Security Practices for Multi-
enant SaaS Applications using
Amazon EKS

Technical Guide

June 4, 2021

dWS$S

. 50
"

& Bl

Customers are responsible for making their own independent assessment of the
information in this document. This document: (a) is for informational purposes only, (b)
represents current AWS product offerings and practices, which are subject to change
without notice, and (c) does not create any commitments or assurances from AWS and
its affiliates, suppliers or licensors. AWS products or services are provided “as is”
without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

(@)Y= AV L=\ AR 1

20T olo 041 0 g T=T 0o =) 4 o] o - 2
Use multiple clusters to separate tenant workloads.............oooociiiiiiiii e, 2
Use tenant-dedicated WOIrKer NOUEScooooiiiiiiiiiiiiiiieee e 2
Node AUthOrZation MOAEooiiiiiiee e eeeeas 3
Do not provide direct access to Kubernetes or EKS APIScccoviiieeveeeeei i 3
Use Namespaces to separate tenant Workloadsc.ccceeevviiiiiiiiiiiieee e 3
RESIrIiCt CONtAINET PHIVIIEYES. ...ttt e e e e e e e e e e e e e s eeeees 4
Forbid running tenant CONTAINEIS @S MOO0T.........iiuuriieeiiiiieee et 5
Restrict mounting NOSt fIlE@SYSIEMScoiiiiiiie e 5

Restrict the use of host networking and block access to instance metadata service6

Restrict creation of services with external IP addressesccccveeeeeviieiiiiiiicciiiiiieeeen. 7
Apply a Seccomp profile t0 CONTAINEIScooiiiiiiiiieee e 7
Apply SELINUX Profiles t0 CONAINETScccoiiiiieeeee e 8
Use admission controllers to enforce security poliCIescccccvvviiiiiiee e 9
[@0] o T3 101 0] o 1SS 12
Appendix: strict pod security policy for an untrusted tenant.........ccccoovvveiiiiiiiiiini e, 12
(©0] o1 1101 (0] £ TP 13

DOCUMEBNT FRVISIONS ..ot e e 14

This technical guide shows you how to securely manage and operate multi-tenant
software-as-a-service (SaaS) applications on Amazon Elastic Kubernetes Service
(Amazon EKS) clusters.

This document was adapted from the Amazon EKS Best Practices Guide. The Best
Practices Guide is updated frequently. Amazon Web Services (AWS) recommends
checking for updates periodically, because Amazon EKS and Kubernetes are rapidly
evolving. AWS also recommends subscribing to the AWS Containers Blog to receive
the latest updates on AWS container services.

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

Amazon EKS is frequently used by customers who are building software-as-a-service
(SaaS) solutions on AWS. How tenant data and applications are isolated in these SaaS
solutions can vary. Some SaasS providers rely on a siloed tenancy model where each
tenant has its own resources. Others rely on a pooled tenancy model where resources
are shared by tenants.

The following provides a more detailed overview of how these two models are realized
on Amazon EKS:

The Pool Model describes an environment where the EKS resources are
shared by tenants with added measures to ensure that any one tenant cannot
access the resources of another tenant. Many customers want to run workloads
using shared hosts and a common control plane. This approach typically
simplifies the operational footprint of a SaaS application and improves the
agility, innovation, and cost model of a SaaS environment.

The Silo Model represents a model where each tenant has dedicated EKS
resources. This model is often a good fit for tenants that may demand a more
absolute isolation boundary. This may be for a variety of reasons (security,
noisy neighbors, and so on). There are multiple constructs available in EKS that
can be used to realize the Silo model. The resources accessed from a silo
could be deployed in a silo or pool model.

These choices are not exclusive. Some SaasS providers may support both options
depending on the tiers or services that are part of their application.

