
Docker

#docker

Table of Contents

About 1

Chapter 1: Getting started with Docker 2

Remarks 2

Versions 2

Examples 2

Installing Docker on Mac OS X 3

Installing Docker on Windows 4

Installing docker on Ubuntu Linux 5

Installing Docker on Ubuntu 9

Create a docker container in Google Cloud 11

Install Docker on Ubuntu 12

Installating Docker-ce OR Docker-ee on CentOS 16

Docker-ce Installation 16

-Docker-ee (Enterprise Edition) Installation 17

Chapter 2: Building images 19

Parameters 19

Examples 19

Building an image from a Dockerfile 19

A simple Dockerfile 20

Difference between ENTRYPOINT and CMD 20

Exposing a Port in the Dockerfile 21

Example: 21

ENTRYPOINT and CMD seen as verb and parameter 22

Pushing and Pulling an Image to Docker Hub or another Registry 22

Building using a proxy 23

Chapter 3: Checkpoint and Restore Containers 24

Examples 24

Compile docker with checkpoint and restore enabled (ubuntu) 24

Checkpoint and Restore a Container 25

Chapter 4: Concept of Docker Volumes 27

Remarks 27

Examples 27

A) Launch a container with a volume 27

B) Now press [cont +P+Q] to move out from container without terminating the container chec 27

C) Run 'docker inspect' to check out more info about the volume 27

D) You can attach a running containers volume to another containers 27

E) You can also mount you base directory inside container 28

Chapter 5: Connecting Containers 29

Parameters 29

Remarks 29

Examples 29

Docker network 29

Docker-compose 29

Container Linking 30

Chapter 6: Creating a service with persistence 31

Syntax 31

Parameters 31

Remarks 31

Examples 31

Persistence with named volumes 31

Backup a named volume content 32

Chapter 7: Data Volumes and Data Containers 33

Examples 33

Data-Only Containers 33

Creating a data volume 33

Chapter 8: Debugging a container 35

Syntax 35

Examples 35

Entering in a running container 35

Monitoring resource usage 35

Monitoring processes in a container 36

Attach to a running container 36

Printing the logs 37

Docker container process debugging 38

Chapter 9: Docker Data Volumes 39

Introduction 39

Syntax 39

Examples 39

Mounting a directory from the local host into a container 39

Creating a named volume 39

Chapter 10: Docker Engine API 41

Introduction 41

Examples 41

Enable Remote access to Docker API on Linux 41

Enable Remote access to Docker API on Linux running systemd 41

Enable Remote Access with TLS on Systemd 42

Image pulling with progress bars, written in Go 42

Making a cURL request with passing some complex structure 45

Chapter 11: Docker events 46

Examples 46

Launch a container and be notified of related events 46

Chapter 12: Docker in Docker 47

Examples 47

Jenkins CI Container using Docker 47

Chapter 13: docker inspect getting various fields for key:value and elements of list 48

Examples 48

various docker inspect examples 48

Chapter 14: Docker Machine 51

Introduction 51

Remarks 51

Examples 51

Get current Docker Machine environment info 51

SSH into a docker machine 51

Create a Docker machine 51

List docker machines 52

Upgrade a Docker Machine 53

Get the IP address of a docker machine 53

Chapter 15: Docker --net modes (bridge, hots, mapped container and none). 54

Introduction 54

Examples 54

Bridge Mode, Host Mode and Mapped Container Mode 54

Chapter 16: Docker network 56

Examples 56

How to find the Container's host ip 56

Creating a Docker network 56

Listing Networks 56

Add container to network 56

Detach container from network 57

Remove a Docker network 57

Inspect a Docker network 57

Chapter 17: Docker private/secure registry with API v2 59

Introduction 59

Parameters 59

Remarks 60

Examples 60

Generating certificates 60

Run the registry with self-signed certificate 60

Pull or push from a docker client 61

Chapter 18: Docker Registry 62

Examples 62

Running the registry 62

Configure the registry with AWS S3 storage backend 62

Chapter 19: Docker stats all running containers 63

Examples 63

Docker stats all running containers 63

Chapter 20: Docker swarm mode 64

Introduction 64

Syntax 64

Remarks 64

Swarm Mode CLI Commands 64

Examples 65

Create a swarm on Linux using docker-machine and VirtualBox 65

Find out worker and manager join token 66

Hello world application 66

Node Availablility 68

Promote or Demote Swarm Nodes 68

Leaving the Swarm 68

Chapter 21: Dockerfile contents ordering 70

Remarks 70

Examples 70

Simple Dockerfile 70

Chapter 22: Dockerfiles 72

Introduction 72

Remarks 72

Examples 72

HelloWorld Dockerfile 72

Copying files 73

Exposing a port 73

Dockerfiles best pratices 73

USER Instruction 74

WORKDIR Instruction 74

VOLUME Instruction 75

COPY Instruction 75

The ENV and ARG Instruction 76

ENV 76

ARG 77

EXPOSE Instruction 77

LABEL Instruction 78

CMD Instruction 79

MAINTAINER Instruction 80

FROM Instruction 80

RUN Instruction 81

ONBUILD Instruction 82

STOPSIGNAL Instruction 83

HEALTHCHECK Instruction 83

SHELL Instruction 84

Installing Debian/Ubuntu packages 86

Chapter 23: How to debug when docker build fails 88

Introduction 88

Examples 88

basic example 88

Chapter 24: How to Setup Three Node Mongo Replica using Docker Image and Provisioned using

89

Introduction 89

Examples 89

Build Step 89

Chapter 25: Inspecting a running container 93

Syntax 93

Examples 93

Get container information 93

Get specific information from a container 93

Inspect an image 95

Printing specific informations 96

Debugging the container logs using docker inspect 97

Examining stdout/stderr of a running container 97

Chapter 26: Iptables with Docker 98

Introduction 98

Syntax 98

Parameters 98

Remarks 98

The problem 98

The solution 99

Examples 100

Limit access on Docker containers to a set of IPs 100

Configure restriction access when Docker daemon starts 101

Some custom iptables rules 101

Chapter 27: Logging 102

Examples 102

Configuring a log driver in systemd service 102

Overview 102

Chapter 28: Managing containers 103

Syntax 103

Remarks 103

Examples 103

Listing containers 103

Referencing containers 104

Starting and stopping containers 104

List containers with custom format 105

Finding a specific container 105

Find container IP 105

Restarting docker container 105

Remove, delete and cleanup containers 105

Run command on an already existing docker container 106

Container logs 107

Connect to an instance running as daemon 107

Copying file from/to containers 107

Remove, delete and cleanup docker volumes 108

Export and import Docker container filesystems 108

Chapter 29: Managing images 110

Syntax 110

Examples 110

Fetching an image from Docker Hub 110

Listing locally downloaded images 110

Referencing images 110

Removing Images 111

Search the Docker Hub for images 112

Inspecting images 112

Tagging images 113

Saving and loading Docker images 113

Chapter 30: Multiple processes in one container instance 114

Remarks 114

Examples 114

Dockerfile + supervisord.conf 114

Chapter 31: passing secret data to a running container 116

Examples 116

ways to pass secrets in a container 116

Chapter 32: Restricting container network access 117

Remarks 117

Examples 117

Block access to LAN and out 117

Block access to other containers 117

Block access from containers to the local host running docker daemon 117

Block access from containers to the local host running docker daemon (custom network) 118

Chapter 33: run consul in docker 1.12 swarm 119

Examples 119

Run consul in a docker 1.12 swarm 119

Chapter 34: Running containers 120

Syntax 120

Examples 120

Running a container 120

Running a different command in the container 120

Automatically delete a container after running it 120

Specifying a name 121

Binding a container port to the host 121

Container restart policy (starting a container at boot) 121

Run a container in background 122

Assign a volume to a container 122

Setting environment variables 123

Specifying a hostname 124

Run a container interactively 124

Running container with memory/swap limits 124

Getting a shell into a running (detached) container 124

Log into a running container 124

Log into a running container with a specific user 124

Log into a running container as root 125

Log into a image 125

Log into a intermediate image (debug) 125

Passing stdin to the container 126

Detaching from a container 126

Overriding image entrypoint directive 126

Add host entry to container 126

Prevent container from stopping when no commands are running 127

Stopping a container 127

Execute another command on a running container 127

Running GUI apps in a Linux container 127

Chapter 35: Running services 130

Examples 130

Creating a more advanced service 130

Creating a simple service 130

Removing a service 130

Scaling a service 130

Chapter 36: Running Simple Node.js Application 131

Examples 131

Running a Basic Node.js application inside a Container 131

Build your image 132

Running the image 133

Chapter 37: security 135

Introduction 135

Examples 135

How to find from which image our image comes from 135

Credits 136

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: docker

It is an unofficial and free Docker ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Docker.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

Chapter 1: Getting started with Docker

Remarks

Docker is an open-source project that automates the deployment of applications inside software
containers. These application containers are similar to lightweight virtual machines, as they can be
run in isolation to each other and the running host.

Docker requires features present in recent linux kernels to function properly, therefore on Mac
OSX and Windows host a virtual machine running linux is required for docker to operate properly.
Currently the main method of installing and setting up this virtual machine is via Docker Toolbox
that is using VirtualBox internally, but there are plans to integrate this functionality into docker
itself, using the native virtualisation features of the operating system. On Linux systems docker run
natively on the host itself.

Versions

Version Release Date

17.05.0 2017-05-04

17.04.0 2017-04-05

17.03.0 2017-03-01

1.13.1 2016-02-08

1.12.0 2016-07-28

1.11.2 2016-04-13

1.10.3 2016-02-04

1.9.1 2015-11-03

1.8.3 2015-08-11

1.7.1 2015-06-16

1.6.2 2015-04-07

1.5.0 2015-02-10

Examples

https://riptutorial.com/ 2

Installing Docker on Mac OS X

Requirements: OS X 10.8 “Mountain Lion” or newer required to run Docker.

While the docker binary can run natively on Mac OS X, to build and host containers you need to
run a Linux virtual machine on the box.

1.12.0

Since version 1.12 you don't need to have a separate VM to be installed, as Docker can use the
native Hypervisor.framework functionality of OSX to start up a small Linux machine to act as
backend.

To install docker follow the following steps:

Go to Docker for Mac1.
Download and run the installer.2.
Continue through installer with default options and enter your account credentials when
requested.

3.

Check here for more information on the installation.

1.11.2

Until version 1.11 the best way to run this Linux VM is to install Docker Toolbox, that installs
Docker, VirtualBox and the Linux guest machine.

To install docker toolbox follow the following steps:

Go to Docker Toolbox1.
Click the link for Mac and run the installer.2.
Continue through installer with default options and enter your account credentials when
requested.

3.

This will install the Docker binaries in /usr/local/bin and update any existing Virtual Box
installation. Check here for more information on the installation.

To Verify Installation:

1.12.0

Start Docker.app from the Applications folder, and make sure it is running. Next open up
Terminal.

1.

1.11.2

Open the Docker Quickstart Terminal, which will open a terminal and prepare it for use for
Docker commands.

1.

Once the terminal is open type2.

https://riptutorial.com/ 3

$ docker run hello-world

If all is well then this should print a welcome message verifying that the installation was
successful.

3.

Installing Docker on Windows

Requirements: 64-bit version of Windows 7 or higher on a machine which supports Hardware
Virtualization Technology, and it is enabled.

While the docker binary can run natively on Windows, to build and host containers you need to run
a Linux virtual machine on the box.

1.12.0

Since version 1.12 you don't need to have a separate VM to be installed, as Docker can use the
native Hyper-V functionality of Windows to start up a small Linux machine to act as backend.

To install docker follow the following steps:

Go to Docker for Windows1.
Download and run the installer.2.
Continue through installer with default options and enter your account credentials when
requested.

3.

Check here for more information on the installation.

1.11.2

Until version 1.11 the best way to run this Linux VM is to install Docker Toolbox, that installs
Docker, VirtualBox and the Linux guest machine.

To install docker toolbox follow the following steps:

Go to Docker Toolbox1.
Click the link for Windows and run the installer.2.
Continue through installer with default options and enter your account credentials when
requested.

3.

This will install the Docker binaries in Program Files and update any existing Virtual Box
installation. Check here for more information on the installation.

To Verify Installation:

1.12.0

Start Docker from the Start menu if it hasn't been started yet, and make sure it is running.
Next upen up any terminal (either cmd or PowerShell)

1.

1.11.2

https://riptutorial.com/ 4

On your Desktop, find the Docker Toolbox icon. Click the icon to launch a Docker Toolbox
terminal.

1.

Once the terminal is open type

docker run hello-world

2.

If all is well then this should print a welcome message verifying that the installation was
successful.

3.

Installing docker on Ubuntu Linux

Docker is supported on the following 64-bit versions of Ubuntu Linux:

Ubuntu Xenial 16.04 (LTS)•
Ubuntu Wily 15.10•
Ubuntu Trusty 14.04 (LTS)•
Ubuntu Precise 12.04 (LTS)•

A couple of notes:

The following instructions involve installation using Docker packages only, and this
ensures obtaining the latest official release of Docker. If you need to install only using
Ubuntu-managed packages, consult the Ubuntu documentation (Not recommended
otherwise for obvious reasons).

Ubuntu Utopic 14.10 and 15.04 exist in Docker’s APT repository but are no longer
officially supported due to known security issues.

Prerequisites

Docker only works on a 64-bit installation of Linux.•
Docker requires Linux kernel version 3.10 or higher (Except for Ubuntu Precise 12.04, which
requires version 3.13 or higher). Kernels older than 3.10 lack some of the features required
to run Docker containers and contain known bugs which cause data loss and frequently
panic under certain conditions. Check current kernel version with the command uname -r.
Check this post if you need to update your Ubuntu Precise (12.04 LTS) kernel by scrolling
further down. Refer to this WikiHow post to obtain the latest version for other Ubuntu
installations.

•

Update APT sources

This needs to be done so as to access packages from Docker repository.

Log into your machine as a user with sudo or root privileges.1.
Open a terminal window.2.
Update package information, ensure that APT works with the https method, and that CA
certificates are installed.

3.

https://riptutorial.com/ 5

$ sudo apt-get update
$ sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

Add Docker’s official GPG key:

 $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Verify that the key fingerprint is 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88
.

 $ sudo apt-key fingerprint 0EBFCD88

4.

 pub 4096R/0EBFCD88 2017-02-22
 Key fingerprint = 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88
 uid Docker Release (CE deb) <docker@docker.com>
 sub 4096R/F273FCD8 2017-02-22

Find the entry in the table below which corresponds to your Ubuntu version. This determines
where APT will search for Docker packages. When possible, run a long-term support (LTS)
edition of Ubuntu.

5.

Ubuntu Version Repository

Precise 12.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-precise main

Trusty 14.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-trusty main

Wily 15.10 deb https://apt.dockerproject.org/repo ubuntu-wily main

Xenial 16.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-xenial main

Note: Docker does not provide packages for all architectures. Binary artifacts are built
nightly, and you can download them from https://master.dockerproject.org. To install
docker on a multi-architecture system, add an [arch=...] clause to the entry. Refer to
Debian Multiarch wiki for details.

Run the following command, substituting the entry for your operating system for the
placeholder <REPO>.

$ echo "" | sudo tee /etc/apt/sources.list.d/docker.list

6.

Update the APT package index by executing sudo apt-get update.7.

Verify that APT is pulling from the right repository.8.

When you run the following command, an entry is returned for each version of Docker that is

https://riptutorial.com/ 6

available for you to install. Each entry should have the URL https://apt.dockerproject.org/repo/.
The version currently installed is marked with ***.See the below example's output.

$ apt-cache policy docker-engine

 docker-engine:
 Installed: 1.12.2-0~trusty
 Candidate: 1.12.2-0~trusty
 Version table:
 *** 1.12.2-0~trusty 0
 500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages
 100 /var/lib/dpkg/status
 1.12.1-0~trusty 0
 500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages
 1.12.0-0~trusty 0
 500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages

From now on when you run apt-get upgrade, APT pulls from the new repository.

Prerequisites by Ubuntu Version

For Ubuntu Trusty (14.04) , Wily (15.10) , and Xenial (16.04) , install the linux-image-extra-* kernel
packages, which allows you use the aufs storage driver.

To install the linux-image-extra-* packages:

Open a terminal on your Ubuntu host.1.

Update your package manager with the command sudo apt-get update.2.

Install the recommended packages.

$ sudo apt-get install linux-image-extra-$(uname -r) linux-image-extra-virtual

3.

Proceed to Docker installation4.

For Ubuntu Precise (12.04 LTS), Docker requires the 3.13 kernel version. If your kernel version is
older than 3.13, you must upgrade it. Refer to this table to see which packages are required for
your environment:

Package Description

linux-image-
generic-lts-
trusty

Generic Linux kernel image. This kernel has AUFS built in. This is required to
run Docker.

linux-headers-
generic-lts-
trusty

Allows packages such as ZFS and VirtualBox guest additions which depend
on them. If you didn’t install the headers for your existing kernel, then you
can skip these headers for the trusty kernel. If you’re unsure, you should
include this package for safety.

xserver-xorg-
lts-trusty

Optional in non-graphical environments without Unity/Xorg. Required when
running Docker on machine with a graphical environment.

https://riptutorial.com/ 7

Package Description

ligbl1-mesa-
glx-lts-trusty

To learn more about the reasons for these packages, read the installation
instructions for backported kernels, specifically the LTS Enablement Stack.
Refer to note 5 under each version.

To upgrade your kernel and install the additional packages, do the following:

Open a terminal on your Ubuntu host.1.

Update your package manager with the command sudo apt-get update.2.

Install both the required and optional packages.

$ sudo apt-get install linux-image-generic-lts-trusty

3.

Repeat this step for other packages you need to install.4.

Reboot your host to use the updated kernel using the command sudo reboot.5.

After reboot, go ahead and install Docker.6.

Install the latest version

Make sure you satisfy the prerequisites, only then follow the below steps.

Note: For production systems, it is recommended that you install a specific version so
that you do not accidentally update Docker. You should plan upgrades for production
systems carefully.

Log into your Ubuntu installation as a user with sudo privileges. (Possibly running sudo -su).1.

Update your APT package index by running sudo apt-get update.2.

Install Docker Community Edition with the command sudo apt-get install docker-ce.3.

Start the docker daemon with the command sudo service docker start.4.

Verify that docker is installed correctly by running the hello-world image.

 $ sudo docker run hello-world

5.

This command downloads a test image and runs it in a container. When the container runs, it
prints an informational message and exits.

Manage Docker as a non-root user

If you don’t want to use sudo when you use the docker command, create a Unix group called docker
and add users to it. When the docker daemon starts, it makes the ownership of the Unix socket
read/writable by the docker group.

https://riptutorial.com/ 8

To create the docker group and add your user:

Log into Ubuntu as a user with sudo privileges.1.

Create the docker group with the command sudo groupadd docker.2.

Add your user to the docker group.

 $ sudo usermod -aG docker $USER

3.

Log out and log back in so that your group membership is re-evaluated.4.

Verify that you can docker commands without sudo permission.

 $ docker run hello-world

5.

If this fails, you will see an error:

 Cannot connect to the Docker daemon. Is 'docker daemon' running on this host?

Check whether the DOCKER_HOST environment variable is set for your shell.

 $ env | grep DOCKER_HOST

If it is set, the above command will return a result. If so, unset it.

 $ unset DOCKER_HOST

You may need to edit your environment in files such as ~/.bashrc or ~/.profile to prevent the
DOCKER_HOST variable from being set erroneously.

Installing Docker on Ubuntu

Requirements: Docker can be installed on any Linux with a kernel of at least version 3.10. Docker
is supported on the following 64-bit versions of Ubuntu Linux:

Ubuntu Xenial 16.04 (LTS)•
Ubuntu Wily 15.10•
Ubuntu Trusty 14.04 (LTS)•
Ubuntu Precise 12.04 (LTS)•

Easy Installation

Note: Installing Docker from the default Ubuntu repository will install an old version of
Docker.

To install the latest version of Docker using the Docker repository, use curl to grab and run the
installation script provided by Docker:

https://riptutorial.com/ 9

$ curl -sSL https://get.docker.com/ | sh

Alternatively, wget can be used to install Docker:

$ wget -qO- https://get.docker.com/ | sh

Docker will now be installed.

Manual Installation

If, however, running the installation script is not an option, the following instructions can be used to
manually install the latest version of Docker from the official repository.

$ sudo apt-get update
$ sudo apt-get install apt-transport-https ca-certificates

Add the GPG key:

$ sudo apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 \
 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D

Next, open the /etc/apt/sources.list.d/docker.list file in your favorite editor. If the file doesn’t
exist, create it. Remove any existing entries. Then, depending on your version, add the following
line:

Ubuntu Precise 12.04 (LTS):

deb https://apt.dockerproject.org/repo ubuntu-precise main

•

Ubuntu Trusty 14.04 (LTS)

deb https://apt.dockerproject.org/repo ubuntu-trusty main

•

Ubuntu Wily 15.10

deb https://apt.dockerproject.org/repo ubuntu-wily main

•

Ubuntu Xenial 16.04 (LTS)

deb https://apt.dockerproject.org/repo ubuntu-xenial main

•

Save the file and exit, then update your package index, uninstall any installed versions of Docker,
and verify apt is pulling from the correct repo:

$ sudo apt-get update
$ sudo apt-get purge lxc-docker
$ sudo apt-cache policy docker-engine

Depending on your version of Ubuntu, some prerequisites may be required:

Ubuntu Xenial 16.04 (LTS), Ubuntu Wily 15.10, Ubuntu Trusty 14.04 (LTS)•

https://riptutorial.com/ 10

sudo apt-get update && sudo apt-get install linux-image-extra-$(uname -r)

Ubuntu Precise 12.04 (LTS)

This version of Ubuntu requires kernel version 3.13. You may need to install additional
packages depending on your environment:

linux-image-generic-lts-trusty

Generic Linux kernel image. This kernel has AUFS built in. This is required to run Docker.

linux-headers-generic-lts-trusty

Allows packages such as ZFS and VirtualBox guest additions which depend on them. If you
didn’t install the headers for your existing kernel, then you can skip these headers for the
trusty kernel. If you’re unsure, you should include this package for safety.

xserver-xorg-lts-trusty

libgl1-mesa-glx-lts-trusty

These two packages are optional in non-graphical environments without Unity/Xorg.
Required when running Docker on machine with a graphical environment.

To learn more about the reasons for these packages, read the installation instructions for
backported kernels, specifically the LTS Enablement Stack — refer to note 5 under each
version.

Install the required packages then reboot the host:

$ sudo apt-get install linux-image-generic-lts-trusty

$ sudo reboot

•

Finally, update the apt package index and install Docker:

$ sudo apt-get update
$ sudo apt-get install docker-engine

Start the daemon:

$ sudo service docker start

Now verify that docker is running properly by starting up a test image:

$ sudo docker run hello-world

This command should print a welcome message verifying that the installation was successful.

Create a docker container in Google Cloud

You can use docker, without using docker daemon (engine), by using cloud providers. In this

https://riptutorial.com/ 11

example, you should have a gcloud (Google Cloud util), that connected to your account

docker-machine create --driver google --google-project `your-project-name` google-machine-type
f1-large fm02

This example will create a new instance, in your Google Cloud console. Using machine time f1-
large

Install Docker on Ubuntu

Docker is supported on the following 64-bit versions of Ubuntu Linux:

Ubuntu Xenial 16.04 (LTS)•
Ubuntu Wily 15.10•
Ubuntu Trusty 14.04 (LTS)•
Ubuntu Precise 12.04 (LTS)•

A couple of notes:

The following instructions involve installation using Docker packages only, and this
ensures obtaining the latest official release of Docker. If you need to install only using
Ubuntu-managed packages, consult the Ubuntu documentation (Not recommended
otherwise for obvious reasons).

Ubuntu Utopic 14.10 and 15.04 exist in Docker’s APT repository but are no longer
officially supported due to known security issues.

