
groovy

#groovy

Table of Contents

About 1

Chapter 1: Getting started with groovy 2

Remarks 2

Versions 2

Examples 3

Installation or Setup 3

Hello World 4

Hello World In groovy 4

Using Groovy on a Java project 4

Hello world Shebang (linux) 6

Using inject() On List To Create CSV String 6

Chapter 2: AST Transformations 8

Examples 8

@CompileStatic 8

Chapter 3: Closure Memoize Methods 9

Syntax 9

Remarks 9

Examples 9

Simple memoization 9

Chapter 4: Closures 10

Examples 10

Closure with explicit parameters 10

Closure with implicit parameters 10

Converting Methods to Closures 10

Closure with custom target for method calls with implicit receiver 10

Wrapping behavior around a closure with a method 10

Create closures, assign to properties and call 11

Chapter 5: Collection Operators 13

Examples 13

Iterate over a collection 13

Lists 13

Iterate with index 13

Maps 13

Create a new list using collect 13

To collect keys or values from a maps 14

Filter a list with findAll 14

Find the first element matching a condition 14

Create maps with collectEntries 14

Apply transformation to nested collections 14

Flatten a nested list 15

Remove duplicates 15

Build a map from two lists 15

Chapter 6: Currying 16

Syntax 16

Remarks 16

Examples 16

Left currying 16

Right currying 16

Index based currying 16

Currying closure with no explicit parameter 17

Currying closure with no parameters 17

Chapter 7: Domain Specific Languages 18

Examples 18

Language capabilities 18

Chapter 8: Groovy code golfing 19

Introduction 19

Examples 19

Spread dot operator(*.) 19

Parallel processing using Gpars 19

Chapter 9: Groovy Truth (true-ness) 20

Remarks 20

Examples 20

Numbers boolean evaluation 20

Strings boolean evaluation 21

Collections and maps boolean evaluation 21

Object boolean evaluation 21

Overriding boolean evaluation in a user defined class 22

Character evaluation 22

Matcher evaluation 23

Closure evaluation 23

Chapter 10: JSON 24

Examples 24

Parse a json string 24

Parse a json file 24

Write a json to string 24

Pretty-print a json string 25

Write a json to a file 25

Chapter 11: Memoized Functions 26

Examples 26

Memoized functions 26

Chapter 12: Memoized Functions 27

Examples 27

Memoize on closures 27

Memoize on methods 27

Chapter 13: RESTClient 29

Introduction 29

Examples 29

GET Request 29

Chapter 14: Safe Navigation Operator 30

Examples 30

Basic usage 30

Concatenation of safe navigation operators 30

Chapter 15: Spaceship Operator 32

Examples 32

Basic usage 32

Spaceship operator for custom sortings 32

Usage with Comparator and SortedSet 32

Chapter 16: Spread Operator 33

Remarks 33

Examples 33

Calling a method 33

Accessing a property 33

Its null-safe 34

Chapter 17: String Interpolation 35

Syntax 35

Examples 35

Basic 35

Dotted Expression 35

Eager expression 35

Lazy expression 35

Expression 35

Chapter 18: Strings and GString literals 37

Syntax 37

Remarks 37

Examples 37

Single quoted string 37

Double quoted string (without interpolation placeholder) 37

Double quoted string (interpolation) 37

Multiline string 38

Multiline string (extra trailing newline) 38

Multiline string (without extra trailing newline) 38

Triple double quoted string 38

Slashy string (no interpolation placeholder) 38

Slashy string (interpolation) 39

Dollar slash string 39

Chapter 19: Ternary and Elvis Operators 40

Remarks 40

Examples 40

Standard form vs Elvis form 40

Usage (with condition) in assignment 40

Chapter 20: Traits 41

Introduction 41

Examples 41

Basic Usage 41

Multiple inheritance problem 41

Chapter 21: Use ConfigSluper (instead of property files) 43

Introduction 43

Examples 43

ConfigSlurper using string, number, boolean or list 43

Chapter 22: Visiblity 44

Examples 44

Private fields and methods are not private in groovy 44

Chapter 23: Ways of Iteration in Groovy 45

Introduction 45

Examples 45

How can I do something n times? 45

Each and EachWithIndex 45

Credits 46

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: groovy

It is an unofficial and free groovy ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official groovy.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

Chapter 1: Getting started with groovy

Remarks

Groovy is

is an optionally typed dynamic language for the Java Virtual Machine•

builds upon the strengths of Java but has additional power features inspired by languages
like Python, Ruby, and Smalltalk

•

makes modern programming features available to Java developers with an almost-zero
learning curve

•

provides the ability to statically type check and statically compile your code for robustness
and performance

•

supports Domain-Specific Languages and other compact syntax so your code is easy to
read and maintain

•

makes writing shell and build scripts easy with its powerful processing primitives, OO
abilities, and an Ant DSL

•

increases developer productivity by reducing scaffolding code when developing web, GUI,
database or console applications

•

simplifies testing by supporting unit testing and mocking out-of-the-box•

seamlessly integrates with all existing Java classes and libraries•

compiles straight to Java bytecode so you can use it anywhere you use Java•

Versions

Version Release Notes Release Date

2.4 http://groovy-lang.org/releasenotes/groovy-2.4.html 2015-01-21

2.3 http://groovy-lang.org/releasenotes/groovy-2.3.html 2014-05-05

2.2 http://groovy-lang.org/releasenotes/groovy-2.2.html 2013-11-18

2.1 http://groovy-lang.org/releasenotes/groovy-2.1.html 2013-01-24

2.0 http://groovy-lang.org/releasenotes/groovy-2.0.html 2012-06-28

1.8 http://groovy-lang.org/releasenotes/groovy-1.8.html 2011-04-27

https://riptutorial.com/ 2

Version Release Notes Release Date

1.7 http://groovy-lang.org/releasenotes/groovy-1.7.html 2009-12-22

1.6 http://groovy-lang.org/releasenotes/groovy-1.6.html 2009-02-18

1.5 http://groovy-lang.org/releasenotes/groovy-1.5.html 2007-12-07

1.0 2007-01-02

Examples

Installation or Setup

There are two common ways to install Groovy.

Download

The Groovy binary can be downloaded on the download page of the Groovy website. You can
unpack archive and add path to %GROOVY_HOME%/bin/groovy.bat to the PATH system environment
variable, where %GROOVY_HOME% is the directory where Groovy is unpacked.

SDKMAN

The other option is to use SDKMAN. This option has grown quickly in popularity, and makes
managing multiple versions of Groovy very simple. It also supports other applications in the "GR8"
ecosphere. This option works very well natively on Linux and Mac, but requires Cygwin on
Windows.

Following the instructions on the Groovy download page, you can take the following steps to install
SDKMAN.

