --name c2 kunchalavikram/ubuntu_with_ping
6b14069eedc2af2eclcb649d54ec34a4t992cfab424e9b483dadf7460e2ae67d9

root@oroxyserver:/home/oshoxes# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
6b14069eedc?2 kunchalavikram/ubuntu_with_ping "/bin/bash" 6 seconds ago Up 5 seconds
51162205336 kunchalavikram/ubuntu_with_ping "/bin/bash" 12 seconds ago Up 11 seconds

root@roxyserver:/home/osboxes# docker exec -it cl bash
root@51162f205336:/# ping c2 -m
PING c2 (172.18.0.3) 56(84) bytes of data.

64 bytes from c2.my net (172.18.0.3): icmp_seg=1l ttl=64 time=0.052 ms
64 bytes from c2.my_net (172.18.0.3): icmp_seq=2 ttl=64 time=0.049 ms
64 bytes from c2.my_net (172.18.0.3): icmp_seq=3 ttl=64 time=0.049 ms
64 bytes from c2.my net (172.18.0.3): icmp_seq=4 ttl=64 time=0.048 ms
~C

--- ¢2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3068ms

rtt min/avg/max/mdev = 0.048/0.049/0.052/0.001 ms
root@511627205336:/# |

github.com/kunchalavikram1427



Docker Networking: Port Mapping

Port forwarding enables access to

applications running inside containers from

outside world

OC
OC
OC
OC
OC

Q QO O OO A

ker run —p 80:5000 nginx

ker run —p 8000:5000 nginx
ker run —p 8001:5000 nginx
Ker run —p 3306:3306 mysqg|

ker run —p 8306:3306 mysql

Port is already allocated

o O W W

o O W W

3
3
0
6

. -
l 192.168.0.3:80
80 8000 8001
IP- 192.160.1.5
5000 5000 5000
IP: 172.17.0.2 IP: 172.17.0.3 IP: 172.17.0.4
Web APP Web APP Web APP
Docker Container Docker Container Docker Container
IP:172.17.0.5 5 |IP: 172.17.0.6 3 IP:172.17.0.6
MySQL 3 MySQL 3 MySQl
Docker 0 Docker 0 Daocker
Container 6 Container & Container
'1."-}
-
192.168.0.3

github.com/kunchalavikram1427



Docker Networking: Host =

80 80
. . Web Web
* |n host network, all containers directly get connected to S Sl
host.
e Multiple containers cannot run on same hosts because of
port conflicts on host side
-—-—V‘

& —-> C (@ Notsecure | 192.168.0.101
192.168.0.101

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

github.com/kunchalavikram1427



Docker Networking: None

* This offers a container-specific network stack that lacks a

network interface.

. . . . Web
» Containers run In pure Isolation Container
 This container only has a local loopback interface (i.e., no
external network interface)
f: )

-
root@docker-master: /home/osboxes# docker run -d --name web --net none nginx
fS5bf2ebea26c9e6d826b15951bal0d72daclab67ac88201a694861fa2lecd65e
root@docker-master:/home/osboxes# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
fSbf2ebea26b¢ nginx "nginx -g 'daemon of.." 6 seconds ago Up 5 seconds

root@docker-master:/home/osboxes# |

root@docker-master:/home/osboxes# docker container inspect web | grep IPAddress
"SecondaryIPAddresses”: null,
"IPAddress": "",
"IPAddress": "",
root@docker-master:/home/osboxes# [

PORTS

github.com/kunchalavikram1427



| Docker Networking: Overlay

* Bridge networks apply to containers running on the same Docker daemon
host. For communication among containers running on different Docker
daemon hosts, we should use an overlay network which spans across the

entire cluster

Web Web Database Redis Web Web
Container Container Contamer Contamer Container Container
T | | T
| | I I | |

1
1
-l

: ' : ' :
| 1
L Docker _ L_ Docker _1 L_
0 0
172.17.0.2 172.17.03 172.17.0.2 172.17.0.3 _ -17.

github.com/kunchalavikram1427



Docker Volumes .

Advantages:
1. To keep data around when a container Is removed

Images are a series of read-only layers
A container Is merely an instantiation of those read-only layers with a single read-write
layer on top.

Any file changes that are made within a container are reflected as a copy of modified
data from the read-only layer.

The version In the read-write layer hides the underlying file
but does not remove It.

When deleting a container, the read-write layer P
containing the changes are destroyed and gone forever! -
In order to persist these changes we use docker volumes A iy

Base Image

Ubuntu

bootfs

2. To share data between the host filesystem cgroups, namespace,

device mapper

and the Docker container —

github.com/kunchalavikram1427



| Docker Volumes
Two types of volume mounts: Named and Bind

Named Volume: Mounting a volume created using ‘docker volume create’
command and mounting It from default volume location /var/lib/docker/volumes
docker volume create my-vol

docker run -d --name nginx -v myvol:/app nginx

docker run -d --name nginx --mount source=myvol2,target=/app nginx

- R .3.\

N Container y

»
»

([

/var/lib/docker/volumes/myvol

KDocker host /

github.com/kunchalavikram1427



Docker Volumes =
Two types of volume mounts: Named and Bind

External mounting(external hard disks etc.)
Bind mounts may be stored anywhere on the host system. They usually start with

l/J

4 '

/var/www/html
Container

((

/root/html

\\¥Dockerhost 4//

github.com/kunchalavikram1427



Docker volumes commands

OCKer volume
OCKer volume
OCKer volume
OCKer volume
OCKer volume

QO O O O A

<volume__name>

<volume__name>

<volume__name>

N fapp
Container E
| —
/var/lib/docker/volumes/myvol
\ Docker host /

Named Volume

. Svarfwww/html
Container p—
]
—
/html
\ Docker host /
Bind Volume

github.com/kunchalavikram1427



Docker Volumes

: Hosting a static website using nginx

docker exec -it web bash
root@768faf801706:/# Is /usr/share/nginx/html
50x.html| index.html

& > C ® Notsecure | 192.168.0.101

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

docker run -d --name web -p 80:80 -v $PWD:/usr/share/nginx/html nginx

4 §)

/usr/share/nginx/html
Container

L(((

$PWD/index.html

\Docker host /

& C'  (® Notsecure | 192.168.0.103

I have just changed the index file

github.com/kunchalavikram1427



| Building Images N

* Hosting a static website was easier as base image nginx has all dependencies to host.
« \What if we are required to host an application which requires lot of dependencies
which base image do not provide? \We build the image!!!

