
Python Basics
Learn Python Easy Way

Python For Cloud EP 1

What is Python?

Topics
Bacis

Learn.sandipdas.in

Python History

Python Use cases

Installing Python

First Program

Python Keywords

Python Variables

Python Data Types

Data Type Conversion

Python Operators

If..else

For Loop

While Loop

Functions

Modules

Error Handling

What is Python?
Python is an interpreted high-level general-purpose programming
language. It consistently ranks as one of the most popular programming
languages.

Its design philosophy emphasizes code readability with its use of
significant indentation. Its language constructs as well as its object-
oriented approach aim to help programmers write clear, logical code for
small, mid, and large-scale projects.

Python is dynamically-typed and garbage-collected. It supports multiple
programming paradigms, including structured, object-oriented, and
functional programming.

Its high-level built-in data structures, combined with dynamic typing and
dynamic binding, make it very attractive for Rapid Application
Development, as well as for use as a scripting or glue language to
connect existing components together.
Source: Wikipedia

Learn.sandipdas.in

It's all started by
Guido van Rossum

1980
First Released as

Python 0.9.0

1991
Python 2.0 was
released

2000

Python Jourey
It took a long ...

Python 3.0 was released

2008
Source: Wikipedia

Learn.sandipdas.in

Use Cases
Where Python getting used the most?

Python gets used for developing
web applications, REST APIs, etc

Using: Django, Pyramid, Bottle,
Tornado, Flask, web2py

Application
Developmet

Python gets used to developing
workflow automation scripts
including Cloud automation &
resource provisioning.
Notably: Ansible, Salt,
Openstack, xonsh written in
Python

Automation

One of the most popular use
cases of Python is in the field of
Data Science and Machine
Learning

Using: SciPy, Pandas, IPython,
NumPy etc

Data Science &
Machine Learning

Learn.sandipdas.in

Our goal in this series will be to
have enough Python knowledge
to work on Cloud & DevOps
Projects, use different SDKs
provided by the Cloud Service
providers and other open-source
projects

Our Goal
Learn.sandipdas.in

It's time to Install Python

Go to Python Official Web Site
The first step is really easy and quick, visit https://www.python.org

Click on Downloads Menu
Click on the Download top menu and select for which
Operating System(OS) you want to install Python

Follow rest of process as Instructed
For Mac and Windows, simply download, install and run!
But for Linux and other OS further steps are needed as
mentioned on that page. After installation is done, check
the Python version by running: python --version

01

02

03

Learn.sandipdas.in

Getting Started...
Make Sure You have good An integrated
development environment (IDE)!
Good IDE makes life easier, if you are not sure which to
choose, here are the most popular for Python:
VS Code, PyCharm, Atom, Sublime, Jupyter
My personal all-time favorite is VS Code, which you can
download from here: https://code.visualstudio.com

IDE installed ? let's run our sweet old first
program!
hello_world.py
print("Hello, World!")

01

02

Note

In other programmig

laguages, such as c , C++ ,

JavaScript, Java uses {} to

define a block of code,

however in Python uses

indentation

Learn.sandipdas.in

Key Words
Python has reserved keywords
Python has multiple reserved keywords which we can not
use as variable names or any identifier and these
keywords have specific purposes/use cases while doing
programming with Python (We will cover in the next
sections)

List of keywords
if, elif, else, and, or, not, with, for, global, import, async,
await, None, pass, return, raise, except, lambda, try, while,
nonlocal, continue, finally, from, yield, True, False, class,
break, except, is, in, import etc

What if you try to use reserved keywords?

Learn.sandipdas.in

Variables
Why use variables?
We can utilize variables to store values in memory and use it as we see fit for any use case e.g.
store values and use for calculation.

Variable name

Variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)
Variable name must start with a letter or the _ character & cannot start with a number

There are certain rules in Python to define a variable name, as follow:
1.
2.

a = 10
b = 20

c = a + b
print(c)

Example

myVar
my_var
_myVar

myVar31

Naming Covetion While Naming Multi Word Variable
While naming a multi-value variables, Camel Case, Proper Case, Snake Case are usually get
used, but most popular is Camel Case or Snake Case

Multi Value assignment and output
Python allow us to use multi-value assignment as showing in example

Camel Case: myVarName
Proper Case: MyVarName
Snake Case: my_var_ame

x, y, z = "Red", "Green", "Blue"
print(x)
print(y)
print(z)

Show output
Python uses print statement to show values of variables

name = "Sandip Das"

print(name)

Learn.sandipdas.in

Data Types
Numeric
There are Integers, floating-point, and complex numbers in Python. Defied as int,
float and complex classes in Python

String
The string is a sequence of Unicode characters, Strings in python are represented
within a single quotation e.g. 'Sandip or double quotation "Sandip". Defined as
"str" class in Python

01

02

Note

We can use
"type()"

function to check

type of ay
variable

a = 7 # int
b = 3.8 # float

c = 5j # complex
print(type(a))
print(type(b))
print(type(c))