$ curl -s get.sdkman.io | bash

Once SDKMAN is installed, you now have access to the sdk command. With this command you
can do many useful things.

Install Groovy

$ sdk install groovy

This will install the latest version of Groovy.

List versions of Groovy

$ sdk ls groovy

This allows you to run a Linux style ls command on the Groovy software, listing all of the available
options. There is an * next to each installed version, and a > to indicate your current versions.

Switch versions of Groovy

https://riptutorial.com/ 3

$ sdk use groovy 2.4.7

This will change the current version of Groovy to 2.4.7. If you have other versions installed, you
can switch to any of those.

You can list the current version of groovy with the groovy -version command.

posh-gvm

The initial name of SDKMAN was GVM and posh-gvm is a port of GVM for the Windows
Powershell. So, if you develop on a Windows machine and don't want to use SDKMAN on Cygwin,
posh-gvm is for you. It works the same as SDKMAN, but instead of sdk, the command is gmv. So

PS C:\Users\You> gmv install groovy

will install groovy through posh-gvm on your Windows machine.

Hello World

The Groovy version of Hello World.

println 'Hello World!'

Hello World In groovy

Following example illustrate the simplest Hello World in groovy using script, place the following
code snippet in a file, say helloWorld.groovy

println 'Hello World!'

How to execute: In the command line, groovy helloWorld.groovy

Output: Hello World!

Using Groovy on a Java project

Groovy has access to all java classes, in fact Groovy classes ARE Java classes and can be run by
the JVM directly. If you are working on a Java project, using Groovy as a simple scripting
language to interact with your java code is a no-brainer.

To make things even better, nearly any Java class can be renamed to .groovy and compiled and
run and will work exactly as it did, groovy is close to being a super-set of Java, this is a stated goal
of groovy.

Groovy has a REPL. groovysh comes with Groovy and can be used to quickly instantiate and test a
Java class if your classpath is set up correctly. For instance if your classpath pointed to your
eclipse "classes/bin" directory, then you could save your file in eclipse, jump to groovysh and
instantiate the class to test it.

https://riptutorial.com/ 4

The reasons to use Groovy to do this instead of just Java are: The classloader is GREAT at
picking up new classes as they are compiled. You don't generally need to exit/re-start groovysh as
you develop.

The syntax is TERSE. This isn't great for maintainable code, but for scripts and tests it can cut
your code significantly. One of the big things it does is eliminate checked exceptions (or, more
accurately, turn all checked exceptions into unchecked exceptions). This turns code like this (Print
hello after one second):

class JavaClass {
 public static void main(String[] args) {
 try {
 Thread.sleep(1000);
 } catch(InterruptedException e) {
 // You shouldn't leave an empty catch block, but who cares if this was
interrupted???
 }
 System.out.println("Hello!");
 }
}

into Groovy's:

Thread.sleep(1000)
print "Hello!"

Groovy also has very tight initialization syntax. This allows you to specify data just as you like it
without thinking about it:

In Java to initialize a map you should probably do something like this:

String[] init = { "1:Bill", "2:Doug", "3:Bev" };
// Note the rest of this can be put in a function and reused or maybe found in a library, but
I always seem to have to write this function!
Map m = new HashMap<Integer, String>();
for(String pair : int) {
 String[] split = pair.split(":");
 m.put(new Integer(split[0]), split[1])
}

This isn't bad, but it's something else to maintain. In groovy you would just use:

Map map = { 1 : "Bill", 2 : "Doug", 3 : "Bev" }

And you are done. List syntax is just as easy.

The other really big advantage is groovy's closure syntax. It's amazingly terse and fun, somewhat
more difficult to maintain, but for scripts that's not a priority. As an example, here is some groovy
code to find all .txt files that contain the word Hello in the current directory:

println new File('.').files.findAll{ it.name.endsWith('.txt') && it.text.contains('Hello')
}.collect{ it.name }

https://riptutorial.com/ 5

This example uses a few "Groovy" tricks:

.files refers to the getFiles() method - groovy can switch between getter/setter and
property syntax at will

•

it. refers to the current element of an iteration. { it } is a shortcut for { it -> it }, e.g. :

[1, 2, 3].collect{ it ^ 2 } == [1, 4, 9]

•

it.text (where it is a file) uses a method groovy adds to File to retrieve the entire text of the
file. This is amazingly helpful in scripts.

•

Hello world Shebang (linux)

Given a hello.groovy file with content:

#!/usr/bin/env groovy
println "Hello world"

Can be executed from the command line if given execution permission as

$./hello.groovy

Using inject() On List To Create CSV String

In Groovy, the inject() method is one of the cumulative methods that allows us to add (or inject)
new functionality into any object that implements the inject() method. In the case of a Collection,
we can apply a closure to a collection of objects uniformly and then collate the results into a single
value. The first parameter to the inject() method is the initial value of the cumulation and the
second parameter is the closure.

In this example, we will take a List of Strings as a parameter and output the values of those strings
delimited by commas. I have used this functionality to append a list of values to a REST query
string and, if you modify it a bit, I've used it to include values into a SQL statement as part of a IN
clause. Here is the code to do this:

public String convertToCSV(List<String> list) {
 if (list == null) {
 return ""
 }
 return list.inject('') { result, item ->
 result + (result && item ? ',' : '') + (item ? "${item.trim()}" : '')
 }
}

assert convertToCSV(null) == ""
assert convertToCSV(["aaa", "bbb ", null, " ccc "]) == "aaa,bbb,ccc"

In this example, the first parameter to the inject() method is a zero length string, which means that
when processing the first element of the list, result is also a zero length string. This resolves to

https://riptutorial.com/ 6

false in the first ternary evaluation which is why we don't get a comma at the beginning of the
string. With each consecutive iteration through the elements of the list, result becomes the
concatenation of itself, a comma and then the next item until we reach the last item in the list.

The advantage of this approach is that you don't need a variable outside of a looping construct to
hold the concatenated String result. The implication being that this can lead to side effects in your
code. With the inject() approach, this behavior is injected and the collection collates the result of
the calls to the closure for you. The downside of this approach can be readability. But with some
experience, it becomes easier to read and understand, and I hope this example helps you obtain
that goal.

Read Getting started with groovy online: https://riptutorial.com/groovy/topic/966/getting-started-
with-groovy

https://riptutorial.com/ 7

Chapter 2: AST Transformations

Examples

@CompileStatic

Enables a code to be statically compiled. Its bytecode will be closer to Java's, thus having better
performance, though some dynamic features won't be available.