For both of these models, it is important ensure that tenants are unable to:

dWs

o Read or write any control-plane information unrelated to the tenant
o Access any resources not belonging to the tenant

o Obtain credentials not belonging to the tenant

o Impersonate other tenants

o Escape the confines of the tenant’s allocated compute, memory, or other
resources

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

AWS recommendations focus on the following objectives:

o Keeping control plane data strictly separated among tenants
e Preventing host corruption by tenant containers

e Preventing tenant containers from “breaking out of jail” and accessing sensitive
data on the hosts, such as credentials

Use multiple clusters to separate tenant workloads

The most secure way to run Silo workloads on EKS is to create a distinct EKS cluster
for each tenant. In such a design, even a tenant that runs privileged containers and has
access to the hosts cannot impact other tenants. Care must still be taken to not provide
credentials related to other tenants on a different cluster, and other AWS security best
practices such as proper Security Group rules and/or virtual private cloud (VPC)
separation must be implemented.

This approach does have some disadvantages. Having a separate cluster for each
tenant will add more complexity to the operational footprint of your environment. While
you can automate much of the operational experience, this approach will impact the
efficiency, agility, and cost profile of your SaaS environment.

Use tenant-dedicated Worker nodes

Customers choosing to host multiple tenants on a single cluster should sequester tenant
workloads onto dedicated nodes. This will help to ensure that, in the event of a
container breakout, no other customer’s Pods or data can be observed or tampered
with.

AWS Fargate

The easiest way to enforce this constraint is to run tenant Pods on AWS Fargate.
Fargate is a managed compute service that can run EKS Pods without having to
manage Amazon Elastic Compute Cloud (Amazon EC2) instances. When a Pod is
scheduled, capacity is allocated on-demand that is custom fit to match the Pod’s
resources. With Fargate, no two Pods are run on the same virtual machine (VM),
ensuring VM-level isolation as well as container isolation for tenant workloads.

dWs

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

Amazon EC2 Worker nodes

Alternatively, if EC2 instances are used, one way to enforce this constraint is to apply
“taints” to all nodes with a tenant identifier. An example taint might be
tenantID=12345:NoSchedule. When combined with a matching toleration in a
tenant’s Pod specification, this will ensure that the tenant’s Pods can be placed only on
nodes matching the same taint.

Another (and somewhat weaker) way to enforce the constraint is to label nodes with
tenant identifiers, and using nodeSelector or affinity rules in Pod specifications to
ensure tenant Pods are scheduled only on the correct nodes. Customers who decide to
implement the constraint this way should use admission controllers, discussed later in
this document, to ensure those fields are supplied for all customer Pods.

Node Authorization Mode

As a mitigating control, in EKS clusters, all requests from nodes are subject to the Node
Authorization Mode. This prevents nodes from accessing Secrets, ConfigMaps,
Persistent Volume Claims, or Persistent Volumes unless they are related to pods
running on the node itself. See Using Node Authorization for additional information.

Do not provide direct access to Kubernetes or EKS
APIs

Accepting untrusted input from tenants and passing it to a security-sensitive system
such as Kubernetes may expose your cluster or its tenants to risks, such as
unauthorized modifications and data access. AWS recommends placing a discrete
management layer between tenants and the EKS clusters on which their workloads run.
Similar to a Web Application Firewall (WAF), this layer allows requests to be examined
and filtered before taking further action. Invalid requests should be rejected
immediately, while valid requests should be decorated with identifying information and
security-related modifications before being passed to the Kubernetes control plane.

Use Namespaces to separate tenant workloads

Kubernetes uses namespaces as a logical partitioning system for organizing objects
such as Pods and Deployments. Namespaces also operate as a privilege boundary in
Kubernetes’ Role-Based Access Control (RBAC) system. For example, Pods created in
namespace A do not have access to secrets in namespace B (and vice-versa).

dWs

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

AWS advises customers to assign each tenant to their own unique namespace. When
assigning privileges to tenants, ensure each tenant can only access Kubernetes objects
in the tenant’s assigned namespace. Customers can automate this assignment by
enabling a mutating admission webhook that requires a tenant-specific label on all
customer-related objects and ensures the objects are placed in the tenant’s
namespace.

Restrict container privileges

Tenant containers should run unprivileged by default. If a tenant’s container requires
privileges, those privileges should be limited only to those required to successfully run
the container.