Prerequisites

Docker only works on a 64-bit installation of Linux.•
Docker requires Linux kernel version 3.10 or higher (Except for Ubuntu Precise 12.04, which
requires version 3.13 or higher). Kernels older than 3.10 lack some of the features required
to run Docker containers and contain known bugs which cause data loss and frequently
panic under certain conditions. Check current kernel version with the command uname -r.
Check this post if you need to update your Ubuntu Precise (12.04 LTS) kernel by scrolling
further down. Refer to this WikiHow post to obtain the latest version for other Ubuntu
installations.

•

Update APT sources

This needs to be done so as to access packages from Docker repository.

Log into your machine as a user with sudo or root privileges.1.
Open a terminal window.2.
Update package information, ensure that APT works with the https method, and that CA
certificates are installed.

3.

$ sudo apt-get update
$ sudo apt-get install apt-transport-https ca-certificates

https://riptutorial.com/ 12

Add the new GPG key. This commands downloads the key with the ID
58118E89F3A912897C070ADBF76221572C52609D from the keyserver hkp://ha.pool.sks-
keyservers.net:80 and adds it to the adv keychain. For more information, see the output of man
apt-key.

 $ sudo apt-key adv \
 --keyserver hkp://ha.pool.sks-keyservers.net:80 \
 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D

4.

Find the entry in the table below which corresponds to your Ubuntu version. This determines
where APT will search for Docker packages. When possible, run a long-term support (LTS)
edition of Ubuntu.

5.

Ubuntu Version Repository

Precise 12.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-precise main

Trusty 14.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-trusty main

Wily 15.10 deb https://apt.dockerproject.org/repo ubuntu-wily main

Xenial 16.04 (LTS) deb https://apt.dockerproject.org/repo ubuntu-xenial main

Note: Docker does not provide packages for all architectures. Binary artifacts are built
nightly, and you can download them from https://master.dockerproject.org. To install
docker on a multi-architecture system, add an [arch=...] clause to the entry. Refer to
Debian Multiarch wiki for details.

Run the following command, substituting the entry for your operating system for the
placeholder <REPO>.

$ echo "" | sudo tee /etc/apt/sources.list.d/docker.list

6.

Update the APT package index by executing sudo apt-get update.7.

Verify that APT is pulling from the right repository.8.

When you run the following command, an entry is returned for each version of Docker that is
available for you to install. Each entry should have the URL https://apt.dockerproject.org/repo/.
The version currently installed is marked with ***.See the below example's output.

$ apt-cache policy docker-engine

 docker-engine:
 Installed: 1.12.2-0~trusty
 Candidate: 1.12.2-0~trusty
 Version table:
 *** 1.12.2-0~trusty 0
 500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages
 100 /var/lib/dpkg/status
 1.12.1-0~trusty 0

https://riptutorial.com/ 13

 500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages
 1.12.0-0~trusty 0
 500 https://apt.dockerproject.org/repo/ ubuntu-trusty/main amd64 Packages

From now on when you run apt-get upgrade, APT pulls from the new repository.

Prerequisites by Ubuntu Version

For Ubuntu Trusty (14.04) , Wily (15.10) , and Xenial (16.04) , install the linux-image-extra-* kernel
packages, which allows you use the aufs storage driver.

To install the linux-image-extra-* packages:

Open a terminal on your Ubuntu host.1.

Update your package manager with the command sudo apt-get update.2.

Install the recommended packages.

$ sudo apt-get install linux-image-extra-$(uname -r) linux-image-extra-virtual

3.

Proceed to Docker installation4.

For Ubuntu Precise (12.04 LTS), Docker requires the 3.13 kernel version. If your kernel version is
older than 3.13, you must upgrade it. Refer to this table to see which packages are required for
your environment:

Package Description

linux-image-
generic-lts-
trusty

Generic Linux kernel image. This kernel has AUFS built in. This is required to
run Docker.

linux-headers-
generic-lts-
trusty

Allows packages such as ZFS and VirtualBox guest additions which depend
on them. If you didn’t install the headers for your existing kernel, then you
can skip these headers for the trusty kernel. If you’re unsure, you should
include this package for safety.

xserver-xorg-
lts-trusty

Optional in non-graphical environments without Unity/Xorg. Required when
running Docker on machine with a graphical environment.

ligbl1-mesa-
glx-lts-trusty

To learn more about the reasons for these packages, read the installation
instructions for backported kernels, specifically the LTS Enablement Stack.
Refer to note 5 under each version.

To upgrade your kernel and install the additional packages, do the following:

Open a terminal on your Ubuntu host.1.

Update your package manager with the command sudo apt-get update.2.

https://riptutorial.com/ 14

Install both the required and optional packages.

$ sudo apt-get install linux-image-generic-lts-trusty

3.

Repeat this step for other packages you need to install.4.

Reboot your host to use the updated kernel using the command sudo reboot.5.

After reboot, go ahead and install Docker.6.

Install the latest version

Make sure you satisfy the prerequisites, only then follow the below steps.

Note: For production systems, it is recommended that you install a specific version so
that you do not accidentally update Docker. You should plan upgrades for production
systems carefully.

Log into your Ubuntu installation as a user with sudo privileges. (Possibly running sudo -su).1.

Update your APT package index by running sudo apt-get update.2.

Install Docker with the command sudo apt-get install docker-engine.3.

Start the docker daemon with the command sudo service docker start.4.

Verify that docker is installed correctly by running the hello-world image.

 $ sudo docker run hello-world

5.

This command downloads a test image and runs it in a container. When the container runs, it
prints an informational message and exits.

Manage Docker as a non-root user

If you don’t want to use sudo when you use the docker command, create a Unix group called docker
and add users to it. When the docker daemon starts, it makes the ownership of the Unix socket
read/writable by the docker group.

To create the docker group and add your user:

Log into Ubuntu as a user with sudo privileges.1.

Create the docker group with the command sudo groupadd docker.2.

Add your user to the docker group.

 $ sudo usermod -aG docker $USER

3.

Log out and log back in so that your group membership is re-evaluated.4.

https://riptutorial.com/ 15

Verify that you can docker commands without sudo permission.

 $ docker run hello-world

5.

If this fails, you will see an error:

 Cannot connect to the Docker daemon. Is 'docker daemon' running on this host?

Check whether the DOCKER_HOST environment variable is set for your shell.

 $ env | grep DOCKER_HOST

If it is set, the above command will return a result. If so, unset it.

 $ unset DOCKER_HOST

You may need to edit your environment in files such as ~/.bashrc or ~/.profile to prevent the
DOCKER_HOST variable from being set erroneously.

Installating Docker-ce OR Docker-ee on CentOS

Docker has announced following editions:

-Docker-ee (Enterprise Edition) along with Docker-ce(Community Edition) and Docker
(Commercial Support)

This document will help you with installation steps of Docker-ee and Docker-ce edition in CentOS

Docker-ce Installation

Following are steps to install docker-ce edition

Install yum-utils, which provides yum-config-manager utility:

$ sudo yum install -y yum-utils

1.

Use the following command to set up the stable repository:

$ sudo yum-config-manager \
 --add-repo \
 https://download.docker.com/linux/centos/docker-ce.repo

2.

Optional: Enable the edge repository. This repository is included in the docker.repo file
above but is disabled by default. You can enable it alongside the stable repository.

 $ sudo yum-config-manager --enable docker-ce-edge

3.

https://riptutorial.com/ 16

You can disable the edge repository by running the yum-config-manager command with the --
disable flag. To re-enable it, use the --enable flag. The following command disables the edge
repository.

 $ sudo yum-config-manager --disable docker-ce-edge

•

Update the yum package index.

 $ sudo yum makecache fast

4.

Install the docker-ce using following command:

 $ sudo yum install docker-ce-17.03.0.ce

5.

Confirm the Docker-ce fingerprint

060A 61C5 1B55 8A7F 742B 77AA C52F EB6B 621E 9F35

If you want to install some other version of docker-ce you can use following command:

$ sudo yum install docker-ce-VERSION

Specify the VERSION number

6.

If everything went well the docker-ce is now installed in your system, use following command
to start:

 $ sudo systemctl start docker

7.

Test your docker installation:

 $ sudo docker run hello-world

you should get following message:

 Hello from Docker!
 This message shows that your installation appears to be working correctly.

8.

-Docker-ee (Enterprise Edition) Installation

For Enterprise Edition (EE) it would be required to signup, to get your <DOCKER-EE-URL>.

To signup go to https://cloud.docker.com/. Enter your details and confirm your email id. After
confirmation you would be given a <DOCKER-EE-URL>, which you can see in your
dashboard after clicking on setup.

1.

Remove any existing Docker repositories from /etc/yum.repos.d/2.

https://riptutorial.com/ 17

Store your Docker EE repository URL in a yum variable in /etc/yum/vars/. Replace
<DOCKER-EE-URL> with the URL you noted down in the first step.

 $ sudo sh -c 'echo "<DOCKER-EE-URL>" > /etc/yum/vars/dockerurl'

3.

Install yum-utils, which provides the yum-config-manager utility:

 $ sudo yum install -y yum-utils

4.

Use the following command to add the stable repository:

 $ sudo yum-config-manager \
 --add-repo \
 <DOCKER-EE-URL>/docker-ee.repo

5.

Update the yum package index.

 $ sudo yum makecache fast

6.

Install docker-ee

 sudo yum install docker-ee

7.

You can start the docker-ee using following command:

$ sudo systemctl start docker

8.

Read Getting started with Docker online: https://riptutorial.com/docker/topic/658/getting-started-
with-docker

https://riptutorial.com/ 18

Chapter 2: Building images

Parameters

Parameter Details

--pull
Ensures that the base image (FROM) is up-to-date before building the rest of the
Dockerfile.

Examples

Building an image from a Dockerfile

Once you have a Dockerfile, you can build an image from it using docker build. The basic form of
this command is:

docker build -t image-name path

If your Dockerfile isn't named Dockerfile, you can use the -f flag to give the name of the Dockerfile
to build.

docker build -t image-name -f Dockerfile2 .

For example, to build an image named dockerbuild-example:1.0.0 from a Dockerfile in the current
working directory:

$ ls
Dockerfile Dockerfile2

$ docker build -t dockerbuild-example:1.0.0 .

$ docker build -t dockerbuild-example-2:1.0.0 -f Dockerfile2 .

See the docker build usage documentation for more options and settings.

A common mistake is creating a Dockerfile in the user home directory (~). This is a bad idea
because during docker build -t mytag . this message will appear for a long time:

Uploading context

The cause is the docker daemon trying to copy all the user's files (both the home directory and it's
subdirectories). Avoid this by always specifying a directory for the Dockerfile.

Adding a .dockerignore file to the build directory is a good practice. Its syntax is similar to
.gitignore files and will make sure only wanted files and directories are uploaded as the context of
the build.

https://riptutorial.com/ 19

A simple Dockerfile

FROM node:5

The FROM directive specifies an image to start from. Any valid image reference may be used.

WORKDIR /usr/src/app

The WORKDIR directive sets the current working directory inside the container, equivalent to running
cd inside the container. (Note: RUN cd will not change the current working directory.)

RUN npm install cowsay knock-knock-jokes

RUN executes the given command inside the container.

COPY cowsay-knockknock.js ./

COPY copies the file or directory specified in the first argument from the build context (the path
passed to docker build path) to the location in the container specified by the second argument.

CMD node cowsay-knockknock.js

CMD specifies a command to execute when the image is run and no command is given. It can be
overridden by passing a command to docker run.

There are many other instructions and options; see the Dockerfile reference for a complete list.

Difference between ENTRYPOINT and CMD

There are two Dockerfile directives to specify what command to run by default in built images. If
you only specify CMD then docker will run that command using the default ENTRYPOINT, which is
/bin/sh -c. You can override either or both the entrypoint and/or the command when you start up
the built image. If you specify both, then the ENTRYPOINT specifies the executable of your container
process, and CMD will be supplied as the parameters of that executable.

For example if your Dockerfile contains

FROM ubuntu:16.04
CMD ["/bin/date"]

Then you are using the default ENTRYPOINT directive of /bin/sh -c, and running /bin/date with that
default entrypoint. The command of your container process will be /bin/sh -c /bin/date. Once you
run this image then it will by default print out the current date

$ docker build -t test .
$ docker run test
Tue Jul 19 10:37:43 UTC 2016

https://riptutorial.com/ 20

You can override CMD on the command line, in which case it will run the command you have
specified.

$ docker run test /bin/hostname
bf0274ec8820

If you specify an ENTRYPOINT directive, Docker will use that executable, and the CMD directive
specifies the default parameter(s) of the command. So if your Dockerfile contains:

FROM ubuntu:16.04
ENTRYPOINT ["/bin/echo"]
CMD ["Hello"]

Then running it will produce

$ docker build -t test .
$ docker run test
Hello

You can provide different parameters if you want to, but they will all run /bin/echo

$ docker run test Hi
Hi

If you want to override the entrypoint listed in your Dockerfile (i.e. if you wish to run a different
command than echo in this container), then you need to specify the --entrypoint parameter on the
command line:

$ docker run --entrypoint=/bin/hostname test
b2c70e74df18

Generally you use the ENTRYPOINT directive to point to your main application you want to run, and
CMD to the default parameters.

Exposing a Port in the Dockerfile

EXPOSE <port> [<port>...]

From Docker's documentation:

The EXPOSE instruction informs Docker that the container listens on the specified
network ports at runtime. EXPOSE does not make the ports of the container accessible to
the host. To do that, you must use either the -p flag to publish a range of ports or the -P
flag to publish all of the exposed ports. You can expose one port number and publish it
externally under another number.

Example:

https://riptutorial.com/ 21

Inside your Dockerfile:

EXPOSE 8765

To access this port from the host machine, include this argument in your docker run command:

-p 8765:8765

ENTRYPOINT and CMD seen as verb and parameter

Suppose you have a Dockerfile ending with

ENTRYPOINT ["nethogs"] CMD ["wlan0"]

if you build this image with a

docker built -t inspector .

launch the image built with such a Dockerfile with a command such as

docker run -it --net=host --rm inspector

,nethogs will monitor the interface named wlan0

Now if you want to monitor the interface eth0 (or wlan1, or ra1...), you will do something like

docker run -it --net=host --rm inspector eth0

or

docker run -it --net=host --rm inspector wlan1

Pushing and Pulling an Image to Docker Hub or another Registry

Locally created images can be pushed to Docker Hub or any other docker repo host, known as a
registry. Use docker login to sign in to an existing docker hub account.

docker login

Login with your Docker ID to push and pull images from Docker Hub.
If you don't have a Docker ID, head over to https://hub.docker.com to create one.

Username: cjsimon
Password:
Login Succeeded

A different docker registry can be used by specifying a server name. This also works for private or
self-hosted registries. Further, using an external credentials store for safety is possible.

docker login quay.io

You can then tag and push images to the registry that you are logged in to. Your repository must

https://riptutorial.com/ 22

be specified as server/username/reponame:tag. Omitting the server currently defaults to Docker Hub.
(The default registry cannot be changed to another provider, and there are no plans to implement
this feature.)

docker tag mynginx quay.io/cjsimon/mynginx:latest

Different tags can be used to represent different versions, or branches, of the same image. An
image with multiple different tags will display each tag in the same repo.

Use docker images to see a list of installed images installed on your local machine, including your
newly tagged image. Then use push to upload it to the registry and pull to download the image.

docker push quay.io/cjsimon/mynginx:latest

All tags of an images can be pulled by specifying the -a option

docker pull quay.io/cjsimon/mynginx:latest

Building using a proxy

Often when building a Docker image, the Dockerfile contains instructions that runs programs to
fetch resources from the Internet (wget for example to pull a program binary build on GitHub for
example).

It is possible to instruct Docker to pass set set environment variables so that such programs
perform those fetches through a proxy:

$ docker build --build-arg http_proxy=http://myproxy.example.com:3128 \
 --build-arg https_proxy=http://myproxy.example.com:3128 \
 --build-arg no_proxy=internal.example.com \
 -t test .

build-arg are environment variables which are available at build time only.

Read Building images online: https://riptutorial.com/docker/topic/713/building-images

https://riptutorial.com/ 23

Chapter 3: Checkpoint and Restore
Containers

Examples

Compile docker with checkpoint and restore enabled (ubuntu)

In order to compile docker its recommended you have at least 2 GB RAM. Even with that it fails
sometimes so its better to go for 4GB instead.

make sure git and make is installed

sudo apt-get install make git-core -y

1.

install a new kernel (at least 4.2)

sudo apt-get install linux-generic-lts-xenial

2.

reboot machine to have the new kernel active

sudo reboot

3.

compile criu which is needed in order to run docker checkpoint

sudo apt-get install libprotobuf-dev libprotobuf-c0-dev protobuf-c-compiler protobuf-
compiler python-protobuf libnl-3-dev libcap-dev -y
wget http://download.openvz.org/criu/criu-2.4.tar.bz2 -O - | tar -xj
cd criu-2.4
make
make install-lib
make install-criu

4.

check if every requirement is fulfilled to run criu

sudo criu check

5.

compile experimental docker (we need docker to compile docker)

cd ~
wget -qO- https://get.docker.com/ | sh
sudo usermod -aG docker $(whoami)

6.

At this point we have to logoff and login again to have a docker daemon. After relog
continue with compile step

•

https://riptutorial.com/ 24

git clone https://github.com/boucher/docker
cd docker
git checkout docker-checkpoint-restore
make #that will take some time - drink a coffee
DOCKER_EXPERIMENTAL=1 make binary

We now have a compiled docker. Lets move the binaries. Make sure to replace <version>
with the version installed

sudo service docker stop
sudo cp $(which docker) $(which docker)_ ; sudo cp ./bundles/latest/binary-client/docker-
<version>-dev $(which docker)
sudo cp $(which docker-containerd) $(which docker-containerd)_ ; sudo cp
./bundles/latest/binary-daemon/docker-containerd $(which docker-containerd)
sudo cp $(which docker-containerd-ctr) $(which docker-containerd-ctr)_ ; sudo cp
./bundles/latest/binary-daemon/docker-containerd-ctr $(which docker-containerd-ctr)
sudo cp $(which docker-containerd-shim) $(which docker-containerd-shim)_ ; sudo cp
./bundles/latest/binary-daemon/docker-containerd-shim $(which docker-containerd-shim)
sudo cp $(which dockerd) $(which dockerd)_ ; sudo cp ./bundles/latest/binary-
daemon/dockerd $(which dockerd)
sudo cp $(which docker-runc) $(which docker-runc)_ ; sudo cp ./bundles/latest/binary-
daemon/docker-runc $(which docker-runc)
sudo service docker start

7.

Dont worry - we backed up the old binaries. They are still there but with an underscore added to its
names (docker_).

Congratulation you now have an experimental docker with the ability to checkpoint a container and
restore it.

Please note that experimental features are NOT ready for production

Checkpoint and Restore a Container

create docker container
export cid=$(docker run -d --security-opt seccomp:unconfined busybox /bin/sh -c 'i=0; while
true; do echo $i; i=$(expr $i + 1); sleep 1; done')

container is started and prints a number every second
display the output with
docker logs $cid

checkpoint the container
docker checkpoint create $cid checkpointname

container is not running anymore
docker np

lets pass some time to make sure

resume container
docker start $cid --checkpoint=checkpointname

print logs again
docker logs $cid

https://riptutorial.com/ 25

Read Checkpoint and Restore Containers online:
https://riptutorial.com/docker/topic/5291/checkpoint-and-restore-containers

https://riptutorial.com/ 26

Chapter 4: Concept of Docker Volumes

Remarks

People new to Docker often don't realize that Docker filesystems are temporary by default. If you
start up a Docker image you'll get a container that on the surface behaves much like a virtual
machine. You can create, modify, and delete files. However, unlike a virtual machine, if you stop
the container and start it up again, all your changes will be lost -- any files you previously deleted
will now be back, and any new files or edits you made won't be present.

Volumes in docker containers allow for persistent data, and for sharing host-machine data inside a
container.

Examples

A) Launch a container with a volume

[root@localhost ~]# docker run -it -v /data --name=vol3 8251da35e7a7 /bin/bash
root@d87bf9607836:/# cd /data/
root@d87bf9607836:/data# touch abc{1..10}
root@d87bf9607836:/data# ls

abc1 abc10 abc2 abc3 abc4 abc5 abc6 abc7 abc8 abc9

B) Now press [cont +P+Q] to move out from container without terminating the
container checking for container that is running

[root@localhost ~]# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES d87bf9607836
8251da35e7a7 "/bin/bash" About a minute ago Up 31 seconds vol3 [root@localhost ~]#

C) Run 'docker inspect' to check out more info about the volume

[root@localhost ~]# docker inspect d87bf9607836

"Mounts": [{ "Name":
"cdf78fbf79a7c9363948e133abe4c572734cd788c95d36edea0448094ec9121c", "Source":
"/var/lib/docker/volumes/cdf78fbf79a7c9363948e133abe4c572734cd788c95d36edea0448094ec9121c/_data",
"Destination": "/data", "Driver": "local", "Mode": "", "RW": true

D) You can attach a running containers volume to another containers

[root@localhost ~]# docker run -it --volumes-from vol3 8251da35e7a7 /bin/bash

https://riptutorial.com/ 27

root@ef2f5cc545be:/# ls

bin boot data dev etc home lib lib64 media mnt opt proc root run sbin srv sys tmp usr var

root@ef2f5cc545be:/# ls /data abc1 abc10 abc2 abc3 abc4 abc5 abc6 abc7 abc8 abc9

E) You can also mount you base directory inside container

[root@localhost ~]# docker run -it -v /etc:/etc1 8251da35e7a7 /bin/bash

Here: /etc is host machine directory and /etc1 is the target inside container

Read Concept of Docker Volumes online: https://riptutorial.com/docker/topic/5908/concept-of-
docker-volumes

https://riptutorial.com/ 28

Chapter 5: Connecting Containers

Parameters

Parameter Details

tty:true
In docker-compose.yml, the tty: true flag keeps the container's sh command
running waiting for input.

Remarks

The host and bridge network drivers are able to connect containers on a single docker host. To
allow containers to communicate beyond one machine, create an overlay network. Steps to create
the network depend on how your docker hosts are managed.

Swarm Mode: docker network create --driver overlay•
docker/swarm: requires an external key-value store•

Examples

Docker network

Containers in the same docker network have access to exposed ports.

docker network create sample
docker run --net sample --name keys consul agent -server -client=0.0.0.0 -bootstrap

Consul's Dockerfile exposes 8500, 8600, and several more ports. To demonstrate, run another
container in the same network:

docker run --net sample -ti alpine sh
/ # wget -qO- keys:8500/v1/catalog/nodes

Here the consul container is resolved from keys, the name given in the first command. Docker
provides dns resolution on this network, to find containers by their --name.

Docker-compose

Networks can be specified in a compose file (v2). By default all the containers are in a shared
network.

Start with this file: example/docker-compose.yml:

version: '2'

https://riptutorial.com/ 29

services:
 keys:
 image: consul
 command: agent -server -client=0.0.0.0 -bootstrap
 test:
 image: alpine
 tty: true
 command: sh

Starting this stack with docker-compose up -d will create a network named after the parent directory,
in this case example_default. Check with docker network ls

 > docker network ls
NETWORK ID NAME DRIVER SCOPE
719eafa8690b example_default bridge local

Connect to the alpine container to verify the containers can resolve and communicate:

 > docker exec -ti example_test_1 sh
/ # nslookup keys
...
/ # wget -qO- keys:8500/v1/kv/?recurse
...

A compose file can have a networks: top level section to specify the network name, driver, and
other options from the docker network command.

Container Linking

The docker --link argument, and link: sections docker-compose make aliases to other
containers.

docker network create sample
docker run -d --net sample --name redis redis

With link either the original name or the mapping will resolve the redis container.

> docker run --net sample --link redis:cache -ti python:alpine sh -c "pip install redis &&
python"
>>> import redis
>>> r = redis.StrictRedis(host='cache')
>>> r.set('key', 'value')
True

Before docker 1.10.0 container linking also setup network connectivity - behavior now provided by
docker network. Links in later versions only provide legacy effect on the default bridge network.

