ke
Python Basics

Comments on ‘Python Basics - Learn Python L e A
Learn Python Easy Way Easy Way in 1 Hour | Python For Cloud EP1’ &

Remember to keep comments respectful and to follow our
Community Guidelines

Highlighted comment

By 6 hours ago

so good yaar, it is very helpful for beginners like me,
lots of thanks and congrats, please continue

Python For Cloud EP 1

Learn.sandipdas.in

@ python

Bacis

What is Python?

Data Type Conversion

Python History Python Operators

Python Use cases If..else
Installing Python For Loop
First Program While Loop
Python Keywords Functions
Python Variables Modules

QOSSN0
SO AINN O

Python Data Types Error Handling

What is Python?

Python is an interpreted high-level general-purpose programming
language. It consistently ranks as one of the most popular programming
languages.

Its design philosophy emphasizes code readability with its use of
significant indentation. lts language constructs as well as its object-
oriented approach aim to help programmers write clear, logical code for
small, mid, and large-scale projects.

Python is dynamically-typed and garbage-collected. It supports multiple
programming paradigms, including structured, object-oriented, and
functional programming.

lts high-level built-in data structures, combined with dynamic typing and
dynamic binding, make it very attractive for Rapid Application
Development, as well as for use as a scripting or glue language to
connect existing components together.

Source: Wikipedia

Learn.sandipdas.in

Learn.sandipdas.in

- It's all started by
Guido van Rossum

1980

First Released as —
Python 0.9.0

1991

Python Jourey

— Python 2.0 was
released

2000

It took a long ...

Python 3.0 was released —

2008

Source: Wikipedia

Learn.sandipdas.in

Use Cases

Where Python getting used the most?

0 Application Q Automation Q Data Science &
Developmet Machine Learning
Python gets used for developing Python gets used to developing One of the most popular use
web applications, REST APIs, etc workflow automation scripts cases of Python is in the field of
including Cloud automation & Data Science and Machine
Using: Django, Pyramid, Bottle, resource provisioning. Learning
Tornado, Flask, web2py Notably: Ansible, Salt,
Openstack, xonsh written in Using: SciPy, Pandas, IPython,

Python NumPy etc

Our Goal

Our goal in this series will be to
have enough Python knowledge

™\, to work on Cloud & DevOps
Projects, use different SDKs
provided by the Cloud Service
providers and other open-source
projects

It's time to Install Python

01

02

03

Go to Python Official Web Site
The first step is really easy and quick, visit https://www.python.org

Click on Downloads Menu

Click on the Download top menu and select for which
Operating System(0OS) you want to install Python

Follow rest of process as Instructed

For Mac and Windows, simply download, install and run!
But for Linux and other OS further steps are needed as
mentioned on that page. After installation is done, check
the Python version by running: python --version

Learn.sandipdas.in

Learn.sandipdas.in

Getting Started... s

+,
laguages, such asC, C+

. . t
01 Make Sure You have good An integrated JavaScript, Java uses {1 10

i : f code,
development environment (IDE)! define a block 0

: S
- ver in Python use
Good IDE makes life easier, if you are not sure which to howe

indentation
choose, here are the most popular for Python:
VS Code, PyCharm, Atom, Sublime, Jupyter
My personal all-time favorite is VS Code, which you can
download from here: https://code.visualstudio.com — ° Ii'l o
G B @)
<html5> . 21
. . I 000 —
02 IDE iInstalled ? let's run our sweet old first -—@_' Sy

program! . - (8)
hello_world.py u l \ /p_y
print("Hello, World!")

Key Words

Python has reserved keywords

Python has multiple reserved keywords which we can not
use as variable names or any identifier and these
keywords have specific purposes/use cases while doing
programming with Python (We will cover in the next

sections)

List of keywords

if, elif, else, and, or, not, with, for, global, import, async,
await, None, pass, return, raise, except, lambda, try, while,
nonlocal, continue, finally, from, yield, True, False, class,
break, except, is, in, import etc

What if you try to use reserved keywords?

