d
-,
5]
&
$ kubectl get pod jump-pod -o yaml d g -
apiVersion: vl ki & °
% o €
kind: Pod o
metadata: @ G “ &
name: jump-pod S T
naTespace: default e E
spec: &
containers: & i
- image: nigelpoulton/curl:1.0 =
imagePullPolicy: IfNotPresent €
name: jump-ctr =
stdin: true d
tty: true *

volumeMounts: o
- mountPath: /var/run/secrets/kubernetes. 1o/serv1ceaccount
name: default-token-2g29h -
readOnly: true @ :
dnsPolicy: ClusterFirst

THE
KUBERNE
BOOK

>,
(& a0

a8

Nigel Poult®n

& Pushkar Joglekar




The Kubernetes Book

Nigel Poulton
This book is for sale at http://leanpub.com/thekubernetesbook
This version was published on 2021-04-21

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

© 2017 - 2021 Nigel Poulton


http://leanpub.com/thekubernetesbook
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!

Please help Nigel Poulton by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought The Kubernetes Book from @nigelpoulton and can’t wait to get into this!
The suggested hashtag for this book is #kubernetes.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

#kubernetes


http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20The%20Kubernetes%20Book%20from%20@nigelpoulton%20and%20can't%20wait%20to%20get%20into%20this!
https://twitter.com/search?q=%23kubernetes
https://twitter.com/search?q=%23kubernetes

Education is about inspiring and creating opportunities. I hope this book, and my video training courses, inspire
you and create lots of opportunities!
A huge thanks to my family for putting up with me. I'm a geek who thinks he’s software running on midrange
biological hardware. I know it’s not easy living with me.
Thanks to everyone who watches my Pluralsight and A Cloud Guru training videos. I love connecting with you
and appreciate all the feedback I've had over the years. This feedback is what inspired me to write this book. I
think you’ll love it, and I hope it helps drive your career forward.

@nigelpoulton



Contents

0: Preface . . .. ...

Paperbacks, hardbacks, eBooks, audio, and translations . . . . . . . .. ... ... ... ...
The book’s GitHubrepo . . . . . . . . . . . e
Feedback and contactingme . . . . . . . . . L

1: Kubernetes primer .

Kubernetes background . . . . . . . . ...
Kubernetes as the operating system of thecloud . . . . . .. ... ... .. ... ... ... ..

Chapter summary .

2: Kubernetes principles of operation . . . . . . . ... ... o L
Kubernetes from 40K feet . . . . . . . . . . . .
Control plane and worker nodes . . . . . . . ... Lo

Kubernetes DNS . .

Packaging apps for Kubernetes . . . . . . . . . . . ...
The declarative model and desired state . . . . . . . . . . . .. ... ... ... .. .. ... .

Pods . .......
Deployments . . . .

Service objects and stable networking . . . . . ... ..o

Chapter summary .

3: Getting Kubernetes .

Kubernetes playgrounds . . . . . . . . ...

Hosted Kubernetes .

DIY Kubernetes clusters . . . . . . . . . . . .
Getting Kubernetes to follow along with the examples . . . . . . .. ... . ... ... ... ...

Play with Kubernetes
Docker Desktop . . .

Google Kubernetes Engine (GKE) . . . . . . . . . . . ... ... .
Other installation methods . . . . . . . . . ... Lo

kubectl . . ... ..
Chapter summary .

4: Working with Pods .
Pod theory . . . ..
Multi-container Pods

[ N

O N W W

10
10
12
16
17
18
19
22
22
23

25
25
25
26
26
26
29
30
31
31
33

34
34
41



CONTENTS

Hands-onwithPods . . . . . . . . . .. ... 42
Clean-up . . . . . . . 52
Chapter Summary . . . . . . . . ... 52
5: Virtual clusters with Namespaces . . . . . . . . .. ... ... ... .. 53
Use cases for Namespaces . . . . . . . . . o v v v it 53
Inspecting Namespaces . . . . . . . . . . ... L 54
Creating and managing Namespaces . . . . . . . . . . . . . . . . i 55
Deploying to Namespaces . . . . . . . . . . . .. ... 57
Clean-up . . . . . . . . 58
Chapter Summary . . . . . . . . . .. 58
6: Kubernetes Deployments . . . . . . . . . . . ... 59
Deployment theory . . . . . . . . . .. 59
Create a Deployment . . . . . . . . . . . . e 65
Perform scaling operations . . . . . . . . . .. L 70
Performarollingupdate . . . . . . . . ... 71
Performarollback . . . . . . ... 75
Clean-up . . . . . . o e 78
Chapter SUMmMATry . . . . . . . . ottt e e e e e e e e 78
7:Kubernetes Services . . . . . . . ... e 79
Setting the scene . . . . . . . . .. 79
Service Theory . . . . . . . . . L 79
Hands-on with Services . . . . . . . . . . . .. 86
Clean-up . . . . . . . 91
Chapter Summary . . . . . . . . ... 91
8:Ingress . . .. L 92
Setting the Scene for Ingress . . . . . . . . .. L 92
Ingress architecture . . . . . . . ... 93
Hands-on withIngress . . . . . . . . . . . . L 94
Clean-up . . . . . . o e e 103
Chapter SUMmMAry . . . . . . . . ottt e e e e e e e e 104
9: Service discovery deepdive . . . . . . ... 105
Quick background . . . . ..o 105
Service registration . . . . . . ... L oL e 105
Service diSCOVETY . . . . . . . . L e e 109
Service discovery and Namespaces . . . . . . . . . . . . ..o 112
Troubleshooting service discovery . . . . . . . . . ... . Lo 118
Summary . . ..o e e 120
10: Kubernetes storage . . . . . . . . . ... 121
Thebigpicture . . . . . . . ... 121
Storage Providers . . . . . . . .. 123
The Container Storage Interface (CSI) . . . . . . . . . . . . i 123

The Kubernetes persistent volume subsystem . . . . . . . . . . . ... ... ... . 123



CONTENTS

11:

12:

13:

14:

15:

16:

Dynamic provisioning with Storage Classes . . . . . . . . . . . ... ... oo 125
Hands-on . . . . . . . ... 129
Clean-up . . . . . . . . 133
Chapter Summary . . . . . . . . ... e 133
ConfigMaps and Secrets . . . . . . . . . . ... 134
Thebig picture . . . . . . . . .. 134
ConfigMap theory . . . . . . . . . . .. e 136
Hands-on with ConfigMaps . . . . . . . . . . .. . ... 138
Hands-on with Secrets . . . . . . . . . ... 147
Clean-up . . . . . . . . 152
Chapter Summary . . . . . . . . ... e e 152
StatefulSets . . . . . . . . L 153
The theory of StatefulSets . . . . . . . . . . . . 153
Hands-on with StatefulSets . . . . . . . . ... ... 157
Chapter Summary . . . . . . . . .. 167
APIsecurityand RBAC . . . . . . . . . . .. 168
APIsecurity big picture . . . . . . . . ... 168
Authentication . . . . . ... e 169
Authorization (RBAC) . . . . . . . . . e 170
Admission control . . . ... Lo 177
Chapter SUMmMATry . . . . . . . . v vttt e e e e e e e 178
The Kubernetes API . . . . . . . . . . . . . ... e 179
Kubernetes API big picture . . . . . . . . . . . ... 179
The APIserver . . . . . . . . . . . . e 182
The APL. . . . . . 186
Chapter SUMMATY . . . . . . . . ottt e e e e 196
Threat modeling Kubernetes . . . . . . . . . . .. .. ... .. ... 198
Threatmodel . . . . . . . . . .. 198
Spoofing . . . ... 198
Tampering . . . . ... 200
Repudiation . . . . . . . . . .. L 202
Information Disclosure . . . . . . . . ... 204
Denial of Service . . . . . . . . . 205
Elevation of privilege . . . . . . . . . .. 207
Pod Security Policies . . . . . . . . .. 212
Towards more secure Kubernetes . . . . . . . . . . . . ... L 214
Chapter summary . . . . . . . . . ... e e e 214
Real-world Kubernetes security . . . . . . . . . ... ... 215
CI/CDpipeline . . . . . . . . .. 215
Infrastructure and networking . . . . . . ... 220
Identity and access management (IAM) . . . . . . . . . . Lo 225

Auditing and security monitoring . . . . . . . ... 226



CONTENTS

Real world example . . . . . . . . . . L 228
Chapter SUMMAry . . . . . . . . . vttt 228
Terminology . . . . . . . . . 229
Outro . . . . . . 234
About the frontcover . . . . . . ... 234
A word on the icons used in diagrams . . . . . . . ... 234
Connectwithme . . . . . . . . . . e 235

Feedback and reviews . . . . . . . . . . . e 235



0: Preface

Kubernetes is developing fast. With this in mind, I'm fully committed to updating this book every year. And
when I say “update”, I mean real updates — every word and every concept will be reviewed, and every example
will be tested and updated against the latest version of Kubernetes. Make no mistake, I'm 100% committed to
making this the best Kubernetes book in the world.