Read Connecting Containers online: https://riptutorial.com/docker/topic/6528/connecting-
containers

https://riptutorial.com/ 30

Chapter 6: Creating a service with
persistence

Syntax

docker volume create --name <volume_name> # Creates a volume called <volume_name>•
docker run -v <volume_name>:<mount_point> -d crramirez/limesurvey:latest # Mount the
<volume_name> volume in <mount_point> directory in the container

•

Parameters

Parameter Details

--name <volume_name> Specify the volume name to be created

-v
<volume_name>:<mount_point>

Specify where the named volume will be mounted in the
container

Remarks

Persistence is created in docker containers using volumes. Docker have many ways to deal with
volumes. Named volumes are very convenient by:

They persist even when the container is removed using the -v option.•
The only way to delete a named volume is doing an explicit call to docker volume rm•
The named volumes can be shared among container without linking or --volumes-from
option.

•

They don't have permission issues that host mounted volumes have.•
They can be manipulated using docker volume command.•

Examples

Persistence with named volumes

Persistence is created in docker containers using volumes. Let's create a Limesurvey container
and persist the database, uploaded content and configuration in a named volume:

docker volume create --name mysql
docker volume create --name upload

docker run -d --name limesurvey -v mysql:/var/lib/mysql -v upload:/app/upload -p 80:80
crramirez/limesurvey:latest

https://riptutorial.com/ 31

Backup a named volume content

We need to create a container to mount the volume. Then archive it and download the archive to
our host.

Let's create first a data volume with some data:

docker volume create --name=data
echo "Hello World" | docker run -i --rm=true -v data:/data ubuntu:trusty tee /data/hello.txt

Let's backup the data:

docker run -d --name backup -v data:/data ubuntu:trusty tar -czvf /tmp/data.tgz /data
docker cp backup:/tmp/data.tgz data.tgz
docker rm -fv backup

Let's test:

tar -xzvf data.tgz
cat data/hello.txt

Read Creating a service with persistence online: https://riptutorial.com/docker/topic/7429/creating-
a-service-with-persistence

https://riptutorial.com/ 32

Chapter 7: Data Volumes and Data
Containers

Examples

Data-Only Containers

Data-only containers are obsolete and are now considered an anti-pattern!

In the days of yore, before Docker's volume subcommand, and before it was possible to create
named volumes, Docker deleted volumes when there were no more references to them in any
containers. Data-only containers are obsolete because Docker now provides the ability to create
named volumes, as well as much more utility via the various docker volume subcommand. Data-
only containers are now considered an anti-pattern for this reason.

Many resources on the web from the last couple of years mention using a pattern called a "data-
only container", which is simply a Docker container that exists only to keep a reference to a data
volume around.

Remember that in this context, a "data volume" is a Docker volume which is not mounted from the
host. To clarify, a "data volume" is a volume which is created either with the VOLUME Dockerfile
directive, or using the -v switch on the command line in a docker run command, specifically with
the format -v /path/on/container. Therefore a "data-only container" is a container whose only
purpose is to have a data volume attached, which is used by the --volumes-from flag in a docker run
command. For example:

docker run -d --name "mysql-data" -v "/var/lib/mysql" alpine /bin/true

When the above command is run, a "data-only container" is created. It is simply an empty
container which has a data volume attached. It was then possible to use this volume in another
container like so:

docker run -d --name="mysql" --volumes-from="mysql-data" mysql

The mysql container now has the same volume in it that is also in mysql-data.

Because Docker now provides the volume subcommand and named volumes, this pattern is now
obsolete and not recommended.

To get started with the volume subcommand and named volumes see Creating a named volume

Creating a data volume

docker run -d --name "mysql-1" -v "/var/lib/mysql" mysql

https://riptutorial.com/ 33

This command creates a new container from the mysql image. It also creates a new data volume,
which it then mounts in the container at /var/lib/mysql. This volume helps any data inside of it
persist beyond the lifetime of the container. That is to say, when a container is removed, its
filesystem changes are also removed. If a database was storing data in the container, and the
container is removed, all of that data is also removed. Volumes will persist a particular location
even beyond when its container is removed.

It is possible to use the same volume in multiple containers with the --volumes-from command line
option:

docker run -d --name="mysql-2" --volumes-from="mysql-1" mysql

The mysql-2 container now has the data volume from mysql-1 attached to it, also using the path
/var/lib/mysql.

Read Data Volumes and Data Containers online: https://riptutorial.com/docker/topic/3224/data-
volumes-and-data-containers

https://riptutorial.com/ 34

Chapter 8: Debugging a container

Syntax

docker stats [OPTIONS] [CONTAINER...]•
docker logs [OPTIONS] CONTAINER•
docker top [OPTIONS] CONTAINER [ps OPTIONS]•

Examples

Entering in a running container

To execute operations in a container, use the docker exec command. Sometimes this is called
"entering the container" as all commands are executed inside the container.

docker exec -it container_id bash

or

docker exec -it container_id /bin/sh

And now you have a shell in your running container. For example, list files in a directory and then
leave the container:

docker exec container_id ls -la

You can use the -u flag to enter the container with a specific user, e.g. uid=1013, gid=1023.

docker exec -it -u 1013:1023 container_id ls -la

The uid and gid does not have to exist in the container but the command can result in errors.If you
want to launch a container and immediately enter inside in order to check something, you can do

docker run...; docker exec -it $(docker ps -lq) bash

the command docker ps -lq outputs only the id of the last (the l in -lq) container started. (this
supposes you have bash as interpreter available in your container, you may have sh or zsh or any
other)

Monitoring resource usage

Inspecting system resource usage is an efficient way to find misbehaving applications. This
example is an equivalent of the traditional top command for containers:

docker stats

https://riptutorial.com/ 35

To follow the stats of specific containers, list them on the command line:

docker stats 7786807d8084 7786807d8085

Docker stats displays the following information:

CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O
7786807d8084 0.65% 1.33 GB / 3.95 GB 33.67% 142.2 MB / 57.79 MB 46.32 MB / 0 B

By default docker stats displays the id of the containers, and this is not very helpful, if your prefer
to display the names of the container, just do

docker stats $(docker ps --format '{{.Names}}')

Monitoring processes in a container

Inspecting system resource usage is an efficient way to narrow down a problem on a live running
application. This example is an equivalent of the traditional ps command for containers.

docker top 7786807d8084

To filter of format the output, add ps options on the command line:

docker top 7786807d8084 faux

Or, to get the list of processes running as root, which is a potentially harmful practice:

docker top 7786807d8084 -u root

The docker top command proves especially useful when troubleshooting minimalistic containers
without a shell or the ps command.

Attach to a running container

'Attaching to a container' is the act of starting a terminal session within the context that the
container (and any programs therein) is running. This is primarily used for debugging purposes,
but may also be needed if specific data needs to be passed to programs running within the
container.

The attach command is utilized to do this. It has this syntax:

docker attach <container>

<container> can be either the container id or the container name. For instance:

docker attach c8a9cf1a1fa8

https://riptutorial.com/ 36

Or:

docker attach graceful_hopper

You may need to sudo the above commands, depending on your user and how docker is set up.

Note: Attach only allows a single shell session to be attached to a container at a time.

Warning: all keyboard input will be forwarded to the container. Hitting Ctrl-c will kill
your container.

To detach from an attached container, successively hit Ctrl-p then Ctrl-q

To attach multiple shell sessions to a container, or simply as an alternative, you can use exec.
Using the container id:

docker exec -i -t c8a9cf1a1fa8 /bin/bash

Using the container's name:

docker exec -i -t graceful_hopper /bin/bash

exec will run a program within a container, in this case /bin/bash (a shell, presumably one the
container has). -i indicates an interactive session, while -t allocates a pseudo-TTY.

Note: Unlike attach, hitting Ctrl-c will only terminate the exec'd command when
running interactively.

Printing the logs

Following the logs is the less intrusive way to debug a live running application. This example
reproduces the behavior of the traditional tail -f some-application.log on container 7786807d8084.

docker logs --follow --tail 10 7786807d8084

This command basically shows the standard output of the container process (the process with pid
1).

If your logs do not natively include timestamping, you may add the --timestamps flag.

It is possible to look at the logs of a stopped container, either

start the failing container with docker run ... ; docker logs $(docker ps -lq)•

find the container id or name with•

docker ps -a

and then

https://riptutorial.com/ 37

docker logs container-id or

docker logs containername

as it is possible to look at the logs of a stopped container

Docker container process debugging

Docker is just a fancy way to run a process, not a virtual machine. Therefore, debugging a process
"in a container" is also possible "on the host" by simply examining the running container process
as a user with the appropriate permissions to inspect those processes on the host (e.g. root). For
example, it's possible to list every "container process" on the host by running a simple ps as root:

sudo ps aux

Any currently running Docker containers will be listed in the output.

This can be useful during application development for debugging a process running in a container.
As a user with appropriate permissions, typical debugging utilities can be used on the container
process, such as strace, ltrace, gdb, etc.

Read Debugging a container online: https://riptutorial.com/docker/topic/1333/debugging-a-
container

https://riptutorial.com/ 38

Chapter 9: Docker Data Volumes

Introduction

Docker data volumes provide a way to persist data independent of a container's life cycle.
Volumes present a number of helpful features such as:

Mounting a host directory within the container, sharing data in-between containers using the
filesystem and preserving data if a container gets deleted

Syntax

docker volume [OPTIONS] [COMMAND]•

Examples

Mounting a directory from the local host into a container

It is possible to mount a host directory to a specific path in your container using the -v or --volume
command line option. The following example will mount /etc on the host to /mnt/etc in the
container:

(on linux) docker run -v "/etc:/mnt/etc" alpine cat /mnt/etc/passwd
(on windows) docker run -v "/c/etc:/mnt/etc" alpine cat /mnt/etc/passwd

The default access to the volume inside the container is read-write. To mount a volume read-only
inside of a container, use the suffix :ro:

docker run -v "/etc:/mnt/etc:ro" alpine touch /mnt/etc/passwd

Creating a named volume

docker volume create --name="myAwesomeApp"

Using a named volume makes managing volumes much more human-readable. It is possible to
create a named volume using the command specified above, but it's also possible to create a
named volume inside of a docker run command using the -v or --volume command line option:

docker run -d --name="myApp-1" -v="myAwesomeApp:/data/app" myApp:1.5.3

Note that creating a named volume in this form is similar to mounting a host file/directory as a
volume, except that instead of a valid path, the volume name is specified. Once created, named
volumes can be shared with other containers:

https://riptutorial.com/ 39

docker run -d --name="myApp-2" --volumes-from "myApp-1" myApp:1.5.3

After running the above command, a new container has been created with the name myApp-2 from
the myApp:1.5.3 image, which is sharing the myAwesomeApp named volume with myApp-1. The
myAwesomeApp named volume is mounted at /data/app in the myApp-2 container, just as it is mounted
at /data/app in the myApp-1 container.

Read Docker Data Volumes online: https://riptutorial.com/docker/topic/1318/docker-data-volumes

https://riptutorial.com/ 40

Chapter 10: Docker Engine API

Introduction

An API that allows you to control every aspect of Docker from within your own applications, build
tools to manage and monitor applications running on Docker, and even use it to build apps on
Docker itself.

Examples

Enable Remote access to Docker API on Linux

Edit /etc/init/docker.conf and update the DOCKER_OPTS variable to the following:

DOCKER_OPTS='-H tcp://0.0.0.0:4243 -H unix:///var/run/docker.sock'

Restart Docker deamon

service docker restart

Verify if Remote API is working

curl -X GET http://localhost:4243/images/json

Enable Remote access to Docker API on Linux running systemd

Linux running systemd, like Ubuntu 16.04, adding -H tcp://0.0.0.0:2375 to /etc/default/docker
does not have the effect it used to.

Instead, create a file called /etc/systemd/system/docker-tcp.socket to make docker available on a
TCP socket on port 4243:

[Unit]
Description=Docker Socket for the API
[Socket]
ListenStream=4243
Service=docker.service
[Install]
WantedBy=sockets.target

Then enable the new socket:

systemctl enable docker-tcp.socket
systemctl enable docker.socket
systemctl stop docker
systemctl start docker-tcp.socket
systemctl start docker

https://riptutorial.com/ 41

Now, verify if Remote API is working:

curl -X GET http://localhost:4243/images/json

Enable Remote Access with TLS on Systemd

Copy the package installer unit file to /etc where changes will not be overwritten on an upgrade:

cp /lib/systemd/system/docker.service /etc/systemd/system/docker.service

Update /etc/systemd/system/docker.service with your options on ExecStart:

ExecStart=/usr/bin/dockerd -H fd:// -H tcp://0.0.0.0:2376 \
 --tlsverify --tlscacert=/etc/docker/certs/ca.pem \
 --tlskey=/etc/docker/certs/key.pem \
 --tlscert=/etc/docker/certs/cert.pem

Note that dockerd is the 1.12 daemon name, prior it was docker daemon. Also note that 2376 is
dockers standard TLS port, 2375 is the standard unencrypted port. See this page for steps to
create your own TLS self signed CA, cert, and key.

After making changes to the systemd unit files, run the following to reload the systemd config:

systemctl daemon-reload

And then run the following to restart docker:

systemctl restart docker

It's a bad idea to skip TLS encryption when exposing the Docker port since anyone with network
access to this port effectively has full root access on the host.

Image pulling with progress bars, written in Go

Here is an example of image pulling using Go and Docker Engine API and the same progress bars
as the ones shown when you run docker pull your_image_name in the CLI. For the purposes of the
progress bars are used some ANSI codes.

package yourpackage

import (
 "context"
 "encoding/json"
 "fmt"
 "io"
 "strings"

 "github.com/docker/docker/api/types"
 "github.com/docker/docker/client"
)

https://riptutorial.com/ 42

// Struct representing events returned from image pulling
type pullEvent struct {
 ID string `json:"id"`
 Status string `json:"status"`
 Error string `json:"error,omitempty"`
 Progress string `json:"progress,omitempty"`
 ProgressDetail struct {
 Current int `json:"current"`
 Total int `json:"total"`
 } `json:"progressDetail"`
}

// Actual image pulling function
func PullImage(dockerImageName string) bool {
 client, err := client.NewEnvClient()

 if err != nil {
 panic(err)
 }

 resp, err := client.ImagePull(context.Background(), dockerImageName,
types.ImagePullOptions{})

 if err != nil {
 panic(err)
 }

 cursor := Cursor{}
 layers := make([]string, 0)
 oldIndex := len(layers)

 var event *pullEvent
 decoder := json.NewDecoder(resp)

 fmt.Printf("\n")
 cursor.hide()

 for {
 if err := decoder.Decode(&event); err != nil {
 if err == io.EOF {
 break
 }

 panic(err)
 }

 imageID := event.ID

 // Check if the line is one of the final two ones
 if strings.HasPrefix(event.Status, "Digest:") || strings.HasPrefix(event.Status,
"Status:") {
 fmt.Printf("%s\n", event.Status)
 continue
 }

 // Check if ID has already passed once
 index := 0
 for i, v := range layers {
 if v == imageID {
 index = i + 1

https://riptutorial.com/ 43

 break
 }
 }

 // Move the cursor
 if index > 0 {
 diff := index - oldIndex

 if diff > 1 {
 down := diff - 1
 cursor.moveDown(down)
 } else if diff < 1 {
 up := diff*(-1) + 1
 cursor.moveUp(up)
 }

 oldIndex = index
 } else {
 layers = append(layers, event.ID)
 diff := len(layers) - oldIndex

 if diff > 1 {
 cursor.moveDown(diff) // Return to the last row
 }

 oldIndex = len(layers)
 }

 cursor.clearLine()

 if event.Status == "Pull complete" {
 fmt.Printf("%s: %s\n", event.ID, event.Status)
 } else {
 fmt.Printf("%s: %s %s\n", event.ID, event.Status, event.Progress)
 }

 }

 cursor.show()

 if strings.Contains(event.Status, fmt.Sprintf("Downloaded newer image for %s",
dockerImageName)) {
 return true
 }

 return false
}

For better readability, cursor actions with the ANSI codes are moved to a separate structure,
which looks like this:

package yourpackage

import "fmt"

// Cursor structure that implements some methods
// for manipulating command line's cursor
type Cursor struct{}

func (cursor *Cursor) hide() {

https://riptutorial.com/ 44

 fmt.Printf("\033[?25l")
}

func (cursor *Cursor) show() {
 fmt.Printf("\033[?25h")
}

func (cursor *Cursor) moveUp(rows int) {
 fmt.Printf("\033[%dF", rows)
}

func (cursor *Cursor) moveDown(rows int) {
 fmt.Printf("\033[%dE", rows)
}

func (cursor *Cursor) clearLine() {
 fmt.Printf("\033[2K")
}

After that in your main package you can call the PullImage function passing the image name you
want to pull. Of course, before calling it, you have to be logged into the Docker registry, where the
image is.

Making a cURL request with passing some complex structure

When using cURL for some queries to the Docker API, it might be a bit tricky to pass some complex
structures. Let's say, getting a list of images allows using filters as a query parameter, which have
to be a JSON representation of map[string][]string (about the maps in Go you can find more here).
Here is how to achieve this:

curl --unix-socket /var/run/docker.sock \
 -XGET "http:/v1.29/images/json" \
 -G \
 --data-urlencode 'filters={"reference":{"yourpreciousregistry.com/path/to/image": true},
"dangling":{"true": true}}'

Here the -G flag is used to specify that the data in the --data-urlencode parameter will be used in
an HTTP GET request instead of the POST request that otherwise would be used. The data will be
appended to the URL with a ? separator.

Read Docker Engine API online: https://riptutorial.com/docker/topic/3935/docker-engine-api

https://riptutorial.com/ 45

Chapter 11: Docker events

Examples

Launch a container and be notified of related events

The documentation for docker events provides details, but when debugging it may be useful to
launch a container and be notified immediately of any related event:

docker run... & docker events --filter 'container=$(docker ps -lq)'

In docker ps -lq, the l stands for last, and the q for quiet. This removes the id of the last container
launched, and creates a notification immediately if the container dies or has another event occur.

Read Docker events online: https://riptutorial.com/docker/topic/6200/docker-events

https://riptutorial.com/ 46

Chapter 12: Docker in Docker

Examples

Jenkins CI Container using Docker

This chapter describes how to set up a Docker Container with Jenkins inside, which is capable of
sending Docker commands to the Docker installation (the Docker Daemon) of the Host. Effectively
using Docker in Docker. To achieve this, we have to build a custom Docker Image which is based
on an arbitrary version of the official Jenkins Docker Image. The Dockerfile (The Instruction how to
build the Image) looks like this:

FROM jenkins

USER root

RUN cd /usr/local/bin && \
curl https://master.dockerproject.org/linux/amd64/docker > docker && \
chmod +x docker && \
groupadd -g 999 docker && \
usermod -a -G docker jenkins

USER Jenkins

This Dockerfile builds an Image which contains the Docker client binaries this client is used to
communicate with a Docker Daemon. In this case the Docker Daemon of the Host. The RUN
statement in this file also creates an UNIX usergroup with the UID 999 and adds the user Jenkins
to it. Why exactly this is necessary is described in the further chapter. With this Image we can run
a Jenkins server which can use Docker commands, but if we just run this Image the Docker client
we installed inside the image cannot communicate with the Docker Daemon of the Host. These
two components do communicate via a UNIX Socket /var/run/docker.sock. On Unix this is a file
like everything else, so we can easily mount it inside the Jenkins Container. This is done with the
command docker run -v /var/run/docker.sock:/var/run/docker.sock --name jenkins
MY_CUSTOM_IMAGE_NAME. But this mounted file is owned by docker:rootand because of this does the
Dockerfile create this group with a well know UID and adds the Jenkins user to it. Now is the
Jenkins Container really capable of running and using Docker. In production the run command
should also contain -v jenkins_home:/var/jenkins_home to backup the Jenkins_home directory and
of course a port-mapping to access the server over network.

Read Docker in Docker online: https://riptutorial.com/docker/topic/8012/docker-in-docker

https://riptutorial.com/ 47

Chapter 13: docker inspect getting various
fields for key:value and elements of list

Examples

various docker inspect examples

I find that the examples in the docker inspect documentation seem magic, but do not explain
much.

Docker inspect is important because it is the clean way to extract information from a running
container docker inspect -f ... container_id

(or all running container)

docker inspect -f ... $(docker ps -q)

avoiding some unreliable

docker command | grep or awk | tr or cut

When you launch a docker inspect you can get the values from the "top-level" easily, with a basic
syntax like, for a container running htop (from https://hub.docker.com/r/jess/htop/) with a pid ae1

docker inspect -f '{{.Created}}' ae1

can show

2016-07-14T17:44:14.159094456Z

or

docker inspect -f '{{.Path}}' ae1

can show

htop

Now if I extract a part of my docker inspect

I see

"State": { "Status": "running", "Running": true, "Paused": false, "Restarting": false,
"OOMKilled": false, "Dead": false, "Pid": 4525, "ExitCode": 0, "Error": "", "StartedAt": "2016-
07-14T17:44:14.406286293Z", "FinishedAt": "0001-01-01T00:00:00Z" So I get a dictionary, as it has {
...} and a lot of key:values

So the command

docker inspect -f '{{.State}}' ae1

https://riptutorial.com/ 48

will return a list, such as

{running true false false false false 4525 0 2016-07-14T17:44:14.406286293Z 0001-01-
01T00:00:00Z}

I can get the value of State.Pid easily

docker inspect -f '{{ .State.Pid }}' ae1

I get

4525

Sometimes docker inspect gives a list as it begins with [and ends with]

another example, with another container

docker inspect -f ‘{{ .Config.Env }}’ 7a7

gives

[DISPLAY=:0 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LANG=fr_FR.UTF-8
LANGUAGE=fr_FR:en LC_ALL=fr_FR.UTF-8 DEBIAN_FRONTEND=noninteractive HOME=/home/gg WINEARCH=win32
WINEPREFIX=/home/gg/.wine_captvty]

In order to get the first element of the list, we add index before the required field and 0 (as first
element) after, so

docker inspect -f ‘{{ index (.Config.Env) 0 }}’ 7a7

gives

DISPLAY=:0

We get the next element with 1 instead of 0 using the same syntax

docker inspect -f ‘{{ index (.Config.Env) 1 }}’ 7a7

gives

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

We can get the number of elements of this list

docker inspect -f ‘{{ len .Config.Env }}’ 7a7

gives

9

and we can get the last element of the list, the syntax is not easy

docker inspect -f “{{ index .Config.Cmd $[$(docker inspect –format ‘{{ len .Config.Cmd }}’
$CID)-1]}}” 7a7

Read docker inspect getting various fields for key:value and elements of list online:
https://riptutorial.com/docker/topic/6470/docker-inspect-getting-various-fields-for-key-value-and-

https://riptutorial.com/ 49

elements-of-list

https://riptutorial.com/ 50

Chapter 14: Docker Machine

Introduction

Remote management of multiple docker engine hosts.

Remarks

docker-machine manages remote hosts running Docker.

The docker-machine command line tool manages the full machine's life cycle using provider specific
drivers. It can be used to select an "active" machine. Once selected, an active machine can be
used as if it was the local Docker Engine.

Examples

Get current Docker Machine environment info

All these are shell commands.

docker-machine env to get the current default docker-machine configuration

eval $(docker-machine env) to get the current docker-machine configuration and set the current
shell environment up to use this docker-machine with .

If your shell is set up to use a proxy, you can specify the --no-proxy option in order to bypass the
proxy when connecting to your docker-machine: eval $(docker-machine env --no-proxy)

If you have multiple docker-machines, you can specify the machine name as argument: eval
$(docker-machine env --no-proxy machinename)

SSH into a docker machine

All these are shell commands

If you need to log onto a running docker-machine directly, you can do that:•

docker-machine ssh to ssh into the default docker-machine

docker-machine ssh machinename to ssh into a non-default docker-machine

If you just want to run a single command, you can do so. To run uptime on the default docker-
machine to see how long it's been running for, run docker-machine ssh default uptime

•

Create a Docker machine

https://riptutorial.com/ 51

Using docker-machine is the best method to install Docker on a machine. It will automatically apply
the best security settings available, including generating a unique pair of SSL certificates for
mutual authentication and SSH keys.