Let’s say a flask application has to be built

docker run -1t --name my-app ubuntu bash app-py
root@bebl164a51e6a:/# apt update ———
root@beb164a51e6a:/# apt install python AEHBELIES

root@beb164a51e6a:/# pip install flask

) apt install python
root@mbebl64a5l1e6a:/# exit

docker commit my-app my-flask-a apt update
y-app my pp

I

| | ’

container-name image-name

github.com/kunchalavikram1427



Dockerfile "

Dockerfile 1s essentially the build instructions to build your image
It Is a text document that contains all the commands a user could call on the

command line to assemble the image
Using docker build users can create an automated build that executes several

command-line instructions In succession

Name of the file is Dockerfile without any extensions

github.com/kunchalavikram1427



Dockerfile contents .

FROM defines the base image used to start the build process

MAINTAINER defines a full name and email address of the image creator

COPY copies one or more files from the Docker host into the Docker image

EXPOSE exposes a specific port to enable networking between the container and the outside
world

RUN runs commands while image is being built from the dockerfile and saves result as a new
layer

VOLUME is used to enable access from the container to a directory on the host machine
WORKDIR used to set default working directory for the container

CMD command that runs when the container starts

ENTRYPOINT command that runs when the container starts

github.com/kunchalavikram1427



Dockerfile 'Iask_app -
_________________ |

FROM python:alpine3.7 :

COPY. /app | Dockerfile
\WORKDIR /app | 3

RUN pip install flask | PP-PY
EXPOSE 5000 |
CMD python ./app.py

(or)

Build the image:
FROM ubuntu

N\ apt'QEt update (make sure you are in the directory of docker file and Dockerfile has no name

RUN apt-get install -y python python-pip wget | extensions)

.. -t — Tag the image with a name
RUN PIP install Flask . — Dot indicates look for Dockerfile from PWD/Present Working Directory

COPY app.py /home/app.py
WORKDIR /home Source:
CMD python app.py

github.com/kunchalavikram1427



Dockerfile

root@docker-master:/home/osboxes/docker/Dockerfile-flask# docker images

REPOSITORY TAG IMAGE ID CREATED
flaskapp latest afaldel7a2ed 4 seconds ago
nginx latest 9beeba249f3e 4 days ago
python alpine3.7 00be2573e917 _ 15 months ago

& > C  ©® Notsecure | 192.168.0.102

Hello from Flask!!!

o Flask listens on port 5000 by default. You can also configure it to a different port

SIZE
91.6MB
127MB
81.3MB

- flask_app

Dockerfile
app-py

FROM python:alpine3.7
COPY . /app
WORKDIR /app

RUN pip install flask
EXPOSE 5000

CMD python ./app.py

github.com/kunchalavikram1427



Dockerfile

Demo: Building a single landing page dynamic website using flask

Dockerfile

FROM python:alpine3.7
COPY . /app

WORKDIR /app

RUN pip install flask
EXPOSE 5000

CMD python ./appv3.py

Source:

appv3.py

Pgilask=aee _
i :

Dockerfile

import
from flask import

def getl|P():

hostname = socket.gethostname()
s = socket.socket(socket. AF__INET, socket.SOCK_DGRAM)

s.connect(("8.8.8.8", 80))

Ip = s.getsockname()[0]

print(ip)
s.close()

return str(hostname),str(ip)

app = Flask(__name__)
@app.route("/")
def hello():
hostname,ip = getlIP()
return

(‘index.html’,hostname=hostname,ip=ip)

f _ name__ _=="__main__":

app.run(host="0.0.0.0",

port=int("5000"), debug=True)

| [ static/image.jpg

|

D |

| appv3.py |
L Dt

index.html file should in
templates directory and image
should be in static directory

We will pass these
variables to index.html file

github.com/kunchalavikram1427



Dockerfile

Demo: Building a single landing page dynamic website using flask

Build Image and Push to docker hub

<username> - Your docker hub account name

Run the container

€ > e D @INotsecure 192,168,0,2 %
Connected City,

0
Connected 'City
Website processed by container: connectedcity-&éﬁoyment—7c5c74fd66—
’ bjhzh with IP:10.244.1.42

=
+—
=
X
(¢D)
o
c

<!DOCTYPE html>
<html>
<title>Smart City</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet” href="https://www.w3schools.com/w3css/4/w3.css">
<link rel="stylesheet” href="https://fonts.googleapis.com/css?family=Raleway">
<style>
body,h1 {font-family: "Raleway”, sans-serif}
body, html {height: 100%}
.bgimg {
background-image: url('/static/smartcity.jpg’);
min-height: 100%;
background-position: center;
background-size: cover;
}
</style>
<body>

<div class="bgimg w3-display-container w3-animate-opacity w3-text-white">
<div class="w3-display-topleft w3-padding-large w3-xlarge">
Connected City
</div>
<div class="w3-display-middle">
<h1 class="w3-jumbo w3-animate-top"” style="text-align:center”> Connected City </h1>
<hr class="w3-border-grey” style="margin:auto;width:40%">
<p class="w3-large w3-center"> Website processed by container: {{ hostname }} with IP: {{ ip }} </p>
</div>
<div class="w3-display-bottomleft w3-padding-large”>
Powered by <a href="https://github.com/kunchalavikram1427" target="__blank">Github</a>
</div>
</div>

</body>
</html>

aithub com/kunchalavikrama 427
J




Docker Compose

* Docker Compose Is used to run multiple containers as a single service.
* For example, an application requires both NGNIX and MySQL containers, you could

create one file which would start both the containers as a service( ) or

start each one separately( )
* All services are to be defined in YAML format

compose file: docker-compose.yml sa.. oo 80 | s

back-end front-end

Bring up the app:
Bring down the app:

K Docker host/VM -/

192.168.0.3

github.com/kunchalavikram1427



Docker Compose

version: ‘3" # if no version Is specified then v1 is assumed.

: # containers. same as docker run

. # container name. this is also DNS name inside network

Image: # name of the image

command: # Optional, replace the default CMD specified by the image

environment: # same as -e in docker run
ports: # same as —p In docker run
volumes: # same as -V in docker run

. # Optional, same as docker volume create

: # Optional, same as docker network create

\_

back-end

front-end

Docker host/VM -/

192.168.0.3

github.com/kunchalavikram1427



Docker Compose versions <

Version 1
* Compose files that do not declare a version are considered “version 1”
* Do not support named volumes, user-defined networks or build arguments

» Every container is placed on the default bridge network and is reachable from every other container
at its IP address. You need to use to enable discovery between containers

Version 2

* All services must be declared under the ‘services’ key

 Named volumes can be declared under the volumes key, and networks can be declared under the
networks key

* New bridge network to connect all containers

Version 3

github.com/kunchalavikram1427



Docker Compose

version: ‘3.3’
services:

image: wordpress
depends__on:
- mysq|
ports:
- 8080:80
environment:
WORDPRESS__DB_HOST: mysql
WORDPRESS_ DB__NAME: wordpress
WORDPRESS_ DB__USER: wordpress
WORDPRESS_DB__PASSWORD: wordpress
volumes:
- ./wordpress-data:/var/www/html
networks:
- my_net

image: mariadb
environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_ DATABASE: wordpress
MYSQL__USER: wordpress
MYSQL__PASSWORD: wordpress
volumes:
- mysql-data:/var/lib/mysq|
networks:
- my_net
volumes:
mysql-data:
networks:
my__net:

Image: wordpress
depends__on:
- mysq|
ports:
- 8080:80
environment:
WORDPRESS_DB__HOST: mysql
WORDPRESS_DB_ NAME: wordpress
WORDPRESS__ DB__USER: wordpress
WORDPRESS__DB__PASSWORD: wordpress
volumes:
- ./wordpress-data:/var/www/html
networks:
- my__net

volumes:
mysql-data:

networks:
my__net:

Image: mariadb

environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_ DATABASE: wordpress
MYSQL_USER: wordpress
MYSQL_PASSWORD: wordpress

volumes:
- mysql-data:/var/lib/mysql

networks:
- my__net

\ Docker host/VM W
github.com/kunchalavikram1427



Docker Compose

version: ‘3.3’
services:

image: wordpress

depends__on:

- mysq|

ports:

- 8080:80

environment:
WORDPRESS__DB_HOST: mysql
WORDPRESS_ DB__NAME: wordpress
WORDPRESS_ DB__USER: wordpress
WORDPRESS_DB__PASSWORD: wordpress
volumes:

- ./wordpress-data:/var/www/html
networks:

- my_net

image: mariadb
environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_ DATABASE: wordpress
MYSQL__USER: wordpress
MYSQL__PASSWORD: wordpress
volumes:
- mysql-data:/var/lib/mysq|
networks:
- my_net
volumes:
mysql-data:
networks:
my__net:

Services file: docker-compose.yml (,

Bring up:
Bring down:
Process state: -

Docker host/VM -/

root@docker-master: /home/osboxes/docker# docker-compose up -d
Creating network "docker_my_net" with the default driver
Creating volume "docker_mysql-data" with default driver
Pulling mysql (mariadb:)...

latest: Pulling from library/mariadb

23884877105a: Pull complete

bc38caadf5b9: Pull complete

2910811b6c42: Pull complete

36505266dcch: Pull complete

e69dcc78e96e: Pull complete

222f44c5392d: Pull complete

efc64ea97b9c: Pull complete

99]:231:49de6b Ex'tr?c‘tj__ng [e============================================

root@doéker-mas?er:/homelasboxes/docker# docker ps

CONTAINER ID IMAGE COMMAND CREATED
9784a2cched2 wordpress "docker-entrypoint.s.." 5 minutes ago
2657b6db3194 mariadhb "docker-entrypoint.s.." 5 minutes ago

root@docker-master:/home/osboxes/docker# |

=9 115B/115B
STATUS PORTS
Up 5 minutes 0.0.0.€
Up 5 minutes 3306/tc

github.com/kunchalavikram1427



Docker Compose - N

\_ Docker host/VM -/

< C  ® Notsecure | 192.168.0.102:8080/wp-admin/install.php < C'  ® Notsecure | 192.168.0.102:8080/wp-admin/
@ A docker-compose <1 B 0 4 New

@ Dashboard Dashboard
Home
Updates (1
Welcome to WordPress!
» We've assembled some links to get you started:
Posts
English (United States) O3 Media Get Started
Afrikaans
Ay sl Il Pages
P Customize Your Site
\" = ® Comments
:&zerbéycan dili or, change your theme completely
Sl 88 > Appearance
Benapyckas moBa £ Plugins
Bbnrapcku
& Users
T & Tools Site Health Status
BosanskKi
Catala Settings No information yet...

github.com/kunchalavikram1427



Docker Compose

version: ‘3.3’
services:

version: "3"

image: wordpress
depends_on: . .
o \ services:

ports:
- 8080:80
environment:
WORDPRESS_ DB__HOST: mysql
WORDPRESS_ DB_NAME: wordpress
WORDPRESS_ DB_ USER: wordpress
WORDPRESS_ DB__PASSWORD: wordpress
volumes:
- ./wordpress-data:/var/www/html
networks:
- my__net

image: mariadb
environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_ DATABASE: wordpress
MYSQL__USER: wordpress
MYSQL__PASSWORD: wordpress
volumes:
- mysql-data:/var/lib/mysqgl
networks:
- my_net
volumes:
mysql-data:
networks:
my__net:

wordpress:

context: .

dockerfile: Dockerfile-wordpress
Image: wordpress
container__name: wordpress

To build only images:
build + deploy:

| docker-compose.ym| |

i Dockerfile-wordpress

Docker host/VM

|

github.com/kunchalavikram1427



Docker Compose

version: ‘3.3’
Services:

image: wordpress
depends__on:
- mysq|
ports:
- 8080:80
environment:
WORDPRESS__DB_HOST: mysql
WORDPRESS_ DB__NAME: wordpress
WORDPRESS_ DB__USER: wordpress
WORDPRESS_DB__PASSWORD: wordpress
volumes:
- ./wordpress-data:/var/www/html
networks:
- my_net

image: mariadb

environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL_ DATABASE: wordpress
MYSQL__USER: wordpress
MYSQL__PASSWORD: wordpress

volumes:
- mysql-data:/var/lib/mysq|

networks:
- my_net

volumes:

mysql-data:

networks:

my__net:

create —driver bridge my__net
create mysgl-data

--name wordpress —p 8080:80 -v ./wordpress-data:/var/www/html \

—net my_net —-e WORDPRESS_DB_HOST = mysql \

-e WORDPRESS_ DB__NAME: wordpress \
-e WORDPRESS__DB__USER: wordpress \

-e WWORDPRESS__DB_PASSWORD: wordpress \

wordpress

--name wordpress —p 3306 -v mysql-data:/var/lib/mysqgl —net my__net

-e MYSQL_ROOT_PASSWORD: wordpress \
-e MYSQL_DATABASE: wordpress \

-e MYSQL_USER: wordpress \

-e MYSQL_PASSWORD: wordpress \
mariadb

o

Docker host/VM

g|thub.com!!uncLaIavikramlAZ?



y -
4

WA,

M\ NEXT
_. Docker Swarm

github.com/kunchalavikram1427



.~8v

Docker ‘

Swarm

Vikram
loT Application Dev



Container Orchestration <

Containers are by nature.

They stop when process inside them finishes, or ends because of an error.

Also a single container per service may not be sufficient enough to handle the growing traffic to the
application.

In all the above scenarios we need a tool that can bring up the stopped containers or spin up new
one’s to handle the growing traffic and to ensure & of the
application all the time.

This is where container orchestration comes into play!!!

What Is container orchestration?