@groovy.transform.CompileStatic
class ListMath {
 def countSize(List<String> strings) {
 strings.collect { it.size() }.sum()
 }
}

assert new ListMath().countSize(["a", "bb", "ccc"]) == 6

Read AST Transformations online: https://riptutorial.com/groovy/topic/4635/ast-transformations

https://riptutorial.com/ 8

Chapter 3: Closure Memoize Methods

Syntax

closure.memoize()•
closure.memoizeAtMost(n)•
closure.memoizeAtLeast(n)•
closure.memoizeBetween(n, m)•

Remarks

Memoization is a method of caching the result of a closure invocation. The memoize function
applied to a closure returns a new closure whose return value is cached according to its input
parameters. The caches used for the three tweaked variants of memoization methods are LRU
caches, that is the least recently used element is removed from the cache first.

Examples

Simple memoization

def count = 0

nonmemoized = { long n -> println "nonmemoized: $n"; count++ }

nonmemoized(1)
nonmemoized(2)
nonmemoized(2)
nonmemoized(1)
assert count == 4

def mcount = 0

memoized = { long n -> println "memoized: $n"; mcount++ }.memoize()

memoized(1)
memoized(2)
memoized(2)
memoized(1)
assert mcount == 2

Read Closure Memoize Methods online: https://riptutorial.com/groovy/topic/6308/closure-
memoize-methods

https://riptutorial.com/ 9

Chapter 4: Closures

Examples

Closure with explicit parameters

def addNumbers = { a, b -> a + b }
addNumbers(-7, 15) // returns 8

Closure with implicit parameters

['cat', 'dog', 'fish'].collect { it.length() }

it is the default name of the parameter if you have a single parameter and do not explicitly name
the parameter. You can optionally declare the parameter as well.

['cat', 'dog', 'fish'].collect { animal -> animal.length() }

Converting Methods to Closures

A method can be converted to a closure using the & operator.

def add(def a, def b) { a + b }

Closure addClosure = this.&add
assert this.add(4, 5) == addClosure(4, 5)

Closure with custom target for method calls with implicit receiver

class MyHello {
 def sayHello() {
 "Hello, world"
 }
}

def cl = { sayHello() }
cl() // groovy.lang.MissingMethodException
cl.delegate = new MyHello()
cl(); // "Hello, world"

Used extensively by Groovy DSLs.

Wrapping behavior around a closure with a method

There are frequent behavior patterns that can result in a lot of boilerplate code. By declaring a
method that takes a Closure as a parameter, you can simplify your program. As an example, it is a

https://riptutorial.com/ 10

common pattern to retrieve a database connection, start a transaction, do work, and then either
commit the transaction, or rollback the connection (in case of error), then finally close the
connection:

def withConnection(String url, String user, String pass, Closure closure) {
 Connection conn = null
 try {
 conn = DriverManager.getConnection(url, user, pass)
 closure.call(conn)
 conn.commit()
 } catch (Exception e) {
 log.error("DB Action failed", e)
 conn.rollback()
 } finally {
 conn?.close()
 }
}

withConnection(DB_PATH, DB_USER, DB_PASS) { Connection conn ->
 def statement = conn.createStatement()
 def results = statement.executeQuery('SELECT * FROM users')
 // ... more processing ...
}

Create closures, assign to properties and call

Let's create a map and a closure to print hello

def exMap = [:]

def exClosure = {
 println "Hello"
}

Assign closure to a property in map

exMap.closureProp = exClosure

Calling closure

exMap.closureProp.call()

Output

Hello

Another Example - Lets create a class with basic property and assign same closure to object of it

class Employee {
 def prop
}

https://riptutorial.com/ 11

def employee = new Employee()

employee.prop = exClosure

Call closure through that property

employee.prop.call()

Output

Hello

Read Closures online: https://riptutorial.com/groovy/topic/2684/closures

https://riptutorial.com/ 12

Chapter 5: Collection Operators

Examples

Iterate over a collection

Lists

def lst = ['foo', 'bar', 'baz']
// using implicit argument
lst.each { println it }

// using explicit argument
lst.each { val -> println val }

// both print:
// foo
// bar
// baz

Iterate with index

def lst = ['foo', 'bar', 'baz']
// explicit arguments are required
lst.eachWithIndex { val, idx -> println "$val in position $idx" }

// prints:
// foo in position 0
// bar in position 1
// baz in position 2

Maps

def map = [foo: 'FOO', bar: 'BAR', baz: 'BAZ']

// using implicit argument
map.each { println "key: ${it.key}, value: ${it.value}"}

// using explicit arguments
map.each { k, v -> println "key: $k, value: $v"}

// both print:
// key: foo, value: FOO
// key: bar, value: BAR
// key: baz, value: BAZ

Create a new list using collect

https://riptutorial.com/ 13

def lst = ['foo', 'bar', 'baz']
lst.collect { it } // ['foo', 'bar', 'baz']

lst.collect { it.toUpperCase() } // ['FOO', 'BAR', 'BAZ']

To collect keys or values from a maps

def map = [foo: 'FOO', bar: 'BAR', baz: 'BAZ']
def keys = map.collect { it.key } // ['foo', 'bar', 'baz']
def vals = map.collect { it.value } // ['FOO', 'BAR', 'BAZ']

The above example is equivalent to calling map.keySet() and map.values()

Filter a list with findAll

def lst = [10, 20, 30, 40]

lst.findAll { it > 25 } // [30, 40]

Find the first element matching a condition

def lst = [10, 20, 30, 40]

lst.find { it > 25 } // 30. Note: it returns a single value

Create maps with collectEntries

From lists

def lst = ['foo', 'bar', 'baz']

// for each entry return a list containing [key, value]
lst.collectEntries { [it, it.toUpperCase()] } // [foo: FOO, bar: BAR, baz: BAZ]

// another option, return a map containing the single entry
lst.collectEntries { [(it): it.toUpperCase()] } // [foo: FOO, bar: BAR, baz: BAZ]

From maps

def map = [foo: 'FOO', bar: 'BAR', baz: 'BAZ']

map.collectEntries { [it.key*2, it.value*2] } // [foofoo: FOOFOO, barbar: BARBAR, bazbaz:
BAZBAZ]

// using explicit arguments k and v
map.collectEntries { k, v -> [k*2, v*2] } // [foofoo: FOOFOO, barbar: BARBAR, bazbaz: BAZBAZ]

Apply transformation to nested collections

Apply the transformation to non-collection entries, delving into nested collections too and

https://riptutorial.com/ 14

preserving the whole structure.

def lst = ['foo', 'bar', ['inner_foo', 'inner_bar']]

lst.collectNested { it.toUpperCase() } // [FOO, BAR, [INNER_FOO, INNER_BAR]]

Flatten a nested list

def lst = ['foo', 'bar', ['inner_foo', 'inner_bar']]

lst.flatten() // ['foo', 'bar', 'inner_foo', 'inner_bar']