Privileges are specified in a container’'s SecurityContext. Privileges can be specified
in one of two ways:

e By setting the privileged attribute to true. This is practically identical to
having root access on the host.

e By specifying a list of one or more capabilities to add or drop in the
capabilities list.

On EKS nodes that run the Docker container runtime, which includes those that use the
EKS Optimized Amazon Machine Image (AMI), each container has the following default
capabilities:

CAP CHOWN, CAP DAC OVERRIDE, CAP FOWNER, CAP FSETID, CAP KILL,
CAP SETGID, CAP SETUID, CAP SETPCAP, CAP NET BIND SERVICE,
CAP_NET RAW, CAP SYS CHROOT, CAP MKNOD, CAP AUDIT WRITE,

CAP_ SETFCAP

AWS recommends dropping all unnecessary capabilities from this list, because most
software does not need them. AWS recommends examining the full list of Linux
capabilities, and allowing each tenant to select only those capabilities you permit.
Capabilities are documented on the Capabilities Linux manual page.

AWS also recommends disallowing any containers from running with the privileged
attribute set to true. It is much safer to provide fine-grained privileges by granting
specific capabilities instead. For example, a container that needs to bind to a low-
numbered port can be run with the CAP NET BIND SERVICE capability instead of
running with full privileges. AWS also recommends disallowing the CAP SYS ADMIN and
CAP NET ADMIN capabilities, because they allow near-privileged access to the host.

dWs

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

Admission controllers, discussed later in this document, can help enforce these
restrictions.

Forbid running tenant containers as root

To simplify administration, Kubernetes containers share a user-ID namespace with the
host by default. This means that UID 100 inside the container is identical to UID 100 on
the host. The same is true for UID 0 (for example, the root user).

By default, containers start running as UID 0 (root). This poses several risks. For
example, if an unauthorized user compromises the application, they could read and
write files inside the container’s filesystem or gain remote access to it. If any host
filesystems are mounted into the container, the attacker could read and write any files
within them. Finally, if the container is run in privileged mode, the attacker unauthorized
user could obtain host-level access. This could compromise not only the host itself, but
also the control plane.

AWS recommends that each Dockerfile used to build a tenant’s container image
specify a USER directive that is a non-root user name or ID. In addition, AWS
recommends each tenant’s container be run with a specific user ID, group ID, and
fsGroup (equal to the group ID) in the SecurityContext of a Kubernetes container
specification.

Note: Pods that need to access Secrets or utilize IAM roles for service
accounts, and that are not running as root, must specify an £sGroup in

their securityContext that matches the group ID. This will prevent
permission errors related to file ownership.

Admission controllers, discussed later in this document, can help enforce these
restrictions.

Restrict mounting host filesystems

Containers have the ability to mount volumes from the host into them. This is a useful
feature in some circumstances, but poses significant risks.

First, containers might be able to view Secrets from the host or other containers. For
example, if /var/1ib is mounted from the host into the container, files in other

containers—including Secrets—would be visible as well.

dWs

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

Containers that run as root will have unrestricted write access to the host file system.
This could allow an unauthorized user to modify kubelet settings, create symbolic links
to directories or files in another sensitive location (such as /etc/shadow), install

Secure Shell (SSH) keys, corrupt essential files, or perform other malicious activities.

AWS recommends restricting containers from mounting host filesystems unless strictly
necessary. It is rare for a container in a Software as a Service (SaaS) environment to
need access to the host. Where it is required, AWS recommends enforcing read-only
mounts so that files cannot be written on the host.

Admission controllers, later in this document, can help enforce these restrictions.

Restrict the use of host networking and block access
to instance metadata service

The EC2 Instance Metadata Service (IMDS) is accessible to all EC2 instances by
default. This service provides useful introspection facilities, such as determining a
node’s availability zone, instance ID, and so forth. In addition, IMDS provides access to
IAM credentials that allow applications to assume the instance’s IAM role.

By default, every EC2 node in an EKS cluster is provided certain privileges necessary to
bootstrap itself and assign IP addresses to pods. For example, a node can attach a
VPC network interface and discover information about the EKS cluster it attaches to.
While these privileges are required for the node to operate effectively, it is not usually
desirable that the pods running on the node inherit these privileges.