Container orchestration is all about managing the lifecycles of containers, especially in large, dynamic

environments.

v" Provisioning and deployment of containers

v" Scaling up or removing containers to spread application load evenly across host infrastructure

v" Movement of containers from one host to another if there is a shortage of resources in a host, or if a
host dies

v" Load balancing of service discovery between containers

github.com/kunchalavikram1427



Docker Swarm <

Swarm Is Docker’s built in container orchestrator solution, its main purpose Is to manage
containers in a cluster, I.e. a set of connected machines that work together.

When a new machine joins the cluster, it becomes a node in that swarm.

Using Docker Swarm we can achieve , and of
our applications.

Swarm comes built into the Docker Engine, you don’t need to install anything to get started.

What can one do by using Docker Swarm?

v" Deploying new containers to replace failed ones

v" Scale the number of containers for load balancing

v" Rolling out application updates among the containers in rolling
update fashion

v" Rollback of applications to older versions

v Bring down a node for maintenance without any application
downtime

github.com/kunchalavikram1427



Docker Swarm Architecture -

Docker client

Manager: manages the cluster I 192.168.0.3

Worker: runs tasks assigned by

SO0 IV, W Store Swarm Manager

Scheduler: schedules containers onto 00

nodes depending upon rules and D [ Scheduler ] [ Dgsecr‘\)/‘lfcegy ]

filters \_

Discovery service: helps Swarm

Manager discover new nodes and APl over HTT? et

fetch the available nodes @ N A
. Docker Daemon Docker Daemon

Store: stores state of cluster; like

cluster and swarm services info. 00 00

Essentially a key-value db \_ ETmEERGT ) N Suelmuerner )

192.168.0.4

@ -- container

192.168.0.5

github.com/kunchalavikram1427



Docker Swarm: Overlay driver <

* Bridge networks apply to containers running on the same Docker daemon host. For
communication among containers running on different Docker daemon hosts like In
, we should use an network
* If you create swarm services and do not specify a network, they are connected to default
network, which is also of overlay type
* Overlay network spans across the entire swarm cluster, allowing communication between
containers across multiple nodes

Web Web Database Redis Web Web
Container Container Container Container Container Container
i i i i i i
] 1 ]
L Docker = IL Docker = L Docker
root@docker-master:/home/osboxes/docker# docker network 1s = 0 e = 0 ! = 0 !
NETWORK ID NAME DRIVER SCOPE 172.17.0.2 172.17.0.3 172.17.0.2 172.17.0.3 172.17.0.2 172.17.0.3

4a505a08943f bridge bridge local

91bc90acf6b6 docker_gwbridge bridge local 71 ' N
305bfcd47d41a host host local Overlay Network

zyaabTfek5d7j ingress overlay swarm y

56dddeefld30 my_net bridge local

5347bd97c94f none null local

root@docker-master:/home/osboxes/docker# [j Docker Host Docker Host Docker Host

https://docs.docker.com/engine/swarm/ingress/ github.com/kunchalavikram1427




Docker Swarm: Start a cluster <

root@docker-master # docker swarm init --advertise-addr 192.168.0.100

: current node (peté1mspmyfvkelzoklisd9es) is now a manager. master node

To to this swarm, run the following command:

docker swarm join --token SWMTKN-1-3kabuglekspyqdko2vjostrami9mcys)8lw4klps5cwmh3wmaej-
9rlomém90chce1tgioke58t4| 192.168.0.100:2377

To to this swarm, run ‘'docker swarm join-token manager’ and follow the instructions.

root@docker-slave01 # docker swarm join --token SWMTKN-1-
3kabuglekspyqdk0o2vjostrami9mcys)8lw4klpscwmh3wma4ej-9rlomém90chceltgioke58t4l 192.168.0.100:2377

root@docker-slave01:/home/osboxes# worker node

github.com/kunchalavikram1427



| Docker Swarm s

docker node Is

root@docker-master:/home/oshoxes# docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
m75v5bd6jdlvsy9usawecsu7r *  docker-master Ready Active Leader
wywos5cppaol45967s0mtqgjln docker-slave0l Ready Active

uimguox32lcobodxhpdg3nxf2 docker-slave02 Ready Active

root@docker-master:/home/osboxes# |}

4 W ‘D/ ‘D

6 S G 6
NGIMX o NGIMX = BoEe NGIMX = oEa
front-end front-end front-end

\ Docker master : Docker worker 1 : Docker worker 2 _/
192.168.0.100 192.168.0.101 192.168.0.102

root@docker-master # docker network Is | grep overlay
gh17ylskxm31 Ingress overlay swarm

github.com/kunchalavikram1427



Docker Service =

* To deploy an application image when Docker Engine Is in swarm mode, you create a service.

* A service Is the image for a microservice like an HTTP server, a database, or any other type of
executable program that you wish to run in a distributed environment.

» A service needs container image to use, the port where the swarm makes the service available
outside the swarm, an overlay network for the service to connect to other services in the
swarm and the number of replicas of the image to run in the swarm.

Create a service

root@ocker-master: /home/osboxes# docker service create --replicas 5 -p 808:80 --name web nginx
6obmcjveglzk5eb9nd3ypj90e
overall progress: 5 out of 5 tasks

4/5: running [:::::::::::::::::::::::::::=======================>]
5/5: running [::::::::::::::::::::::::::::::::::::::::::::::::::;-] _ _
verify: Service converged 192.168.0.100 192.168.0.101 192 168.0.102

github.com/kunchalavikram1427



| Docker Service &

docker service Is

root@docker-master: /home/oshoxes# docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
6obmcjveglzk web replicated 5/5 nginx:latest *:80->80/tcp

root@docker-master:/home/oshoxes# |J

[, ‘D 4

|
\ Docker master! R
192.168.0.102

192.168.0.101

192.168.0.100

github.com/kunchalavikram1427



Docker Swarm Visualizer <

Deploy a visualizer

® docker-master ®docker-slave... ®docker-slave...

manager worker worker
dOCker Service Create \ 1.941G RAM 1.941G RAM 1.941G RAM
--name=ViZ \ x86_64/linux x86_64/linux x86_64/linux
--publish=8080:8080/tcp \
--constraint=node.role==manager \
--mount=type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \
Dashboard available at http://<node-ip>:8080

*node-ip: any IP of node participating in cluster
*although the pod is bound to master, it can be reached from all nodes because of ingress routing mesh

github.com/kunchalavikram1427



Docker Service =

Name of the
service

root@docker-master:/home/oshoxes# docker service ps web

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE

PORTS
gqpu0955z15rh web.1 nginx:latest docker-slave02 Running Running 2 minutes ago
ytrie6t5kb50 web .2 nginx:latest docker-master Running Running 2 minutes ago
rxubw2mh8hxv web .3 nginx:latest docker-slave0l Running Running 2 minutes ago
rv9apxkz07xa web .4 nginx:latest docker-slave02 Running Running 2 minutes ago
sldgil2sp35d web.5 nginx:latest docker-slave0l Running Running 2 minutes ago