1f = 20

A

SyntaxError: invalid syntax

Learn.sandipdas.in

Learn.sandipdas.in

Variables

Why use variables? a=10
b=20
We can utilize variables to store values in memory and use it as we see fit for any use case e.qg. c=a+b
store values and use for calculation. print(c)
Variable name
: : : : myVar
There are certain rules in Python to define a variable name, as follow: my_var
1.Variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _) _m§Var
2.Variable name must start with a letter or the _ character & cannot start with a number myVar31
Naming Covetion While Naming Multi Word Variable Camel Case: myVarName
Proper Case: MyVarName
While naming a multi-value variables, Camel Case, Proper Case, Snake Case are usually get Snake Case: my var_ame
used, but most popular is Camel Case or Snake Case
]] X, Y, z="Red", "Green", "Blue"
Multi Value assignment and output print(x)
Python allow us to use multi-value assignment as showing in example pri.ntiy;
print(z
Show output name = "Sandip Das"

: i int
Python uses print statement to show values of variables print(name)

Note

We can use

Data lypes e

01

02

03

type of ay
variable

Numeric

There are Integers, floating-point, and complex numbers in Python. Defied as int,
float and complex classes in Python

String

The string is a sequence of Unicode characters, Strings in python are represented
within a single quotation e.g. 'Sandip or double quotation "Sandip". Defined as

str'" class in Python

list, tuple, set

List: Lists are used to store multiple items in a single variable in a mutable ordered
sequence. Iltems are separated by a comma and inside [], the index starts from O.
Tuple: Tuples are used to store multiple items in a single variable in an
immutable/unchangeable ordered sequence. ltems are separated by a comma and
defined by (), functions same as a list but values can not be changed.

Set: set is a collection of unordered, unchangeable, and unindexed unique items.

The items are separated by a comma and inside {}

Learn.sandipdas.in
Example

Numeric
a=7 #int
b=3.8 #float
c=5j # complex
print(type(a))
print(type(b))
print(type(c))

String

name = "Sandip Das"
print(type(name))

list
simpleList =["red",
"green", "blue", 4, 5, 6]
print(type(simpleList))

Touple
simpleList = ("red",
"green", "blue", 4, 5, 6)
print(type(simpleList))

Set
simpleSet = {4,2,5,8,1}
print(type(simpleSet))

Note

We can use

Data lypes e

type of ay
variable

04 Boolean Type: True/False

Booleans represent one of two values: True or False. Definite by bool class

05 Mapping Type: Dictionary(dict)

Dictionaries are used to store data values in key:value pairs.

Learn.sandipdas.in

Example

Boolean

a=True

b = False
print(type(a))
print(type(b))

Dictionary(dict)

person = {

"name": "Sandip",
"age": 30,

"location” : "Kolkata"
}

print(type(person))
print(type(person['name']))
print(type(person["age"]))

Learn.sandipdas.in

Type Conversion & Casting

converting the value of one data type into another data type is called type conversion and doing so via Python
constructor functions called Casting, type-casting can be done via the below methods:
e int() - take a float or string literal (considering it's a non-float number) as an argument and returns a value of class
'int' type e.g.a=int(b), b =int(7.9), c=int("12"), values will be 5, 7, 12
e float() - take an int or string literal as argument and returns a value of class 'float' type e.g. a = float(b) , b =
float(/.9), c = float("12.50"), output will be 5.0, 7.90, 12:50
e str() - take a float or int literal as argument and returns a value of class 'str' type, e.g. a = str("samle text"), b =
str(2), c = str(2.5), output will be 'sample text', '2', '2.5'

There is Two types of conversion: Implicit and Explicit Type Conversion

01 Implicit Type Conversion

Python automatically converts one data type to another data type, Python promotes the conversion of the
lower data type (integer) to the higher data type (float)

02 Explicit Type Conversion

In this type of conversion user must users convert the data type to the required data type using predefined
functions like int(), float(), str()