Remove duplicates

def lst = ['foo', 'foo', 'bar', 'baz']

// *modifies* the list removing duplicate items
lst.unique() // [foo, bar, baz]

// setting to false the "mutate" argument returns a new list, leaving the original intact
lst.unique(false) // [foo, bar, baz]

// convert the list to a Set, thus removing duplicates
lst.toSet() // [baz, bar, foo]

// defining a custom equality criteria. For example: to elements are equal if have the same
first letter
println lst.unique() { it[0] } // [foo, bar]. 'bar' and 'baz' considered equal

Build a map from two lists

nrs = [1, 2, 3, 4, 5, 6, 7, 8, 9]
lets = ['a', 'b', 'c', 'd', 'e', 'f']

println GroovyCollections.transpose([nrs, lets])
 .collect {le -> [(le[0]):le[1]]}.collectEntries { it }

or

println [nrs,lets].transpose().collectEntries{[it[0],it[1]]}

// [1:a, 2:b, 3:c, 4:d, 5:e, 6:f]

Read Collection Operators online: https://riptutorial.com/groovy/topic/5103/collection-operators

https://riptutorial.com/ 15

Chapter 6: Currying

Syntax

closure.curry(parameter)•
closure.rcurry(parameter)•
closure.ncurry(index, parameters ...)•

Remarks

Currying a closure produces a new closure with one or more of it's parameters having a fixed
value

•

Left or right currying a closure that has no parameters or index based currying a closure that
has less than two parameters throws an IllegalArgumentException

•

Examples

Left currying

def pow = { base, exponent ->
 base ** exponent
}
assert pow(3, 2) == 9

def pow2 = pow.curry(2) //base == 2
assert pow2(3) == 8

Right currying

def dividable = { a, b ->
 a % b == 0
}
assert dividable(2, 3) == false
assert dividable(4, 2) == true

def even = dividable.rcurry(2) // b == 2
assert even(2) == true
assert even(3) == false

Index based currying

def quatNorm = { a, b, c, d ->
 Math.sqrt(a*a + b*b + c*c + d*d)
}
assert quatNorm(1, 4, 4, -4) == 7.0

def complexNorm = quatNorm.ncurry(1, 0, 0) // b, c == 0

https://riptutorial.com/ 16

assert complexNorm(3, 4) == 5.0

Currying closure with no explicit parameter

 def noParam = {
 "I have $it"
 }

 def noParamCurry = noParam.curry(2)
 assert noParamCurry() == 'I have 2'

Currying closure with no parameters

def honestlyNoParam = { ->
 "I Don't have it"
}

// The following all throw IllegalArgumentException
honestlyNoParam.curry('whatever')
honestlyNoParam.rcurry('whatever')
honestlyNoParam.ncurry(0, 'whatever')

Read Currying online: https://riptutorial.com/groovy/topic/4400/currying

https://riptutorial.com/ 17

Chapter 7: Domain Specific Languages

Examples

Language capabilities

The Jenkins Pipeline DSL is used as an example for such a language:

node {
 git 'https://github.com/joe_user/simple-maven-project-with-tests.git'
 def mvnHome = tool 'M3'
 sh "${mvnHome}/bin/mvn -B -Dmaven.test.failure.ignore verify"
 archiveArtifacts artifacts: '**/target/*.jar', fingerprint: true
 junit '**/target/surefire-reports/TEST-*.xml'
 }

The purpose of this DSL is the define and execute Jenkins build jobs (or better pipelines) in a
more natural language.

Writing a domain specific language in Groovy benefits by Groovy's core features like:

Optionality (e.g. omit parentheses)•
Operator overloading•
Meta programming (e.g. resolving missing properties or methods)•
Closures and delegation strategies•
Compiler customization•
Scripting support and integration capabilities•

Read Domain Specific Languages online: https://riptutorial.com/groovy/topic/5948/domain-
specific-languages

https://riptutorial.com/ 18

Chapter 8: Groovy code golfing

Introduction

Tips for golfing in Groovy

Examples

Spread dot operator(*.)

Spread dot operator can be used instead of collect method

(1..10)*.multiply(2) // equivalent to (1..10).collect{ it *2 }
d = ["hello", "world"]
d*.size() // d.collect{ it.size() }

Parallel processing using Gpars

Gpars offers intuitive ways to handle tasks concurrently

import groovyx.gpars.*
GParsPool.withPool { def result = dataList.collectParallel { processItem(it) } }

Read Groovy code golfing online: https://riptutorial.com/groovy/topic/10651/groovy-code-golfing

https://riptutorial.com/ 19

Chapter 9: Groovy Truth (true-ness)

Remarks

Groovy evaluates conditions in if, while and for statements the same way as Java does for
standard Java conditions : in Java you must provide a boolean expression (an expression that
evaluates to a boolean) and the result is the result of the evaluation.

In Groovy , the result is the same as in Java for thoses conditions (no examples provided, this is
standard Java).

The other truthfulness evaluation mechanism shown by examples can be summarized as:

numbers: a zero value evaluates to false, non zero to true.•
objects: a null object reference evaluates to false, a non null reference to true.•
Character : a character with a zero value evaluates to false, true otherwise.•
String : a string evaluates to true if not null and not empty, false if null or empty (applies to
GStrings and CharSequences too).

•

Collections and Maps (including subclasses List, Map, Set, HashSet ...) : also takes into
account the size, evaluates to true if the collection is not null and not empty, false if null or
empty.

•

Enumerations and Iterators evaluates to true if not null and they are some more elements
(groovy evaluates hasMoreElements or hasNext on the object), false if null or no more
elements.

•

Matcher : a matcher evaluates to true if there is at least one match, false if not match is
found.

•

Closure : a closure evaluates to the evaluation of the result returned by the closure.•

The asBoolean method can be overriden in a user defined class to provide custom boolean
evaluation.