If an update every year seems like a lot... welcome to the new normal.

We no longer live in a world where a 2-year-old book on Kubernetes is valuable. Don’t get me wrong, as an
author, I'd love to write a book that was valuable for 5 years. It’s just not the world we live in anymore. Again,
welcome to the new normal.

Paperbacks, hardbacks, eBooks, audio, and translations

At the time of writing, there’s an English language paperback in every Amazon market that supports the Amazon
self-publishing platform (KDP).

The following additional paperbacks are also available (or will be very shortly):

« Indian sub-continent version via Shroff Publishers and Amazon.in
« Simplified Chinese via Posts & Telecom Press Co. LTD in China and Amazon.cn

« Large-print paperback for anyone who finds it easier to read larger print

eBook copies are available from leanpub.com, Amazon Kindle, and several other subscription-based platforms.
The following editions are currently being created and will be released as soon as possible via as many markets
as possible.

« Spanish translation

« Russian translation

« English hardback
There’s also a high quality audio version of the March 2019 edition on Audible. I did a bit of tweaking to make
it easier to listen to, and feedback has been all positive.
Finally, there’s a Klingon edition of the book, and a Borg edition. Yes, you read that right.

The Klingon edition has a special front-cover with the book title and YAML extract in Klingon font. The Borg
edition is the same, just in Borg font. For both editions, the actual content of the book is in English. Think of
them as collector’s editions for Star Trek fans.

The book’s GitHub repo

The book has a GitHub repo with all the YAML code and examples used throughout the book.
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https://github.com/nigelpoulton/TheK8sBook

You don’t have to, but It’s recommended to clone the repo locally (that’s jargon for copying it to your computer).
You’ll need to install git and then run the following command.

$ git clone https://github.com/nigelpoulton/Thek8sBook.git

This creates a new folder in your current working directory called ThekgsBook with all the files you need to follow
the examples.

Feedback and contacting me

If you like the book, I'd be stoked if you gave it a review and a few stars on Amazon. No pressure though, we’re
all busy.

You can reach me on any of the following:

- twitter.com/nigelpoulton
« nigelpoulton.com
« linkedin.com/in/nigelpoulton

« youtube.com/nigelpoulton

If you want to submit a content suggestion, or a potential fix, drop me an email at tkbenigelpoulton.com. I'll do
my best to respond.

Enjoy the book!



1: Kubernetes primer

This chapter is split into two main sections.

«+ Kubernetes background - where it came from etc.

+ Kubernetes as the Operating System of the cloud

Kubernetes background

Kubernetes is an application orchestrator. For the most part, it orchestrates containerized cloud-native microser-
vices apps. How about that for a sentence full of buzzwords!

You’ll come across terms like this a lot, so let’s take a minute to explain what each of them means.

What is an orchestrator

An orchestrator is a system that deploys and manages applications. It can deploy your applications and
dynamically respond to changes. For example, Kubernetes can:

» Deploy your application

« Scale it up and down dynamically based on demand

« Self-heal it when things break

« Perform zero-downtime rolling updates and rollbacks

» Lots more...
And the best part about Kubernetes... it does all of this without you having to supervise or get involved. Obviously,

you have to set things up in the first place, but once you’ve done that, you sit back and let Kubernetes work its
magic.

What is a containerised app

A containerized application is an app that runs in a container.

Before we had containers, applications ran on physical servers or in virtual machines. Containers are just the
next iteration of how we package and run apps. As such, they’re faster, more lightweight, and more suited to
modern business requirements than servers and virtual machines.

Think of it this way.
+ Apps ran on physical servers in the open-systems era (1980s and 1990s)
+ Apps ran in virtual machines in the virtualisation era (2000s and into the 2010s)

« Apps run in containers in the cloud-native era (now)

While Kubernetes can orchestrate other workloads, such as virtual machines and serverless functions, it’s most
commonly used to orchestrate containerised apps.
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What is a cloud-native app

A cloud-native application is one that’s designed to meet cloud-like demands of auto-scaling, self-healing, rolling
updates, rollbacks and more.

It’s important to be clear that cloud-native apps are not applications that will only run in the public cloud. Yes,
they absolutely can run on public clouds, but they can also run anywhere that you have Kubernetes, even your
on-premises datacenter.

So, cloud-native is about the way applications behave and react to events.

What is a microservices app

A microservices app is built from lots of independent small specialised parts that work together to form a
meaningful application. For example, you might have an e-commerce app that comprises all of the following
small specialised components:

« Web front-end

« Catalog service

« Shopping cart

« Authentication service
» Logging service

Persistent store

Each of these individual services is called a microservice. Typically, each is coded and owned by a different
team. Each can have its own release cycle and can be scaled independently. For example, you can patch and scale
the logging microservice without affecting any of the others.

Building applications this way is vital for cloud-native features.

For the most part, each microservice runs as a container. Assuming this e-commerce app with the 6 microservices,
there’d be one or more web front-end containers, one or more catalog containers, one or more shopping cart
containers etc.

With all of this in mind, let’s re-phrase that definition that was full of buzzwords...

Kubernetes deploys and manages (orchestrates) applications that are packaged and run as containers (container-
ized) and that are built in ways (cloud-native microservices) that allow them to scale, self-heal, and be updated
in-line with modern cloud-like requirements.

We’ll talk about these concepts a lot throughout the book, but for now, this should help you understand some of
the main industry buzzwords.

Where did Kubernetes come from

Let’s start at the beginning...

Amazon Web Services (AWS) changed the world when it brought us modern cloud computing. Since then,
everyone else has been playing catch-up.
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One of the companies trying to catch-up was Google. Google has its own very good cloud, and needs a way to
abstract the value of AWS, and make it easier for potential customers to get off AWS and onto their cloud.

Google also has a lot of experience working with containers at scale. For example, huge Google applications,
such as Search and Gmail, have been running at extreme scale on containers for a lot of years - since way before
Docker brought us easy-to-use containers. To orchestrate and manage these containerised apps, Google had a
couple of in-house proprietary systems called Borg and Omega.

Well, Google took the lessons learned from these in-house systems, and created a new platform called Kubernetes,
and donated it to the newly formed Cloud Native Computing Foundation (CNCF) in 2014 as an open-source
project.

7 CLOUD NATIVE
k=l COMPUTING FOUNDATION

https://www.cncf.io

Figure 1.1

Kubernetes enables two things Google and the rest of the industry needs.

1. It abstracts underlying infrastructure such as AWS

2. It makes it easy to move applications on and off clouds

Since its introduction in 2014, Kubernetes has become the most important cloud-native technology on the planet.

Like many of the modern cloud-native projects, it’s written in Go (Golang), it’s built in the open on GitHub (at
kubernetes/kubernetes), it’s actively discussed on the IRC channels, you can follow it on Twitter (@kubernetesio),
and slack.k8s.io is a pretty good slack channel. There are also regular meetups and conferences all over the
planet.

Kubernetes and Docker

Kubernetes and Docker are complementary technologies.

Docker has tools that build and package applications as container images. It can also run containers. Kubernetes
can’t do either of those things. Instead, Kubernetes operates at a higher level providing orchestration services
such as self-healing, scaling and updates.

It’s common practice to use Docker for build-time tasks such as packaging apps as containers, but then use a
combination of Kubernetes and Docker to run them. In this model, Kubernetes performs high-level orchestration
tasks such as self-healing, scaling and rolling updates, but it needs a tool like Docker to perform low-level tasks
such as starting and stopping containers.