Python Operators

01 Arithmetic Operators

Arithmetic operators are used with numeric values to perform common mathematical operations
Addition (+), Subtraction (-), Multiplication(¥), Division (/), Modulus (%), Exponentiation(**), Floor division (//)
e.g. a+b, a-b, a*b, a/b etc

02 Comparison Operators

Comparison operators are used to compare two values
Equal(==), Not equal (=), Greater Than (>), Less Than (<), Greater that equal (>=), Less than equal (<=)

e.g. a==b, al=b, a>b, a<c, a>=b, a<=b, etc
Logic Table

03 Logical Operators True and True

. . - True and False
Logical operators are used to combine conditional statements

False and True

True if both statements are true (and), True if one of the statements is true (or),

False and False

Reverse the result, returns False if the result is true (not)
eg.a>banda<l0,a==200ra=30,not(a<10&a>7)

True or True
True or False

False or True

04 Identity Operators

alse or False
|dentity operators are used to compare the objects) F

True if both variables are the same object (is), True if both variables are not the R e
same object (is not) not False

e.g.aisb,aisnotb

Learn.sandipdas.in

True
False
False

False

True
True
True

False

False

True

Python Operators

05 Membership Operators

Membership operators are used to test if a sequence is presented in an object
True if a sequence with the specified value is present in the object, e.g. xiny, X notiny

06 Bitwise Operators

AND (&), OR (]), XOR (A), NOT (~), Zero fill left shift (<<), Signed right shift,(>>)
eg. x&y=0,x|y=14,~x=-11

07 Assignment Operators

assignment operators are used to assigning values to variables
=, -|-:, -=, *:, /:, 0/0:’ //:, **:’ &:, |:’ /\:’ >>:, <<=

e.g:x =5, x+=3 (equivalent to x = x + 3) etc

Learn.sandipdas.in

Learn.sandipdas.in

If...else... Statement

When to use?

When have to execute a code only if certain condition matches / satisfies

If condition

Python relies on indentation (whitespace at the beginning of a line) to define the scope in the code, if not done properly, will throw an error
a=10

b=15
if b > a:
print("b is greater than a")
else
Ellf The else keyword catches anything which

The elif keyword is pythons way of saying "if the previous conditions were not true, then Isn't caught by the preceding conditions.

try this condition". a=20

a=10 b=10

b=10 if b > a:

if b > a: print("b is greater than a")
elif a == b:

print("b is greater than a")

olif 3 == b print("a and b are equal")

print("a and b are equal") else:

print("a is greater than b")

For Loop

A for loop in python is used for iterating over a sequence (list, a tuple, a dictionary, a

set, or a string). or other iterable objects.

Break Statement

he break statement can stop the loop before it has looped through all the items

Continue Statement

continue statement can stop the current iteration of the loop, and continue with the
next

Else in For Loop

For loop support optional else block, else keyword in a for loop specifies a block of
code to be executed when the loop is finished.
Note: If break executed in for loop then else block will be ignored.

range() Function

To loop through a set of code a specified number of times, we can use the range|)
function (it start from 0)

Learn.sandipdas.in
Example

normal
colors =["red", "green", "blue"]
for x in colors:
print(x)

Break statement
colors =["red", "green", "blue"]

for x in colors:
if(x =="green"):
break
print(x)

Continue Statement
colors =["red", "green", "blue"]
for x in colors:

if(x =="green"):
continue
print(x)

else block

colors =["red", "green", "blue"]
for x in colors:

print(x)

else:

print("All Items processed")

Range Function

for x in range(20):
print(x)

Learn.sandipdas.in

While Loop

i=0

while i < 10:
The while loop we can iterate & execute a set of statements as long as an expression print(i)
(condition) is true. i +=1

Break statement
i=1

Break Statement while i < 10:
break statement can stop the loop even if the while condition is true 52"::(').
break
i+=1
Continue Statement Continue Statement
i=0
continue statement can stop the current iteration, and continue with the next while i < 10:
i+=1
if i ==5:
continue
print(i)
Else in While Loop _, Clseblock
| =
he else statement we can run a block of code once when the condition no longer is while i < 10:
true print(i)
i +=1
else:

print("i is no longer less than 10")

Functions

What is a function ?