Examples

Numbers boolean evaluation

for numbers, a zero value evaluates to false, non zero to true

 int i = 0
...
 if (i)
 print "some ${i}"
 else
 print "nothing"

will print "nothing"

https://riptutorial.com/ 20

Strings boolean evaluation

a string (including GStrings) evaluates to true if not null and not empty, false if null or
empty

def s = ''
...
if (s)
 println 's is not empty'
else
 println 's is empty'

will print: 's is empty'

Collections and maps boolean evaluation

Collections and Maps evaluates to true if not null and not empty and false if null or empty

/* an empty map example*/
def userInfo = [:]
if (!userInfo)
 userInfo << ['user': 'Groot', 'species' : 'unknown']

will add user: 'Groot' , species : 'unknown' as default userInfo since the userInfo map is empty
(note that the map is not null here)

With a null object, the code is lightly different, we cannot invoke << on userInfo because it is null,
we have to make an assignment (refer also to Object boolean evaluation):

/* an example with a null object (def does not implies Map type) */
def userInfo = null
if (!userInfo)
 userInfo = ['user': 'Groot', 'species' : 'unknown']

And with a null Map:

/* The same example with a null Map */
Map<String,String> userInfo = null
if (!userInfo)
 userInfo = ['user': 'Groot', 'species' : 'unknown']

Object boolean evaluation

a null object reference evaluates to false, a non null reference to true, but for for strings,
collections, iterators and enumerations it also takes into account the size.

def m = null

if (!m)
 println "empty"
else

https://riptutorial.com/ 21

 println "${m}"

will print "empty"

def m = [:]

if (!m)
 println "empty"
else
 println "${m}"

The map is not null but empty, this code will print "empty"

After doing

m << ['user' : 'Groot']

it will print the Map:

[user:Groot]

Overriding boolean evaluation in a user defined class

Sometimes it may be useful to have a specific asBoolean definition in your own program for some
kind of objects.

/** an oversimplified robot controller */
class RunController {

 def complexCondition
 int position = 0

 def asBoolean() {
 return complexCondition(this);
 }
 def advanceTo(step) {
 position += step
 }
}
def runController = new RunController(complexCondition : { c -> c.position < 10 })

assert runController
runController.advanceTo(5)
assert runController
runController.advanceTo(5)
// The limit has been reached : the controller evaluates to false
assert !runController

This code shows an oversimplifed robot controller who checks that the position of the robot does
not exceeds 10 (with a closure for condition evaluation)

Character evaluation

https://riptutorial.com/ 22

a Character evaluates to true if it's value is not zero, false if zero

assert ! new Character((char)0)
assert ! new Character('\u0000Hello Zero Char'.charAt(0))
assert new Character('Hello'.charAt(0))

Matcher evaluation

a Matcher evaluates to true if it can find at least one match, false if no match is found

// a match is found => true
assert 'foo' =~ /[a-z]/
// the regexp does not match fully => no match => false
assert !('foo' ==~ /[a-z]/)
// a match is found => true
assert 'foo' =~ /o/
// no match => false
assert !('foo' =~ /[A-Z]/)

Closure evaluation

The evaluation of a closure is the evaluation of the result of the closure.

All rules applies : if the closure returns a null , zero number or empty String, Collection, Map or
Array it evaluates to false otherwise to true.

// Closure return non zero number => true
assert { 42 }()
// closure returns 0 => false
assert ! ({ 0 }())
// closure returns null => false
assert !({ }())

Read Groovy Truth (true-ness) online: https://riptutorial.com/groovy/topic/5117/groovy-truth--true-
ness-

https://riptutorial.com/ 23

Chapter 10: JSON

Examples

Parse a json string

import groovy.json.JsonSlurper;

def jsonSlurper = new JsonSlurper()
def obj = jsonSlurper.parseText('{ "foo": "bar", "baz": [1] }')

assert obj.foo == 'bar'
assert obj.baz == [1]

Parse a json file

import groovy.json.JsonSlurper;

def jsonSlurper = new JsonSlurper()

File fl = new File('/path/to/fils.json')

// parse(File file) method is available since 2.2.0
def obj = jsonSlurper.parse(fl)

// for versions < 2.2.0 it's possible to use
def old = jsonSlurper.parse(fl.text)

Write a json to string

import groovy.json.JsonOutput;

def json = JsonOutput.toJson([foo: 'bar', baz: [1]])

assert json == '{"foo":"bar","baz":[1]}'

In addition to maps, lists and primitives groovy.json.JsonOutput also supports a POJOs
serialitzation:

import groovy.json.JsonOutput;

class Tree {
 def name
 def type
}

Tree willow = new Tree(name:'Willow',type:'Deciduous')
Tree olive = new Tree(name:'Olive',type:'Evergreen')

assert JsonOutput.toJson(willow) == '{"type":"Deciduous","name":"Willow"}'
assert JsonOutput.toJson([willow,olive]) ==

https://riptutorial.com/ 24

'[{"type":"Deciduous","name":"Willow"},{"type":"Evergreen","name":"Olive"}]'

Pretty-print a json string

import groovy.json.JsonOutput;

def json = JsonOutput.toJson([foo: 'bar', baz: [1]])

assert json == '{"foo":"bar","baz":[1]}'

def pretty = JsonOutput.prettyPrint(json)

assert pretty == '''{
 "foo": "bar",
 "baz": [
 1
]
}'''

Write a json to a file

import groovy.json.JsonOutput;

def json = JsonOutput.toJson([foo: 'bar', baz: [1]])

new File("/tmp/output.json").write(json)

Read JSON online: https://riptutorial.com/groovy/topic/5352/json

https://riptutorial.com/ 25

Chapter 11: Memoized Functions

Examples

Memoized functions

Memoizing is basically a way to cache method results. This can be useful when a method is often
called with the same arguments and the calculation of the result takes time, therefore increasing
performance.

Starting from Groovy 2.2, methods can be annoted with the @Memoized annotation.

Imagine the following class:

class MemoDemo {
 def timesCalculated = 0

 @Memoized
 def power2(a) {
 timesCalculated++
 a * a
 }
}

Now upon the first call of this method with a number it hasnt been called with before, the method
will be executed:

assert power2(2) == 4
assert timesCalculated == 1

However, if we call it again with the same argument:

assert power2(2) == 4
assert timesCalculated == 1

timesCalculated has remained unchanged, yet the method returned the same result. However,
calling it with a different argument:

assert power2(3) == 9
assert timesCalculated == 2

results in the body of the method being called again.

Read Memoized Functions online: https://riptutorial.com/groovy/topic/6176/memoized-functions

https://riptutorial.com/ 26

Chapter 12: Memoized Functions

Examples

Memoize on closures

Since Groovy 1.8 a convenient memoize() method is added on closures:

// normal closure
def sum = { int x, int y ->
 println "sum ${x} + ${y}"
 return x + y
}
sum(3, 4)
sum(3, 4)
// prints
// sum 3 + 4
// sum 3 + 4

// memoized closure
def sumMemoize = sum.memoize()
sumMemoize(3, 4)
// the second time the method is not called
// and the result it's take from the previous
// invocation cache
sumMemoize(3, 4)
// prints
// sum 3 + 4

Memoize on methods

Since Groovy 2.2 groovy.transform.Memoized annotation is added to convenient memoize methods
with simply adding the @Memoized annotation:

import groovy.transform.Memoized

class Calculator {
 int sum(int x, int y){
 println "sum ${x} + ${y}"
 return x+y
 }

 @Memoized
 int sumMemoized(int x, int y){
 println "sumMemoized ${x} + ${y}"
 return x+y
 }
}

def calc = new Calculator()

// without @Memoized, sum() method is called twice
calc.sum(3,4)
calc.sum(3,4)

https://riptutorial.com/ 27

// prints
// sum 3 + 4
// sum 3 + 4

// with @Memoized annotation
calc.sumMemoized(3,4)
calc.sumMemoized(3,4)
// prints
// sumMemoized 3 + 4

Read Memoized Functions online: https://riptutorial.com/groovy/topic/6471/memoized-functions

https://riptutorial.com/ 28

Chapter 13: RESTClient

Introduction

Groovy's HTTP Client usage, examples and pitfalls.