Assume you have a Kubernetes cluster with 10 nodes to run your production applications. Behind the scenes,
each cluster node is running Docker as its container runtime. This means Docker is the low-level technology
that starts and stops the containerised applications. Kubernetes is the higher-level technology that looks after
the bigger picture, such as deciding which nodes to run containers on, deciding when to scale up or down, and
executing updates.

Figure 1.2 shows a simple Kubernetes cluster with some nodes using Docker as the container runtime.



1: Kubernetes primer 6

K8s Cluster

node, ) node . node . node, 5 node .
Runtime Runtime Runtime Runtime Runtime

||
L 1]
w :nntainerm :nntainerm @ kata

Figure 1.2

As can be seen, Docker isn’t the only container runtime Kubernetes supports. In fact, Kubernetes has a couple of
features that abstract the container runtime and make it interchangeable:

1. The Container Runtime Interface (CRI) is an abstraction layer that standardizes the way 3rd-party
container runtimes work with Kubernetes.

2. Runtime Classes allows you to create different classes of runtimes. For example, the gVisor or Kata
Containers runtimes might provide better workload isolation than the Docker and containerd runtimes.

Kubernetes 1.20 deprecated Docker as a runtime. Container images created by Docker will continue to work
as normal, and this won’t change. But a future release of Kubernetes will end support of Docker as a runtime.
To streamline the deprecation process, many Kubernetes clusters already ship with containerd as the default
runtime. containerd is effectively a stripped-down version of Docker with just the stuff that Kubernetes needs.
It’s pronounced container dee and is a strategic Kubernetes container runtime.

While all of this is interesting, it’s low-level stuff that shouldn’t impact your Kubernetes learning experience. For
example, whichever container runtime you use, the regular Kubernetes commands and patterns will continue to
work as normal.

What about Kubernetes vs Docker Swarm

In 2016 and 2017 we had the orchestrator wars where Docker Swarm, Mesosphere DCOS, and Kubernetes
competed to become the de-facto container orchestrator. To cut a long story short, Kubernetes won.

However, Docker Swarm is still under active development and is popular with small companies that need a simple
alternative to Kubernetes.

Kubernetes and Borg: Resistance is futile!

There’s a good chance you’ll hear people talk about how Kubernetes relates to Google’s Borg and Omega systems.

As previously mentioned, Google has been running containers at scale for a long time — apparently crunching
through billions of containers a week. So yes, Google has been running things like search, Gmail, and GFS on
lots of containers for a very long time.

Orchestrating these containerised apps was the job of a couple of in-house technologies called Borg and Omega.
So, it’s not a huge stretch to make the connection with Kubernetes — all three are in the game of orchestrating
containers at scale, and they’re all related to Google.
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However, it’s important to understand that Kubernetes is not an open-sourced version of Borg or Omega. It’s
more like Kubernetes shares its DNA and family history with them.

Borg Omega Kubernetes
(Proprietary) (Proprietary) (open-source)

Figure 1.3 - Shared DNA

The point is, all three are separate, but all three are related. In fact, some of the people who built Borg and Omega
were, and still are, involved with Kubernetes. So, although Kubernetes was built from scratch, it leverages much
of what was learned at Google with Borg and Omega.

As things stand, Kubernetes is an open-source project donated to the CNCF in 2014. It’s licensed under the Apache
2.0 license, version 1.0 shipped way back in July 2015, and at-the-time-of-writing, we’re already into the 1.20’s.

Kubernetes - what's in the name

The name Kubernetes (koo-ber-net-eez) comes from the Greek word meaning Helmsman - the person who
steers a seafaring ship. This theme is reflected in the logo, which is the wheel (helm control) of a ship.

Figure 1.4 - The Kubernetes logo

Some of the people involved in the creation of Kubernetes wanted to call it Seven of Nine. If you know your Star
Trek, you’ll know that Seven of Nine is a Borg drone rescued by the crew of the USS Voyager under the command
of Captain Kathryn Janeway. Sadly, copyright laws prevented it from being called Seven of Nine. So the creators
gave the logo seven spokes as a tip-of-the-hat to Seven of Nine.

One last thing about the name before moving on. You’'ll often see it shortened to “K8s” (pronounced “kates”). The
number 8 replaces the 8 characters between the “K” and the “s” and is why people sometimes joke that Kubernetes
has a girlfriend called Kate.

Kubernetes as the operating system of the cloud

Kubernetes has emerged as the de facto platform for deploying and managing cloud-native applications. In many
ways, it’s like an operating system (OS) for the cloud. Consider this:
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« You install a traditional OS (Linux or Windows) on a server, and it abstracts server resources and schedules
application processes

« You install Kubernetes on a cloud, and it abstracts cloud resources and schedules application microservices

In the same way that Linux abstracts the hardware differences between server platforms, Kubernetes abstracts
the differences between different private and public clouds. Net result... as long as you’re running Kubernetes, it
doesn’t matter if the underlying systems are on premises in your own datacenter, edge devices, or in the public
cloud.

With this in mind, Kubernetes is a major step towards a true hybrid cloud, allowing you to seamlessly move and
balance workloads across multiple different public and private cloud infrastructures. You can also migrate to and
from different clouds, meaning you can choose a cloud today and not have to stick with that decision for the rest
of your life.

Cloud scale

Generally speaking, cloud-native microservices applications make our previous scalability and complexity
challenges look easy — we’ve just said that Google goes through billions of containers every week!

That’s great, but most of us are nothing like Google. What about the rest of us?

Well... as a general rule, if your legacy apps have hundreds of VMs, there’s a good chance your containerized
cloud-native microservices apps will have thousands of containers. With this in mind, you’ll need help managing
them.

Say hello to Kubernetes.

Also, we live in a business and technology world that’s increasingly fragmented and constantly in a state of
disruption. With this in mind, we desperately need a framework and platform that is widely accepted and hides
complexity.

Again, say hello to Kubernetes.

Application scheduling

A typical computer is a collection of CPU, memory, storage, and networking. But modern operating systems
have done a great job abstracting that. For example, how many developers care which CPU core or exact memory
address their application uses? Not many, we let the OS take care of things like that. And it’s a good thing, making
the world of application development a far friendlier place.

Kubernetes does a similar thing with cloud and datacenter resources. At a high-level, a cloud or datacenter is
a pool of compute, network and storage resources. Kubernetes abstracts them, meaning you don’t have to hard
code which node or storage volume your applications run on, you don’t even have to care which cloud they run
on. Kubernetes takes care of all that.

So, gone are the days of naming your servers, mapping storage volumes in a spreadsheet, and otherwise treating
your infrastructure assets like pets. Modern cloud-native apps don’t usually care. In the cloud-native world, we
just say “Hey Kubernetes, here’s an app. Please deploy it and make sure it keeps running...".
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A quick analogy...

Consider the process of sending goods via a courier service.

You package the goods in the courier’s standard packaging, slap one of their labels on it, and hand it over to the
courier. The courier is responsible for everything else. This includes all the complex logistics of which planes and
trucks it goes on, which highways to use, and who the drivers should be etc. They also provide services that let
you do things like track your package and make delivery changes. The point is, the only thing you have to do is
package and label the goods. The courier does everything else.

It’s the same for apps on Kubernetes. You package the app as a container, give it a Kubernetes manifest, and let
Kubernetes take care of deploying it and keeping it running. You also get a rich set of tools and APIs that let you
introspect (observe and examine) it. It’s a beautiful thing.

Chapter summary

Kubernetes was created by Google based on lessons learned running containers at scale for a lot of years. It was
donated to the community as an open-source project and is now the industry standard API for deploying and
managing cloud-native applications. It runs on any cloud or on-premises datacenter and abstracts the underlying
infrastructure. This allows you to build hybrid clouds, as well as migrate on and off the cloud and between
different clouds. It’s open-sourced under the Apache 2.0 license and lives within the Cloud Native Computing
Foundation (CNCF).

Tip!

Kubernetes is a fast-moving project under active development. But don’t let this put you off — embrace it. Change
is the new normal.

To help you keep up to date, feel free to follow me and subscribe to my newsletter and YouTube channel.