To create a local machine using Virtualbox:

docker-machine create --driver virtualbox docker-host-1

To install Docker on an existing machine, use the generic driver:

docker-machine -D create -d generic --generic-ip-address 1.2.3.4 docker-host-2

The --driver option tells docker how to create the machine. For a list of supported drivers, see:

officially supported•

third party•

List docker machines

Listing docker-machines will return the state, address and version of Docker of each docker
machines.

 docker-machine ls

Will print something like:

NAME ACTIVE DRIVER STATE URL SWARM DOCKER
ERRORS
docker-machine-1 - ovh Running tcp://1.2.3.4:2376 v1.11.2
docker-machine-2 - generic Running tcp://1.2.3.5:2376 v1.11.2

To list running machines:

docker-machine ls --filter state=running

To list error machines:

docker-machine ls --filter state=

To list machines who's name starts with 'side-project-', use Golang filter:

docker-machine ls --filter name="^side-project-"

To get only the list of machine's URLs:

docker-machine ls --format '{{ .URL }}'

https://riptutorial.com/ 52

See https://docs.docker.com/machine/reference/ls/ for the full command reference.

Upgrade a Docker Machine

Upgrading a docker machine implies a downtime and may require planing. To upgrade a docker
machine, run:

docker-machine upgrade docker-machine-name

This command does not have options

Get the IP address of a docker machine

To get the IP address of a docker machine, you can do that with this command :

docker-machine ip machine-name

Read Docker Machine online: https://riptutorial.com/docker/topic/1349/docker-machine

https://riptutorial.com/ 53

Chapter 15: Docker --net modes (bridge, hots,
mapped container and none).

Introduction

Getting Started

Bridge Mode It's a default and attached to docker0 bridge. Put container on a completely
separate network namespace.

Host Mode When container is just a process running in a host, we'll attach the container to the
host NIC.

Mapped Container Mode This mode essentially maps a new container into an existing containers
network stack. It's also called 'container in container mode'.

None It tells docker put the container in its own network stack without configuration

Examples

Bridge Mode, Host Mode and Mapped Container Mode

Bridge Mode

$ docker run –d –-name my_app -p 10000:80 image_name

Note that we did not have to specify --net=bridge because this is the default working mode for
docker. This allows to run multiple containers to run on same host without any assignment of
dynamic port. So BRIDGE mode avoids the port clashing and it's safe as each container is
running its own private network namespace.

Host Mode

$ docker run –d –-name my_app –net=host image_name

As it uses the host network namespace, no need of special configuraion but may leads to security
issue.

Mapped Container Mode

This mode essentially maps a new container into an existing containers network stack. This
implies that network resources such as IP address and port mappings of the first container will be
shared by the second container. This is also called as 'container in container' mode. Suppose you
have two contaienrs as web_container_1 and web_container_2 and we'll run web_container_2 in
mapped container mode. Let's first download web_container_1 and runs it into detached mode

https://riptutorial.com/ 54

with following command,

$ docker run -d --name web1 -p 80:80 USERNAME/web_container_1

Once it’s downloaded let’s take a look and make sure its running. Here we just mapped a port into
a container that's running in the default bridge mode. Now, let’s run a second container in mapped
container mode. We’ll do that with this command.

$ docker run -d --name web2 --net=container:web1 USERNAME/web_container_2

Now, if you simply get the interface information on both the contaienrs, you will get the same
network config. This actually include the HOST mode that maps with exact info of the host. The
first contaienr ran in default bridge mode and second container is running in mapped container
mode. We can obtain very similar results by starting the first container in host mode and the
second container in mapped container mode.

Read Docker --net modes (bridge, hots, mapped container and none). online:
https://riptutorial.com/docker/topic/9643/docker---net-modes--bridge--hots--mapped-container-and-
none--

https://riptutorial.com/ 55

Chapter 16: Docker network

Examples

How to find the Container's host ip

You need to find out the IP address of the container running in the host so you can, for example,
connect to the web server running in it.

docker-machine is what is used on MacOSX and Windows.

Firstly, list your machines:

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL SWARM
default * virtualbox Running tcp://192.168.99.100:2376

Then select one of the machines (the default one is called default) and:

$ docker-machine ip default

192.168.99.100

Creating a Docker network

docker network create app-backend

This command will create a simple bridged network called appBackend. No containers are attached
to this network by default.

Listing Networks

docker network ls

This command lists all networks that have been created on the local Docker host. It includes the
default bridge bridge network, the host host network, and the null null network. All containers by
default are attached to the default bridge bridge network.

Add container to network

docker network connect app-backend myAwesomeApp-1

This command attaches the myAwesomeApp-1 container to the app-backend network. When you add a
container to a user-defined network, the embedded DNS resolver (which is not a full-featured DNS

https://riptutorial.com/ 56

server, and is not exportable) allows each container on the network to resolve each other
container on the same network. This simple DNS resolver is not available on the default bridge
bridge network.

Detach container from network

docker network disconnect app-backend myAwesomeApp-1

This command detaches the myAwesomeApp-1 container from the app-backend network. The container
will no longer be able to communicate with other containers on the network it has been
disconnected from, nor use the embedded DNS resolver to look up other containers on the
network it has been detached from.

Remove a Docker network

docker network rm app-backend

This command removes the user-defined app-backend network from the Docker host. All containers
on the network not otherwise connected via another network will lose communication with other
containers. It is not possible to remove the default bridge bridge network, the host host network, or
the null null network.

Inspect a Docker network

docker network inspect app-backend

This command will output details about the app-backend network.

The of the output of this command should look similar to:

[
 {
 "Name": "foo",
 "Id": "a0349d78c8fd7c16f5940bdbaf1adec8d8399b8309b2e8a969bd4e3226a6fc58",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.18.0.0/16",
 "Gateway": "172.18.0.1/16"
 }
]
 },
 "Internal": false,
 "Containers": {},
 "Options": {},
 "Labels": {}

https://riptutorial.com/ 57

 }
]

Read Docker network online: https://riptutorial.com/docker/topic/3221/docker-network

https://riptutorial.com/ 58

Chapter 17: Docker private/secure registry
with API v2

Introduction

A private and secure docker registry instead of a Docker Hub. Basic docker skills are required.

Parameters

Command Explanation

sudo docker run -p 5000:5000

Start a docker container and bind
the port 5000 from container to
the port 5000 of the physical
machine.

--name registry
Container name (use to make
“docker ps” readability better).

-v 'pwd'/certs:/certs
Bind CURRENT_DIR/certs of the
physical machine on /certs of the
container (like a “shared folder”).

-e
REGISTRY_HTTP_TLS_CERTIFICATE=/certs/server.crt

We specify that the registry
should use /certs/server.crt file to
start. (env variable)

-e REGISTRY_HTTP_TLS_KEY=/certs/server.key
Same for the RSA key
(server.key).

-v /root/images:/var/lib/registry/

If you want to save all your
registry images you should do
this on the physical machine.
Here we save all images on
/root/images on the physical
machine. If you do this then you
can stop and restart the registry
without losing any images.

registry:2

We specify that we would like to
pull the registry image from
docker hub (or locally), and we
add « 2 » because we want install
the version 2 of registry.

https://riptutorial.com/ 59

Remarks

How to install a docker-engine (called client on this tutorial)

How to generate SSL self-signed certificate

Examples

Generating certificates

Generate a RSA private key: openssl genrsa -des3 -out server.key 4096

Openssl should ask for a pass phrase at this step. Notice that we’ll use only certificate for
communication and authentication, without pass phrase. Just use 123456 for example.

Generate the Certificate Signing Request: openssl req -new -key server.key -out server.csr

This step is important because you’ll be asked for some information about certificates. The most
important information is “Common Name” that is the domain name, which be used for
communication between private docker registry and all other machine. Example : mydomain.com

Remove pass phrase from RSA private key: cp server.key server.key.org && openssl rsa -in
server.key.org -out server.key

Like I said we’ll focus on certificate without pass phrase. So be careful with all your key's files
(.key,.csr,.crt) and keep them on a secure place.

Generate the self-signed certificate: openssl x509 -req -days 365 -in server.csr -signkey
server.key -out server.crt

You have now two essential files, server.key and server.crt, that are necessary for the private
registry authentication.

Run the registry with self-signed certificate

To run the private registry (securely) you have to generate a self-signed certificate, you can refer
to previous example to generate it.

For my example I put server.key and server.crt into /root/certs

Before run docker command you should be placed (use cd) into the directory that contains certs
folder. If you're not and you try to run the command you'll receive an error like

level=fatal msg="open /certs/server.crt: no such file or directory"

When you are (cd /root in my example), you can basically start the secure/private registry using :
sudo docker run -p 5000:5000 --restart=always --name registry -v `pwd`/certs:/certs -e
REGISTRY_HTTP_TLS_CERTIFICATE=/certs/server.crt -e REGISTRY_HTTP_TLS_KEY=/certs/server.key -v
/root/Documents:/var/lib/registry/ registry:2
Explanations about the command is available on Parameters part.

https://riptutorial.com/ 60

Pull or push from a docker client

When you get a working registry running you can pull or push images on it. For that you need the
server.crt file into a special folder on your docker client. The certificate allows you to authenticate
with the registry, and then encrypt communication.

Copy server.crt from registry machine into /etc/docker/certs.d/mydomain.com:5000/ on your client
machine. And then rename it to ca-certificates.crt : mv
/etc/docker/certs.d/mydomain.com:5000/server.crt /etc/docker/certs.d/mydomain.com:5000/ca-
certificates.crt

At this point you can pull or push images from your private registry :
PULL : docker pull mydomain.com:5000/nginx or
PUSH :

Get an official image from hub.docker.com : docker pull nginx1.
Tag this image before pushing into private registry : docker tag IMAGE_ID
mydomain.com:5000/nginx (use docker images to get the IMAGE_ID)

2.

Push the image to the registry : docker push mydomain.com:5000/nginx3.

Read Docker private/secure registry with API v2 online:
https://riptutorial.com/docker/topic/8707/docker-private-secure-registry-with-api-v2

https://riptutorial.com/ 61

Chapter 18: Docker Registry

Examples

Running the registry

Do not use registry:latest! This image points to the old v1 registry. That Python project is no
longer being developed. The new v2 registry is written in Go and is actively maintained. When
people refer to a "private registry" they are referring to the v2 registry, not the v1 registry!

docker run -d -p 5000:5000 --name="registry" registry:2

The above command runs the newest version of the registry, which can be found in the Docker
Distribution project.

For more examples of image management features, such as tagging, pulling, or pushing, see the
section on managing images.

Configure the registry with AWS S3 storage backend

Configuring a private registry to use an AWS S3 backend is easy. The registry can do this
automatically with the right configuration. Here is an example of what should be in your config.yml
file:

storage:
 s3:
 accesskey: AKAAAAAACCCCCCCBBBDA
 secretkey: rn9rjnNuX44iK+26qpM4cDEoOnonbBW98FYaiDtS
 region: us-east-1
 bucket: registry.example.com
 encrypt: false
 secure: true
 v4auth: true
 chunksize: 5242880
 rootdirectory: /registry

The accesskey and secretkey fields are IAM credentials with specific S3 permissions (see the
documentation for more information). It can just as easily use credentials with the
AmazonS3FullAccess policy attached. The region is the region of your S3 bucket. The bucket is the
bucket name. You may elect to store your images encrypted with encrypt. The secure field is to
indicate the use of HTTPS. You should generally set v4auth to true, even though its default value is
false. The chunksize field allows you to abide by the S3 API requirement that chunked uploads are
at least five megabytes in size. Finally, rootdirectory specifies a directory underneath your S3
bucket to use.

There are other storage backends that can be configured just as easily.

Read Docker Registry online: https://riptutorial.com/docker/topic/4173/docker-registry

https://riptutorial.com/ 62

Chapter 19: Docker stats all running
containers

Examples

Docker stats all running containers

sudo docker stats $(sudo docker inspect -f "{{ .Name }}" $(sudo docker ps -q))

Shows live CPU usage of all running containers.

Read Docker stats all running containers online: https://riptutorial.com/docker/topic/5863/docker-
stats-all-running-containers

https://riptutorial.com/ 63

Chapter 20: Docker swarm mode

Introduction

A swarm is a number of Docker Engines (or nodes) that deploy services collectively. Swarm is
used to distribute processing across many physical, virtual or cloud machines.

Syntax

Initialize a swarm: docker swarm init [OPTIONS]•

Join a swarm as a node and/or manager: docker swarm join [OPTIONS] HOST:PORT•

Create a new service: docker service create [OPTIONS] IMAGE [COMMAND] [ARG...]•

Display detailed information on one or more services: docker service inspect [OPTIONS]
SERVICE [SERVICE...]

•

List services: docker service ls [OPTIONS]•

Remove one or more services: docker service rm SERVICE [SERVICE...]•

Scale one or multiple replicated services: docker service scale SERVICE=REPLICAS
[SERVICE=REPLICAS...]

•

List the tasks of one or more services: docker service ps [OPTIONS] SERVICE [SERVICE...]•

Update a service: docker service update [OPTIONS] SERVICE•

Remarks

Swarm mode implements the following features:

Cluster management integrated with Docker Engine•
Decentralized design•
Declarative service model•
Scaling•
Desired state reconciliation•
Multi-host networking•
Service discovery•
Load balancing•
Secure design by default•
Rolling updates•

For more official Docker documentation regarding Swarm visit: Swarm mode overview

https://riptutorial.com/ 64

Swarm Mode CLI Commands

Click on commands description for documentation

Initialize a swarm

docker swarm init [OPTIONS]

Join a swarm as a node and/or manager

docker swarm join [OPTIONS] HOST:PORT

Create a new service

docker service create [OPTIONS] IMAGE [COMMAND] [ARG...]

Display detailed information on one or more services

docker service inspect [OPTIONS] SERVICE [SERVICE...]

List services

docker service ls [OPTIONS]

Remove one or more services

docker service rm SERVICE [SERVICE...]

Scale one or multiple replicated services

docker service scale SERVICE=REPLICAS [SERVICE=REPLICAS...]

List the tasks of one or more services

docker service ps [OPTIONS] SERVICE [SERVICE...]

Update a service

docker service update [OPTIONS] SERVICE

Examples

Create a swarm on Linux using docker-machine and VirtualBox

https://riptutorial.com/ 65

Create the nodes
In a real world scenario we would use at least 3 managers to cover the fail of one manager.
docker-machine create -d virtualbox manager
docker-machine create -d virtualbox worker1

Create the swarm
It is possible to define a port for the *advertise-addr* and *listen-addr*, if none is
defined the default port 2377 will be used.
docker-machine ssh manager \
 docker swarm init \
 --advertise-addr $(docker-machine ip manager)
 --listen-addr $(docker-machine ip manager)

Extract the Tokens for joining the Swarm
There are 2 different Tokens for joining the swarm.
MANAGER_TOKEN=$(docker-machine ssh manager docker swarm join-token manager --quiet)
WORKER_TOKEN=$(docker-machine ssh manager docker swarm join-token worker --quiet)

Join a worker node with the worker token
docker-machine ssh worker1 \
 docker swarm join \
 --token $WORKER_TOKEN \
 --listen-addr $(docker-machine ip worker1) \
 $(docker-machine ip manager):2377

Find out worker and manager join token

When automating the provisioning of new nodes to a swarm, you need to know what the right join
token is for the swarm as well as the advertised address of the manager. You can find this out by
running the following commands on any of the existing manager nodes:

grab the ipaddress:port of the manager (second last line minus the whitespace)
export MANAGER_ADDRESS=$(docker swarm join-token worker | tail -n 2 | tr -d '[[:space:]]')

grab the manager and worker token
export MANAGER_TOKEN=$(docker swarm join-token manager -q)
export WORKER_TOKEN=$(docker swarm join-token worker -q)

The -q option outputs only the token. Without this option you get the full command for registering
to a swarm.

Then on newly provisioned nodes, you can join the swarm using.

docker swarm join --token $WORKER_TOKEN $MANAGER_ADDRESS

Hello world application

Usually you'd want to create a stack of services to form a replicated and orchestrated application.

A typical modern web application consists of a database, api, frontend and reverse proxy.

https://riptutorial.com/ 66

Persistence

Database needs persistence, so we need some filesystem which is shared across all the nodes in
a swarm. It can be NAS, NFS server, GFS2 or anything else. Setting it up is out of scope here.
Currently Docker doesn't contain and doesn't manage persistence in a swarm. This example
assumes that there's /nfs/ shared location mounted across all nodes.

Network

To be able to communicate with each other, services in a swarm need to be on the same network.

Choose an IP range (here 10.0.9.0/24) and network name (hello-network) and run a command:

docker network create \
 --driver overlay \
 --subnet 10.0.9.0/24 \
 --opt encrypted \
 hello-network

Database

The first service we need is a database. Let's use postgresql as an example. Create a folder for a
database in nfs/postgres and run this:

docker service create --replicas 1 --name hello-db \
 --network hello-network -e PGDATA=/var/lib/postgresql/data \
 --mount type=bind,src=/nfs/postgres,dst=/var/lib/postgresql/data \
 kiasaki/alpine-postgres:9.5

Notice that we've used --network hello-network and --mount options.

API

Creating API is out of scope of this example, so let's pretend you have an API image under
username/hello-api.

docker service create --replicas 1 --name hello-api \
 --network hello-network \
 -e NODE_ENV=production -e PORT=80 -e POSTGRESQL_HOST=hello-db \
 username/hello-api

Notice that we passed a name of our database service. Docker swarm has an embedded round-
robin DNS server, so API will be able to connect to database by using its DNS name.

Reverse proxy

Let's create nginx service to serve our API to an outer world. Create nginx config files in a shared
location and run this:

docker service create --replicas 1 --name hello-load-balancer \
 --network hello-network \

https://riptutorial.com/ 67

 --mount type=bind,src=/nfs/nginx/nginx.conf,dst=/etc/nginx/nginx.conf \
 -p 80:80 \
 nginx:1.10-alpine

Notice that we've used -p option to publish a port. This port would be available to any node in a
swarm.

Node Availablility

Swarm Mode Node Availability:

Active means that the scheduler can assign tasks to a node.•
Pause means the scheduler doesn’t assign new tasks to the node, but existing tasks remain
running.

•

Drain means the scheduler doesn’t assign new tasks to the node. The scheduler shuts down
any existing tasks and schedules them on an available node.

•

To change Mode Availability:

#Following commands can be used on swarm manager(s)
docker node update --availability drain node-1
#to verify:
docker node ls

Promote or Demote Swarm Nodes

To promote a node or set of nodes, run docker node promote from a manager node:

docker node promote node-3 node-2

Node node-3 promoted to a manager in the swarm.
Node node-2 promoted to a manager in the swarm.

To demote a node or set of nodes, run docker node demote from a manager node:

docker node demote node-3 node-2

Manager node-3 demoted in the swarm.
Manager node-2 demoted in the swarm.

Leaving the Swarm

Worker Node:

#Run the following on the worker node to leave the swarm.

docker swarm leave
Node left the swarm.

If the node has the Manager role, you will get a warning about maintaining the quorum of

https://riptutorial.com/ 68

Managers. You can use --force to leave on the manager node:

#Manager Node

docker swarm leave --force
Node left the swarm.

Nodes that left the Swarm will still show up in docker node ls output.

To remove nodes from the list:

docker node rm node-2

node-2

Read Docker swarm mode online: https://riptutorial.com/docker/topic/749/docker-swarm-mode

https://riptutorial.com/ 69

Chapter 21: Dockerfile contents ordering

Remarks

Base image declaration (FROM)1.
Metadata (e.g. MAINTAINER, LABEL)2.
Installing system dependencies (e.g. apt-get install, apk add)3.
Copying app dependencies file (e.g. bower.json, package.json, build.gradle, requirements.txt)4.
Installing app dependencies (e.g. npm install, pip install)5.
Copying entire code base6.
Setting up default runtime configs (e.g. CMD, ENTRYPOINT, ENV, EXPOSE)7.

These orderings are made for optimizing build time using Docker's built-in caching mechanism.

Rule of thumbs:

Parts that change often (e.g. codebase) should be placed near bottom of Dockerfile,
and vice-versa. Parts that rarely change (e.g. dependencies) should be placed at top.

Examples

Simple Dockerfile

Base image
FROM python:2.7-alpine

Metadata
MAINTAINER John Doe <johndoe@example.com>

System-level dependencies
RUN apk add --update \
 ca-certificates \
 && update-ca-certificates \
 && rm -rf /var/cache/apk/*

App dependencies
COPY requirements.txt /requirements.txt
RUN pip install -r /requirements.txt

App codebase
WORKDIR /app
COPY . ./

Configs
ENV DEBUG true
EXPOSE 5000
CMD ["python", "app.py"]

MAINTAINER will be deprecated in Docker 1.13, and should be replaced by using LABEL. (
Source)

https://riptutorial.com/ 70

Example: LABEL Maintainer="John Doe johndoe@example.com"

Read Dockerfile contents ordering online: https://riptutorial.com/docker/topic/6448/dockerfile-
contents-ordering

https://riptutorial.com/ 71

Chapter 22: Dockerfiles

Introduction

Dockerfiles are files used to programatically build Docker images. They allow you to quickly and
reproducibly create a Docker image, and so are useful for collaborating. Dockerfiles contain
instructions for building a Docker image. Each instruction is written on one row, and is given in the
form <INSTRUCTION><argument(s)>. Dockerfiles are used to build Docker images using the docker
build command.

Remarks

Dockerfiles are of the form:

This is a comment
INSTRUCTION arguments

Comments starts with a #•
Instructions are upper case only•
The first instruction of a Dockerfile must be FROM to specify the base image•

When building a Dockerfile, the Docker client will send a "build context" to the Docker daemon.
The build context includes all files and folder in the same directory as the Dockerfile. COPY and ADD
operations can only use files from this context.

Some Docker file may start with:

escape=`

This is used to instruct the Docker parser to use ` as an escape character instead of \. This is
mostly useful for Windows Docker files.

Examples

HelloWorld Dockerfile

A minimal Dockerfile looks like this:

FROM alpine
CMD ["echo", "Hello StackOverflow!"]

This will instruct Docker to build an image based on Alpine (FROM), a minimal distribution for
containers, and to run a specific command (CMD) when executing the resulting image.

https://riptutorial.com/ 72

Build and run it:

docker build -t hello .
docker run --rm hello

This will output:

Hello StackOverflow!

Copying files

To copy files from the build context in a Docker image, use the COPY instruction:

COPY localfile.txt containerfile.txt

If the filename contains spaces, use the alternate syntax:

COPY ["local file", "container file"]

The COPY command supports wildcards. It can be used for example to copy all images to the
images/ directory:

COPY *.jpg images/

Note: in this example, images/ may not exist. In this case, Docker will create it automatically.

Exposing a port

To declare exposed ports from a Dockerfile use the EXPOSE instruction:

EXPOSE 8080 8082

Exposed ports setting can be overridden from the Docker commandline but it is a good practice to
explicitly set them in the Dockerfile as it helps understand what an application does.

Dockerfiles best pratices

Group common operations

Docker builds images as a collection of layers. Each layer can only add data, even if this data says
that a file has been deleted. Every instruction creates a new layer. For example:

RUN apt-get -qq update
RUN apt-get -qq install some-package

Has a couple of downsides:

https://riptutorial.com/ 73

It will create two layers, producing a larger image.•
Using apt-get update alone in a RUN statement causes caching issues and subsequently apt-
get install instructions may fail. Suppose you later modify apt-get install by adding extra
packages, then docker interprets the initial and modified instructions as identical and reuses
the cache from previous steps. As a result the apt-get update command is not executed
because its cached version is used during the build.

•

Instead, use:

RUN apt-get -qq update && \
 apt-get -qq install some-package

as this only produce one layer.

Mention the maintainer

This is usually the second line of the Dockerfile. It tells who is in charge and will be able to help.

LABEL maintainer John Doe <john.doe@example.com>

If you skip it, it will not break your image. But it will not help your users either.

Be concise

Keep your Dockerfile short. If a complex setup is necessary, consider using a dedicated script or
setting up base images.

USER Instruction

USER daemon

The USER instruction sets the user name or UID to use when running the image and for any RUN, CMD
and ENTRYPOINT instructions that follow it in the Dockerfile.