/—‘ Name of the node

root@dlocker-master: /home/osboxes# docker node ps docker-slave@l
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE

PORTS
rxubw2mh8hxv web.3 nginx:latest docker-slavedl Running Running 3 minutes ago
sldgil2sp35d web.5 nginx:latest docker-slave0fl Running Running 3 minutes ago

github.com/kunchalavikram1427



Docker Service =

root@docker-master: /home/oshoxes# docker service ps web

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
PORTS

qpu0955z15rb web.1 hginx:latest docker-slaved2 Running Running 2 minutes ago
ytrie6t5kb50 web .2 nginx:latest docker-master Running Running 2 minutes ago
rxubw2mh8hxv web.3 nginx:latest docker-slavefl Running Running 2 minutes ago
rv9apxkz07xa web .4 nginx:latest docker-slaved2 Running Running 2 minutes ago
sldgil2sp35d web .5 nginx:latest docker-slavefl Running Running 2 minutes ago

< C @ Notsecure | 192.168.0.100 < C @ Notsecure | 192.168.0.101 < C  © Notsecure | 192.168.0.104

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Master

docker service create --replicas 5 -p

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Slave -01

--name web nginx

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to hginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Slave -02

github.com/kunchalavikram1427



Docker Service =

Scale a service
docker service scale <service__name>=8

Update a service
docker service update --image <image__name>:<version> <Service__name=

Rolling update

docker service update -image <new__Iimage> --update-parallelism 2 --update-delay 10s
<service__name>

github.com/kunchalavikram1427



Docker Service

Let’s say, a node Is down because of an Issue

In this case the affected containers in that node are recreated in available nodes in the cluster

root@docker-master: /home/osboxes# docker service 1s

ID NAME MODE REPLICAS
6obmcjveglzk web B replicated 3/5
root@docker-master: /home/osboxes# docker service 1s

ID NAME MODE REPLICAS
6obmcjveglzk web replicated 5/5

root@docker-master:/home/osboxes# docker service ps web

ID

4de5ub7ctbhyg
qpu0955z15rb
ytrie6t5kb50
rxubw2mh8hxv
kaytsldhrdho
rv9apxkz07xa
sldgil2sp35d

NAME
web.1

\_ web.l1
web.2
web.3
web.4

\_ web.4
web.5

IMAGE

nginx:
nginx:
nginx:
nginx:
nginx:
nginx:
nginx:

latest
latest
latest
latest
latest
latest
latest

NODE
docker-master
docker-slave02
docker-master
docker-slave®@l
docker-master
docker-slave02
docker-slavefl

DESIRED STATE
Running
Shutdown
Running
Running
Running
Shutdown
Running

IMAGE
nginx:latest

IMAGE
nginx:latest

CURRENT STATE

Running 18 seconds ago
Running 37 seconds ago
Running 8 minutes ago
Running 8 minutes ago
Running 17 seconds ago
Running 37 seconds ago
Running 8 minutes ago

github.com/kunchalavikram1427



| Docker Service

* Let's say, a node has to be brought down for maintenance

In this case we drain a node of its workloads onto other nodes for graceful termination

Drain a node: docker node update --availability drain <node-name>
Undrain a node: docker node update --availability active <node-name>

* Let's say, the node Is up and running after maintenance

By default, swarm doesn’t re-deploy the containers the node was previously running. We
need to force the cluster to share the load among the available nodes

Force workload balance: docker service update --force <service_name>

Rollback an update: docker service update --rollback <service_name=>

Remove a service: docker service rm <service__name>




| Docker Swarm: Overlay driver =

Creating overlay network

docker network create --driver overlay my__overlay

root@docker-master:/home/osboxes/docker# docker network ls | grep overlay
zyaabTfek5d7j ingress overlay swarm
mvdmvtgnteeb my_overlay overlay swarm
root@docker-master:/home/osboxes/docker# |

docker service create --replicas 5 -p 80:80 --network my__overlay --name web nginx

docker service inspect web -,

Web Web Database Redis Web Web
Container Container Container Container Container Container
1 || 1 1 1 ]
1 1 ] 1 | 1
: : : : : '
Docker
; L. I b ! L

https://docs.docker.com/engine/swarm/ingress/ github.com/kunchalavikram1427




Docker Service T

from Import

def getl|P():
hostname = socket.gethostname()
s = socket.socket(socket.AF__INET, socket.SOCK_DGRAM)
s.connect(("8.8.8.8", 80))

Dockerfile ip = s.getsockname()[0]

FROM python:alpine3.7 print(ip)
COPY . /app s.close()
\WORKDIR /app return hostname, ip
RUN pip install flask

Demo: Swarm service

app.py

app = Flask(__name__)

EXPOSE 5000 @app.route(”/")
CMD python ./app.py def hello():
hostname,ip = getlP()
docker build -t <username>/ﬂask—app . out = "Hello from hostname: " + hostname + " with host ip: " + Ip
return out
docker push <username>/flask-app r __

app.run(host="0.0.0.0", port=int("5000"), debug=True)

In order to use a custom image in swarm cluster, make sure to push this image to docker hub or private repo so that the swarm nodes will pull the
image, or, make sure this image is available locally on all nodes by manually building the image from dockerfile. Swarm will not schedule containers
on to those nodes which fail to pull the image or do not have this image locally! github.com/kunchalavikram1427



Docker Service =
Demo: Swarm service

& C (0 © Notsecure | 192.168.0.110 ® docker-master ®docker-slave... ®docker-slave...
VISIt Hello from host: f8cfe83721d7 with host ip: 172.18.0.4 manager worker worker
. g . 1.941G RAM 1.941G RAM 1.941G RAM
http'//<n0de-lp>'80 & C 00 @ Not | 192.168.0.110
Ot Secure 100U, Xx86_64/linux x86_64/linux x86_64/linux

and refresh the page to
see the load balancing
effect

Hello from host: 565edeeb88a2 with host ip: 172.18.0.4

* web

& C O @ Notsecure | 192.168.0.110

Hello from host: 4€95e3¢£5206 with host ip: 172.20.0.4

& C Y ® Notsecure | 192.168.0.110

Hello from host: 29358cd75eaa with host ip: 172.18.0.3

&« C O ©® Notsecure | 192.168.0.110

Hello from host: 13d1b269020d with host ip: 172.18.0.3

github.com/kunchalavikram1427



Docker Service =
Demo: Swarm service

https://levelup.gitconnected.com/load-balance-and-scale-node-js-containers-with-nginx-and-docker-swarm-9fc97c3cff81

@ 13.126.255.132 X e (< IRERPIFLLREY] X @ 13.126.255.132 x =+

C @ Notsecure | 13.126.255.132 w : & > C @ Notsecure | 13.126.255.132 w e & - C O Notsecure | 13.126.255.132