Examples

GET Request

@Grab(group='org.codehaus.groovy.modules.http-builder', module='http-builder', version='0.7')

import groovyx.net.http.RESTClient

try {
 def restClient = new RESTClient("http://weathers.co")
 def response = restClient.get(path: '/api.php', query: ['city': 'Prague'])
 println "Status : ${response.status}"
 println "Body : ${response.data.text}"
} catch (Exception e) {
 println "Error : ${e.statusCode}"
 println "Message : ${e.response.data}"
}

Read RESTClient online: https://riptutorial.com/groovy/topic/8919/restclient

https://riptutorial.com/ 29

Chapter 14: Safe Navigation Operator

Examples

Basic usage

Groovy's safe navigation operator allows to avoid NullPointerExceptions when accessing to
methods or attributes on variables that may assume null values. It is equivalent to nullable_var ==
null ? null : nullable_var.myMethod()

def lst = ['foo', 'bar', 'baz']

def f_value = lst.find { it.startsWith('f') } // 'foo' found
f_value?.length() // returns 3

def null_value = lst.find { it.startsWith('z') } // no element found. Null returned

// equivalent to null_value==null ? null : null_value.length()
null_value?.length() // no NullPointerException thrown

// no safe operator used
null_value.length() // NullPointerException thrown

Concatenation of safe navigation operators

class User {
 String name
 int age
}

def users = [
 new User(name: "Bob", age: 20),
 new User(name: "Tom", age: 50),
 new User(name: "Bill", age: 45)
]

def null_value = users.find { it.age > 100 } // no over-100 found. Null

null_value?.name?.length() // no NPE thrown
// null ?. name ?. length()
// (null ?. name) ?. length()
// (null) ?. length()
// null

null_value?.name.length() // NPE thrown
// null ?. name . length()
// (null ?. name) . length()
// (null) . length() ===> NullPointerException

the safe navigation on null_value?.name will return a null value. Thus length() will have to perform
a check on null value to avoid a NullPointerException.

Read Safe Navigation Operator online: https://riptutorial.com/groovy/topic/5116/safe-navigation-

https://riptutorial.com/ 30

operator

https://riptutorial.com/ 31

Chapter 15: Spaceship Operator

Examples

Basic usage

the spaceship operator returns -1 when the left operator is smaller, 0 when the operators are equal
and 1 otherwise:

assert 10 <=> 20 == -1
assert 10 <=> 10 == 0
assert 30 <=> 10 == 1

assert 'a' <=> 'b' == -1
assert 'a' <=> 'a'== 0
assert 'b' <=> 'a' == 1

It is equivalent to the Comparable.compareTo method:

assert 10.compareTo(20) == (10 <=> 20)
assert 'a'.compareTo('b') == ('a' <=> 'b')

Spaceship operator for custom sortings

class User {
 String name
 int age
}

def users = [
 new User(name: "Bob", age: 20),
 new User(name: "Tom", age: 50),
 new User(name: "Bill", age: 45)
]

// sort by age
users.sort { a, b -> a.age <=> b.age }

Usage with Comparator and SortedSet

Comparator cmp = [compare:{ a, b -> a <=> b }] as Comparator
def col = ['aa', 'aa', 'nn', '00']
SortedSet sorted = new TreeSet(cmp)
sorted.addAll col
assert '[00, aa, nn]' == sorted.toString()

Read Spaceship Operator online: https://riptutorial.com/groovy/topic/4394/spaceship-operator

https://riptutorial.com/ 32

Chapter 16: Spread Operator

Remarks

In most cases, the spread operator *. is identical to calling .collect { it.________ }.

def animals = ['cat', 'dog', 'fish']
assert animals*.length() == animals.collect { it.length() }

But if the subject is null, they behave a differently:

def animals = null
assert animals*.length() == null
assert animals.collect { it.length() } == []

Examples

Calling a method

assert ['cat', 'dog', 'fish']*.length() == [3, 3, 4]

Note that when mixing types in the collection if the method not exists on some of the elements, a
groovy.lang.MissingMethodException could be thrown:

['cat', 'dog', 'fish',3]*.length()
// it throws groovy.lang.MissingMethodException: No signature of method:
java.lang.Integer.length()

Accessing a property

class Vector {
 double x
 double y
}
def points = [
 new Vector(x: 10, y: -5),
 new Vector(x: -17.5, y: 3),
 new Vector(x: -3.3, y: -1)
]

assert points*.x == [10, -17.5, -3.3]

Note: The * is optional. We could also write the above statement as in the below line and Groovy
compiler would still be happy about it.

assert points.x == [10, -17.5, -3.3]

https://riptutorial.com/ 33

Its null-safe

If there is a null object on the collection it not throws a NPE, it returns a null instead:

assert ['cat', 'dog', 'fish', null]*.length() == [3, 3, 4, null]

Using it directly in a null object it's also null-safe:

def nullCollection = null
assert nullCollection*.length() == null

Read Spread Operator online: https://riptutorial.com/groovy/topic/2725/spread-operator

https://riptutorial.com/ 34

Chapter 17: String Interpolation

Syntax

$•
${}•
${->}•

Examples

Basic

def str = 'nice'
assert "Groovy is $str" == 'Groovy is nice'

Dotted Expression

def arg = [phrase: 'interpolated']
assert "This is $arg.phrase" == 'This is interpolated'

Eager expression

def str = 'old'
def interpolated = "I am the ${str} value"
assert interpolated == 'I am the old value'
str = 'new'
assert interpolated == 'I am the old value'

Lazy expression

We can have lazy interpolation in Strings. This is different than normal interpolation as the GString
can potentially have different values, depending on the closure, whenever it is converted into a
String.

def str = 'old'
def interpolated = "I am the ${ -> str} value"
assert interpolated == 'I am the old value'
str = 'new'
assert interpolated == 'I am the new value'

Expression

def str = 'dsl'
def interpolated = "Groovy ${str.length() + 1} easy ${str.toUpperCase()}"
assert interpolated == 'Groovy 4 easy DSL'
str = 'Domain specific language'

https://riptutorial.com/ 35

assert interpolated == 'Groovy 4 easy DSL'

Read String Interpolation online: https://riptutorial.com/groovy/topic/3125/string-interpolation

https://riptutorial.com/ 36

Chapter 18: Strings and GString literals

Syntax

'Single quoted string'•
"Double quoted string"•
'''Multiline string'''•
"""Triple double quoted string"""•
/Slashy string/•
$/Dollar slash string/$•

Remarks

Groovy has two string types the java java.lang.String and groovy.lang.GString, as well as multiple
forms of string literals (see syntax and examples).