WORKDIR Instruction

WORKDIR /path/to/workdir

The WORKDIR instruction sets the working directory for any RUN, CMD, ENTRYPOINT, COPY and ADD
instructions that follow it in the Dockerfile. If the WORKDIR doesn’t exist, it will be created even if it’s
not used in any subsequent Dockerfile instruction.

It can be used multiple times in the one Dockerfile. If a relative path is provided, it will be relative
to the path of the previous WORKDIR instruction. For example:

WORKDIR /a
WORKDIR b
WORKDIR c

https://riptutorial.com/ 74

RUN pwd

The output of the final pwd command in this Dockerfile would be /a/b/c.

The WORKDIR instruction can resolve environment variables previously set using ENV. You can only
use environment variables explicitly set in the Dockerfile. For example:

ENV DIRPATH /path
WORKDIR $DIRPATH/$DIRNAME
RUN pwd

The output of the final pwd command in this Dockerfile would be /path/$DIRNAME

VOLUME Instruction

VOLUME ["/data"]

The VOLUME instruction creates a mount point with the specified name and marks it as holding
externally mounted volumes from native host or other containers. The value can be a JSON array,
VOLUME ["/var/log/"], or a plain string with multiple arguments, such as VOLUME /var/log or VOLUME
/var/log /var/db. For more information/examples and mounting instructions via the Docker client,
refer to Share Directories via Volumes documentation.

The docker run command initializes the newly created volume with any data that exists at the
specified location within the base image. For example, consider the following Dockerfile snippet:

FROM ubuntu
RUN mkdir /myvol
RUN echo "hello world" > /myvol/greeting
VOLUME /myvol

This Dockerfile results in an image that causes docker run, to create a new mount point at /myvol
and copy the greeting file into the newly created volume.

Note: If any build steps change the data within the volume after it has been declared, those
changes will be discarded.

Note: The list is parsed as a JSON array, which means that you must use double-quotes (“)
around words not single-quotes (‘).

COPY Instruction

COPY has two forms:

COPY <src>... <dest>
COPY ["<src>",... "<dest>"] (this form is required for paths containing whitespace)

The COPY instruction copies new files or directories from <src> and adds them to the filesystem of
the container at the path <dest>.

https://riptutorial.com/ 75

Multiple <src> resource may be specified but they must be relative to the source directory that is
being built (the context of the build).

Each <src> may contain wildcards and matching will be done using Go’s filepath.Match rules. For
example:

COPY hom* /mydir/ # adds all files starting with "hom"
COPY hom?.txt /mydir/ # ? is replaced with any single character, e.g., "home.txt"

The <dest> is an absolute path, or a path relative to WORKDIR, into which the source will be copied
inside the destination container.

COPY test relativeDir/ # adds "test" to `WORKDIR`/relativeDir/
COPY test /absoluteDir/ # adds "test" to /absoluteDir/

All new files and directories are created with a UID and GID of 0.

Note: If you build using stdin (docker build - < somefile), there is no build context, so COPY can’t be
used.

COPY obeys the following rules:

The <src> path must be inside the context of the build; you cannot COPY ../something
/something, because the first step of a docker build is to send the context directory (and
subdirectories) to the docker daemon.

•

If <src> is a directory, the entire contents of the directory are copied, including filesystem
metadata. Note: The directory itself is not copied, just its contents.

•

If <src> is any other kind of file, it is copied individually along with its metadata. In this case, if
<dest> ends with a trailing slash /, it will be considered a directory and the contents of <src>
will be written at <dest>/base(<src>).

•

If multiple <src> resources are specified, either directly or due to the use of a wildcard, then
<dest> must be a directory, and it must end with a slash /.

•

If <dest> does not end with a trailing slash, it will be considered a regular file and the contents
of <src> will be written at <dest>.

•

If <dest> doesn’t exist, it is created along with all missing directories in its path.•

The ENV and ARG Instruction

ENV

ENV <key> <value>
ENV <key>=<value> ...

The ENV instruction sets the environment variable <key> to the value . This value will be in the

https://riptutorial.com/ 76

environment of all “descendant” Dockerfile commands and can be replaced inline in many as well.

The ENV instruction has two forms. The first form, ENV <key> <value>, will set a single variable to a
value. The entire string after the first space will be treated as the <value> - including characters
such as spaces and quotes.

The second form, ENV <key>=<value> ..., allows for multiple variables to be set at one time. Notice
that the second form uses the equals sign (=) in the syntax, while the first form does not. Like
command line parsing, quotes and backslashes can be used to include spaces within values.

For example:

ENV myName="John Doe" myDog=Rex\ The\ Dog \
 myCat=fluffy

and

ENV myName John Doe
ENV myDog Rex The Dog
ENV myCat fluffy

will yield the same net results in the final container, but the first form is preferred because it
produces a single cache layer.

The environment variables set using ENV will persist when a container is run from the resulting
image. You can view the values using docker inspect, and change them using docker run --env
<key>=<value>.

ARG

If you don't wish to persist the setting, use ARG instead. ARG will set environments only during the
build. For example, setting

ENV DEBIAN_FRONTEND noninteractive

may confuse apt-get users on a Debian-based image when they enter the container in an
interactive context via docker exec -it the-container bash.

Instead, use:

ARG DEBIAN_FRONTEND noninteractive

You might alternativly also set a value for a single command only by using:

RUN <key>=<value> <command>

EXPOSE Instruction

https://riptutorial.com/ 77

EXPOSE <port> [<port>...]

The EXPOSE instruction informs Docker that the container listens on the specified network ports at
runtime. EXPOSE does NOT make the ports of the container accessible to the host. To do that, you
must use either the -p flag to publish a range of ports or the -P flag to publish all of the exposed
ports. These flags are used in the docker run [OPTIONS] IMAGE [COMMAND][ARG...] to expose the port
to the host. You can expose one port number and publish it externally under another number.

docker run -p 2500:80 <image name>

This command will create a container with the name <image> and bind the container’s port 80 to
the host machine’s port 2500.

To set up port redirection on the host system, see using the -P flag. The Docker network feature
supports creating networks without the need to expose ports within the network, for detailed
information see the overview of this feature).

LABEL Instruction

LABEL <key>=<value> <key>=<value> <key>=<value> ...

The LABEL instruction adds metadata to an image. A LABEL is a key-value pair. To include spaces
within a LABEL value, use quotes and backslashes as you would in command-line parsing. A few
usage examples:

LABEL "com.example.vendor"="ACME Incorporated"
LABEL com.example.label-with-value="foo"
LABEL version="1.0"
LABEL description="This text illustrates \
that label-values can span multiple lines."

An image can have more than one label. To specify multiple labels, Docker recommends
combining labels into a single LABEL instruction where possible. Each LABEL instruction produces a
new layer which can result in an inefficient image if you use many labels. This example results in a
single image layer.

LABEL multi.label1="value1" multi.label2="value2" other="value3"

The above can also be written as:

LABEL multi.label1="value1" \
 multi.label2="value2" \
 other="value3"

Labels are additive including LABELs in FROM images. If Docker encounters a label/key that already
exists, the new value overrides any previous labels with identical keys.

To view an image’s labels, use the docker inspect command.

https://riptutorial.com/ 78

"Labels": {
 "com.example.vendor": "ACME Incorporated"
 "com.example.label-with-value": "foo",
 "version": "1.0",
 "description": "This text illustrates that label-values can span multiple lines.",
 "multi.label1": "value1",
 "multi.label2": "value2",
 "other": "value3"
},

CMD Instruction

The CMD instruction has three forms:

CMD ["executable","param1","param2"] (exec form, this is the preferred form)
CMD ["param1","param2"] (as default parameters to ENTRYPOINT)
CMD command param1 param2 (shell form)

There can only be one CMD instruction in a Dockerfile. If you list more than one CMD then only the
last CMD will take effect.

The main purpose of a CMD is to provide defaults for an executing container. These defaults can
include an executable, or they can omit the executable, in which case you must specify an
ENTRYPOINT instruction as well.

Note: If CMD is used to provide default arguments for the ENTRYPOINT instruction, both the CMD and
ENTRYPOINT instructions should be specified with the JSON array format.

Note: The exec form is parsed as a JSON array, which means that you must use double-quotes (“)
around words not single-quotes (‘).

Note: Unlike the shell form, the exec form does not invoke a command shell. This means that
normal shell processing does not happen. For example, CMD ["echo", "$HOME"] will not do
variable substitution on $HOME. If you want shell processing then either use the shell form or
execute a shell directly, for example: CMD ["sh", "-c", "echo $HOME"].

When used in the shell or exec formats, the CMD instruction sets the command to be executed
when running the image.

If you use the shell form of the CMD, then the command will execute in /bin/sh -c:

FROM ubuntu
CMD echo "This is a test." | wc -

If you want to run your command without a shell then you must express the command as a JSON
array and give the full path to the executable. This array form is the preferred format of CMD. Any
additional parameters must be individually expressed as strings in the array:

FROM ubuntu
CMD ["/usr/bin/wc","--help"]

https://riptutorial.com/ 79

If you would like your container to run the same executable every time, then you should consider
using ENTRYPOINT in combination with CMD. See ENTRYPOINT.

If the user specifies arguments to docker run then they will override the default specified in CMD.

Note: don’t confuse RUN with CMD. RUN actually runs a command at image building time and commits
the result; CMD does not execute anything at build time, but specifies the intended command for the
image.

MAINTAINER Instruction

MAINTAINER <name>

The MAINTAINER instruction allows you to set the Author field of the generated images.

DO NOT USE THE MAINTAINER DIRECTIVE

According to Official Docker Documentation the MAINTAINER instruction is deprecated. Instead, one
should use the LABEL instruction to define the author of the generated images. The LABEL instruction
is more flexible, enables setting metadata, and can be easily viewed with the command docker
inspect.

LABEL maintainer="someone@something.com"

FROM Instruction

FROM <image>

Or

FROM <image>:<tag>

Or

FROM <image>@<digest>

The FROM instruction sets the Base Image for subsequent instructions. As such, a valid Dockerfile
must have FROM as its first instruction. The image can be any valid image – it is especially easy to
start by pulling an image from the Public Repositories.

FROM must be the first non-comment instruction in the Dockerfile.

FROM can appear multiple times within a single Dockerfile in order to create multiple images. Simply
make a note of the last image ID output by the commit before each new FROM command.

The tag or digest values are optional. If you omit either of them, the builder assumes a latest by
default. The builder returns an error if it cannot match the tag value.

https://riptutorial.com/ 80

RUN Instruction

RUN has 2 forms:

RUN <command> (shell form, the command is run in a shell, which by default is /bin/sh -c on
Linux or cmd /S /C on Windows)
RUN ["executable", "param1", "param2"] (exec form)

The RUN instruction will execute any commands in a new layer on top of the current image and
commit the results. The resulting committed image will be used for the next step in the Dockerfile.

Layering RUN instructions and generating commits conforms to the core concepts of Docker where
commits are cheap and containers can be created from any point in an image’s history, much like
source control.

The exec form makes it possible to avoid shell string munging, and to RUN commands using a base
image that does not contain the specified shell executable.

The default shell for the shell form can be changed using the SHELL command.

In the shell form you can use a \ (backslash) to continue a single RUN instruction onto the next line.
For example, consider these two lines:

RUN /bin/bash -c 'source $HOME/.bashrc ;\
echo $HOME'

Together they are equivalent to this single line:

RUN /bin/bash -c 'source $HOME/.bashrc ; echo $HOME'

Note: To use a different shell, other than ‘/bin/sh’, use the exec form passing in the desired shell.
For example, RUN ["/bin/bash", "-c", "echo hello"]

Note: The exec form is parsed as a JSON array, which means that you must use double-quotes (“
) around words not single-quotes (‘).

Note: Unlike the shell form, the exec form does not invoke a command shell. This means that
normal shell processing does not happen. For example, RUN ["echo", "$HOME"] will not do
variable substitution on $HOME. If you want shell processing then either use the shell form or
execute a shell directly, for example: RUN ["sh", "-c", "echo $HOME"].

Note: In the JSON form, it is necessary to escape backslashes. This is particularly relevant on
Windows where the backslash is the path separator. The following line would otherwise be treated
as shell form due to not being valid JSON, and fail in an unexpected way: RUN
["c:\windows\system32\tasklist.exe"]

The correct syntax for this example is: RUN ["c:\\windows\\system32\\tasklist.exe"]

The cache for RUN instructions isn’t invalidated automatically during the next build. The cache for

https://riptutorial.com/ 81

an instruction like RUN apt-get dist-upgrade -y will be reused during the next build. The cache for
RUN instructions can be invalidated by using the --no-cache flag, for example docker build --no-
cache.

See the Dockerfile Best Practices guide for more information.

The cache for RUN instructions can be invalidated by ADD instructions. See below for details.

ONBUILD Instruction

ONBUILD [INSTRUCTION]

The ONBUILD instruction adds to the image a trigger instruction to be executed at a later time, when
the image is used as the base for another build. The trigger will be executed in the context of the
downstream build, as if it had been inserted immediately after the FROM instruction in the
downstream Dockerfile.

Any build instruction can be registered as a trigger.

This is useful if you are building an image which will be used as a base to build other images, for
example an application build environment or a daemon which may be customized with user-
specific configuration.

For example, if your image is a reusable Python application builder, it will require application
source code to be added in a particular directory, and it might require a build script to be called
after that. You can’t just call ADD and RUN now, because you don’t yet have access to the application
source code, and it will be different for each application build. You could simply provide application
developers with a boilerplate Dockerfile to copy-paste into their application, but that is inefficient,
error-prone and difficult to update because it mixes with application-specific code.

The solution is to use ONBUILD to register advance instructions to run later, during the next build
stage.

Here’s how it works:

When it encounters an ONBUILD instruction, the builder adds a trigger to the metadata of the image
being built. The instruction does not otherwise affect the current build.

At the end of the build, a list of all triggers is stored in the image manifest, under the key OnBuild.
They can be inspected with the docker inspect command. Later the image may be used as a base
for a new build, using the FROM instruction. As part of processing the FROM instruction, the
downstream builder looks for ONBUILD triggers, and executes them in the same order they were
registered. If any of the triggers fail, the FROM instruction is aborted which in turn causes the build to
fail. If all triggers succeed, the FROM instruction completes and the build continues as usual.

Triggers are cleared from the final image after being executed. In other words they are not
inherited by “grand-children” builds.

For example you might add something like this:

https://riptutorial.com/ 82

[...]
ONBUILD ADD . /app/src
ONBUILD RUN /usr/local/bin/python-build --dir /app/src
[...]

Warning: Chaining ONBUILD instructions using ONBUILD ONBUILD isn’t allowed.

Warning: The ONBUILD instruction may not trigger FROM or MAINTAINER instructions.

STOPSIGNAL Instruction

STOPSIGNAL signal

The STOPSIGNAL instruction sets the system call signal that will be sent to the container to exit. This
signal can be a valid unsigned number that matches a position in the kernel’s syscall table, for
instance 9, or a signal name in the format SIGNAME, for instance SIGKILL.

HEALTHCHECK Instruction

The HEALTHCHECK instruction has two forms:

HEALTHCHECK [OPTIONS] CMD command (check container health by running a command inside the
container)
HEALTHCHECK NONE (disable any healthcheck inherited from the base image)

The HEALTHCHECK instruction tells Docker how to test a container to check that it is still working. This
can detect cases such as a web server that is stuck in an infinite loop and unable to handle new
connections, even though the server process is still running.

When a container has a healthcheck specified, it has a health status in addition to its normal
status. This status is initially starting. Whenever a health check passes, it becomes healthy
(whatever state it was previously in). After a certain number of consecutive failures, it becomes
unhealthy.

The options that can appear before CMD are:

--interval=DURATION (default: 30s)
--timeout=DURATION (default: 30s)
--retries=N (default: 3)

The health check will first run interval seconds after the container is started, and then again
interval seconds after each previous check completes.

If a single run of the check takes longer than timeout seconds then the check is considered to
have failed.

It takes retries consecutive failures of the health check for the container to be considered
unhealthy.

https://riptutorial.com/ 83

There can only be one HEALTHCHECK instruction in a Dockerfile. If you list more than one then only
the last HEALTHCHECK will take effect.

The command after the CMD keyword can be either a shell command (e.g. HEALTHCHECK CMD
/bin/check-running) or an exec array (as with other Dockerfile commands; see e.g. ENTRYPOINT for
details).

The command’s exit status indicates the health status of the container. The possible values are:

0: success - the container is healthy and ready for use•
1: unhealthy - the container is not working correctly•
2: starting - the container is not ready for use yet, but is working correctly•

If the probe returns 2 (“starting”) when the container has already moved out of the “starting” state
then it is treated as “unhealthy” instead.

For example, to check every five minutes or so that a web-server is able to serve the site’s main
page within three seconds:

HEALTHCHECK --interval=5m --timeout=3s \
 CMD curl -f http://localhost/ || exit 1

To help debug failing probes, any output text (UTF-8 encoded) that the command writes on stdout
or stderr will be stored in the health status and can be queried with docker inspect. Such output
should be kept short (only the first 4096 bytes are stored currently).

When the health status of a container changes, a health_status event is generated with the new
status.

The HEALTHCHECK feature was added in Docker 1.12.

SHELL Instruction

SHELL ["executable", "parameters"]

The SHELL instruction allows the default shell used for the shell form of commands to be
overridden. The default shell on Linux is ["/bin/sh", "-c"], and on Windows is ["cmd", "/S", "/C"]
. The SHELL instruction must be written in JSON form in a Dockerfile.

The SHELL instruction is particularly useful on Windows where there are two commonly used and
quite different native shells: cmd and powershell, as well as alternate shells available including sh.

The SHELL instruction can appear multiple times. Each SHELL instruction overrides all previous SHELL
instructions, and affects all subsequent instructions. For example:

FROM windowsservercore

Executed as cmd /S /C echo default
RUN echo default

https://riptutorial.com/ 84

Executed as cmd /S /C powershell -command Write-Host default
RUN powershell -command Write-Host default

Executed as powershell -command Write-Host hello
SHELL ["powershell", "-command"]
RUN Write-Host hello

Executed as cmd /S /C echo hello
SHELL ["cmd", "/S"", "/C"]
RUN echo hello

The following instructions can be affected by the SHELL instruction when the shell form of them is
used in a Dockerfile: RUN, CMD and ENTRYPOINT.

The following example is a common pattern found on Windows which can be streamlined by using
the SHELL instruction:

...
RUN powershell -command Execute-MyCmdlet -param1 "c:\foo.txt"
...

The command invoked by docker will be:

cmd /S /C powershell -command Execute-MyCmdlet -param1 "c:\foo.txt"

This is inefficient for two reasons. First, there is an un-necessary cmd.exe command processor
(aka shell) being invoked. Second, each RUN instruction in the shell form requires an extra
powershell -command prefixing the command.

To make this more efficient, one of two mechanisms can be employed. One is to use the JSON
form of the RUN command such as:

...
RUN ["powershell", "-command", "Execute-MyCmdlet", "-param1 \"c:\\foo.txt\""]
...

While the JSON form is unambiguous and does not use the un-necessary cmd.exe, it does require
more verbosity through double-quoting and escaping. The alternate mechanism is to use the SHELL
instruction and the shell form, making a more natural syntax for Windows users, especially when
combined with the escape parser directive:

escape=`

FROM windowsservercore
SHELL ["powershell","-command"]
RUN New-Item -ItemType Directory C:\Example
ADD Execute-MyCmdlet.ps1 c:\example\
RUN c:\example\Execute-MyCmdlet -sample 'hello world'

Resulting in:

https://riptutorial.com/ 85

PS E:\docker\build\shell> docker build -t shell .
Sending build context to Docker daemon 3.584 kB
Step 1 : FROM windowsservercore
 ---> 5bc36a335344
Step 2 : SHELL powershell -command
 ---> Running in 87d7a64c9751
 ---> 4327358436c1
Removing intermediate container 87d7a64c9751
Step 3 : RUN New-Item -ItemType Directory C:\Example
 ---> Running in 3e6ba16b8df9

Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 6/2/2016 2:59 PM Example

 ---> 1f1dfdcec085
Removing intermediate container 3e6ba16b8df9
Step 4 : ADD Execute-MyCmdlet.ps1 c:\example\
 ---> 6770b4c17f29
Removing intermediate container b139e34291dc
Step 5 : RUN c:\example\Execute-MyCmdlet -sample 'hello world'
 ---> Running in abdcf50dfd1f
Hello from Execute-MyCmdlet.ps1 - passed hello world
 ---> ba0e25255fda
Removing intermediate container abdcf50dfd1f
Successfully built ba0e25255fda
PS E:\docker\build\shell>

The SHELL instruction could also be used to modify the way in which a shell operates. For example,
using SHELL cmd /S /C /V:ON|OFF on Windows, delayed environment variable expansion semantics
could be modified.

The SHELL instruction can also be used on Linux should an alternate shell be required such zsh,
csh, tcsh and others.

The SHELL feature was added in Docker 1.12.

Installing Debian/Ubuntu packages

Run the install on a single run command to merge the update and install. If you add more
packages later, this will run the update again and install all the packages needed. If the update is
run separately, it will be cached and package installs may fail. Setting the frontend to
noninteractive and passing the -y to install is needed for scripted installs. Cleaning and purging at
the end of the install minimizes the size of the layer.

FROM debian

RUN apt-get update \
 && DEBIAN_FRONTEND=noninteractive apt-get install -y \
 git \
 openssh-client \

https://riptutorial.com/ 86

 sudo \
 vim \
 wget \
 && apt-get clean \
 && rm -rf /var/lib/apt/lists/*

Read Dockerfiles online: https://riptutorial.com/docker/topic/3161/dockerfiles

https://riptutorial.com/ 87

Chapter 23: How to debug when docker build
fails

Introduction

When a docker build -t mytag . fails with a message such as ---> Running in d9a42e53eb5a The
command '/bin/sh -c returned a non-zero code: 127 (127 means "command not found, but 1) it is
not trivial for everybody 2) 127 may be replaced by 6 or anything) it may be non trivial to find the
error in a long line

Examples

basic example

As the last layer created by

docker build -t mytag .

showed

---> Running in d9a42e53eb5a

You just launch the last created image with a shell and launch the command, and you will have a
more clear error message

docker run -it d9a42e53eb5a /bin/bash

(this assumes /bin/bash is available, it may be /bin/sh or anything else)

and with the prompt, you launch the last failing command, and see what is displayed

Read How to debug when docker build fails online: https://riptutorial.com/docker/topic/8078/how-
to-debug-when-docker-build-fails

https://riptutorial.com/ 88

Chapter 24: How to Setup Three Node Mongo
Replica using Docker Image and Provisioned
using Chef

Introduction

This Documentation describe how to build a three node Mongo replica set using Docker Image
and auto provisioned using Chef.

Examples

Build Step

Steps:

Generate a Base 64 keyfile for Mongo node authentication. Place this file in chef data_bags1.

Go to chef suppermarket and download docker cookbook. Generate a custom cookbook (e.g
custom_mongo) and add depends 'docker', '~> 2.0' to your cookbook's metadata.rb

2.

Create an attributes and recipe in your custom cookbook3.

Initialise Mongo to form Rep Set cluster4.