B Gmaill » YouTube M Medium in Linkedin iii Apps @ Gmail » YouTube M Medium jin Linkedin iii Apps B Gmail » YouTube M Medium in

It's 4ced025e511d - | It's b41b1a45213b It's 9894e0193218

@ 13.126.255.132 X + @ 13.126.255.132 X + @ 13.126.255.132 X +

> C (@ Notsecure | 13.126.255.132 h* H & > C @ Notsecure | 13.126.255.132 W & & > C (@ Notsecure | 13.126.255.132

‘i1 Apps B Gmail » YouTube M Medium in Linkedin it Apps B Gmal » YouTube M Medium in Linkedin i Apps B Gmail » YouTube M Medium jn
It's 632d7c006e9f .| It's 7b703dcS65e7 .| It's e13047a137aS

@ 13.126255.132 X 4+ @ 13.126.255.132 X 4+ @ 13.126255.132 X |t

€ > C ® Notsecure | 13.126.255.132 )+ i €& 2> C O Notsecure | 13.126.255.132 " @& € > C @ Notsecure | 13.126.255.132

-

iii Apps B Gmail » YouTube M Medium jn Linkedin (i Apps B Gmail » YouTube M Medium jn Linkedin i Apps B Gmail » YouTube M Medium in

It's Shb5702186¢ca .| It's 11d77a800458 | It's 97e0682528ba

O X
@ 13.126255.132 X + @ 13.126.255.132 X + @ 13.126255.132 X +

€ > C @ Notsecure | 13.126.255.132 )4 : € - C @ Notsecure | 13.126.255.132 " & € 2 C O Notsecure | 13.126.255.132

: Apps B Gmail » YouTube M Medium jn Linkedin ;i Apps B Gmail » YouTube M Medium jn Linkedin i;1 Apps B Gmall » YouTube M Medium in

It's 188a53b249db It's b9685b97797¢ | It's 4fd2057c2eac

v

github.com/kunchalavikram1427



| Docker Networking
Ingress Network

s it possible to run 2 containers with same host port
published in non swarm mode?

docker run —d -p 80:5000 --name web1 flask
docker run —d -p 20:5000 --name web?2 flask

No!l! It results in port conflict. Docker daemon doesn’t allow
same host port for multiple containers in non swarm mode

Then how does docker allow running multiple instances of
same application(with same host port mapping) in a node

inside a swarm cluster?

docker service create --replicas 5 -p 80:5000 --name web flask

l 192.168.0.24:80

Flask Flask
Webapp Webapp
172.17.0.4 172.17.0.5
Docker host "
192.168.0.24

github.com/kunchalavikram1427



® :
-

Docker Networking -
l 192.168.0.24:80

* Ingress network has a built in load balancer 80

that redirects traffic from published port on I

host to the mapped container ports —  Load Balancer —
 This allows multiple containers inside a docker Ingress Network

host to use same host port without port

collisions
* No external setup is needed, the load balancer m m

works out of the box with the ingress network

Flask Webapp Flask Webapp
docker service create --replicas 5 -p 17217.0.4 17217.05

80:5000 --name web flask

Docker host i

192.168.0.24

github.com/kunchalavikram1427



Docker Networking

o
~

docker service create --replicas 2 -p 80:5000 --name web flask

192 168.0.24:80

172.17.0.4

Docker Master

192.168.0.24

1192 168.0.25:80

192 168.0.26:80

T —

Load Balancer

Load Balancer

Routing Mesh  Load Balancer Routing Mesh
—”"‘ __——===-—
~~~~ ’f”” : ———————————— -
~~~~ ,—’— I == -—
AT Y L "
- I’—_____:-..*_h::__ : - - ==
______ ~~~~~~| ‘——“—
Flask
Webapp
172.17.1.2
o Docker \Worker o Docker Worker
192.168.0.25

192.168.0.26

github.com/kunchalavikram1427



Docker Networking

The swarm internal networking mesh allows every node in the cluster to accept connections to any
service port published in the swarm by routing all incoming requests to available nodes hosting a service

with the published port.

docker service create --replicas 2 -p 80:5000 --name web flask

Docker Master

l 192.168.0.24:80

Load Balancer

-
-~

172.17.0.4

192.168.0.24

-
———————
=

Load

-
-
-
-

-
‘t-“
hal
-~

--------

172.17.1.2

Docker Worker

l 192.168.0.25:80

Balancer

- -
-------
-
-
d""-'-
-
-
-

192.168.0.25

Po=RNE. AN 4

Routing Mesh Routing Mesh  Load Balancer

-
——— -
- I

-
1-""'-
-

Docker Worker

1192 168.0.26:80

192.168.0.26

github.com/kunchalavikram1427



| Docker Service
|ﬂgf€SS Routing Mesh @ 10.137.99.11:8080

® 10.137.99.12:8080
@® 10.137.99.13:8080

 All nodes participate in an ingress routing
mesh. The routing mesh enables each node In
the swarm to accept connections on published
ports for any service running in the swarm,
even If there’s no task running on the node.

* The routing mesh routes all incoming requests
to published ports on available nodes to an
active container.

* In this scenario, we have 3 nodes and 4 replicas
of web containers. The web containers are
scheduled onto only Host 1 and Host 2. But still
we can reach the web services from Host 3
because of swarm routing mesh

https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/engine/swarm/ingress/

github.com/kunchalavikram1427



| Docker Service

Load Balancer (ingress routing mesh)

ublicIP : .168.50.44:
HA Proxy
> (External Load Balancer)
rivate IP: 10.0.0. | Private IP: 10.0.0.21

1 Swarm Worker Node 1
Region = east

g Swarm Worker Node 2
Region = east

rivate IP: 0.

Swarm Worker Node 3
Region = west

/ /| Swarm LB N

" Web - Container1

Private IP: 10.0.2.2: 5000 | /

Web — Container2
[ Private IP: 10.0.2.3: 5000

‘| Private IP: 10.0.2.4: 5000

Swarm LB | ~
\ )

Web — Container3

\

\ = |

Web - Containerd i
| Container IP: 10.0.2.5: 5000

_ [WostPort:33402 |

Redis — Container5
l Container IP: 10.0.2.6: 6379

_ =\
— 'y

&

-~ Swarm LB

REST API - Containerb

| Container IP: 10.0.2.7: 8000

Docker Daemon

Docker Daemon

Docker Daemon

The ingress network is a special overlay network that facilitates load balancing among a service's nodes. \When any swarm node receives a request on a published port, it hands that request off to a

module called IPVS. IPVS keeps track of all the IP addresses participating in that service, selects one of them, and routes the request to it, over the ingress network.