« nigelpoulton.com
- twitter.com/nigelpoulton
« linkedin.com/in/nigelpoulton/

« youtube.com/nigelpoulton



2: Kubernetes principles of operation

In this chapter, you’ll learn about the major components required to build a Kubernetes cluster and deploy an
app. The aim is to give you an overview of the major concepts. So don’t worry if you don’t understand everything
straight away, we’ll cover most things again as you progress through the book, and the hands-on demos will help
everything fall into place.

The chapter is divided as follows:

Kubernetes from 40K feet

« Masters and nodes

Packaging apps for Kubernetes

« The declarative model and desired state
« Pods

+ Deployments

« Services

Kubernetes from 40K feet

At the highest level, Kubernetes is two things:

« A cluster to run applications on

+ An orchestrator of cloud-native microservices apps

Kubernetes as a cluster

Kubernetes is like any other cluster — a bunch of machines to host applications. We call these machines “nodes”,
and they can be physical servers, virtual machines, cloud instances, Raspberry Pis, and more.

A Kubernetes cluster is made of a control plane and nodes. The control plane exposes the API, has a scheduler
for assigning work, and records the state of the cluster and apps in a persistent store. Nodes are where user
applications run.

It can be useful to think of the control plane as the brains of the cluster, and the nodes as the muscle. In this analogy,
the control plane is the brains because it implements the clever features such as scheduling, auto-scaling, and
zero-downtime rolling updates. The nodes are the muscle because they do the every-day hard work of executing
user applications.
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Kubernetes as an orchestrator

Orchestrator is just a fancy word for a system that takes care of deploying and managing applications.
Let’s look at a quick analogy.

In the real world, a football (soccer) team is made of individuals. Every individual is different, and each has
a different role to play in the team — some defend, some attack, some are great at passing, some tackle, some
shoot... Along comes the coach, and she or he gives everyone a position and organizes them into a team with a
purpose. Things go from Figure 2.1 to Figure 2.2.
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The coach also makes sure the team keeps its formation, sticks to the game-plan, and deals with any injuries and
other changes in circumstances.

Well guess what, microservices apps on Kubernetes are the same.
Stick with me on this...

You start out with lots of individual specialised microservices. Some serve web pages, some do authentication,
some perform searches, others persist data. Kubernetes comes along - like the coach in the football analogy —
organizes everything into a useful app and keeps things running smoothly. It even responds to events and other
changes in circumstance.
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In the sports world this is called coaching. In the application world it’s called orchestration. Kubernetes
orchestrates cloud-native microservices applications.

How it works

You start out with an app, package it as a container, then give it to the cluster (Kubernetes). The cluster is made
up of one or more control plane nodes and a bunch of worker nodes.

As already stated, control plane nodes implement the cluster intelligence. Worker nodes are where user
applications run.

You follow this simple process to run applications on a Kubernetes cluster.
. Design and write the application as small independent microservices in your favourite languages.

. Package each microservice as its own container.

. Wrap each container in a Kubernetes Pod.

L R R

. Deploy Pods to the cluster via higher-level controllers such as Deployments, DaemonSets, StatefulSets,
Cronjobs etc.

Now then... this is the beginning of the book and you’re not expected to know what all of this means yet. However,
at a high-level, Kubernetes has several controllers that augment Pods with important features such as self-healing,
scaling, smooth rollouts, and more. Some controllers are for stateless apps, and others are for stateful apps. You’ll
learn all about them as you progress through the book.

Kubernetes likes to manage applications declaratively. This is a pattern where you describe what you want in a
set of YAML files, post them to Kubernetes, then sit back while Kubernetes makes it all happen.

But it doesn’t stop there. Because the declarative pattern tells Kubernetes how an application should look,
Kubernetes can watch it and make sure it doesn’t stray from what you asked for. If something isn’t as it should
be, Kubernetes tries to fix it.

That’s the big picture. Let’s dig a bit deeper.

Control plane and worker nodes

As previously mentioned, a Kubernetes cluster is made of control plane nodes and worker nodes. These are Linux
hosts that can be virtual machines (VM), bare metal servers in your datacenter, or instances in a private or public
cloud. You can even run Kubernetes on ARM and IoT devices.

The control plane

A Kubernetes control plane node is a server running collection of system services that make up the control plane
of the cluster. Sometimes we call them Masters, Heads or Head nodes.

The simplest setups run a single control plane node. However, this is only suitable for labs and test environments.
For production environments, multiple control plane nodes configured for high availability (HA) is vital.
Generally speaking, 3 or 5 is recommended for HA.

It’s also considered a good practice not to run user applications on control plane nodes. This frees them up to
concentrate entirely on managing the cluster.

Let’s take a quick look at the different services making up the control plane.
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The API server

The API server is the Grand Central of Kubernetes. All communication, between all components, must go
through the API server. We’'ll get into the detail later, but it’s important to understand that internal system
components, as well as external user components, all communicate via the API server — all roads lead to the API
Server.

It exposes a RESTful API that you posT YAML configuration files to over HTTPS. These YAML files, which we
sometimes call manifests, describe the desired state of an application. This desired state includes things like which
container image to use, which ports to expose, and how many Pod replicas to run.

All requests to the API server are subject to authentication and authorization checks. Once these are done, the
config in the YAML file is validated, persisted to the cluster store, and work is scheduled to the cluster.

The cluster store
The cluster store is the only stateful part of the control plane and persistently stores the entire configuration and
state of the cluster. As such, it’s a vital component of every Kubernetes cluster — no cluster store, no cluster.

The cluster store is currently based on etcd, a popular distributed database. As it’s the single source of truth for
a cluster, you should run between 3-5 etcd replicas for high-availability, and you should provide adequate ways
to recover when things go wrong. A default installation of Kubernetes installs a replica of the cluster store on
every control plane node and automatically configures HA.

On the topic of availability, etcd prefers consistency over availability. This means it doesn’t tolerate split-brains
and will halt updates to the cluster in order to maintain consistency. However, if this happens, user applications
should continue to work, you just won’t be able to update the cluster config.

As with all distributed databases, consistency of writes to the database is vital. For example, multiple writes
to the same value originating from different places need to be handled. etcd uses the popular RAFT consensus
algorithm to accomplish this.

The controller manager and controllers
The controller manager implements all the background controllers that monitor cluster components and respond
to events.

Architecturally, it’s a controller of controllers, meaning it spawns all the independent controllers and monitors
them.

Some of the controllers include the Deployment controller, the StatefulSet controller, and the ReplicaSet controller.
Each one is responsible for a small subset of cluster intelligence and runs as a background watch-loop constantly
watching the API Server for changes.

The aim of the game is to ensure the observed state of the cluster matches the desired state (more on this shortly).
The logic implemented by each controller is as follows, and is at the heart of Kubernetes and declarative design
patterns.

1. Obtain desired state

2. Observe current state

3. Determine differences
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4. Reconcile differences

Each controller is also extremely specialized and only interested in its own little corner of the Kubernetes cluster.
No attempt is made to over-complicate design by implementing awareness of other parts of the system — each
controller takes care of its own business and leaves everything else alone. This is key to the distributed design of
Kubernetes and adheres to the Unix philosophy of building complex systems from small specialized parts.

Terminology: Throughout the book we’ll use terms like controller, control loop, watch loop, and
reconciliation loop to mean the same thing.

The scheduler

At a high level, the scheduler watches the API server for new work tasks and assigns them to appropriate healthy
worker nodes. Behind the scenes, it implements complex logic that filters out nodes incapable of running tasks,
and then ranks the nodes that are capable. The ranking system is complex, but the node with the highest ranking
score is selected to run the task.

When identifying nodes capable of running a task, the scheduler performs various predicate checks. These include
is the node tainted, are there any affinity or anti-affinity rules, is the required network port available on the
node, does it have sufficient available resources etc. Any node incapable of running the task is ignored, and
those remaining are ranked according to things such as does it already have the required image, how much free
resource does it have, how many tasks is it currently running. Each is worth points, and the node with the most
points is selected to run the task.

If the scheduler doesn’t find a suitable node, the task isn’t scheduled and gets marked as pending.

The scheduler isn’t responsible for running tasks, just picking the nodes to run them. A task is normally a
Pod/container. You’ll learn about Pods and containers in later chapters.