Example

name = "Sandip Das"
print(type(name))

list, tuple, set
List: Lists are used to store multiple items in a single variable in a mutable ordered
sequence. Items are separated by a comma and inside [], the index starts from 0.
Tuple: Tuples are used to store multiple items in a single variable in an
immutable/unchangeable ordered sequence. Items are separated by a comma and
defined by (), functions same as a list but values can not be changed.
Set: set is a collection of unordered, unchangeable, and unindexed unique items.
The items are separated by a comma and inside {}

03
simpleList = ["red",

"green", "blue", 4, 5, 6]
print(type(simpleList))

Numeric

String

list

simpleList = ("red",
"green", "blue", 4, 5, 6)
print(type(simpleList))

Touple

simpleSet = {4,2,5,8,1}
print(type(simpleSet))

Set

Learn.sandipdas.in

Data Types

Mapping Type: Dictionary(dict)
Dictionaries are used to store data values in key:value pairs.

Boolean Type: True/False
Booleans represent one of two values: True or False. Definite by bool class

04

05

Note

We can use
"type()"

function to check

type of ay
variable

person = {
"name": "Sandip",
"age": 30,
"location" : "Kolkata"
}
print(type(person))
print(type(person['name']))
print(type(person["age"]))

Example

a = True
b = False

print(type(a))
print(type(b))

Dictionary(dict)

Boolean

Learn.sandipdas.in

Type Conversion & Casting

Implicit Type Conversion
Python automatically converts one data type to another data type, Python promotes the conversion of the
lower data type (integer) to the higher data type (float)

Explicit Type Conversion
In this type of conversion user must users convert the data type to the required data type using predefined
functions like int(), float(), str()

01

02

int() - take a float or string literal (considering it's a non-float number) as an argument and returns a value of class
'int' type e.g. a = int(5) , b = int(7.9), c = int("12"), values will be 5, 7, 12
float() - take an int or string literal as argument and returns a value of class 'float' type e.g. a = float(5) , b =
float(7.9), c = float("12.50"), output will be 5.0, 7.90, 12:50
str() - take a float or int literal as argument and returns a value of class 'str' type , e.g. a = str("samle text"), b =
str(2), c = str(2.5), output will be 'sample text', '2', '2.5'

converting the value of one data type into another data type is called type conversion and doing so via Python
constructor functions called Casting, type-casting can be done via the below methods:

There is Two types of conversion: Implicit and Explicit Type Conversion

Learn.sandipdas.in

Python Operators
Arithmetic Operators
Arithmetic operators are used with numeric values to perform common mathematical operations
Addition (+), Subtraction (-), Multiplication(*), Division (/), Modulus (%), Exponentiation(**), Floor division (//)
e.g. a+b , a-b, a*b, a/b etc

Comparison Operators
Comparison operators are used to compare two values
Equal(==), Not equal (!=), Greater Than (>), Less Than (<), Greater that equal (>=), Less than equal (<=)
e.g. a==b, a!=b, a>b, a<c, a>=b, a<=b, etc

01

02

Logical Operators
Logical operators are used to combine conditional statements
True if both statements are true (and), True if one of the statements is true (or),
Reverse the result, returns False if the result is true (not)
e.g. a > 5 and a<10 , a == 20 or a = 30 , not (a < 10 & a > 7)

03

Identity Operators
Identity operators are used to compare the objects
True if both variables are the same object (is), True if both variables are not the
same object (is not)
e.g. a is b, a is not b

04

Logic Table

Learn.sandipdas.in

Python Operators
Membership Operators
Membership operators are used to test if a sequence is presented in an object
True if a sequence with the specified value is present in the object, e.g. x in y, x not in y

Bitwise Operators
AND (&), OR (|), XOR (^), NOT (~), Zero fill left shift (<<), Signed right shift,(>>)
e.g. x & y = 0 , x | y = 14, ~x = -11

05

06

Assignment Operators
assignment operators are used to assigning values to variables
=, +=, -=, *=, /=, %=, //=, **=, &=, |=, ^=, >>=, <<=
e.g: x = 5, x += 3 (equivalent to x = x + 3) etc

07

Learn.sandipdas.in

If...else... Statement
When to use?
When have to execute a code only if certain condition matches / satisfies

If condition
Python relies on indentation (whitespace at the beginning of a line) to define the scope in the code, if not done properly, will throw an error
a = 10
b = 15
if b > a:
 print("b is greater than a")

Elif
The elif keyword is pythons way of saying "if the previous conditions were not true, then
try this condition".
a = 10
b = 10
if b > a:
 print("b is greater than a")
elif a == b:
 print("a and b are equal")

else
The else keyword catches anything which
isn't caught by the preceding conditions.
a = 20
b = 10
if b > a:
 print("b is greater than a")
elif a == b:
 print("a and b are equal")
else:
 print("a is greater than b")

Learn.sandipdas.in

For Loop
A for loop in python is used for iterating over a sequence (list, a tuple, a dictionary, a
set, or a string). or other iterable objects.