One way to block pod IMDS access is to apply a network policy, enforced by an add-on

such as Calico, to ensure pods are unable to reach the Instance Metadata Service. To
do this, configure your network policy to block egress traffic to 169.254.0.0/16.

Another way to block pod IMDS access is to require IMDS version 2 (IMDSv2) to be
used, and to set the maximum hop count to 1. Configuring IMDS this way will cause
requests to IMDS from pods to be rejected, provided those pods do not use host
networking.

Additionally, AWS recommends forbidding untrusted pods from using host networking.
Admission controllers, discussed later in this document, can enforce this prohibition.

dWs

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

Restrict creation of services with external IP
addresses

A core feature of Kubernetes is a Service abstraction. Service abstractions work in part
by creating Domain Name System (DNS) entries in the cluster, visible by all pods, that
point to IP addresses. These IP addresses might be pods, or they might be external
addresses.

Additionally, any Kubernetes Service that has an external IP address will cause alll
traffic to that address from any of the pods in the cluster to be sent to that service—
even that IP address actually belongs to a third party.

To illustrate, consider a hypothetical service on the internet with an address of
1.2.3.4. Ifatenant creates a Kubernetes service with an external IP address of
1.2.3.4, all traffic destined for 1.2.3.4 from inside the cluster will be intercepted by

that service. This poses a significant security risk for a man-in-the-middle (MITM) attack.

AWS recommends forbidding tenants from creating Services having external IP
addresses. Customers can enforce this by using admission controllers, including these
controllers available on GitHub.

Additionally, AWS recommends forbidding tenants from being able to patch any status
fields of any Kubernetes objects. This is not normally permitted, but care should be
taken not to enable it by any cluster RBAC policies.

Apply a Seccomp profile to containers

Seccomp is a Linux kernel feature that restricts programs from making unauthorized
system calls, or syscalls. Syscalls are how programs interact with the Linux kernel. For
example, a program that wants to write to standard output might use the write (2)
syscall. Many syscalls are harmless, but others can be used to escalate privileges,
adjust kernel settings, or perform other undesirable actions.

By default, containers will be run “unconfined,” which allows them to invoke any syscall.
Instead, AWS recommends enabling the default Seccomp profile provided by the
container runtime. This profile allows most system calls, but excludes some that are
considered high risk. See Seccomp security profiles for Docker for a list of default
permitted and denied syscalls.

dWs

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

To enable this profile, in each Pod or container's SecurityContext, specify a
seccompProfile with a type of RuntimeDefault. See Set the Seccomp Profile for a
Container for more information.

It is also possible to run a container with a custom Seccomp profile. This can be used to
further restrict the syscalls that may be invoked, or permit syscalls that would otherwise
be forbidden. Tools such as strace (1) or Sysdig Inspect can be used to determine

which syscalls an application makes.

Apply SELinux profiles to containers

SELinux is an enhanced security feature that is available in Linux. It was originally
developed by the United States National Security Agency (NSA) to provide mandatory
access controls to the operating system.

SELinux goes well beyond the basic UNIX permission model by introducing the concept
of labeling to processes and files, and fine-grained policies that control what sorts of
permissions processes have to access files and perform sensitive operations. If a policy
permits the operation, access is granted. Otherwise—even if the UNIX permission
model would allow it—access is denied.

AWS recommends enabling SELinux on EC2 instances that host multi-tenant EKS
workloads. This requires an SELinux-enabled Linux distribution such as Bottlerocket,
Red Hat Enterprise Linux 7 or later, or CentOS 7 or later. On non-Bottlerocket
distributions, it also requires an SELinux-enabled container runtime engine such as
Docker CE 19 or later. SELinux is not available with Amazon Linux 2 at this time.

When SELinux is enabled, most non-privileged pods will automatically have their own
multi-category security (MCS) label applied to them. This MCS label is unique per Pod,
and is designed to ensure that a process in one Pod cannot manipulate a process in
any other Pod or on the host. Even if a labeled Pod runs as root and has access to the
host filesystem, it will be unable to manipulate files, make sensitive system calls on the
host, access the container runtime, or obtain kubelet’s secret key material.