Step 1: Create Key file

create data_bag called mongo-keyfile and item called keyfile. This will be in the data_bags
directory in chef. Item content will be as below

openssl rand -base64 756 > <path-to-keyfile>

keyfile item content

{
 "id": "keyfile",
 "comment": "Mongo Repset keyfile",
 "key-file": "generated base 64 key above"
}

Step 2: Download docker cookbook from chef supper market and then create
custom_mongo cookbook

knife cookbook site download docker
knife cookbook create custom_mongo

https://riptutorial.com/ 89

in metadat.rb of custom_mongo add

depends 'docker', '~> 2.0'

Step 3: create attribute and recipe

Attributes

default['custom_mongo']['mongo_keyfile'] = '/data/keyfile'
default['custom_mongo']['mongo_datadir'] = '/data/db'
default['custom_mongo']['mongo_datapath'] = '/data'
default['custom_mongo']['keyfilename'] = 'mongodb-keyfile'

Recipe

Cookbook Name:: custom_mongo
Recipe:: default

Copyright 2017, Innocent Anigbo

All rights reserved - Do Not Redistribute

data_path = "#{node['custom_mongo']['mongo_datapath']}"
data_dir = "#{node['custom_mongo']['mongo_datadir']}"
key_dir = "#{node['custom_mongo']['mongo_keyfile']}"
keyfile_content = data_bag_item('mongo-keyfile', 'keyfile')
keyfile_name = "#{node['custom_mongo']['keyfilename']}"

#chown of keyfile to docker user
execute 'assign-user' do
 command "chown 999 #{key_dir}/#{keyfile_name}"
 action :nothing
end

#Declaration to create Mongo data DIR and Keyfile DIR
%W[#{data_path} #{data_dir} #{key_dir}].each do |path|
directory path do
 mode '0755'
 end
end

#declaration to copy keyfile from data_bag to keyfile DIR on your mongo server
file "#{key_dir}/#{keyfile_name}" do
 content keyfile_content['key-file']
 group 'root'
 mode '0400'
 notifies :run, 'execute[assign-user]', :immediately
end

#Install docker
docker_service 'default' do
 action [:create, :start]
end

#Install mongo 3.4.2
docker_image 'mongo' do

https://riptutorial.com/ 90

 tag '3.4.2'
 action :pull
end

Create Role called mongo-role in role directory

{
 "name": "mongo-role",
 "description": "mongo DB Role",
 "run_list": [
 "recipe[custom_mongo]"
]
}

Add role above to the three mongo nodes run list

knife node run_list add FQDN_of_node_01 'role[mongo-role]'
knife node run_list add FQDN_of_node_02 'role[mongo-role]'
knife node run_list add FQDN_of_node_03 'role[mongo-role]'

Step 4: Initialise the three node Mongo to form repset

I'm assuming that the above role has already been applied on all three Mongo nodes. On node 01
only, Start Mongo with --auth to enable authentication

docker run --name mongo -v /data/db:/data/db -v /data/keyfile:/opt/keyfile --hostname="mongo-
01.example.com" -p 27017:27017 -d mongo:3.4.2 --keyFile /opt/keyfile/mongodb-keyfile --auth

Access the interactive shell of running docker container on node 01 and Create admin user

docker exec -it mongo /bin/sh
 mongo
 use admin
 db.createUser({
 user: "admin-user",
 pwd: "password",
 roles: [{ role: "userAdminAnyDatabase", db: "admin" }]
 });

Create root user

db.createUser({
 user: "RootAdmin",
 pwd: "password",
 roles: [{ role: "root", db: "admin" }]
 });

Stop and Delete the Docker container created above on node 01. This will not affect the data and
keyfile in the host DIR. After deleting start Mongo again on node 01 but this time with with repset
flag

docker rm -fv mongo

https://riptutorial.com/ 91

docker run --name mongo-uat -v /data/db:/data/db -v /data/keyfile:/opt/keyfile --
hostname="mongo-01.example.com" -p 27017:27017 -d mongo:3.4.2 --keyFile /opt/keyfile/mongodb-
keyfile --replSet "rs0"

now start mongo on Node 02 and 03 with the rep set flag

docker run --name mongo -v /data/db:/data/db -v /data/keyfile:/opt/keyfile --hostname="mongo-
02.example.com" -p 27017:27017 -d mongo:3.4.2 --keyFile /opt/keyfile/mongodb-keyfile --replSet
"rs0"
docker run --name mongo -v /data/db:/data/db -v /data/keyfile:/opt/keyfile --hostname="mongo-
03.example.com" -p 27017:27017 -d mongo:3.4.2 --keyFile /opt/keyfile/mongodb-keyfile --replSet
"rs0"

Authenticate with the root user on Node 01 and initiate the replica set

use admin
db.auth("RootAdmin", "password");
rs.initiate()

On node 01 add Node 2 and 3 to the Replica Set to form repset0 cluster

rs.add("mongo-02.example.com")
rs.add("mongo-03.example.com")

Testing

On the primary run db.printSlaveReplicationInfo() and observe the SyncedTo and Behind the
primary time. The later should be 0 sec as below

Output

 rs0:PRIMARY> db.printSlaveReplicationInfo()
 source: mongo-02.example.com:27017
 syncedTo: Mon Mar 27 2017 15:01:04 GMT+0000 (UTC)
 0 secs (0 hrs) behind the primary
 source: mongo-03.example.com:27017
 syncedTo: Mon Mar 27 2017 15:01:04 GMT+0000 (UTC)
 0 secs (0 hrs) behind the primary

I hope this helps someone

Read How to Setup Three Node Mongo Replica using Docker Image and Provisioned using Chef
online: https://riptutorial.com/docker/topic/10014/how-to-setup-three-node-mongo-replica-using-
docker-image-and-provisioned-using-chef

https://riptutorial.com/ 92

Chapter 25: Inspecting a running container

Syntax

docker inspect [OPTIONS] CONTAINER|IMAGE [CONTAINER|IMAGE...]•

Examples

Get container information

To get all the information for a container you can run:

docker inspect <container>

Get specific information from a container

You can get an specific information from a container by running:

docker inspect -f '<format>' <container>

For instance, you can get the Network Settings by running:

docker inspect -f '{{ .NetworkSettings }}' <container>

You can also get just the IP address:

docker inspect -f '{{ .NetworkSettings.IPAddress }}' <container>

The parameter -f means format and will receive a Go Template as input to format what is
expected, but this won’t bring a beautiful return, so try:

docker inspect -f '{{ json .NetworkSettings }}' {{containerIdOrName}}

the json keyword will bring the return as a JSON.

So to finish, a little tip is to use python in there to format the output JSON:

docker inspect -f '{{ json .NetworkSettings }}' <container> | python -mjson.tool

And voila, you can query anything on the docker inspect and make it look pretty in your terminal.

It's also possible to use a utility called "jq" in order to help process docker inspect command
output.

https://riptutorial.com/ 93

docker inspect -f '{{ json .NetworkSettings }}' aa1 | jq [.Gateway]

The above command will return the following output:

[
 "172.17.0.1"
]

This output is actually a list containing one element. Sometimes, docker inspect displays a list of
several elements, and you may want to refer to a specific element. For example, if Config.Env
contains several elements, you can refer to the first element of this list using index:

docker inspect --format '{{ index (index .Config.Env) 0 }}' <container>

The first element is indexed at zero, which means that the second element of this list is at index 1:

docker inspect --format '{{ index (index .Config.Env) 1 }}' <container>

Using len it is possible to get the number of elements of the list:

docker inspect --format ‘{{ len .Config.Env }}’ <container>

And using negative numbers, it's possible to refer to the last element of the list:

docker inspect –format “{{ index .Config.Cmd $[$(docker inspect –format ‘{{ len .Config.Cmd
}}’ <container>)-1]}}” <container>

Some docker inspect information comes as a dictionary of key:value, here is an extract of a docker
inspectof a jess/spotify running container

"Config": { "Hostname": "8255f4804dde", "Domainname": "", "User": "spotify", "AttachStdin":
false, "AttachStdout": false, "AttachStderr": false, "Tty": false, "OpenStdin": false,
"StdinOnce": false, "Env": ["DISPLAY=unix:0",
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin", "HOME=/home/spotify"],
"Cmd": ["-stylesheet=/home/spotify/spotify-override.css"], "Image": "jess/spotify", "Volumes":
null, "WorkingDir": "/home/spotify", "Entrypoint": ["spotify"], "OnBuild": null, "Labels": {}
},

so I an get the values of the whole Config section

docker inspect -f '{{.Config}}' 825

{8255f4804dde spotify false false false map[] false false false [DISPLAY=unix:0
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin HOME=/home/spotify] [-
stylesheet=/home/spotify/spotify-override.css] false jess/spotify map[] /home/spotify [spotify]
false [] map[] }

but also a single field, like the value of Config.Image

docker inspect -f '{{index (.Config) "Image" }}' 825

jess/spotify

https://riptutorial.com/ 94

or Config.Cmd

docker inspect -f '{{.Config.Cmd}}' 825

[-stylesheet=/home/spotify/spotify-override.css]

Inspect an image

In order to inspect an image, you can use the image ID or the image name, consisting of
repository and tag. Say, you have the CentOS 6 base image:

➜ ~ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
centos centos6 cf2c3ece5e41 2 weeks ago 194.6 MB

In this case you can run either of the following:

➜ ~ docker inspect cf2c3ece5e41•
➜ ~ docker inspect centos:centos6•

Both of these command will give you all information available in a JSON array:

[
 {
 "Id": "sha256:cf2c3ece5e418fd063bfad5e7e8d083182195152f90aac3a5ca4dbfbf6a1fc2a",
 "RepoTags": [
 "centos:centos6"
],
 "RepoDigests": [],
 "Parent": "",
 "Comment": "",
 "Created": "2016-07-01T22:34:39.970264448Z",
 "Container": "b355fe9a01a8f95072e4406763138c5ad9ca0a50dbb0ce07387ba905817d6702",
 "ContainerConfig": {
 "Hostname": "68a1f3cfce80",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
 "Cmd": [
 "/bin/sh",
 "-c",
 "#(nop) CMD [\"/bin/bash\"]"
],
 "Image":
"sha256:cdbcc7980b002dc19b4d5b6ac450993c478927f673339b4e6893647fe2158fa7",
 "Volumes": null,
 "WorkingDir": "",
 "Entrypoint": null,
 "OnBuild": null,

https://riptutorial.com/ 95

 "Labels": {
 "build-date": "20160701",
 "license": "GPLv2",
 "name": "CentOS Base Image",
 "vendor": "CentOS"
 }
 },
 "DockerVersion": "1.10.3",
 "Author": "https://github.com/CentOS/sig-cloud-instance-images",
 "Config": {
 "Hostname": "68a1f3cfce80",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
 "Cmd": [
 "/bin/bash"
],
 "Image":
"sha256:cdbcc7980b002dc19b4d5b6ac450993c478927f673339b4e6893647fe2158fa7",
 "Volumes": null,
 "WorkingDir": "",
 "Entrypoint": null,
 "OnBuild": null,
 "Labels": {
 "build-date": "20160701",
 "license": "GPLv2",
 "name": "CentOS Base Image",
 "vendor": "CentOS"
 }
 },
 "Architecture": "amd64",
 "Os": "linux",
 "Size": 194606575,
 "VirtualSize": 194606575,
 "GraphDriver": {
 "Name": "aufs",
 "Data": null
 },
 "RootFS": {
 "Type": "layers",
 "Layers": [
 "sha256:2714f4a6cdee9d4c987fef019608a4f61f1cda7ccf423aeb8d7d89f745c58b18"
]
 }
 }
]

Printing specific informations

docker inspect supports Go Templates via the --format option. This allows for better integration in
scripts, without resorting to pipes/sed/grep traditional tools.

https://riptutorial.com/ 96

Print a container internal IP:

docker inspect --format '{{ .NetworkSettings.IPAddress }}' 7786807d8084

This is useful for direct network access of load-balancers auto-configuration.

Print a container init PID:

docker inspect --format '{{ .State.Pid }}' 7786807d8084

This is useful for deeper inspection via /proc or tools like strace.

Advanced formating:

docker inspect --format 'Container {{ .Name }} listens on {{ .NetworkSettings.IPAddress }}:{{
range $index, $elem := .Config.ExposedPorts }}{{ $index }}{{ end }}' 5765847de886 7786807d8084

Will output:

Container /redis listens on 172.17.0.3:6379/tcp
Container /api listens on 172.17.0.2:4000/tcp

Debugging the container logs using docker inspect

docker inspect command can be used to debug the container logs.

The stdout and stderr of container can be checked to debug the container, whose location can be
obtained using docker inspect.

Command : docker inspect <container-id> | grep Source

It gives the location of containers stdout and stderr.

Examining stdout/stderr of a running container

docker logs --follow <containerid>

This tails the output of the running container. This is useful if you did not set up a logging driver on
the docker daemon.

Read Inspecting a running container online: https://riptutorial.com/docker/topic/1336/inspecting-a-
running-container

https://riptutorial.com/ 97

Chapter 26: Iptables with Docker

Introduction

This topic is about how to limit access to your docker containers from outside world using iptables.

For impatient people, you can check the examples. For the others, please read the remark section
to understand how to build new rules.

Syntax

iptables -I DOCKER [RULE ...] [ACCEPT|DROP] // To add a rule a the top of the DOCKER
table

•

iptables -D DOCKER [RULE ...] [ACCEPT|DROP] // To remove a rule from the DOCKER
table

•

ipset restore < /etc/ipfriends.conf // To reconfigure your ipset ipfriends•

Parameters

Parameters Details

ext_if Your external interface on Docker host.

XXX.XXX.XXX.XXX A particular IP on which Docker containers access should be given.

YYY.YYY.YYY.YYY Another IP on which Docker containers access should be given.

ipfriends
The ipset name defining the IPs allowed to access your Docker
containers.

Remarks

The problem

Configuring iptables rules for Docker containers is a bit tricky. At first, you would think that
"classic" firewall rules should do the trick.

For example, let's assume that you have configured a nginx-proxy container + several service
containers to expose via HTTPS some personal web services. Then a rule like this should give
access to your web services only for IP XXX.XXX.XXX.XXX.

$ iptables -A INPUT -i eth0 -p tcp -s XXX.XXX.XXX.XXX -j ACCEPT
$ iptables -P INPUT DROP

https://riptutorial.com/ 98

It won't work, your containers are still accessible for everyone.

Indeed, Docker containers are not host services. They rely on a virtual network in your host, and
the host acts as a gateway for this network. And concerning gateways, routed traffic is not handled
by the INPUT table, but by the FORWARD table, which makes the rule posted before uneffective.

But it's not all. In fact, Docker daemon creates a lot of iptables rules when it starts to do its magic
concerning containers network connectivity. In particular, a DOCKER table is created to handle
rules concerning containers by forwarding traffic from the FORWARD table to this new table.

$ iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy DROP)
target prot opt source destination
DOCKER-ISOLATION all -- anywhere anywhere
DOCKER all -- anywhere anywhere
ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED
ACCEPT all -- anywhere anywhere
ACCEPT all -- anywhere anywhere
DOCKER all -- anywhere anywhere
ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED
ACCEPT all -- anywhere anywhere
ACCEPT all -- anywhere anywhere

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chain DOCKER (2 references)
target prot opt source destination
ACCEPT tcp -- anywhere 172.18.0.4 tcp dpt:https
ACCEPT tcp -- anywhere 172.18.0.4 tcp dpt:http

Chain DOCKER-ISOLATION (1 references)
target prot opt source destination
DROP all -- anywhere anywhere
DROP all -- anywhere anywhere
RETURN all -- anywhere anywhere

The solution

If you check the official documentation (https://docs.docker.com/v1.5/articles/networking/), a first
solution is given to limit Docker container access to one particular IP.

$ iptables -I DOCKER -i ext_if ! -s 8.8.8.8 -j DROP

Indeed, adding a rule at the top of the DOCKER table is a good idea. It does not interfere with the
rules automatically configured by Docker, and it is simple. But two major lacks :

First, what if you need to access from two IP instead of one ? Here only one src IP can be
accepted, other will be dropped without any way to prevent that.

•

Second, what if your docker need access to Internet ? Pratically no request will succeed, as •

https://riptutorial.com/ 99

only the server 8.8.8.8 could respond to them.
Finally, what if you want to add other logics ? For example, give access to any user to your
webserver serving on HTTP protocol, but limit everything else to particular IP.

•

For the first observation, we can use ipset. Instead of allowing one IP in the rule above, we allow
all IPs from the predefined ipset. As a bonus, the ipset can be updated without the necessity to
redefine the iptable rule.

$ iptables -I DOCKER -i ext_if -m set ! --match-set my-ipset src -j DROP

For the second observation, this is a canonical problem for firewalls : if you are allowed to contact
a server through a firewall, then the firewall should authorize the server to respond to your
request. This can be done by authorizing packets which are related to an established connection.
For the docker logic, it gives :

$ iptables -I DOCKER -i ext_if -m state --state ESTABLISHED,RELATED -j ACCEPT

The last observation focuses on one point : iptables rules is essential. Indeed, additional logic to
ACCEPT some connections (including the one concerning ESTABLISHED connections) must be
put at the top of the DOCKER table, before the DROP rule which deny all remaining connections
not matching the ipset.

As we use the -I option of iptable, which inserts rules at the top of the table, previous iptables rules
must be inserted by reverse order :

// Drop rule for non matching IPs
$ iptables -I DOCKER -i ext_if -m set ! --match-set my-ipset src -j DROP
// Then Accept rules for established connections
$ iptables -I DOCKER -i ext_if -m state --state ESTABLISHED,RELATED -j ACCEPT
$ iptables -I DOCKER -i ext_if ... ACCEPT // Then 3rd custom accept rule
$ iptables -I DOCKER -i ext_if ... ACCEPT // Then 2nd custom accept rule
$ iptables -I DOCKER -i ext_if ... ACCEPT // Then 1st custom accept rule

With all of this in mind, you can now check the examples which illustrate this configuration.

Examples

Limit access on Docker containers to a set of IPs

First, install ipset if needed. Please refer to your distribution to know how to do it. As an example,
here is the command for Debian-like distributions.

$ apt-get update
$ apt-get install ipset

Then create a configuration file to define an ipset containing the IPs for which you want to open
access to your Docker containers.

https://riptutorial.com/ 100

$ vi /etc/ipfriends.conf
Recreate the ipset if needed, and flush all entries
create -exist ipfriends hash:ip family inet hashsize 1024 maxelem 65536
flush
Give access to specific ips
add ipfriends XXX.XXX.XXX.XXX
add ipfriends YYY.YYY.YYY.YYY

Load this ipset.

$ ipset restore < /etc/ipfriends.conf

Be sure that your Docker daemon is running : no error should be shown after entering the
following command.

$ docker ps

You are ready to insert your iptables rules. You must respect the order.

// All requests of src ips not matching the ones from ipset ipfriends will be dropped.
$ iptables -I DOCKER -i ext_if -m set ! --match-set ipfriends src -j DROP
// Except for requests coming from a connection already established.
$ iptables -I DOCKER -i ext_if -m state --state ESTABLISHED,RELATED -j ACCEPT

If you want to create new rules, you will need to remove all custom rules you've added before
inserting the new ones.

$ iptables -D DOCKER -i ext_if -m set ! --match-set ipfriends src -j DROP
$ iptables -D DOCKER -i ext_if -m state --state ESTABLISHED,RELATED -j ACCEPT

Configure restriction access when Docker daemon starts

Work in progress

Some custom iptables rules

Work in progress

Read Iptables with Docker online: https://riptutorial.com/docker/topic/9201/iptables-with-docker

https://riptutorial.com/ 101

Chapter 27: Logging

Examples

Configuring a log driver in systemd service

[Service]

empty exec prevents error "docker.service has more than one ExecStart= setting, which is
only allowed for Type=oneshot services. Refusing."
ExecStart=
ExecStart=/usr/bin/dockerd -H fd:// --log-driver=syslog

This enables syslog logging for the docker daemon. The file should be created in the appropriate
directory with owner root, which typically would be /etc/systemd/system/docker.service.d on e.g.
Ubuntu 16.04.

Overview

Docker's approach to logging is that you construct your containers in such a way, so that logs are
written to standard output (console/terminal).

If you already have a container which writes logs to a file, you can redirect it by creating a
symbolic link:

ln -sf /dev/stdout /var/log/nginx/access.log
ln -sf /dev/stderr /var/log/nginx/error.log

After you've done that you can use various log drivers to put your logs where you need them.

Read Logging online: https://riptutorial.com/docker/topic/7378/logging

https://riptutorial.com/ 102

Chapter 28: Managing containers

Syntax

docker rm [OPTIONS] CONTAINER [CONTAINER...]•
docker attach [OPTIONS] CONTAINER•
docker exec [OPTIONS] CONTAINER COMMAND [ARG...]•
docker ps [OPTIONS]•
docker logs [OPTIONS] CONTAINER•
docker inspect [OPTIONS] CONTAINER|IMAGE [CONTAINER|IMAGE...]•

Remarks

In the examples above, whenever container is a parameter of the docker command, it is
mentioned as <container> or container id or <CONTAINER_NAME>. In all these places you can
either pass a container name or container id to specify a container.

•

Examples

Listing containers

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
2bc9b1988080 redis "docker-entrypoint.sh" 2 weeks ago Up 2
hours 0.0.0.0:6379->6379/tcp elephant-redis
817879be2230 postgres "/docker-entrypoint.s" 2 weeks ago Up 2
hours 0.0.0.0:65432->5432/tcp pt-postgres

docker ps on its own only prints currently running containers. To view all containers (including
stopped ones), use the -a flag:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
9cc69f11a0f7 docker/whalesay "ls /" 26 hours ago Exited
(0) 26 hours ago berserk_wozniak
2bc9b1988080 redis "docker-entrypoint.sh" 2 weeks ago Up 2
hours 0.0.0.0:6379->6379/tcp elephant-redis
817879be2230 postgres "/docker-entrypoint.s" 2 weeks ago Up 2
hours 0.0.0.0:65432->5432/tcp pt-postgres

To list containers with a specific status, use the -f command line option to filter the results. Here is
an example of listing all containers which have exited:

$ docker ps -a -f status=exited
CONTAINER ID IMAGE COMMAND CREATED STATUS

https://riptutorial.com/ 103

PORTS NAMES
9cc69f11a0f7 docker/whalesay "ls /" 26 hours ago Exited
(0) 26 hours ago

It is also possible to list only the Container IDs with the -q switch. This makes it very easy to
operate on the result with other Unix utilities (such as grep and awk):

$ docker ps -aq
9cc69f11a0f7
2bc9b1988080
817879be2230

When launching a container with docker run --name mycontainer1 you give a specific name and not
a random name (in the form mood_famous, such as nostalgic_stallman), and it can be easy to find
them with such a command

docker ps -f name=mycontainer1

Referencing containers

Docker commands which take the name of a container accept three different forms:

Type Example

Full UUID 9cc69f11a0f76073e87f25cb6eaf0e079fbfbd1bc47c063bcd25ed3722a8cc4a

Short UUID 9cc69f11a0f7

Name berserk_wozniak

Use docker ps to view these values for the containers on your system.

The UUID is generated by Docker and cannot be modified. You can provide a name to the
container when you start it docker run --name <given name> <image>. Docker will generate a random
name to the container if you don't specify one at the time of starting the container.

NOTE: The value of the UUID (or a 'short' UUID) can be any length as long as the given value is
unique to one container

Starting and stopping containers

To stop a running container:

docker stop <container> [<container>...]

This will send the main process in the container a SIGTERM, followed by a SIGKILL if it doesn't
stop within the grace period. The name of each container is printed as it stops.

To start a container which is stopped:

https://riptutorial.com/ 104

docker start <container> [<container>...]

This will start each container passed in the background; the name of each container is printed as it
starts. To start the container in the foreground, pass the -a (--attach) flag.

List containers with custom format

docker ps --format 'table {{.ID}}\t{{.Names}}\t{{.Status}}'

Finding a specific container

docker ps --filter name=myapp_1

Find container IP

To find out the IP address of your container, use:

docker inspect <container id> | grep IPAddress

or use docker inspect

docker inspect --format '{{ .NetworkSettings.IPAddress }}' ${CID}

Restarting docker container

docker restart <container> [<container>...]

Option --time : Seconds to wait for stop before killing the container (default 10)

docker restart <container> --time 10

Remove, delete and cleanup containers

docker rm can be used to remove a specific containers like this:

docker rm <container name or id>

To remove all containers you can use this expression:

docker rm $(docker ps -qa)

By default docker will not delete a container that is running. Any container that is running will
produce a warning message and not be deleted. All other containers will be deleted.

Alternatively you can use xargs:

https://riptutorial.com/ 105

docker ps -aq -f status=exited | xargs -r docker rm

Where docker ps -aq -f status=exited will return a list of container IDs of containers that have a
status of "Exited".

Warning: All the above examples will only remove 'stopped' containers.

To remove a container, regardless of whether or not it is stopped, you can use the force flag -f:

docker rm -f <container name or id>

To remove all containers, regardless of state:

docker rm -f $(docker ps -qa)

If you want to remove only containers with a dead status:

docker rm $(docker ps --all -q -f status=dead)

If you want to remove only containers with an exited status:

docker rm $(docker ps --all -q -f status=exited)

These are all permutations of filters used when listing containers.