The cloud controller manager

If you’re running your cluster on a supported public cloud platform, such as AWS, Azure, GCP, or Linode, your
control plane will be running a cloud controller manager. Its job is to facilitate integrations with cloud services,
such as instances, load-balancers, and storage. For example, if your application asks for an internet-facing load-
balancer, the cloud controller manager provisions a load-balancer from your cloud and connects it to your app.

Control Plane summary

Kubernetes control plane nodes are servers that run the cluster’s control plane services. These services are the
brains of the cluster where all the control and scheduling decisions happen. Behind the scenes, these services
include the API server, the cluster store, scheduler, and specialised controllers.

The API server is the front-end into the control plane and all instructions and communication pass through it.
By default, it exposes a RESTful endpoint on port 443.

Figure 2.3 shows a high-level view of a Kubernetes control plane node.
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Figure 2.3 - control plane node

Worker nodes

Nodes are servers that are the workers of a Kubernetes cluster.

At a high-level they do three things:

1. Watch the API server for new work assignments
2. Execute work assignments

3. Report back to the control plane (via the API server)

As you can see in Figure 2.4, they’re a bit simpler than control plane nodes.
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Figure 2.4 - Kubernetes node

Let’s look at the three major components of a node.

15
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Kubelet

The kubelet is main Kubernetes agent and runs on every cluster node. In fact, it’s common to use the terms node
and kubelet interchangeably.

When you join a node to a cluster, the process installs the kubelet, which is then responsible for registering it
with the cluster. This process registers the node’s CPU, memory, and storage into the wider cluster pool.

One of the main jobs of the kubelet is to watch the API server for new work tasks. Any time it sees one, it executes
the task and maintains a reporting channel back to the control plane.

If a kubelet can’t run a task, it reports back to the control plane and lets the control plane decide what actions to
take. For example, if a kubelet cannot execute a task, it is not responsible for finding another node to run it on.
It simply reports back to the control plane and the control plane decides what to do.

Container runtime

The kubelet needs a container runtime to perform container-related tasks — things like pulling images and starting
and stopping containers.

In the early days, Kubernetes had native support for Docker. More recently, it’s moved to a plugin model called
the Container Runtime Interface (CRI). At a high-level, the CRI masks the internal machinery of Kubernetes and
exposes a clean documented interface for 3rd-party container runtimes to plug into.

Kubernetes is dropping support for Docker as a container runtime. This is because Docker is bloated and
doesn’t support the CRI (requires a shim). containerd is replacing it as the most common container runtime
on Kubernetes.

Note: containerd (pronounced “container-dee”) is the container supervisor and runtime logic
stripped out from the Docker Engine. It was donated to the CNCF by Docker, Inc. and has a lot of
community support. Other CRI container runtimes exist.

Kube-proxy

The last piece of the node puzzle is the kube-proxy. This runs on every node and is responsible for local cluster
networking. It ensures each node gets its own unique IP address, and it implements local iptables or IPVS rules
to handle routing and load-balancing of traffic on the Pod network. More on all of this later in the book.

Kubernetes DNS

As well as the various control plane and node components, every Kubernetes cluster has an internal DNS service
that is vital to service discovery.

The cluster’s DNS service has a static IP address that is hard-coded into every Pod on the cluster. This ensures
every container and Pod can locate it and use it for discovery. Service registration is also automatic. This means
apps don’t need to be coded with the intelligence to register with Kubernetes service discovery.

Cluster DNS is based on the open-source CoreDNS project (https://coredns.io/).

Now that you understand the fundamentals of control plane nodes and worker nodes, let’s switch gears and see
how to package applications to run on Kubernetes.
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Packaging apps for Kubernetes

An application needs to tick a few boxes to run on a Kubernetes cluster. These include.

1. Packaged as a container
2. Wrapped in a Pod

3. Deployed via a declarative manifest file

It goes like this...

You write an application microservice in a language of your choice. Then you build it into a container image and
store it in a registry. At this point, the application service is containerized.

Next, you define a Kubernetes Pod to run the containerized application. At the kind of high level we’re at, a Pod
is just a wrapper that allows a container to run on a Kubernetes cluster. Once you’ve defined the Pod, you're
ready to deploy the app to Kubernetes.

While it’s possible to run static Pods like this on a Kubernetes cluster, the preferred model is to deploy all Pods
via higher-level controllers. The most common controller is the Deployment. It offers scalability, self-healing, and
rolling updates for stateless apps. You define Deployments in YAML manifest files that specify things how many
replicas to deploy and how to perform updates.

Figure 2.5 shows application code packaged as a container, running inside a Pod, managed by a Deployment

controller.
@Scaling, self-healing, updates...

SV Kubernetes atomic unit of
scheduling
App and
dependencies
Figure 2.5

Once everything is defined in the Deployment YAML file, you can use the Kubernetes command-line tool to post
it to the API server as the desired state of the application, and Kubernetes will implement it.

Speaking of desired state...
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The declarative model and desired state

The declarative model and the concept of desired state are at the very heart of Kubernetes. So, it’s vital you
understand them.

In Kubernetes, the declarative model works like this.

1. Declare the desired state of an application microservice in a manifest file
. Post it to the API server
. Kubernetes stores it in the cluster store as the application’s desired state

. Kubernetes implements the desired state on the cluster

g WD

. A controller makes sure the observed state of the application doesn’t vary from the desired state

Let’s look at each step in a bit more detail.

Manifest files are written in simple YAML and tell Kubernetes what an application should look like. This is called
desired state. It includes things such as which image to use, how many replicas to run, which network ports to
listen on, and how to perform updates.

Once you’ve created the manifest, you post it to the API server. The easiest way to do this is with the kubectl
command-line utility. This sends the manifest to the control plane as an HTTP POST, usually on port 443.

Once the request is authenticated and authorized, Kubernetes inspects the manifest, identifies which controller
to send it to (e.g. the Deployments controller), and records the config in the cluster store as part of overall desired
state. Once this is done, any required work tasks get scheduled to cluster nodes where the kubelet co-ordinates
the hard work of pulling images, starting containers, attaching to networks, and starting application processes.

Finally, controllers run as background reconciliation loops that constantly monitor the state of things. If the
observed state varies from desired state, Kubernetes performs the tasks are necessary to reconcile the issue.

It’s important to understand that what we’ve described is the opposite of the traditional imperative model. The
imperative model is where you write long scripts of platform-specific commands to build and monitor things.

Not only is the declarative model a lot simpler than long scripts with lots of imperative commands, it also enables
self-healing, scaling, and lends itself to version control and self-documentation. It does all of this by telling the
cluster how things should look. If they start to look different, the appropriate controller notices the discrepancy
and does all the hard work to reconcile the situation.

Terminology: observed state, actual state and current state all mean the same thing.

Let’s consider an example.

Declarative example

Assume you have an app with a desired state that includes 10 replicas of a web front-end Pod. If a node running
two replicas fails, the observed state will be reduced to 8 replicas, but desired state will still be 10. This will be
observed by a controller and Kubernetes will schedule two new replicas to bring the total back up to 10.

The same thing will happen if you intentionally scale the desired number of replicas up or down. You could even
change the image you want to use (this is called a rollout). For example, if the app is currently using v2.ee of an
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image, and you update the desired state to specify v2.01, the relevant controller will notice the difference and go
through the process of updating the cluster so all 10 replicas are running the new version.

To be clear. Instead of writing a complex script to step through the entire process of updating every replica to the
new version, you simply tell Kubernetes you want the new version, and Kubernetes does the hard work for you.

Despite how simple this might seem, it’s extremely powerful and at the very heart of how Kubernetes operates.

Pods

In the VMware world, the atomic unit of scheduling is the virtual machine (VM). In the Docker world, it’s the
container. Well... in the Kubernetes world, it’s the Pod.

VM Container Pod

< Atomic units of scheduling >

Figure 2.6

It’s true that Kubernetes runs containerized apps. However, Kubernetes demands that every container runs inside
a Pod.

Note: Pods are objects in the Kubernetes API, so we capitalize the first letter. This might annoy
you if you’re passionate about language and proper use of capitalization. However, it adds clarity
and the official Kubernetes docs are moving towards this standard.