Here is an example of how to configure an SELinux MCS label for a Pod. In this case,
the category IDs are c123 and c456, which you can associate with a unique Pod.

(SELinux requires a process have at least two category IDs.)

securityContext:
selLinuxOptions:
level: "s0:c123,c456"

dWs

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

Note: AWS recommends assigning a unique MCS label for each Pod in a
cluster. There are edge cases in which MCS labels are not automatically
applied, such as when a container has the hostPID flag enabled.

Privileged Pod processes have an SELinux label:

(system u:system r:spc t:s0) that allows them full access to the
container host. Therefore, it remains necessary to supplement SELinux
with additional controls that prevent creating privileged pods or enabling
the hostPID flag.

The AWS VPC Container Networking (CNI) controller must be run in
privileged mode on nodes running SELinux.

Use admission controllers to enforce security policies

Admission controllers are a powerful feature in Kubernetes. These controllers intercept
requests to create new objects or mutate existing objects in a cluster, and take one or
more actions. Admission controllers can modify a request to conform to a designated
policy (a “mutating webhook”), or they can reject a request altogether (a “validating
webhook”).

AWS recommends that customers running multi-tenant clusters implement one or both
of the following security policy enforcement mechanisms.

Pod Security Policies (PSPs)

Every EKS cluster comes with a built-in admission controller capable of enforcing Pod
Security Policies (PSPs). These policies are ordinary Kubernetes objects that a cluster
administrator can create. For details, see Pod Security Policies.

Here is an example of a policy that forbids running privileged Pods:

apiVersion: policy/vlbetal
kind: PodSecurityPolicy
metadata:
name: DisallowPrivilegedPods
spec:
privileged: false
The rest fills in some required fields.
selLinux:
rule: RunAsAny
supplementalGroups:
rule: RunAsAny

dWs

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

runAsUser:

rule: RunAsAny
fsGroup:

rule: RunAsAny

volumes:
— Tk

A more complex policy can be found in the Appendix of this document. This policy does

the following:

e Disallows privileged pods

e Disallows privilege escalation

e Requires all capabilities be dropped

e Forbids host volumes from being mounted

e Forbids using host networking, Inter-Process Communication (IPC) with the
host, and using host process IDs (PIDs)

e Forbids running as root
e Requires a default Seccomp profile

By default, EKS provides an unrestricted Pod Security Policy. AWS recommends
removing the default cluster role binding of the eks.privileged policy to all

authenticated users. You can do this by editing the
eks:podsecuritypolicy:authenticated cluster role binding to remove the

system:authenticated group from the subject list. If you have created an alternative

administrator group for your cluster, you can replace the system:authenticated
group with your administrator group instead:

apiVersion: rbac.authorization.k8s.io/vl
kind: ClusterRoleBinding
metadata:
name: eks:podsecuritypolicy:authenticated
annotations:
kubernetes.io/description: 'Allow all authenticated users to
create privileged pods.'
labels:
kubernetes.io/cluster—-service: "true"
eks.amazonaws.com/component: pod-security-policy
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: eks:podsecuritypolicy:privileged
subjects:

dWs

10

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

- kind: Group
apiGroup: rbac.authorization.k8s.io
Replace this with your administrator group name
name: system:authenticated

WARNING: Be careful when making these or other changes to your
cluster. They may prevent you from creating new pods until replacement
policies, appropriate roles, and/or role bindings are created.

Open Policy Agent (OPA)

Open Policy Agent (OPA) is a powerful, open-source general-purpose policy agent. At
its core, OPA evaluates configurations against a set of rules you define, using a
domain-specific language called Rego. Although OPA is flexible enough to work with
just about any kind of structured data, it is most frequently used to enforce policies
inside Kubernetes clusters.