To remove both unwanted containers and dangling images that use space after version 1.3, use
the following (similar to the Unix tool df):

$ docker system df

To remove all unused data:

$ docker system prune

Run command on an already existing docker container

docker exec -it <container id> /bin/bash

It is common to log in an already running container to make some quick tests or see what the
application is doing. Often it denotes bad container use practices due to logs and changed files
should be placed in volumes. This example allows us log in the container. This supposes that
/bin/bash is available in the container, it can be /bin/sh or something else.

docker exec <container id> tar -czvf /tmp/backup.tgz /data
docker cp <container id>:/tmp/backup.tgz .

This example archives the content of data directory in a tar. Then with docker cp you can retrieve
it.

https://riptutorial.com/ 106

Container logs

Usage: docker logs [OPTIONS] CONTAINER

Fetch the logs of a container

 -f, --follow=false Follow log output
 --help=false Print usage
 --since= Show logs since timestamp
 -t, --timestamps=false Show timestamps
 --tail=all Number of lines to show from the end of the logs

For example:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
ff9716dda6cb nginx "nginx -g 'daemon off" 8 days ago Up 22 hours 443/tcp,
0.0.0.0:8080->80/tcp

$ docker logs ff9716dda6cb
xx.xx.xx.xx - - [15/Jul/2016:14:03:44 +0000] "GET /index.html HTTP/1.1" 200 511
"https://google.com" "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/50.0.2661.75 Safari/537.36"
xx.xx.xx.xx - - [15/Jul/2016:14:03:44 +0000] "GET /index.html HTTP/1.1" 200 511
"https://google.com" "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/50.0.2661.75 Safari/537.36"

Connect to an instance running as daemon

There are two ways to achieve that, the first and most known is the following:

docker attach --sig-proxy=false <container>

This one literally attaches your bash to the container bash, meaning that if you have a running
script, you will see the result.

To detach, just type: Ctl-P Ctl-Q

But if you need a more friendly way and to be able to create new bash instances, just run the
following command:

docker exec -it <container> bash

Copying file from/to containers

from container to host

docker cp CONTAINER_NAME:PATH_IN_CONTAINER PATH_IN_HOST

from host to container

https://riptutorial.com/ 107

docker cp PATH_IN_HOST CONTAINER_NAME:PATH_IN_CONTAINER

If I use jess/transmission from

https://hub.docker.com/r/jess/transmission/builds/bsn7eqxrkzrhxazcuytbmzp/

, the files in the container are in /transmission/download

and my current directory on the host is /home/$USER/abc, after

docker cp transmission_id_or_name:/transmission/download .

I will have the files copied to

/home/$USER/abc/transmission/download

you can not, using docker cp copy only one file, you copy the directory tree and the files

Remove, delete and cleanup docker volumes

Docker volumes are not automatically removed when a container is stopped. To remove
associated volumes when you stop a container:

docker rm -v <container id or name>

If the -v flag is not specified, the volume remains on-disk as a 'dangling volume'. To delete all
dangling volumes:

docker volume rm $(docker volume ls -qf dangling=true)

The docker volume ls -qf dangling=true filter will return a list of docker volumes names, including
untagged ones, that are not attached to a container.

Alternatively, you can use xargs:

docker volume ls -f dangling=true -q | xargs --no-run-if-empty docker volume rm

Export and import Docker container filesystems

It is possible to save a Docker container's filesystem contents to a tarball archive file. This is useful
in a pinch for moving container filesystems to different hosts, for example if a database container
has important changes and it isn't otherwise possible to replicate those changes elsewhere.
Please note that it is preferable to create an entirely new container from an updated image using
a docker run command or docker-compose.yml file, instead of exporting and moving a container's
filesystem. Part of Docker's power is the auditability and accountability of its declarative style of
creating images and containers. By using docker export and docker import, this power is subdued
because of the obfuscation of changes made inside of a container's filesystem from its original
state.

https://riptutorial.com/ 108

docker export -o redis.tar redis

The above command will create an empty image and then export the filesystem of the redis
container into this empty image. To import from a tarball archive, use:

docker import ./redis.tar redis-imported:3.0.7

This command will create the redis-imported:3.0.7 image, from which containers can be created. It
is also possible to create changes on import, as well as set a commit message:

docker import -c="ENV DEBUG true" -m="enable debug mode" ./redis.tar redis-changed

The Dockerfile directives available for use with the -c command line option are CMD, ENTRYPOINT, ENV,
EXPOSE, ONBUILD, USER, VOLUME, WORKDIR.

Read Managing containers online: https://riptutorial.com/docker/topic/689/managing-containers

https://riptutorial.com/ 109

Chapter 29: Managing images

Syntax

docker images [OPTIONS] [REPOSITORY[:TAG]]•
docker inspect [OPTIONS] CONTAINER|IMAGE [CONTAINER|IMAGE...]•
docker pull [OPTIONS] NAME[:TAG|@DIGEST]•
docker rmi [OPTIONS] IMAGE [IMAGE...]•
docker tag [OPTIONS] IMAGE[:TAG] [REGISTRYHOST/][USERNAME/]NAME[:TAG]•

Examples

Fetching an image from Docker Hub

Ordinarily, images are pulled automatically from Docker Hub. Docker will attempt to pull any image
from Docker Hub that doesn't already exist on the Docker host. For example, using docker run
ubuntu when the ubuntu image is not already on the Docker host will cause Docker to initiate a pull
of the latest ubuntu image. It is possible to pull an image separately by using docker pull to
manually fetch or update an image from Docker Hub.

docker pull ubuntu
docker pull ubuntu:14.04

Additional options for pulling from a different image registry or pulling a specific version of an
image exist. Indicating an alternate registry is done using the full image name and optional
version. For example, the following command will attempt to pull the ubuntu:14.04 image from the
registry.example.com registry:

docker pull registry.example.com/username/ubuntu:14.04

Listing locally downloaded images

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest 693bce725149 6 days ago 967 B
postgres 9.5 0f3af79d8673 10 weeks ago 265.7 MB
postgres latest 0f3af79d8673 10 weeks ago 265.7 MB

Referencing images

Docker commands which take the name of an image accept four different forms:

Type Example

Short ID 693bce725149

https://riptutorial.com/ 110

Type Example

Name hello-world (defaults to :latest tag)

Name+tag hello-world:latest

Digest hello-
world@sha256:e52be8ffeeb1f374f440893189cd32f44cb166650e7ab185fa7735b7dc48d619

Note: You can only refer to an image by its digest if that image was originally pulled using that
digest. To see the digest for an image (if one is available) run docker images --digests.

Removing Images

The docker rmi command is used to remove images:

docker rmi <image name>

The full image name must be used to remove an image. Unless the image has been tagged to
remove the registry name, it needs to be specified. For example:

docker rmi registry.example.com/username/myAppImage:1.3.5

It is also possible to remove images by their ID instead:

docker rmi 693bce725149

As a convenience, it is possible to remove images by their image ID by specifying only the first few
characters of the image ID, as long as the substring specified is unambiguous:

docker rmi 693

Note: Images can be removed even if there are existing containers that use that
image; docker rmi simply "untags" the image.

If no containers are using an image it is garbage-collected. If a container uses an image, the
image will be garbage-collected once all the containers using it are removed. For example:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
5483657ee07b hello-world "/hello" Less than a second ago Exited
(0) 2 seconds ago small_elion

$ docker rmi hello-world
Untagged: hello-world:latest

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
5483657ee07b 693bce725149 "/hello" Less than a second ago Exited

https://riptutorial.com/ 111

(0) 12 seconds ago small_elion

Remove All Images With No Started Containers

To remove all local images that have no started containers, you can provide a listing of the images
as a parameter:

docker rmi $(docker images -qa)

Remove All Images

If you want to remove images regardless of whether or not they have a started container use the
force flag (-f):

docker rmi -f $(docker images -qa)

Remove Dangling Images

If an image is not tagged and not being used by any container, it is 'dangling' and may be removed
like this:

docker images -q --no-trunc -f dangling=true | xargs -r docker rmi

Search the Docker Hub for images

You can search Docker Hub for images by using the search command:

docker search <term>

For example:

$ docker search nginx
NAME DESCRIPTION STARS OFFICIAL
AUTOMATED
nginx Official build of Nginx. 3565 [OK]
jwilder/nginx-proxy Automated Nginx reverse proxy for docker c... 717
[OK]
richarvey/nginx-php-fpm Container running Nginx + PHP-FPM capable ... 232
[OK]
...

Inspecting images

docker inspect <image>

The output is in JSON format. You can use jq command line utility to parse and print only the
desired keys.

https://riptutorial.com/ 112

docker inspect <image> | jq -r '.[0].Author'

The above command will shows author name of the images.

Tagging images

Tagging an image is useful for keeping track of different image versions:

docker tag ubuntu:latest registry.example.com/username/ubuntu:latest

Another example of tagging:

docker tag myApp:1.4.2 myApp:latest
docker tag myApp:1.4.2 registry.example.com/company/myApp:1.4.2

Saving and loading Docker images

docker save -o ubuntu.latest.tar ubuntu:latest

This command will save the ubuntu:latest image as a tarball archive in the current directory with
the name ubuntu.latest.tar. This tarball archive can then be moved to another host, for example
using rsync, or archived in storage.

Once the tarball has been moved, the following command will create an image from the file:

docker load -i /tmp/ubuntu.latest.tar

Now it is possible to create containers from the ubuntu:latest image as usual.

Read Managing images online: https://riptutorial.com/docker/topic/690/managing-images

https://riptutorial.com/ 113

Chapter 30: Multiple processes in one
container instance

Remarks

Usually each container should hosts one process. In case you need multiple processes in one
container (e.g. an SSH server to login to your running container instance) you could get the idea to
write you own shell script that starts those processes. In that case you had to take care about the
SIGNAL handling yourself (e.g. redirecting a caught SIGINT to the child processes of your script).
That's not really what you want. A simple solution is to use supervisord as the containers root
process which takes care about SIGNAL handling and its child processes lifetime.

But keep in mind, that this ist not the "docker way". To achive this example in the docker way you
would log into the docker host (the machine the container runs on) and run docker exec -it
container_name /bin/bahs. This command opens you a shell inside the container as ssh would do.

Examples

Dockerfile + supervisord.conf

To run multiple processes e.g. an Apache web server together with an SSH daemon inside the
same container you can use supervisord.

Create your supervisord.conf configuration file like:

[supervisord]
nodaemon=true

[program:sshd]
command=/usr/sbin/sshd -D

[program:apache2]
command=/bin/bash -c "source /etc/apache2/envvars && exec /usr/sbin/apache2 -DFOREGROUND"

Then create a Dockerfile like:

FROM ubuntu:16.04
RUN apt-get install -y openssh-server apache2 supervisor
RUN mkdir -p /var/lock/apache2 /var/run/apache2 /var/run/sshd /var/log/supervisor
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
CMD ["/usr/bin/supervisord"]

Then you can build your image:

docker build -t supervisord-test .

https://riptutorial.com/ 114

Afterwards you can run it:

$ docker run -p 22 -p 80 -t -i supervisord-test
2016-07-26 13:15:21,101 CRIT Supervisor running as root (no user in config file)
2016-07-26 13:15:21,101 WARN Included extra file "/etc/supervisor/conf.d/supervisord.conf"
during parsing
2016-07-26 13:15:21,112 INFO supervisord started with pid 1
2016-07-26 13:15:21,113 INFO spawned: 'sshd' with pid 6
2016-07-26 13:15:21,115 INFO spawned: 'apache2' with pid 7
...

Read Multiple processes in one container instance online:
https://riptutorial.com/docker/topic/4053/multiple-processes-in-one-container-instance

https://riptutorial.com/ 115

Chapter 31: passing secret data to a running
container

Examples

ways to pass secrets in a container

The not very secure way (because docker inspect will show it) is to pass an environment variable
to

docker run

such as

docker run -e password=abc

or in a file

docker run --env-file myfile

where myfile can contain

password1=abc password2=def

it is also possible to put them in a volume

docker run -v $(pwd)/my-secret-file:/secret-file

some better ways, use

keywhiz https://square.github.io/keywhiz/

vault https://www.hashicorp.com/blog/vault.html

etcd with crypt https://xordataexchange.github.io/crypt/

Read passing secret data to a running container online:
https://riptutorial.com/docker/topic/6481/passing-secret-data-to-a-running-container

https://riptutorial.com/ 116

Chapter 32: Restricting container network
access

Remarks

Example docker networks that blocks traffic. Use as the network when starting the container with -
-net or docker network connect.

Examples

Block access to LAN and out

docker network create -o "com.docker.network.bridge.enable_ip_masquerade"="false" lan-
restricted

Blocks
Local LAN○

Internet○

•

Does not block
Host running docker daemon (example access to 10.0.1.10:22)○

•

Block access to other containers

docker network create -o "com.docker.network.bridge.enable_icc"="false" icc-restricted

Blocks
Containers accessing other containers on the same icc-restricted network.○

•

Does not block
Access to host running docker daemon○

Local LAN○

Internet○

•

Block access from containers to the local host running docker daemon

iptables -I INPUT -i docker0 -m addrtype --dst-type LOCAL -j DROP

Blocks
Access to host running docker daemon○

•

Does not block
Container to container traffic○

Local LAN○

Internet○

Custom docker networks that doesn't use docker0○

•

https://riptutorial.com/ 117

Block access from containers to the local host running docker daemon
(custom network)

docker network create --subnet=192.168.0.0/24 --gateway=192.168.0.1 --ip-range=192.168.0.0/25
local-host-restricted
iptables -I INPUT -s 192.168.0.0/24 -m addrtype --dst-type LOCAL -j DROP

Creates a network called local-host-restricted which which:

Blocks
Access to host running docker daemon○

•

Does not block
Container to container traffic○

Local LAN○

Internet○

Access originating from other docker networks○

•

Custom networks have bridge names like br-15bbe9bb5bf5, so we uses it's subnet instead.

Read Restricting container network access online:
https://riptutorial.com/docker/topic/6331/restricting-container-network-access

https://riptutorial.com/ 118

Chapter 33: run consul in docker 1.12 swarm

Examples

Run consul in a docker 1.12 swarm

This relies on the official consul docker image to run consul in clustered mode in a docker swarm
with new swarm mode in Docker 1.12. This example is based on
http://qnib.org/2016/08/11/consul-service/. Briefly the idea is to use two docker swarm services
that talk to each other. This solves the problem that you cannot know the ips of individual consul
containers up front and allows you to rely on docker swarm's dns.

This assumes you already have a running docker 1.12 swarm cluster with at least three nodes.

You may want to configure a log driver on your docker daemons so that you can see what is
happening. I used the syslog driver for this: set the --log-driver=syslog option on dockerd.

First create an overlay network for consul:

docker network create consul-net -d overlay

Now bootstrap the cluster with just 1 node (default --replicas is 1):

docker service create --name consul-seed \
 -p 8301:8300 \
 --network consul-net \
 -e 'CONSUL_BIND_INTERFACE=eth0' \
 consul agent -server -bootstrap-expect=3 -retry-join=consul-seed:8301 -retry-join=consul-
cluster:8300

You should now have a 1 node cluster. Now bring up the second service:

docker service create --name consul-cluster \
 -p 8300:8300 \
 --network consul-net \
 --replicas 3 \
 -e 'CONSUL_BIND_INTERFACE=eth0' \
 consul agent -server -retry-join=consul-seed:8301 -retry-join=consul-cluster:8300

You should now have a four node consul cluster. You can verify this by running on any of the
docker containers:

docker exec <containerid> consul members

Read run consul in docker 1.12 swarm online: https://riptutorial.com/docker/topic/6437/run-consul-
in-docker-1-12-swarm

https://riptutorial.com/ 119

Chapter 34: Running containers

Syntax

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]•

Examples

Running a container

docker run hello-world

This will fetch the latest hello-world image from the Docker Hub (if you don't already have it),
create a new container, and run it. You should see a message stating that your installation
appears to be working correctly.

Running a different command in the container

docker run docker/whalesay cowsay 'Hello, StackExchange!'

This command tells Docker to create a container from the docker/whalesay image and run the
command cowsay 'Hello, StackExchange!' in it. It should print a picture of a whale saying Hello,
StackExchange! to your terminal.

If the entrypoint in the image is the default you can run any command that's available in the image:

docker run docker/whalesay ls /

If it has been changed during image build you need to reverse it back to the default

docker run --entrypoint=/bin/bash docker/whalesay -c ls /

Automatically delete a container after running it

Normally, a Docker container persists after it has exited. This allows you to run the container
again, inspect its filesystem, and so on. However, sometimes you want to run a container and
delete it immediately after it exits. For example to execute a command or show a file from the
filesystem. Docker provides the --rm command line option for this purpose:

docker run --rm ubuntu cat /etc/hosts

This will create a container from the "ubuntu" image, show the content of /etc/hosts file and then
delete the container immediately after it exits. This helps to prevent having to clean up containers
after you're done experimenting.

https://riptutorial.com/ 120

Note: The --rm flag doesn't work in conjunction with the -d (--detach) flag in docker <
1.13.0.

When --rm flag is set, Docker also removes the volumes associated with the container when the
container is removed. This is similar to running docker rm -v my-container. Only volumes that are
specified without a name are removed.

For example, with docker run -it --rm -v /etc -v logs:/var/log centos /bin/produce_some_logs, the
volume of /etc will be removed, but the volume of /var/log will not. Volumes inherited via --
volumes-from will be removed with the same logic -- if the original volume was specified with a
name it will not be removed.

Specifying a name

By default, containers created with docker run are given a random name like small_roentgen or
modest_dubinsky. These names aren't particularly helpful in identifying the purpose of a container. It
is possible to supply a name for the container by passing the --name command line option:

docker run --name my-ubuntu ubuntu:14.04

Names must be unique; if you pass a name that another container is already using, Docker will
print an error and no new container will be created.

Specifying a name will be useful when referencing the container within a Docker network. This
works for both background and foreground Docker containers.

Containers on the default bridge network must be linked to communicate by name.

Binding a container port to the host

docker run -p "8080:8080" myApp
docker run -p "192.168.1.12:80:80" nginx
docker run -P myApp

In order to use ports on the host have been exposed in an image (via the EXPOSE Dockerfile
directive, or --expose command line option for docker run), those ports need to be bound to the
host using the -p or -P command line options. Using -p requires that the particular port (and
optional host interface) to be specified. Using the uppercase -P command line option will force
Docker to bind all exposed ports in a container's image to the host.

Container restart policy (starting a container at boot)

docker run --restart=always -d <container>

By default, Docker will not restart containers when the Docker daemon restarts, for example after
a host system reboot. Docker provides a restart policy for your containers by supplying the --
restart command line option. Supplying --restart=always will always cause a container to be

https://riptutorial.com/ 121

restarted after the Docker daemon is restarted. However when that container is manually stopped
(e.g. with docker stop <container>), the restart policy will not be applied to the container.

Multiple options can be specified for --restart option, based on the requirement (--
restart=[policy]). These options effect how the container starts at boot as well.

Policy Result

no
The default value. Will not restart container automatically, when container
is stopped.

on-
failure[:max-
retries]

Restart only if the container exits with a failure (non-zero exit status). To
avoid restarting it indefinitely (in case of some problem), one can limit the
number of restart retries the Docker daemon attempts.

always

Always restart the container regardless of the exit status. When you
specify always, the Docker daemon will try to restart the container
indefinitely. The container will also always start on daemon startup,
regardless of the current state of the container.

unless-
stopped

Always restart the container regardless of its exit status, but do not start it
on daemon startup if the container has been put to a stopped state before.

Run a container in background

To keep a container running in the background, supply the -d command line option during
container startup:

docker run -d busybox top

The option -d runs the container in detached mode. It is also equivalent to -d=true.

A container in detached mode cannot be removed automatically when it stops, this means one
cannot use the --rm option in combination with -d option.

Assign a volume to a container

A Docker volume is a file or directory which persists beyond the lifetime of the container. It is
possible to mount a host file or directory into a container as a volume (bypassing the UnionFS).

Add a volume with the -v command line option:

docker run -d -v "/data" awesome/app bootstrap.sh

This will create a volume and mount it to the path /data inside the container.

Note: You can use the flag --rm to automatically remove the volume when the container is
removed.

•

https://riptutorial.com/ 122

Mounting host directories

To mount a host file or directory into a container:

docker run -d -v "/home/foo/data:/data" awesome/app bootstrap.sh

When specifying a host directory, an absolute path must be supplied.•

This will mount the host directory /home/foo/data onto /data inside the container. This "bind-
mounted host directory" volume is the same thing as a Linux mount --bind and therefore
temporarily mounts the host directory over the specified container path for the duration of the
container's lifetime. Changes in the volume from either the host or the container are reflected
immediately in the other, because they are the same destination on disk.

UNIX example mounting a relative folder

docker run -d -v $(pwd)/data:/data awesome/app bootstrap.sh

Naming volumes

A volume can be named by supplying a string instead of a host directory path, docker will create a
volume using that name.

docker run -d -v "my-volume:/data" awesome/app bootstrap.sh

After creating a named volume, the volume can then be shared with other containers using that
name.

Setting environment variables

$ docker run -e "ENV_VAR=foo" ubuntu /bin/bash

Both -e and --env can be used to define environment variables inside of a container. It is possible
to supply many environment variables using a text file:

$ docker run --env-file ./env.list ubuntu /bin/bash

Example environment variable file:

This is a comment
TEST_HOST=10.10.0.127

The --env-file flag takes a filename as an argument and expects each line to be in the
VARIABLE=VALUE format, mimicking the argument passed to --env. Comment lines need only be
prefixed with #.

Regardless of the order of these three flags, the --env-file are processed first, and then -e/--env
flags. This way, any environment variables supplied individually with -e or --env will override

https://riptutorial.com/ 123

variables supplied in the --env-var text file.

Specifying a hostname

By default, containers created with docker run are given a random hostname. You can give the
container a different hostname by passing the --hostname flag:

docker run --hostname redbox -d ubuntu:14.04

Run a container interactively

To run a container interactively, pass in the -it options:

$ docker run -it ubuntu:14.04 bash
root@8ef2356d919a:/# echo hi
hi
root@8ef2356d919a:/#

-i keeps STDIN open, while -t allocates a pseudo-TTY.

Running container with memory/swap limits

Set memory limit and disable swap limit

docker run -it -m 300M --memory-swap -1 ubuntu:14.04 /bin/bash

Set both memory and swap limit. In this case, container can use 300M memory and 700M swap.

docker run -it -m 300M --memory-swap 1G ubuntu:14.04 /bin/bash

Getting a shell into a running (detached) container

Log into a running container

A user can enter a running container in a new interactive bash shell with exec command.

Say a container is called jovial_morse then you can get an interactive, pseudo-TTY bash shell by
running:

docker exec -it jovial_morse bash

Log into a running container with a specific
user

https://riptutorial.com/ 124

If you want to enter a container as a specific user, you can set it with -u or --user parameter. The
username must exists in the container.

-u, --user Username or UID (format: <name|uid>[:<group|gid>])

This command will log into jovial_morse with the dockeruser user

docker exec -it -u dockeruser jovial_morse bash

Log into a running container as root

If you want to log in as root, just simply use the -u root parameter. Root user always exists.

docker exec -it -u root jovial_morse bash

Log into a image

You can also log into a image with the run command, but this requires an image name instead of a
container name.

docker run -it dockerimage bash

Log into a intermediate image (debug)

You can log into an intermediate image as well, which is created during a Dockerfile build.

Output of docker build .