The main difference between the two types of strings is that GString supports string interpolation.

Examples

Single quoted string

def str = 'Single quoted string'
assert str instanceof String

Double quoted string (without interpolation placeholder)

def str = "Double quoted string"
assert str instanceof String

Double quoted string (interpolation)

def param = 'string'
def str = "Double quoted ${param}"
assert str instanceof GString
assert str == 'Double quoted string'

The parameter is by default resolved eagerly, this means this applies:

def param = 'string'
def str = "Double quoted ${param}"
param = 'another string'
assert str == 'Double quoted string'

In order to load the parameter lazily every time the string is used, this can be done:

https://riptutorial.com/ 37

def param = 'string'
def str = "Double quoted ${ -> param}"
assert str == 'Double quoted string'
param = 'lazy load'
assert str == 'Double quoted lazy load'

Multiline string

def str = '''multiline
string'''
assert str instanceof String

Multiline string (extra trailing newline)

def str = '''
multiline
string'''
assert str.readLines().size() == 3

Multiline string (without extra trailing newline)

def str = '''\
multiline
string'''
assert str.readLines().size() == 2

Triple double quoted string

def param = 'string'
def str = """
multiline
$param
"""
assert str instanceof GString
assert str.readLines().size() == 3
assert str == '''
multiline
string
'''

Slashy string (no interpolation placeholder)

def str = /
multiline string
no need to escape slash
\n
/
assert str instanceof String
assert str.readLines().size() == 4
assert str.contains('\\n')

https://riptutorial.com/ 38

Slashy string (interpolation)

def param = 'string'
def str = /
multiline $param
no need to escape slash
\n
/
assert str instanceof GString
assert str.readLines().size() == 4
assert str.contains('\\n')
assert str.contains('string')

Dollar slash string

def param = 'string'
def str = $/
multiline $param
no need to escape slash
\n
$
$$
/$
assert str instanceof GString
assert str.readLines().size() == 6
assert str.contains('\\n')
assert str.contains('$')

Read Strings and GString literals online: https://riptutorial.com/groovy/topic/3409/strings-and-
gstring-literals

https://riptutorial.com/ 39

Chapter 19: Ternary and Elvis Operators

Remarks

The Elvis operator evaluates based on Groovy-Truth of the condition-part.

Examples

Standard form vs Elvis form

// long form
String sayHello(String name){
 "Hello, ${name ? name : 'stranger'}."
}

// elvis
String sayHello(String name){
 "Hello, ${name ?: 'stranger'}."
}

Notice that the "elvis" format omits the "true" term because the original comparison value is to be
used in the "true" case. If name is Groovy true, then it will be returned as the value of the
expression.

Usage (with condition) in assignment

def results = []
(1..4).each{
 def what = (it%2) ? 'odd' : 'even'
 results << what
}
assert results == ['odd', 'even', 'odd', 'even']

Here, the if-condition (in (parentheses)) is slightly more complex than just testing for
existence/Groovy-Truth.

Read Ternary and Elvis Operators online: https://riptutorial.com/groovy/topic/3912/ternary-and-
elvis-operators

https://riptutorial.com/ 40

Chapter 20: Traits

Introduction

Traits are structural construction objects in the Groovy language. Traits enable implementation of
interfaces. They are compatible with static type checking and compilation Traits are behaved as
interfaces with default implementations and state. Declaration of a trait is by using the trait
keyword. ---------- Traits methods scope support only public and private methods.

Examples

Basic Usage

A trait is a reusable set of methods and fields that can be added to one or more classes.

trait BarkingAbility {
 String bark(){ "I'm barking!!" }
}

They can be used like normal interfaces, using implements keyword:

class Dog implements BarkingAbility {}
def d = new Dog()
assert d.bark() = "I'm barking!!"

Also they can be used to implement multiple inheritance (avoiding diamond issue).

Dogs can scratch his head, so:

trait ScratchingAbility {
 String scratch() { "I'm scratching my head!!" }
}

class Dog implements BarkingAbility, ScratchingAbility {}
def d = new Dog()
assert d.bark() = "I'm barking!!"
assert d.scratch() = "I'm scratching my head!!"

Multiple inheritance problem

Class can implement multiple traits. In case if one trait defines method with the same signature
like another trait, there is a multiple inheritance problem. In that case the method from last
declared trait is used:

trait Foo {
 def hello() {'Foo'}
}
trait Bar {

https://riptutorial.com/ 41

 def hello() {'Bar'}
}

class FooBar implements Foo, Bar {}

assert new FooBar().hello() == 'Bar'

Read Traits online: https://riptutorial.com/groovy/topic/6687/traits

https://riptutorial.com/ 42

Chapter 21: Use ConfigSluper (instead of
property files)

Introduction

ConfigSlurper allows you to use another groovy script as a config file for your script instead of
using, for example, a .properties file. You can do interesting configurations with typed properties
and you don't need to convert from string. You can use lists, maps or a value based on some
calculation or closure.

Examples

ConfigSlurper using string, number, boolean or list

In the file myConfig.groovy is the following content.

message = 'Hello World!'
aNumber=42
aBoolean=false
aList=["apples", "grapes", "oranges"]

Then in your main script you create a ConfigSlurper for your myConfig.groovy file which is really
just another groovy script.

config = new ConfigSlurper().parse(new File('/path/to/myConfig.groovy').toURL())

Then to use the items from the config you can just refer to them.

assert 'Hello World!' == config.message
assert 42 == config.aNumber
assert false == config.aBoolean
assert ["apples", "grapes", "oranges"] == config.aList

Read Use ConfigSluper (instead of property files) online:
https://riptutorial.com/groovy/topic/8291/use-configsluper--instead-of-property-files-

https://riptutorial.com/ 43

Chapter 22: Visiblity

Examples

Private fields and methods are not private in groovy

class MyClass {
 private String privateField
}

def prvtClss = new MyClass(privateField: 'qwerty')
println prvtClss.privateField

will print us 'qwerty'

This issue is known since version 1.1 and there is a bug report on that:
http://jira.codehaus.org/browse/GROOVY-1875. It is not resolved even with groovy 2 release.