OPA is capable of providing much more extensive policy management than a Pod
Security Policy. PSPs are limited to Pods, while OPA can manage nearly any kind of
Kubernetes object. And while PSPs are only able to apply a limited set of policies to a
pod, OPA can apply powerful validators such as pattern matchers to any field in an
object. For example, with OPA, you can also require that all container images be pulled
from a trusted image repository.

The following is an example of a Rego policy that prohibits the creation of privileged
containers:

package kubernetes.admission

deny[message] {
match only if a Pod is being created
input.request.kind.kind == "Pod"

examine each container

container := input.request.object.spec.containers|[]

match if privileged is set

container.securityContext.privileged

message := sprintf ("Container %v runs in privileged mode.",
[contalner.name])

}

dWs

11

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

OPA is rapidly evolving. Customers can choose from several different implementations
to run in their EKS clusters. Kube-mgmt is the original implementation and is still widely
used. Gatekeeper is the newest implementation and has a powerful template-based
configuration model.

Multiple approaches and methods exist to secure multi-tenant workloads in Amazon
EKS clusters. The best way to ensure complete separation of mutually-untrusted
workloads is by operating a dedicated EKS cluster for each tenant. Nevertheless, there
are many mitigating controls you can apply that can help you achieve a higher level of
security for multi-tenant workloads on a shared cluster.

New techniques for improving container isolation are on the horizon. Technologies such
as Firecracker (an AWS-built open-source lightweight virtual machine manager) and
Bottlerocket (an AWS-built open-source container-oriented Linux distribution) are
undergoing development. Eventually, AWS expects these technologies to be
incorporated into production-grade solutions for AWS customers running siloed multi-
tenant workloads on Kubernetes. AWS will provide updates as these solutions become
available.

apiVersion: policy/vlbetal
kind: PodSecurityPolicy
metadata:
name: Tenant
annotations:
seccomp.security.alpha.kubernetes.io/allowedProfileNames:
'docker/default, runtime/default’
seccomp.security.alpha.kubernetes.io/defaultProfileName:
'runtime/default’
spec:
privileged: false
Required to prevent escalations to root.
allowPrivilegeEscalation: false
This is redundant with non-root + disallow privilege
escalation,
but we can provide it for defense in depth.
requiredDropCapabilities:

dWs

12

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

- ALL
Allow core volume types.
volumes:
- 'configMap'
- 'emptyDir'
- 'projected'
- 'secret'
'downwardAPI'
Assume that persistentVolumes set up by the cluster admin are
safe to use.
- 'persistentVolumeClaim'
hostNetwork: false
hostIPC: false
hostPID: false
runAsUser:
Require the container to run without root privileges.
rule: 'MustRunAsNonRoot'
selLinux:
This policy assumes the nodes are using AppArmor rather than
SELinux.
rule: 'RunAsAny'
supplementalGroups:

rule: 'MustRunAs'
ranges:
Forbid adding the root group.
- min: 1
max: 65535
fsGroup:
rule: 'MustRunAs'
ranges:
Forbid adding the root group.
- min: 1
max: 65535

Contributors to this document include:

¢ Michael Fischer, Senior Specialist Solutions Architect (Containers), Amazon
Web Services

e Tod Golding, Principal Partner Solutions Architect (SaaS), Amazon Web
Services

aws
13

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

Document revisions

Date Description

June 4, 2021 First publication

dWs

	Overview
	Recommendations
	Use multiple clusters to separate tenant workloads
	Use tenant-dedicated Worker nodes
	AWS Fargate
	Amazon EC2 Worker nodes

	Node Authorization Mode
	Do not provide direct access to Kubernetes or EKS APIs
	Use Namespaces to separate tenant workloads
	Restrict container privileges
	Forbid running tenant containers as root
	Restrict mounting host filesystems
	Restrict the use of host networking and block access to instance metadata service
	Restrict creation of services with external IP addresses
	Apply a Seccomp profile to containers
	Apply SELinux profiles to containers
	Use admission controllers to enforce security policies
	Pod Security Policies (PSPs)
	Open Policy Agent (OPA)

	Conclusion
	Appendix: strict pod security policy for an untrusted tenant
	Contributors
	Document revisions