$ docker build .
Uploading context 10240 bytes
Step 1 : FROM busybox
Pulling repository busybox
 ---> e9aa60c60128MB/2.284 MB (100%) endpoint: https://cdn-registry-1.docker.io/v1/
Step 2 : RUN ls -lh /
 ---> Running in 9c9e81692ae9
total 24
drwxr-xr-x 2 root root 4.0K Mar 12 2013 bin
drwxr-xr-x 5 root root 4.0K Oct 19 00:19 dev
drwxr-xr-x 2 root root 4.0K Oct 19 00:19 etc
drwxr-xr-x 2 root root 4.0K Nov 15 23:34 lib
lrwxrwxrwx 1 root root 3 Mar 12 2013 lib64 -> lib
dr-xr-xr-x 116 root root 0 Nov 15 23:34 proc
lrwxrwxrwx 1 root root 3 Mar 12 2013 sbin -> bin
dr-xr-xr-x 13 root root 0 Nov 15 23:34 sys
drwxr-xr-x 2 root root 4.0K Mar 12 2013 tmp
drwxr-xr-x 2 root root 4.0K Nov 15 23:34 usr
 ---> b35f4035db3f
Step 3 : CMD echo Hello world

https://riptutorial.com/ 125

 ---> Running in 02071fceb21b
 ---> f52f38b7823e

Notice the ---> Running in 02071fceb21b output, you can log into these images:

docker run -it 02071fceb21b bash

Passing stdin to the container

In cases such as restoring a database dump, or otherwise wishing to push some information
through a pipe from the host, you can use the -i flag as an argument to docker run or docker exec.

E.g., assuming you want to put to a containerized mariadb client a database dump that you have
on the host, in a local dump.sql file, you can perform the following command:

docker exec -i mariadb bash -c 'mariadb "-p$MARIADB_PASSWORD" ' < dump.sql

In general,

docker exec -i container command < file.stdin

Or

docker exec -i container command <<EOF
inline-document-from-host-shell-HEREDOC-syntax
EOF

Detaching from a container

While attached to a running container with a pty assigned (docker run -it ...), you can press
ControlP - ControlQ to detach.

Overriding image entrypoint directive

docker run --name="test-app" --entrypoint="/bin/bash" example-app

This command will override the ENTRYPOINT directive of the example-app image when the container
test-app is created. The CMD directive of the image will remain unchanged unless otherwise
specified:

docker run --name="test-app" --entrypoint="/bin/bash" example-app /app/test.sh

In the above example, both the ENTRYPOINT and the CMD of the image have been overridden. This
container process becomes /bin/bash /app/test.sh.

Add host entry to container

https://riptutorial.com/ 126

docker run --add-host="app-backend:10.15.1.24" awesome-app

This command adds an entry to the container's /etc/hosts file, which follows the format --add-host
<name>:<address>. In this example, the name app-backend will resolve to 10.15.1.24. This is
particularly useful for tying disparate app components together programmatically.

Prevent container from stopping when no commands are running

A container will stop if no command is running on the foreground. Using the -t option will keep the
container from stopping, even when detached with the -d option.

docker run -t -d debian bash

Stopping a container

docker stop mynginx

Additionally, the container id can also be used to stop the container instead of its name.

This will stop a running container by sending the SIGTERM signal and then the SIGKILL signal if
necessary.

Further, the kill command can be used to immediately send a SIGKILL or any other specified
signal using the -s option.

docker kill mynginx

Specified signal:

docker kill -s SIGINT mynginx

Stopping a container doesn't delete it. Use docker ps -a to see your stopped container.

Execute another command on a running container

When required you can tell Docker to execute additional commands on an already running
container using the exec command. You need the container's ID which you can get with docker ps.

docker exec 294fbc4c24b3 echo "Hello World"

You can attach an interactive shell if you use the -it option.

docker exec -it 294fbc4c24b3 bash

Running GUI apps in a Linux container

By default, a Docker container won't be able to run a GUI application.

https://riptutorial.com/ 127

Before that, the X11 socket must be forwarded first to the container, so it can be used directly. The
DISPLAY environment variable must be forwarded as well:

docker run -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=unix$DISPLAY <image-name>

This will fail at first, since we didn't set the permissions to the X server host:

cannot connect to X server unix:0

The quickest (but not safest) way is to allow access directly with:

xhost +local:root

After finishing with the container, we can go back to the original state with:

xhost -local:root

Another (safer) way is to prepare a Dockerfile that will build a new image that will use the our user
credentials to access the X server:

FROM <iamge-name>
MAINTAINER <you>

Arguments picked from the command line!
ARG user
ARG uid
ARG gid

#Add new user with our credentials
ENV USERNAME ${user}
RUN useradd -m $USERNAME && \
 echo "$USERNAME:$USERNAME" | chpasswd && \
 usermod --shell /bin/bash $USERNAME && \
 usermod --uid ${uid} $USERNAME && \
 groupmod --gid ${gid} $USERNAME

USER ${user}

WORKDIR /home/${user}

When invoking docker build from the command line, we have to pass the ARG variables that
appear in the Dockerfile:

docker build --build-arg user=$USER --build-arg uid=$(id -u) --build-arg gid=$(id -g) -t <new-
image-with-X11-enabled-name> -f <Dockerfile-for-X11> .

Now, before spawning a new container, we have to create a xauth file with access permission:

xauth nlist $DISPLAY | sed -e 's/^..../ffff/' | xauth -f /tmp/.docker.xauth nmerge -

https://riptutorial.com/ 128

This file has to be mounted into the container when creating/running it:

docker run -e DISPLAY=unix$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v
/tmp/.docker.xauth:/tmp/.docker.xauth:rw -e XAUTHORITY=/tmp/.docker.xauth

Read Running containers online: https://riptutorial.com/docker/topic/679/running-containers

https://riptutorial.com/ 129

Chapter 35: Running services

Examples

Creating a more advanced service

In the following example we will create a service with the name visualizer. We will specify a
custom label and remap the internal port of the service from 8080 to 9090. In addition we will bind
mount an external directory of the host into the service.

docker service create \
 --name=visualizer \
 --label com.my.custom.label=visualizer \
 --publish=9090:8080 \
 --mount type=bind,source=/var/run/docker.sock,target=/var/run/docker.sock \
 manomarks/visualizer:latest

Creating a simple service

This simple exampe will create a hello world web service that will listen on the port 80.

docker service create \
 --publish 80:80 \
 tutum/hello-world

Removing a service

This simple example will remove the service with name "visualizer":

docker service rm visualizer

Scaling a service

This example will scale the service to 4 instances:

docker service scale visualizer=4

In Docker Swarm Mode we do not stop a service. We scale it down to zero:

docker service scale visualizer=0

Read Running services online: https://riptutorial.com/docker/topic/8802/running-services

https://riptutorial.com/ 130

Chapter 36: Running Simple Node.js
Application

Examples

Running a Basic Node.js application inside a Container

The example I'm going to discuss assumes you have a Docker installation that works in your
system and a basic understanding of how to work with Node.js . If you are aware of how you must
work with Docker , it should be evident that Node.js framework need not be installed on your
system, rather we would be using the latest version of the node image available from Docker.
Hence if needed you may download the image beforehand with the command docker pull node.
(The command automatically pulls the latest version of the node image from docker.)

Proceed to make a directory where all your working application files would reside. Create a
package.json file in this directory that describes your application as well as the dependencies.
Your package.json file should look something like this:

 {
 "name": "docker_web_app",
 "version": "1.0.0",
 "description": "Node.js on Docker",
 "author": "First Last <first.last@example.com>",
 "main": "server.js",
 "scripts": {
 "start": "node server.js"
 },
 "dependencies": {
 "express": "^4.13.3"
 }
 }

1.

If we need to work with Node.js we usually create a server file that defines a web application.
In this case we use the Express.js framework (version 4.13.3 onwards). A basic server.js file
would look something like this:

 var express = require('express');
 var PORT = 8080;
 var app = express();
 app.get('/', function (req, res) {
 res.send('Hello world\n');
 });

 app.listen(PORT);
 console.log('Running on http://localhost:' + PORT);

2.

For those familiar with Docker, you would have come across a Dockerfile. A Dockerfile is a
text file that contains all the commands required to build a custom image that is tailored for
your application.

3.

https://riptutorial.com/ 131

Create an empty text file named Dockerfile in the current directory. The method to create one is
straightforward in Windows. In Linux, you may want to execute touch Dockerfile in the directory
containing all the files required for your application. Open the Dockerfile with any text editor and
add the following lines:

FROM node:latest
RUN mkdir -p /usr/src/my_first_app
WORKDIR /usr/src/my_first_app
COPY package.json /usr/src/my_first_app/
RUN npm install
COPY . /usr/src/my_first_app
EXPOSE 8080

FROM node:latest instructs the Docker daemon what image we want to build from. In this case
we use the latest version of the official Docker image node available from the Docker Hub.

•

Inside this image we proceed to create a working directory that contains all the required files
and we instruct the daemon to set this directory as the desired working directory for our
application. For this we add

 RUN mkdir -p /usr/src/my_first_app
 WORKDIR /usr/src/my_first_app

•

We then proceed to install application dependencies by first moving the package.json file
(which specifies app info including dependencies) to the /usr/src/my_first_app working
directory in the image. We do this by

 COPY package.json /usr/src/my_first_app/
 RUN npm install

•

We then type COPY . /usr/src/my_first_app to add all the application files and source code to
the working directory in the image.

•

We then use the EXPOSE directive to instruct the daemon to make port 8080 of the resulting
container visible (via a container-to-host mapping) since the application binds to port 8080.

•

In the last step, we instruct the daemon to run the command node server.js inside the image
by executing the basic npm start command. We use the CMD directive for this, which takes the
commands as arguments.

 CMD ["npm", "start"]

•

We then create a .dockerignore file in the same directory as the Dockerfile to prevent our
copy of node_modules and logs used by our Node.js system installation from being copied on
to the Docker image. The .dockerignore file must have the following content:

 node_modules
 npm-debug.log

4.

5.

https://riptutorial.com/ 132

Build your image

Navigate to the directory that contains the Dockerfile and run the following command to build the
Docker image. The -t flag lets you tag your image so it's easier to find later using the docker
images command:

 $ docker build -t <your username>/node-web-app .

Your image will now be listed by Docker. View images using the below command:

$ docker images

REPOSITORY TAG ID CREATED
node latest 539c0211cd76 10 minutes ago
<your username>/node-web-app latest d64d3505b0d2 1 minute ago

Running the image
6.

We can now run the image we just created using the application contents, the node base image
and the Dockerfile. We now proceed to run our newly created <your username>/node-web-app image.
Providing -d switch to the docker run command runs the container in detached mode,so that the
container runs in the background. The -p flag redirects a public port to a private port inside the
container. Run the image you previously built using this command:

$ docker run -p 49160:8080 -d <your username>/node-web-app

Print the output of your app by running docker ps on your terminal. The output should look
something like this.

 CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
 7b701693b294 <your username>/node-web-app "npm start" 20 minutes ago
Up 48 seconds 0.0.0.0:49160->8080/tcp loving_goldstine

7.

Get application output by entering docker logs <CONTAINER ID>. In this case it is docker logs
7b701693b294.

Output: Running on http://localhost:8080

From the docker ps output, the port mapping obtained is 0.0.0.0:49160->8080/tcp. Hence
Docker mapped the 8080 port inside of the container to the port 49160 on the host machine.
In the browser we can now enter localhost:49160.

8.

We can also call our app using curl:

$ curl -i localhost:49160

https://riptutorial.com/ 133

HTTP/1.1 200 OK
X-Powered-By: Express
Content-Type: text/html; charset=utf-8
Content-Length: 12
Date: Sun, 08 Jan 2017 14:00:12 GMT
Connection: keep-alive

Hello world

Read Running Simple Node.js Application online: https://riptutorial.com/docker/topic/8754/running-
simple-node-js-application

https://riptutorial.com/ 134

Chapter 37: security

Introduction

In order to keep our images up to date for the security patches, we need to know from which base
image we depend

Examples

How to find from which image our image comes from

As an example, lets us look at a Wordpress container

The Dockerfile begins with FROM php:5.6-apache

so we go to the Dockerfile abovementioned https://github.com/docker-
library/php/blob/master/5.6/apache/Dockerfile

and we find FROM debian:jessie So this means that we a security patch appears for Debian
jessie, we need to build again our image.

Read security online: https://riptutorial.com/docker/topic/8077/security

https://riptutorial.com/ 135

Credits

S.
No

Chapters Contributors

1
Getting started with
Docker

abaracedo, Aminadav, Braiam, Carlos Rafael Ramirez,
Community, ganesshkumar, HankCa, Josha Inglis, L0j1k,
mohan08p, Nathaniel Ford, schumacherj, Siddharth Srinivasan,
SztupY, Vishrant

2 Building images
cjsimon, ETL, Ken Cochrane, L0j1k, Nathan Arthur, Nathaniel
Ford, Nour Chawich, SztupY, user2915097, Wolfgang

3
Checkpoint and
Restore Containers

Bastian, Fuzzyma

4
Concept of Docker
Volumes

Amit Poonia, Rob Bednark, serieznyi

5
Connecting
Containers

Jett Jones

6
Creating a service
with persistence

Carlos Rafael Ramirez, Vanuan

7
Data Volumes and
Data Containers

GameScripting, L0j1k, melihovv

8
Debugging a
container

allprog, Binary Nerd, foraidt, L0j1k, Nathaniel Ford,
user2915097, yadutaf

9
Docker Data
Volumes

James Hewitt, L0j1k, NRKirby, Nuno Curado, Scott Coates,
t3h2mas

10 Docker Engine API Ashish Bista, atv, BMitch, L0j1k, Radoslav Stoyanov, SztupY

11 Docker events Nathaniel Ford, user2915097

12 Docker in Docker Ohmen

13

docker inspect
getting various fields
for key:value and
elements of list

user2915097

14 Docker Machine Amine24h, kubanczyk, Nik Rahmel, user2915097, yadutaf

Docker --net modes 15 mohan08p

https://riptutorial.com/ 136

(bridge, hots,
mapped container
and none).

16 Docker network HankCa, L0j1k, Nathaniel Ford

17
Docker
private/secure
registry with API v2

bastien enjalbert, kubanczyk

18 Docker Registry Ashish Bista, L0j1k

19
Docker stats all
running containers

Kostiantyn Rybnikov

20 Docker swarm mode
abronan, Christian, Farhad Farahi, Jilles van Gurp, kstromeiraos
, kubanczyk, ob1, Philip, Vanuan

21
Dockerfile contents
ordering

akhyar, Philip

22 Dockerfiles
BMitch, foraidt, k0pernikus, kubanczyk, L0j1k, ob1, Ohmen,
rosysnake, satsumas, Stephen Leppik, Thiago Almeida,
Wassim Dhif, yadutaf

23
How to debug when
docker build fails

user2915097

24

How to Setup Three
Node Mongo Replica
using Docker Image
and Provisioned
using Chef

Innocent Anigbo

25
Inspecting a running
container

AlcaDotS, devopskata, Felipe Plets, h3nrik, Jilles van Gurp,
L0j1k, Milind Chawre, Nik Rahmel, Stephen Leppik,
user2915097, yadutaf

26 Iptables with Docker Adrien Ferrand

27 Logging Jilles van Gurp, Vanuan

28 Managing containers

akhyar, atv, Binary Nerd, BrunoLM, Carlos Rafael Ramirez, Emil
Burzo, Felipe Plets, ganesshkumar, L0j1k, Matt, Nathaniel Ford,
Rafal Wiliński, Sachin Malhotra, serieznyi, sk8terboi87 ツ,
tommyyards, user2915097, Victor Oliveira Antonino, Wolfgang,
Xavier Nicollet, zygimantus

akhyar, Björn Enochsson, dsw88, L0j1k, Nathan Arthur,
Nathaniel Ford, Szymon Biliński, user2915097, Wolfgang,

29 Managing images

https://riptutorial.com/ 137

zygimantus

30
Multiple processes in
one container
instance

h3nrik, Ohmen, Xavier Nicollet

31
passing secret data
to a running
container

user2915097

32
Restricting container
network access

xeor

33
run consul in docker
1.12 swarm

Jilles van Gurp

34 Running containers

abaracedo, Adri C.S., AlcaDotS, atv, Binary Nerd, BMitch,
Camilo Silva, Carlos Rafael Ramirez, cizixs, cjsimon, Claudiu,
ElMesa, Emil Burzo, enderland, Felipe Plets, ganesshkumar,
Gergely Fehérvári, ISanych, L0j1k, Nathan Arthur, Patrick Auld,
RoyB, ssice, SztupY, Thomasleveil, tommyyards, VanagaS,
Wolfgang, zinking

35 Running services Mateusz Mrozewski, Philip

36
Running Simple
Node.js Application

Siddharth Srinivasan

37 security user2915097

https://riptutorial.com/ 138

	About
	Chapter 1: Getting started with Docker
	Remarks
	Versions
	Examples
	Installing Docker on Mac OS X
	Installing Docker on Windows
	Installing docker on Ubuntu Linux
	Installing Docker on Ubuntu
	Create a docker container in Google Cloud
	Install Docker on Ubuntu
	Installating Docker-ce OR Docker-ee on CentOS

	Docker-ce Installation
	-Docker-ee (Enterprise Edition) Installation

	Chapter 2: Building images
	Parameters
	Examples
	Building an image from a Dockerfile
	A simple Dockerfile
	Difference between ENTRYPOINT and CMD
	Exposing a Port in the Dockerfile

	Example:
	ENTRYPOINT and CMD seen as verb and parameter
	Pushing and Pulling an Image to Docker Hub or another Registry
	Building using a proxy

	Chapter 3: Checkpoint and Restore Containers
	Examples
	Compile docker with checkpoint and restore enabled (ubuntu)
	Checkpoint and Restore a Container

	Chapter 4: Concept of Docker Volumes
	Remarks
	Examples
	A) Launch a container with a volume
	B) Now press [cont +P+Q] to move out from container without terminating the container checking for container that is running
	C) Run 'docker inspect' to check out more info about the volume
	D) You can attach a running containers volume to another containers
	E) You can also mount you base directory inside container

	Chapter 5: Connecting Containers
	Parameters
	Remarks
	Examples
	Docker network
	Docker-compose
	Container Linking

	Chapter 6: Creating a service with persistence
	Syntax
	Parameters
	Remarks
	Examples
	Persistence with named volumes
	Backup a named volume content

	Chapter 7: Data Volumes and Data Containers
	Examples
	Data-Only Containers
	Creating a data volume

	Chapter 8: Debugging a container
	Syntax
	Examples
	Entering in a running container
	Monitoring resource usage
	Monitoring processes in a container
	Attach to a running container
	Printing the logs
	Docker container process debugging

	Chapter 9: Docker Data Volumes
	Introduction
	Syntax
	Examples
	Mounting a directory from the local host into a container
	Creating a named volume

	Chapter 10: Docker Engine API
	Introduction
	Examples
	Enable Remote access to Docker API on Linux
	Enable Remote access to Docker API on Linux running systemd
	Enable Remote Access with TLS on Systemd
	Image pulling with progress bars, written in Go
	Making a cURL request with passing some complex structure

	Chapter 11: Docker events
	Examples
	Launch a container and be notified of related events

	Chapter 12: Docker in Docker
	Examples
	Jenkins CI Container using Docker

	Chapter 13: docker inspect getting various fields for key:value and elements of list
	Examples
	various docker inspect examples

	Chapter 14: Docker Machine
	Introduction
	Remarks
	Examples
	Get current Docker Machine environment info
	SSH into a docker machine
	Create a Docker machine
	List docker machines
	Upgrade a Docker Machine
	Get the IP address of a docker machine

	Chapter 15: Docker --net modes (bridge, hots, mapped container and none).
	Introduction
	Examples
	Bridge Mode, Host Mode and Mapped Container Mode

	Chapter 16: Docker network
	Examples
	How to find the Container's host ip
	Creating a Docker network
	Listing Networks
	Add container to network
	Detach container from network
	Remove a Docker network
	Inspect a Docker network

	Chapter 17: Docker private/secure registry with API v2
	Introduction
	Parameters
	Remarks
	Examples
	Generating certificates
	Run the registry with self-signed certificate
	Pull or push from a docker client

	Chapter 18: Docker Registry
	Examples
	Running the registry
	Configure the registry with AWS S3 storage backend

	Chapter 19: Docker stats all running containers
	Examples
	Docker stats all running containers

	Chapter 20: Docker swarm mode
	Introduction
	Syntax
	Remarks

	Swarm Mode CLI Commands
	Examples
	Create a swarm on Linux using docker-machine and VirtualBox
	Find out worker and manager join token
	Hello world application
	Node Availablility
	Promote or Demote Swarm Nodes
	Leaving the Swarm

	Chapter 21: Dockerfile contents ordering
	Remarks
	Examples
	Simple Dockerfile

	Chapter 22: Dockerfiles
	Introduction
	Remarks
	Examples
	HelloWorld Dockerfile
	Copying files
	Exposing a port
	Dockerfiles best pratices
	USER Instruction
	WORKDIR Instruction
	VOLUME Instruction
	COPY Instruction
	The ENV and ARG Instruction

	ENV
	ARG
	EXPOSE Instruction
	LABEL Instruction
	CMD Instruction
	MAINTAINER Instruction
	FROM Instruction
	RUN Instruction
	ONBUILD Instruction
	STOPSIGNAL Instruction
	HEALTHCHECK Instruction
	SHELL Instruction
	Installing Debian/Ubuntu packages

	Chapter 23: How to debug when docker build fails
	Introduction
	Examples
	basic example

	Chapter 24: How to Setup Three Node Mongo Replica using Docker Image and Provisioned using Chef
	Introduction
	Examples
	Build Step

	Chapter 25: Inspecting a running container
	Syntax
	Examples
	Get container information
	Get specific information from a container
	Inspect an image
	Printing specific informations
	Debugging the container logs using docker inspect
	Examining stdout/stderr of a running container

	Chapter 26: Iptables with Docker
	Introduction
	Syntax
	Parameters
	Remarks

	The problem
	The solution
	Examples
	Limit access on Docker containers to a set of IPs
	Configure restriction access when Docker daemon starts
	Some custom iptables rules

	Chapter 27: Logging
	Examples
	Configuring a log driver in systemd service
	Overview

	Chapter 28: Managing containers
	Syntax
	Remarks
	Examples
	Listing containers
	Referencing containers
	Starting and stopping containers
	List containers with custom format
	Finding a specific container
	Find container IP
	Restarting docker container
	Remove, delete and cleanup containers
	Run command on an already existing docker container
	Container logs
	Connect to an instance running as daemon
	Copying file from/to containers
	Remove, delete and cleanup docker volumes
	Export and import Docker container filesystems

	Chapter 29: Managing images
	Syntax
	Examples
	Fetching an image from Docker Hub
	Listing locally downloaded images
	Referencing images
	Removing Images
	Search the Docker Hub for images
	Inspecting images
	Tagging images
	Saving and loading Docker images

	Chapter 30: Multiple processes in one container instance
	Remarks
	Examples
	Dockerfile + supervisord.conf

	Chapter 31: passing secret data to a running container
	Examples
	ways to pass secrets in a container

	Chapter 32: Restricting container network access
	Remarks
	Examples
	Block access to LAN and out
	Block access to other containers
	Block access from containers to the local host running docker daemon
	Block access from containers to the local host running docker daemon (custom network)

	Chapter 33: run consul in docker 1.12 swarm
	Examples
	Run consul in a docker 1.12 swarm

	Chapter 34: Running containers
	Syntax
	Examples
	Running a container
	Running a different command in the container
	Automatically delete a container after running it
	Specifying a name
	Binding a container port to the host
	Container restart policy (starting a container at boot)
	Run a container in background
	Assign a volume to a container
	Setting environment variables
	Specifying a hostname
	Run a container interactively
	Running container with memory/swap limits
	Getting a shell into a running (detached) container

	Log into a running container
	Log into a running container with a specific user
	Log into a running container as root
	Log into a image
	Log into a intermediate image (debug)
	Passing stdin to the container
	Detaching from a container
	Overriding image entrypoint directive
	Add host entry to container
	Prevent container from stopping when no commands are running
	Stopping a container
	Execute another command on a running container
	Running GUI apps in a Linux container

	Chapter 35: Running services
	Examples
	Creating a more advanced service
	Creating a simple service
	Removing a service
	Scaling a service

	Chapter 36: Running Simple Node.js Application
	Examples
	Running a Basic Node.js application inside a Container

	Build your image
	Running the image
	Chapter 37: security
	Introduction
	Examples
	How to find from which image our image comes from

	Credits