Pods and containers

The very first thing to understand is that the term Pod comes from a pod of whales — in the English language we
call a group of whales a pod of whales. As the Docker logo is a whale, Kubernetes ran with the whale concept
and that’s why we have Pods.

The simplest model is to run a single container in every Pod. This is why we often use the terms “Pod” and
“container” interchangeably. However, there are advanced use-cases that run multiple containers in a single Pod.
Powerful examples of multi-container Pods include:

« Service meshes
« Web containers supported by a helper container pulling updated content

« Containers with a tightly coupled log scraper

The point is, a Kubernetes Pod is a construct for running one or more containers. Figure 2.7 shows a multi-
container Pod.
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Pod anatomy

At the highest-level, a Pod is a ring-fenced environment to run containers. Pods themselves don’t actually run
applications — applications always run in containers, the Pod is just a sandbox to run one or more containers.
Keeping it high level, Pods ring-fence an area of the host OS, build a network stack, create a bunch of kernel
namespaces, and run one or more containers.

If you’re running multiple containers in a Pod, they all share the same Pod environment. This includes the

network stack, volumes, IPC namespace, shared memory, and more. As an example, this means all containers in
the same Pod will share the same IP address (the Pod’s IP). This is shown in Figure 2.8.

N\
pod [net namespace]
Main Suprqrting
container containers

| | )

10.0.10.15

Figure 2.8

If two containers in the same Pod need to talk to each other (container-to-container within the Pod) they can use
the Pod’s localhost interface as shown in Figure 2.9.
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Figure 2.9

Multi-container Pods are ideal when you have requirements for tightly coupled containers that may need to
share memory and storage. However, if you don’t need to tightly couple containers, you should put them in their
own Pods and loosely couple them over the network. This keeps things clean by having each Pod dedicated to a
single task. However, it creates a lot of potentially un-encrypted network traffic. You should seriously consider
using a service mesh to secure traffic between Pods and application services.

Pods as the unit of scaling

Pods are also the minimum unit of scheduling in Kubernetes. If you need to scale an app, you add or remove
Pods. You do not scale by adding more containers to existing Pods. Multi-container Pods are only for situations
where two different, but complimentary, containers need to share resources. Figure 2.10 shows how to scale the
nginx front-end of an app using Pods as the unit of scaling.
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Figure 2.10 - Scaling with Pods

Pods - atomic operations

The deployment of a Pod is an atomic operation. This means a Pod is only ready for service when all its containers
are up and running. The entire Pod either comes up and is put into service, or it doesn’t, and it fails.

A single Pod can only be scheduled to a single node - you cannot schedule a single Pod across multiple nodes.
This is also true of multi-container Pods — all containers in the same Pod run on the same node.
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Pod lifecycle

Pods are mortal. They’re created, they live, and they die. If they die unexpectedly, you don’t bring them back to
life. Instead, Kubernetes starts a new one in its place. However, even though the new Pod looks, smells, and feels
like the old one, it isn’t. It’s a shiny new Pod with a shiny new ID and IP address.

This has implications on how you design your applications. Don’t design them to be tightly coupled to a particular
instance of a Pod. Instead, design them so that when Pods fail, a totally new one (with a new ID and IP address)
can pop up somewhere else in the cluster and seamlessly take its place.

Pod immutability

Pods are also immutable — this means you don’t change them once they’re running.

Once a Pod is running, you never change its configuration. If you need to change or update it, you replace it with
a new one running the new configuration. When we’ve talked about updating Pods, we’ve really meant delete
the old one and replace it with a new one.

Deployments

Most of the time you’ll deploy Pods indirectly via higher-level controllers. Examples of higher-level controllers
include Deployments, DaemonSets, and StatefulSets.

As an example, a Deployment is a higher-level Kubernetes object that wraps around a Pod and adds features
such as self-healing, scaling, zero-downtime rollouts, and versioned rollbacks.

Behind the scenes, Deployments, DaemonSets and StatefulSets are implemented as controllers that run as watch
loops constantly observing the cluster making sure observed state matches desired state.

Service objects and stable networking

You’ve just learned that Pods are mortal and can die. However, if they’re managed via higher level controllers,
they get replaced when they fail. But replacements come with totally different IP addresses. This also happens
with rollouts and scaling operations. Rollouts replace old Pods with new ones with new IPs. Scaling up adds new
Pods with new IP addresses, whereas scaling down takes existing Pods away. Events like these cause a lot of IP
churn.

The point we’re making is that Pods are unreliable, and this poses challenges...

Assume you’ve got a microservices app with a bunch of Pods performing video rendering. How will this work if
other parts of the app that use the rendering service can’t rely on rendering Pods being there when needed?

This is where Services come in to play. They provide reliable networking for a set of Pods.

Figure 2.11 shows the uploader microservice talking to the renderer microservice via a Kubernetes Service object.
The Service (capital “S” because it’s a Kubernetes API object) is providing a reliable name and IP. It’s also load-
balancing requests to the two renderer Pods behind it.
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Figure 2.11

Digging into a bit more detail. Services are fully-fledged objects in the Kubernetes API — just like Pods and
Deployments. They have a front-end consisting of a stable DNS name, IP address, and port. On the back-end, they
load-balance traffic across a dynamic set of Pods. As Pods come and go, the Service observes this, automatically
updates itself, and continues to provide that stable networking endpoint.

The same applies if you scale the number of Pods up or down. New Pods are seamlessly added to the Service and
will receive traffic. Terminated Pods are seamlessly removed from the Service and will not receive traffic.

That’s the job of a Service — it’s a stable network abstraction point that provides TCP and UDP load-balancing
across a dynamic set of Pods.

As they operate at the TCP and UDP layer, they don’t possess application intelligence. This means they cannot
provide application-layer host and path routing. For that, you need an Ingress, which understands HTTP and
provides host and path-based routing.

That’s the basics. Services bring stable IP addresses and DNS names to the unstable world of Pods.

Chapter summary

In this chapter, we introduced some of the major components of a Kubernetes cluster.

Control plane nodes are servers where the control plane components run. They can be physicals, VMs, cloud
instances and even Raspberry Pis.

Under-the-hood, the control-plane comprises several services, including the API server that exposes a public
REST interface to the cluster and where all the scheduling decisions are made. Multi-master HA is important for
production environments.
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Nodes are servers where user applications run. They can also be physicals, virts, cloud instances and Raspberry
Pis.

Every node runs a service called the kubelet that registers it with the cluster and communicates with the API
server. It watches the API server for new work tasks and maintains a reporting channel. They also have a container
runtime and the kube-proxy service. The container runtime is responsible for all container-related operations.
The kube-proxy is responsible for networking on the node.

We also talked about some of the major Kubernetes AP objects such as Pods, Deployments, and Services. The
Pod is the basic building-block that application containers run in. Deployments add self-healing, scaling and
updates. Services add stable networking and basic load-balancing.

Now that we’ve covered the basics, let’s get into the detail.



3: Getting Kubernetes

In this chapter, you’ll see a few quick ways to get Kubernetes. We’ll also introduce you to kubect1, the Kubernetes
command line tool.

There are three typical ways of getting a Kubernetes:

1. Playground
2. Hosted Kubernetes
3. DIY install

Kubernetes playgrounds

Playgrounds are the quickest and easiest way to get Kubernetes, but they re definitely not for production. Popular
examples include Play with Kubernetes, Katakoda, Docker Desktop, minikube, k3d, and more.

We'll look at Play with Kubernetes and Docker Desktop.

Hosted Kubernetes

All of the major cloud platforms offer a hosted Kubernetes service. This is a model where you outsource a bunch
of Kubernetes infrastructure responsibility to your cloud provider, letting them take care of things like high-
availability (HA), performance, and updates.

Of course, not all hosted Kubernetes solutions are equal, and even though your cloud provider is managing a lot
of the infrastructure for you, the ultimate responsibility remains with you. For example, your boss is unlikely to
be impressed if things go down and you simply point the finger at your cloud provider.

Irrespective of pros and cons, hosted Kubernetes is as close to a zero-effort production-grade Kubernetes cluster
as you’ll get. For example, Google Kubernetes Engine (GKE) is a hosted Kubernetes service that lets you deploy
a high-performance, highly-available, Kubernetes control plane and nodes, with security best-practices out-of-
the-box, an Istio service mesh, and more. And all with just a few simple clicks. Other popular hosted Kubernetes
services include.