github.com/kunchalavikram1427



Docker Swarm <
Persistent Storage

* Persistent storage Is storing the data of the container beyond its lifecycle.
* For single host containers, Bind or Named mounts works fine, but in order to share storage volumes
across multiple Docker hosts, such as a Swarm cluster, we need distributed FS or Network FS.

v' Because programs running on your cluster aren’t
guaranteed to run on a specific node, data can’t be
saved to any arbitrary place in the file system.

v" If a program tries to save data to a file for later,
but is then relocated onto a new node, the file will Manager Workes Manager Worker Manager
no longer be where the program expects it to be.

v" Distributed/Network FS allows applications to
have a common storage volume to store and
retrieve the data beyond its lifecycle.

github.com/kunchalavikram1427



| Docker Swarm <
Persistent Storage in single node

* Named Mount

- Host-Based Persistence Shared Among Containers
* Bind Mount 8
4 “'\
. fvar.’wwu;.rfhtml
Container -
=
Docker host Jhtml
\ ocker hos /
Bind Volume
4 J.\
L. =
N /app
Container -
iz
Mvar/lib/fdocker/volumes/myval

\ Docker host /

Named Volume

https://thenewstack.io/methods-dealing-container-storage/

github.com/kunchalavikram1427



Docker Swarm <

Multi-Host Persistence Shared Among Containers

Persistent Storage across cluster

* NFS

Docker Swarm Cluster w/ 5 managers

e GlusterFS
e Ceph

* Convoy
* RexRay
* PortWorx

i Sto ra g e 0 S Persistent

data storage

swarm-manager
(192.168.2.99)

GldsterEs

glusterl glusterz glusl:er3
(192.168.2.100) (192.168.2.101) (192.168. 2.102)

glusterFS (repllczted volume)

ceph

amazon
webservices™

GlusterFS
https://theworkaround.com/2019/05/15/docker-swarm-persistent-storage.html

github.com/kunchalavikram1427



Docker Stacks

Docker stack is used to deploy a complete application stack to the swarm.

Production grade docker-compose

Docker-compose is better suited for development scenarios and is a single host
deployment solution

Uses the same syntax as docker-compose file, but with a new section ‘

to manifest file
Docker stack ignores “build” instructions. You can’t build new images using the stack

commands. It needs pre-built images to exist

-~

sqL. 3306

®

back-end

N

Docker master _j \-‘- Docker worker 1 _j \*‘* Docker worker 2 SO /

192.168.0.100

80

front-end

~

-

3306

®

SQL.

back-end

overlay driver

192.168.0.101

80

front-end

~

" added

-

~

saL. 3306

® o

back-end front-end

192.168.0.102

github.com/kunchalavikram1427



Docker Stack

version: ‘3.3
services:

image: wordpress
depends_on:
- mysql
ports:
- 80:80
deploy:
replicas: 2
placement:
constraints:
- node.role == manager
environment:
WORDPRESS__DB_HOST: mysql
WORDPRESS__DB_NAME: wordpress
WORDPRESS__ DB__USER: wordpress
WORDPRESS__ DB_ PASSWORD: wordpress
volumes:
- wordpress-data:/var/www/html
networks:
- my_net

image: mariadb
deploy:
replicas: 1
placement:
constraints:
- node.role == worker
environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL__DATABASE: wordpress
MYSQL__USER: wordpress
MYSQL__PASSWORD: wordpress
volumes:
- mysql-data:/var/lib/mysql
networks:
- my_net
networks:
my__net:
volumes:
mysql-data:
wordpress-data:

Image: wordpress

Constraints allow containers to

depends_on: be bound to a specific node.
- mysql When these containers are
ports: down because of an issue,

- 80:80 swarm re-deploys another one
deploy: in the same node thus ensyring
replicas: 2 data persistency all the time

placement:

constraints:
- node.role == manager

environment:

WORDPRESS_DB_HOST: mysql

WORDPRESS_DB_NAME: wordpress

WORDPRESS_ DB__USER: wordpress

WORDPRESS_DB__PASSWORD: wordpress
volumes:

- wordpress-data:/var/www/html
networks:

- my__net

volumes:
mysql-data:
wordpress-data:
networks:
my_ net:

Image: mariadb
deploy:

replicas: 1

placement:

constraints:
- node.role == worker

environment:

MYSQL_ROOT_PASSWORD: wordpress

MYSQL_ DATABASE: wordpress

MYSQL__USER: wordpress

MYSQL__PASSWORD: wordpress
volumes:

- mysql-data:/var/lib/mysq|
networks:

- my_net

https://docs.docker.com/engine/swarm/services/#placement-

constraints

https://thenewstack.io/methods-dealing-container-storage/

github.com/kunchalavikram1427



| Docker Stacks

version: ‘3.3’
services:
wordpress:
image: wordpress
depends_on:
- mysql
ports:
- 80:80
deploy:
replicas: 2
placement:
constraints:
- node.role == manager
environment:
WORDPRESS__DB_HOST: mysql
WORDPRESS_DB_ NAME: wordpress
WORDPRESS_ DB__USER: wordpress
WORDPRESS__DB__PASSWORD: wordpress
volumes:
- wordpress-data:/var/www/html
networks:
- my_net
mysql:
image: mariadb
deploy:
replicas: 1
placement:
constraints:
- node.role == worker
environment:
MYSQL_ROOT_PASSWORD: wordpress
MYSQL__DATABASE: wordpress
MYSQL__USER: wordpress
MYSQL__PASSWORD: wordpress
volumes:
- mysql-data:/var/lib/mysql
networks:
- my_net
networks:
my_net:
volumes:
mysql-data:
wordpress-data:

Deploy a stack: docker stack deploy -c <compose.yml|> <stack-name>
List stacks: docker stack Is

List processes: docker stack ps <stack-name>
List services: docker service Is

Delete stack: docker stack rm <stack-name>

tag : latest@sha256:0b452b7bA5faT7)
updated : 20/5 18:33
f107babb287ebe3ff0Scd bale001abs

State I running

® viz
image : visualizer:latest@shal256:544
tag - latest@sha256:54dE5chebff52d
updated : 20/5 18:32
c76a8a1e83512bfbEfo1655b4a1483

State I running

® webapp_mysql

image : mariadb:latest@sha2Se:0fac

: latest@sha256:0fac2faSec295d”
tag : latest@sha256:0b452b7b45fa7] =

updated : 20/5 18:33
updated : 20/5 18:33

3633c6e5dcbfd17fab3abbbalc6073e

2a30507a46b7d9a3a 787!

state : runni
State I running =

https://docs.docker.com/enq|ne/swarm/serwces/#placement—constraL;L§§b‘com/kunchalavikramlm



Docker Swarm <

* One of the key benefits of docker swarm is increasing application availability through redundancy

» Application can be reached from all the available nodes in the cluster using <node-ip=:port

» But how do end user access this application thorough a common endpoint i.e., DNS name? It Is
through an External LoadBalancer/Reverse Proxy