Read Visiblity online: https://riptutorial.com/groovy/topic/6522/visiblity

https://riptutorial.com/ 44

Chapter 23: Ways of Iteration in Groovy

Introduction

Groovy has more ways of looping besides supporting the Java iterations.

Groovy extends the Integer class with the step(), upto() and times() methods. These methods
take a closure as a parameter. In the closure we define the piece of code we want to be executed
several times.

It also adds each() and eachWithIndex() methods to iterate over collections.

Examples

How can I do something n times?

How can I print hello world 5 times?

5.times{
 println "hello world"
}

Each and EachWithIndex

each and eachWithIndex are methods to iterate over collections.

each have it(default iterator) and eachWithIndex have it,index(default iterator, default index).

We can also change the default iterator/index. Please see below examples.

def list = [1,2,5,7]
list.each{
 println it
}

list.each{val->
 println val
}

list.eachWithIndex{it,index->
 println "value " + it + " at index " +index
}

Read Ways of Iteration in Groovy online: https://riptutorial.com/groovy/topic/9844/ways-of-
iteration-in-groovy

https://riptutorial.com/ 45

Credits

S.
No

Chapters Contributors

1
Getting started with
groovy

Andrii Abramov, Ashish Patel, Bill K, cjstehno, Community, Eric
Siebeneich, Gergely Toth, IronHorse, lospejos, Michael
Schaefer, mnd, Piotr Chowaniec, Rao, rdmueller, SerCe

2 AST Transformations mnoronha, Will

3
Closure Memoize
Methods

Gergely Toth, hippocrene, John Mercier, mnoronha

4 Closures
Andrii Abramov, Anshul, August Lilleaas, Ben, Craig Trader,
Eric Siebeneich

5 Collection Operators Batsu, Bill K, mnoronha, traneHead

6 Currying Gergely Toth

7
Domain Specific
Languages

gclaussn

8 Groovy code golfing Charanjith A C

9
Groovy Truth (true-
ness)

ARA, Piotr Chowaniec

10 JSON albciff, Batsu, nachoorme, Stefan van den Akker

11 Memoized Functions mnoronha, OsaSoft

12 RESTClient sm4

13
Safe Navigation
Operator

Batsu, mnoronha

14 Spaceship Operator Batsu, injecteer, jwepurchase, mnoronha

15 Spread Operator adarshr, albciff, Batsu, Eric Siebeneich, Martin Neal

16 String Interpolation Aseem Bansal, Gergely Toth, jdv, mnoronha

17
Strings and GString
literals

Gergely Toth, OsaSoft, Rao

Ternary and Elvis 18 cjstehno, fheub, Piotr Chowaniec

https://riptutorial.com/ 46

Operators

19 Traits NachoB, Piotr Chowaniec, Rotem

20
Use ConfigSluper
(instead of property
files)

dallyingllama

21 Visiblity Anton Hlinisty, Gergely Toth

22
Ways of Iteration in
Groovy

Anshul, dsharew

https://riptutorial.com/ 47

	About
	Chapter 1: Getting started with groovy
	Remarks
	Versions
	Examples
	Installation or Setup
	Hello World
	Hello World In groovy
	Using Groovy on a Java project
	Hello world Shebang (linux)
	Using inject() On List To Create CSV String

	Chapter 2: AST Transformations
	Examples
	@CompileStatic

	Chapter 3: Closure Memoize Methods
	Syntax
	Remarks
	Examples
	Simple memoization

	Chapter 4: Closures
	Examples
	Closure with explicit parameters
	Closure with implicit parameters
	Converting Methods to Closures
	Closure with custom target for method calls with implicit receiver
	Wrapping behavior around a closure with a method
	Create closures, assign to properties and call

	Chapter 5: Collection Operators
	Examples
	Iterate over a collection

	Lists
	Iterate with index

	Maps
	Create a new list using collect
	To collect keys or values from a maps
	Filter a list with findAll
	Find the first element matching a condition
	Create maps with collectEntries
	Apply transformation to nested collections
	Flatten a nested list
	Remove duplicates
	Build a map from two lists

	Chapter 6: Currying
	Syntax
	Remarks
	Examples
	Left currying
	Right currying
	Index based currying
	Currying closure with no explicit parameter
	Currying closure with no parameters

	Chapter 7: Domain Specific Languages
	Examples
	Language capabilities

	Chapter 8: Groovy code golfing
	Introduction
	Examples
	Spread dot operator(*.)
	Parallel processing using Gpars

	Chapter 9: Groovy Truth (true-ness)
	Remarks
	Examples
	Numbers boolean evaluation
	Strings boolean evaluation
	Collections and maps boolean evaluation
	Object boolean evaluation
	Overriding boolean evaluation in a user defined class
	Character evaluation
	Matcher evaluation
	Closure evaluation

	Chapter 10: JSON
	Examples
	Parse a json string
	Parse a json file
	Write a json to string
	Pretty-print a json string
	Write a json to a file

	Chapter 11: Memoized Functions
	Examples
	Memoized functions

	Chapter 12: Memoized Functions
	Examples
	Memoize on closures
	Memoize on methods

	Chapter 13: RESTClient
	Introduction
	Examples
	GET Request

	Chapter 14: Safe Navigation Operator
	Examples
	Basic usage
	Concatenation of safe navigation operators

	Chapter 15: Spaceship Operator
	Examples
	Basic usage
	Spaceship operator for custom sortings
	Usage with Comparator and SortedSet

	Chapter 16: Spread Operator
	Remarks
	Examples
	Calling a method
	Accessing a property
	Its null-safe

	Chapter 17: String Interpolation
	Syntax
	Examples
	Basic
	Dotted Expression
	Eager expression
	Lazy expression
	Expression

	Chapter 18: Strings and GString literals
	Syntax
	Remarks
	Examples
	Single quoted string
	Double quoted string (without interpolation placeholder)
	Double quoted string (interpolation)
	Multiline string
	Multiline string (extra trailing newline)
	Multiline string (without extra trailing newline)
	Triple double quoted string
	Slashy string (no interpolation placeholder)
	Slashy string (interpolation)
	Dollar slash string

	Chapter 19: Ternary and Elvis Operators
	Remarks
	Examples
	Standard form vs Elvis form
	Usage (with condition) in assignment

	Chapter 20: Traits
	Introduction
	Examples
	Basic Usage
	Multiple inheritance problem

	Chapter 21: Use ConfigSluper (instead of property files)
	Introduction
	Examples
	ConfigSlurper using string, number, boolean or list

	Chapter 22: Visiblity
	Examples
	Private fields and methods are not private in groovy

	Chapter 23: Ways of Iteration in Groovy
	Introduction
	Examples
	How can I do something n times?
	Each and EachWithIndex

	Credits