Break Statement
he break statement can stop the loop before it has looped through all the items

colors = ["red", "green", "blue"]
for x in colors:
 print(x)

Example

colors = ["red", "green", "blue"]
for x in colors:
 if(x == "green"):
 break
 print(x)

Continue Statement
continue statement can stop the current iteration of the loop, and continue with the
next

colors = ["red", "green", "blue"]
for x in colors:
 if(x == "green"):
 continue
 print(x)

normal

Break statement

Continue Statement

Else in For Loop
For loop support optional else block, else keyword in a for loop specifies a block of
code to be executed when the loop is finished.
Note: If break executed in for loop then else block will be ignored.

colors = ["red", "green", "blue"]
for x in colors:
 print(x)
else:
 print("All Items processed")

else block

range() Function
To loop through a set of code a specified number of times, we can use the range()
function (it start from 0)

for x in range(20):
 print(x)

Range Function

Learn.sandipdas.in

While Loop
The while loop we can iterate & execute a set of statements as long as an expression
(condition) is true.

Break Statement
break statement can stop the loop even if the while condition is true

i = 0
while i < 10:
 print(i)
 i += 1

Example

i = 1
while i < 10:
 print(i)
 if i == 5:
 break
 i += 1

Continue Statement
continue statement can stop the current iteration, and continue with the next

i = 0
while i < 10:
 i += 1
 if i == 5:
 continue
 print(i)

normal

Break statement

Continue Statement

Else in While Loop
he else statement we can run a block of code once when the condition no longer is
true

i = 0
while i < 10:
 print(i)
 i += 1
else:
 print("i is no longer less than 10")

else block

Learn.sandipdas.in

Functions
What is a function ?
A function is a block of code that only runs when it is called.
We can pass data, known as parameters, into a function and a function can return data
as a result.
In Python, we can define a function using def keyword

Calling a function
We can call/execute a function by function name followed by parenthesis

def my_hello_world_function():
 print("Hello World from a
function")

Example

defining a function

my_hello_world_function()
Calling a function

Passing Argumets
Information/Data can be passed into functions as arguments ad arguments can be
named arguments inside the parentheses, separated by a comma
If not sure about how much argument will be there, add * before the parameter name,
called Arbitrary Arguments.
If want named arguments but are not sure how many arguments could be there, then
use ** before the parameter name, called Arbitrary Keyword Arguments

def greet_person(name):
 print("Hi "+ name)

Passing single parameter

def greet_full_name(first_name, last_name):
 print("Hi "+ first_name + " " + last_name)

Passing multiple parameter

def my_colours(*colours):
 print("The first colours is " + colours[0])
my_colours("Red", "Green", "Blue")

Arbitrary Arguments

Return value
We can use return statement to get value back from
function

Return Statement
def sum(a, b):
 return a + b
sumValue = sum(5, 10)
print("The Sum is", sumValue)

def my_named_colours(**colours):
 print("The first colours is " + colours["red"])
my_named_colours(red = "Red Colour", blue =
"Blue Colour", green = "Green Colour")

Arbitrary Keyword Arguments

Learn.sandipdas.in

Modules
What is a Module in Python?
Module in Python is a file containing Python functions, statements and definitions, just
like a code library.

Types of Modules
There are two types of Module
1) System Module
2) Custom Module

System Module
There are several built-in modules in Python, that come default with Python. we can use
the system module by using the import statement. Click here to check the full list

Custom Module
We can use modules to break down large programs into small manageable
and organized files and furthermore modules provide reusability of code.
To create a custom module, first, have to write code and save the file with .py
extension
Then to use the module we just created, by using the import statement
We can also utilize variables and use the "as" keyword to import modules
with an alias
We use dir() function to get all the variables and functions

import platform
x = platform.system()
print(x)

Example

Using System Module

import custom_module_example
custom_module_example.greet_person("Sandip")

custom_module_example.py

def greet_person(name):
 print("Hello, " + name)

custom_module_useage_example.py

import custom_module_example as cme
a = cme.personExample["age"]
print(a)

Alias example

import custom_module_example
x = dir(custom_module_example)
print(x)

Use dir() function

Learn.sandipdas.in

Try..Except..
We as programmers make mistakes while writing programs, python program terminates as
soon as it encounters such errors, to prevent that we have to use exception handling.
In Python, these exceptions can be handled using the try ... except... statement

Exception Handling in Python

We can define as many exception blocks as we want, e.g. if we want to execute a
special block of code for a special kind of error

Multiple Exception

print("Handling simple error")
try:
 print(x)
except:
 print("An exception occurred")

Simple Error Handlling

Example

print("Handling Multiple errors")
try:
 print(x)
except NameError:
 print("Variable x is not defined")
except:
 print("Something else went
wrong")

Multiple Exception Handling

else keyword to define a block of code to be executed if no errors were occured

Else

The final block will be executed regardless if the try block raises an error or not.

Finally

Learn.sandipdas.in

Contact Me
contact@sandipdas.in

Learn.sandipdas.in

Support My Work

Via Patreon: https://www.patreon.com/learnwithsandip

Via Buy Me a Coffee: https://www.buymeacoffee.com/LearnWSandip