« AWS: Elastic Kubernetes Service (EKS)
o Azure: Azure Kubernetes Service (AKS)
« Linode: Linode Kubernetes Engine (LKE)
« DigitalOcean: DigitalOcean Kubernetes (DOKS)
+ Google Cloud Platform: Google Kubernetes Engine (GKE)
You should seriously consider hosted Kubernetes if building and managing your own Kubernetes cluster isn’t a

good use of time and other resources. It’s a great on-ramp to Kubernetes that lets you and your business focus
on your applications.
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DIY Kubernetes clusters

By far the hardest way to get a Kubernetes cluster is to build it yourself.

Yes, DIY installations are a lot easier than they used to be, but they can still be hard. However, they provide the
most flexibility and give you ultimate control — which can be a good thing and a bad thing.

Getting Kubernetes to follow along with the examples

There are a ridiculous number of different ways to get a Kubernetes cluster and we’re not trying to show them
all. We’ve hand-picked a few that are quick and easy, and enough to get you through most of the examples in
the book.

We'll look at the following:

« Play with Kubernetes (PWK)
« Docker Desktop: local development cluster on your laptop

« Google Kubernetes Engine (GKE): production-grade hosted cluster

Play with Kubernetes

Play with Kubernetes (PWK) is a quick and simple way to get your hands on a development Kubernetes cluster.
All you need is a computer, an internet connection, and an account on Docker Hub or GitHub.

However, it has a few limitations.

« It’s time-limited — you get a cluster that lasts 4 hours
« It lacks some integrations with external services such as cloud-based load-balancers and volumes

« It often suffers from capacity and performance issues (but it’s offered for free)
Let’s see what it looks like (the commands may be slightly different).

1. Point your browser at labs.play-with-k8s.com
2. Login with your GitHub or Docker Hub account and click start
3. Click + ADD NEW INSTANCE from the navigation pane on the left of your browser
You’ll be presented with a terminal window in the right of your browser. This is a Kubernetes node (nodet).

4. Run a few commands to see some of the components pre-installed on the node.
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$ docker version
Docker version 20.10.1, build 831ebea

$ kubectl version --output=yaml
clientVersion:

major: "1"

minor: "20"

As the output shows, the node already has Docker and kubect1 (the Kubernetes client) pre-installed. Other
tools, including kubeadm, are also pre-installed. More on these tools later.

5. Run the provided kubeadm init command to initialize a new cluster

When you added a new instance in step 3, PWK gave you a short list of commands to initialize a new
Kubernetes cluster. One of these was kubeadm init. ... Running this will initialize a new cluster.

You may be able to specify the version of Kubernetes to install by adding the --kubernetes-version flag
to the command. The latest versions can be seen at https://github.com/kubernetes/kubernetes/releases.
Not all versions work with PWK.

$ kubeadm init --apiserver-advertise-address $(hostname -i) --pod-network-cidr...
[init] Using Kubernetes version: v1.20.4

[preflight] Running pre-flight checks

<Snip>

Your Kubernetes control-plane has initialized successfully!

<Snip>

Congratulations! You have a brand new single-node Kubernetes cluster. The node that you executed the
command from (node1) is initialized as the control plane node (Master).

The output of the kubeadm init gives you a short list of commands it wants you to run. Ignore these, PWK
has already configured them for you.

6. Verify the cluster with the following command.

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
nodel NotReady control-plane,master im v1.20.1

The output shows a single-node Kubernetes cluster. However, the status of the node is NotReady. This is
because you haven’t configured the Pod network yet. When you first logged on to the PWK node, you
were given three commands to configure the cluster. So far, you’ve only executed the first one (kubeadm
init...).

7. Initialize the Pod network (cluster networking).

Copy the second command from the list of three commands that were printed on the screen when you
first created nodet (it will be a kubectl apply command). Paste it onto a new line in the terminal. The
example below has been snipped to fit the page.
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$ kubectl apply -f https://raw.githubusercontent.com. ..
configmap/kube-router-cfg created

daemonset . apps/kube-router created

serviceaccount/kube-router created
clusterrole.rbac.authorization.k8s.io/kube-router created
clusterrolebinding.rbac.authorization.k8s.io/kube-router created

8. Verify the cluster again to see if nodet has changed to Ready (it may take a few seconds).

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
nodel Ready control-plane,master 2m v1.20.1

With the Pod network initialized and the control plane Ready, it’s time to add some worker nodes.

9. Copy the long kubeadm join that was displayed as part of the output from the kubeadm init command in
step 5.

When you initialized the new cluster with kubeadm init, the final output of the command listed a kubeadm
join command for adding worker nodes. It includes the cluster join-token, the IP socket the API server is
listening on, and other bits required to join the cluster. Copy this command and be ready to paste it into
the terminal of a new node (node2).

10. Click the + ADD NEW INSTANCE button in the left pane of the PWK window.
You’ll be given a new node called node2.
1. Paste the kubeadm join command into the terminal of node2.

The join-token and IP address will be different in your environment.

$ kubeadm join --token 948f32.79bd6c8e951cf122 10.0.29.3:6443. ..
Initializing machine ID from random generator.

[preflight] Skipping pre-flight checks

<Snip>

Node join complete:

* Certificate signing request sent to master and response received.
* Kubelet informed of new secure connection details.

1. Switch back to nodet and run another kubectl get nodes. It may take a minute for the new node to enter
the Ready state.

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION
nodel Ready control-plane,master 5m39s v1.20.1
node2 Ready <none> 44s v1.20.1
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Your Kubernetes cluster now has two nodes — one control plane node and one worker node.
Feel free to add more nodes.
Congratulations! You have a fully working Kubernetes cluster that you can use as a test lab.

It’s worth pointing out that nodet was initialized as the control plane node and additional nodes will join as
worker nodes. PWK usually puts a blue icon next to control plane nodes and a transparent one next to worker
nodes. This helps identify which is which.

Finally, PWK sessions only last for 4 hours and are obviously not intended for production use.

Have fun.

Docker Desktop

Docker Desktop is a great way to get a local development cluster on your Mac or Windows laptop. With a few easy
steps, you get a single-node Kubernetes cluster that you can develop and test with. It automatically configures
kubectl and you get a simple GUI that lets you perform basic operations such as switching between kubectl
contexts.

Note: A kubectl context is a bunch of settings that tells kubect1 which cluster to send commands
to, and which credentials to authenticate with. You’ll learn more about this later in the book.

1. Point your web browser to www.docker.com and choose Products > Desktop. Alternatively, search for
“Docker Desktop” in your favorite search engine.

2. Follow the links to download the installer for Mac or Windows.
3. Open the installer and follow the simple instructions.
Once the installer completes, you’ll get a whale icon on the Windows task bar, or the menu bar on a Mac.
4. Right-click the whale icon, go to Preferences and enable Kubernetes from the Kubernetes tab.
You may have to click Apply & Restart, and it’ll take a few minutes while Docker Desktop fires up your Kubernetes
cluster.

When it completes, open a terminal window and see your cluster:

$ kubectl get nodes
NAME STATUS ROLES AGE  VERSION
docker - for -desktop Ready master 28d v1.20.0

Congratulations, you’'ve got a local development cluster and you’re ready to follow most of the examples later
in the book.
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Google Kubernetes Engine (GKE)

GKE is a hosted Kubernetes service that runs on the Google Cloud Platform (GCP). Like most hosted Kubernetes
services, it provides:

- A fast and easy way to get a “production-grade” Kubernetes cluster
+ A managed control plane (you don’t manage the control plane nodes)
« Itemized billing

« More...

Two important points are worth noting.

First up, GKE and other hosted Kubernetes services are not free. Some services might provide a free tier or an
amount of initial free credit. However, generally speaking, you have to pay to use them.

Second up, GKE is constantly improving and adding features. This means some of the installation options might
look different when you’re following along. For example, at the time of writing, GKE has a new Autopilot feature
that changes the way you build and manage GKE clusters. However, don’t worry about this, it’s really simple to
build a GKE cluster, and even if the steps here are slightly out-dated, they’ll still give you a broad idea of what
to do.