A function is a block of code that only runs when it is called.

We can pass data, known as parameters, into a function and a function can return data

as a result.
In Python, we can define a function using def keyword

Calling a function

We can call/execute a function by function name followed by parenthesis

Passing Argumets

Information/Data can be passed into functions as arguments ad arguments can be

named arguments inside the parentheses, separated by a comma

If not sure about how much argument will be there, add * before the parameter name,

called Arbitrary Arguments.

If want named arguments but are not sure how many arguments could be there, then

use ** before the parameter name, called Arbitrary Keyword Arguments

Return value

We can use return statement to get value back from
function

Return Statement

def sum(a, b):

returna+b

sumValue = sum(5, 10)
print("The Sum is", sumValue)

Learn.sandipdas.in

Example

defining a function

def my_hello_world_function():
print("Hello World from a
function")

Calling a function
my_hello_world_function()

Passing single parameter

def greet_person(name):
print("Hi "+ name)

Passing multiple parameter
def greet_full_name(first_name, last_name):

print("Hi "+ first_name + " " + last_name)

Arbitrary Arguments

def my_colours(*colours):
print("The first colours is " + colours[0])
my_colours("Red", "Green", "Blue")

Arbitrary Keyword Arguments

def my_named_colours(**colours):

print("The first colours is " + colours["red"])
my_named_colours(red = "Red Colour", blue =
"Blue Colour"”, green = "Green Colour")

Modules ¢

What is a Module in Python?

Learn.sandipdas.in

Example

Module in Python is a file containing Python functions, statements and definitions, just

like a code library.
There are two types of Module

Types of Modules 1) System Module
2) Custom Module
System Module

Using System Module

import platform
x = platform.system()
print(x)

There are several built-in modules in Python, that come default with Python. we can use custom_module_example.py

the system module by using the import statement. Click here to check the full list

Custom Module

We can use modules to break down large programs into small manageable
and organized files and furthermore modules provide reusability of code.

To create a custom module, first, have to write code and save the file with .py
extension

Then to use the module we just created, by using the import statement

We can also utilize variables and use the "as" keyword to import modules
with an alias

We use dir() function to get all the variables and functions

def greet_person(name):
print("Hello, " + name)

custom_module_useage_example.py
import custom_module_example

custom_module_example.greet_person("Sandip")

Alias example
import custom_module_example as cme

a = cme.personExample["age"]
print(a)

Use dir() function
import custom_module_example

x = dir(custom_module_example)
print(x)

Learn.sandipdas.in

Try..Except..

Example
Exception Handling in Python simple Error Handlling
We as programmers make mistakes while writing programs, python program terminates as Print("Handling simple error”)
: : : try:
soon as it encounters such errors, to prevent that we have to use exception handling. print(x)
In Python, these exceptions can be handled using the try ... except... statement except:

print("An exception occurred")

Multiple Exception Multiple Exception Handling

print("Handling Multiple errors")
We can define as many exception blocks as we want, e.g. if we want to execute a try:
print(x)
except NameError:
print("Variable x is not defined")

special block of code for a special kind of error

Else except:
print("Something else went

else keyword to define a block of code to be executed if no errors were occured wrong")

Finally

The final block will be executed regardless if the try block raises an error or not.

http:// %Learn.sandipdas.in

I3 SUBSCRIBE

Contact Me
Q contact@sandipdas.in

in} f §v JO

=%
\/

S~ /7 Support My Work
/J

, (®) Via Patreon: https://www.patreon.com/learnwithsandip

@ Via Buy Me a Coffee: https:.//www.buymeacoffee.com/LearnWSandip