* HAProxy load balancer routes external traffic into the cluster and load balancing its across the available
nodes

e Other popular load balancers include Nginx and Traefik

192 168.0.24:80 I:Lsz 168.0.25:80 192.168.0.26:80
) . nginx
Load Balancer Routing Mesh  Load Balancer Routing Mesh  Load Balancer \ =
=~ 1 mmmmmm=zERT HAPROXY [T eI, naginx
1 eSS 1 S S e PR T
i et e e Ingress Network internst s haproxy , >
: —":::: - el T HTTFS o
5000
Flask
Webapp
172.17.0.4 172.17.1.2
Docker Master L 4 Docker Worker L 4 Docker Worker o
192.168.0.24 192.168.0.25 192.168.0.26 xr

Traefik github.com/kunchalavikram1427



Docker Swarm <

10.12.16.22

www.flask-app.com

- 7 1 S~
=D R ~
N i - ~ i
S 1 = 5SS . . i
-7 - ~~.._Round Robin Load balancing
\ 5 L "/ | \\
-~ 1 S
4, \ - ~
e M “Sa
l 192.168.0.24:80 l 192.168.0.25:80 1192.168.0.26:80

s el e

Load Balancer Rnuting Mesh Load Balancer Rnuting Mesh Load Balancer

"
--n-"---"- -

" Ingress Network

DNS Server

172.17.0.4 172.17.1.2
Docker Master ' Docker Worker P Docker Worker o
192.168.0.24 192.168.0.25 192.168.0.26

github.com/kunchalavikram1427



Docker Swarm

D e m 0 ———
1. create a service of 5 N
flask replicas
1

2. Create fake DNS entries

(since we don’t have DNS server, we will update
/etc/hosts file in any machine, outside/inside the
cluster, with fake DNS name that points to IP of
HAProxy server. We will use this name to access

the flask application) ﬁ

l 10.12.16.22

__________ > Load Balancer
_______ [}
__________ ] o
Pl Bl
_________________________ = .-f______Il______""l-..,s______________________________________________________
i e ~
PPlag | ~~~._ Round Robin Load balancing
() [ = - B N e .
Vg - '=r S~o
= r" "'"A
LY
N
\\
Gy N 192 168.0.24:80 I 192.168.0.25:80 192 168.0.26:80
R
I —
Load Balanl:er Routing Mesh Load Balancer unt]ng Mesh  Load Balancer
DNSServer | BE=a - B —
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ ! - ...-—:--_..-"

'{ Tzt I B Ingress Network

H —r L H -1

HEPE et ol P

5000 5000
Flask Flask
Webapp Webapp
172.17.0.4 17217.1.2
Docker Master L 4 Docker Worker o Docker Worker o

192.168.0.24 192.168.0.25 192.168.0.26

& - C ©© @ Notsecure | flask-app.com

Simple Flask Application to understand Swarm Load Balancing

Application running on host: 6¢c661877c0f4 with 1I': 172.18.0.3

0 3VMs are used for swarm cluster and 1VM for running HAProxy. These are just demo considerations. Not intended for production

github.com/kunchalavikram1427



| Docker Swarm <

HAProxy LoadBalancer 192.168.0.105  [/etc/haproxy/haproxy.cig

# Configure HAProxy to listen on port 80
SEtUp HAProxy frontend http_front
bind *:80
. . default backend http back
 Provision a VM - -

 aptinstall haproxy-y

» # Configure HAProxy to route requests to swarm nodes on port 8080
backend http back

 systemctl stop haproxy =~ " balance roundrobin

" - S mode http
add configuration to e T e AL swarm nodes IP and
/etc/haproxy/haproxy.cfg server srv2 192.168.0.104:80 application port

server srv3 192.168.0.109:80__

e systemctl start haproxy &&
systemctl enable haproxy

Create a Fake DNS Entry that points to IP of http://flaskapp.com
HAProxy Machine
C:\Windows\System32\drivers\etc\hosts
192.168.0.105 flask-app.com R —————
ipconfig /flushdns

& - C ©© @ Notsecure | flask-app.com

Simple Flask Application to understand Swarm Load Balancing

Application running on host: 6¢66£877c04 with 1I": 172.18.0.3

/etc/hosts
192.168.0.105 flask-app.com

github.com/kunchalavikram1427



| References

Hypervisors

https://phoenixnap.com/kb/what-is-hypervisor-type-1-2

Docker

https://takacsmark.com/getting-started-with-docker-in-your-project-step-by-step-tutorial/

https://container.training/

Docker-compose

https://docs.docker.com/compose/compose-file/

https://docs.docker.com/compose/compose-file/compose-versioning/

Docker Swarm

https://knowledgepill.it/posts/docker swarm_compendium/?fbclid=IwAR2JWNRHrmfKlauScuEmcW1hwli7IxL]df6_ KUWN8GQiSgxc5pXmkw9RDEaM

https://takacsmark.com/getting-started-with-docker-in-your-project-step-by-step-tutorial/
https://container.training/
https://rominirani.com/docker-swarm-tutorial-b67470cf8872
Docker Networking
https://docs.docker.com/network/network-tutorial-overlay/
https://docs.docker.com/engine/swarm/ingress/
Routing Mesh
https://mstechbits.wordpress.com/2019/06/06/load-balancing-docker-containers/amp/
https://techcommunity.microsoft.com/t5/containers/docker-s-routing-mesh-available-with-windows-server-version-1709/ba-p/382382i
https://github.com/docker/docker.github.io/blob/master/engine/swarm/networking.md
Placement Constraints in Swarm mode
https://docs.docker.com/engine/swarm/services/#placement-constraints
Traefik
https://boxboat.com/2017/10/10/managing-multiple-microservices-with-traefik-in-docker-swarm/
https://www.digitalocean.com/community/tutorials/how-to-use-traefik-as-a-reverse-proxy-for-docker-containers-on-ubuntu-18-04
HAProxy
https://www.haproxy.com/blog/haproxy-on-docker-swarm-load-balancing-and-dns-service-discovery/
GlusterFS
https://sysadmins.co.za/container-persistent-storage-for-docker-swarm-using-a-glusterfs-volume-plugin/
https://medium.com/running-a-software-factory/setup-3-node-high-availability-cluster-with-glusterfs-and-docker-swarm-b4ff80c6b5c3
https://blog.ruanbekker.com/blog/2019/03/05/setup-a-3-node-replicated-storage-volume-with-glusterfs/?referral=github.com
Ceph
https://ceph.io/

github.com/kunchalavikram1427



| Credits

e All authors from references section

 Mumshad Mannambeth’s Free Docker
Course on Kodekloud
https://kodekloud.com/p/docker-for-
the-absolute-beginner-hands-on

* YouTube Videos
* Various blogs

github.com/kunchalavikram1427