Configuring GKE

To work with GKE, you’ll need an account on the Google Cloud with billing configured and a blank project. These
are all simple to setup, so we won’t spend time explaining them here — the remainder of this section assumes you
already have these.

1. From within the Google Cloud Console, open the navigation pane on the left-hand side and select
Kubernetes Engine > Clusters. You may have to click the three horizontal bars (hamburger) in the top
left corner to make the navigation pane visible.

2. Click the Create cluster button.
3. Give your cluster a meaningful name and description.

4. Choose whether you want a Regional or Zonal cluster. Regional is newer and potentially more resilient —
your control plane nodes and worker nodes will be distributed across multiple zones but still accessible
via a single highly-available endpoint. Some of the examples in the storage chapter will require a regional
cluster.

5. Choose the Region or Zone for your cluster.

6. Select Release channel and Version. This is the version of Kubernetes that will run on your control plane.
The Rapid channel gets you access to the latest versions. It also influences the way your cluster will be
upgraded to new releases.

7. At this point you can specify more advanced options available in the left pane. These include things such
as whether nodes will run Docker or containerd, and whether or not to use the CSI driver and enable
the Istio service mesh. You should enable the Compute Engine Persistent Disk CSI Driver under cluster
features.

8. Once you’re happy with your options, click Create.
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It’l] take a couple of minutes to create your cluster.

The “clusters” page shows a high-level overview of the Kubernetes clusters you have in your project. Feel free to
poke around and familiarise yourself with some of the settings.

Clicking the three dots to the right of your cluster shows a Connect option. It gives you a long gcloud command
you can run on your laptop to configure kubectl to talk to your cluster. Copy this command to your clipboard.

The following step will only work if you have the gcloud command-line and kubectl downloaded and installed.
They can both be installed from here https://cloud.google.com/sdk/.

Once you have geloud installed and configured, open a terminal and paste the long gcloud command into it. This
configures kubectl to talk to your GKE cluster.

Run a kubectl get nodes command to list the nodes in the cluster.

$ kubectl get nodes

NAME STATUS AGE VERSION

gke-cluster. .. Ready 5m v1.20.2-gke.2500
gke-cluster. .. Ready 6m v1.20.2-gke.2500
gke-cluster. .. Ready 6m v1.20.2-gke.2500

Congratulations! You have a “production-grade” Kubernetes cluster and can continue with all the exercises later
in the book.

However, be sure to delete the cluster as soon as you’re finished using it. GKE, and other hosted Kubernetes
platforms, may incur costs even when they are not in use.

Other installation methods

As previously stated, there are lots of ways to install Kubernetes. Some of these include:

« kops

« kubeadm
o k3s

« kad

I run quite a lot of work on k3d on my laptop, and I highly recommend it if you want a multi-node Kubernetes dev
environment on your laptop. However, 'm not going to waste pages in the booking explaining how to perform
any of these installation types, as it’s much easier to google them and get up-to-date install guides. Previous
versions of the book dedicated more than 20 long boring pages to kops and kubeadm installations, and it was
painful for me keeping them up-to-date. No more!

kubectl

kubectl1 is the main Kubernetes command-line tool. It’s what you’ll use for most Kubernetes management tasks,
and we use it extensively in the examples. It’s available for most operating systems and architectures.
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As it’s the main command-line tool, it’s important you use a version that’s no more than one minor version
higher or lower than your cluster. For example, if your cluster is running Kubernetes 1.20.x, your kubect1 should
be between 1.19.x and 1.21.x.

At a high-level, kubect1 converts user-friendly commands into HTTP REST requests with JSON content required
by the API server. It uses a configuration file to know which cluster and API server endpoint to send commands
to, and it takes care of sending authentication data with commands.

The kubectl configuration file is called config and lives in a hidden directory called kube in your home directory
($HOME/ . kube/config). We normally call it the “kubeconfig” file, and it contains definitions for:

« Clusters
« Users (credentials)

« Contexts

Clusters is a list of clusters that kubect1 knows about and is ideal if you plan on using a single kubect1 workstation
to manage multiple clusters. Each cluster definition has a name, certificate info, and API server endpoint.

Users let you define different users that might have different levels of access on each cluster. For example, you
might have a dev user and an ops user, each with different permissions. Each user definition has a friendly name,
a username, and a set of credentials.

Contexts group together clusters and users under a friendly name. For example, you might have a context called
deploy-prod that combines the deploy user credentials with the prod cluster definition. If you use kubectl with
this context, you’ll be sending commands to the API server of the prod cluster as the deploy user.

The following is a simple kubeconfig file with a single cluster called shield, a single user called coulson, and a
single context called director. The director context combines the coulson user and the shield cluster and is also
set as the default context.

apiVersion: vi
kind: Config
clusters:
- cluster:
certificate-authority: C:\Users\nigel\.minikube\ca.crt
server: https://192.168.1.77:8443
name: shield
users:
- name: coulson
user:
client-certificate: C:\Users\nigel\.minikube\client.crt
client-key: C:\Users\nigel\.minikube\client.key
contexts:
- context:
cluster: shield
user: coulson
name: director
current-context: director

You can view your kubeconfig using the kubectl config view command. Sensitive data will be redacted.

You can use kubectl config current-context to see your current context. The following example shows a system
where kubect1 is configured to use the cluster and user defined in a context called k8sbook_eks.
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$ kubectl config current-context
k8sbook_eks

You can change the current active context with kubectl config use-context. The following command sets
the current context to docker-desktop so that future commands will be sent to the cluster defined in the
docker -desktop context. It will only work if the kubeconfig file has a context called docker -desktop.

$ kubectl config use-context docker-desktop
Switched to context "docker-desktop".

$ kubectl config current-context
docker -desktop

Chapter summary

In this chapter, you saw a few ways to get a Kubernetes cluster.

You saw how fast and simple it is to setup a Kubernetes cluster on Play with Kubernetes (PWK) where you get
a 4-hour playground without having to install anything on your laptop or in your cloud.

You saw how to setup Docker Desktop for a single-node developer experience on your Mac or Windows laptop.

You learned how to spin up a hosted Kubernetes cluster in the Google Cloud using Google Kubernetes Engine
(GKE).

The chapter finished up with an overview of kubect1, the Kubernetes command-line tool.

You’ll be able to follow most of the examples in the book with any of the clusters we showed you how to get.

The storage examples, as well as some of the networking an Ingress examples, will only work if you’re following
along on GKE.
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Pods are fundamental to running apps on Kubernetes. As such, this chapter goes into quite a bit of detail.

The chapter is divided into two main parts:

+ Theory

« Hands-on

Before getting started, it’s difficult to talk about Pods without making reference to workload controllers such as
Deployments, DaemonSets, and StatefulSets. However, this is the start of the book and we haven’t covered any
of those yet. So, we’ll take a quick minute here to set the scene so that when they come up in the chapter, you’ll
have a basic idea of what they are.

You’ll almost always deploy Pods via higher-level workload controllers — from now on, we’ll just call them
controllers.

Controllers gift Pods with super-powers such as self-healing, scaling, updates and rollbacks. You’ll see this later,
but every controller has a PodTemplate defining the Pods it deploys and manages. So, even though you’ll rarely
interact directly with Pods, it’s absolutely vital you have a solid understanding of them.

For these reasons, we’ll cover quite a lot of Pod detail. It won’t be wasted time and will be very useful as you
progress to controllers and other more advanced objects. You also need a deep understanding of Pods if you want
to master Kubernetes.

With that out of the way, let’s crack on.

Pod theory

The atomic unit of scheduling on Kubernetes is the Pod. This is just a fancy way of saying apps deployed to
Kubernetes always run inside Pods.

Some quick examples... If you deploy an app, you deploy it in a Pod. If you terminate an app, you terminate its
Pod. If you scale an app up or down, you add or remove Pods.

Why Pods
The process of building and running an app on Kubernetes is roughly as follows:

1. Write your app/code

2. Package it as a container image

3. Wrap the container image in a Pod
4

. Run it on Kubernetes
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This begs the question, why not just run the container on Kubernetes?

The short answer is you just can’t. Kubernetes doesn’t allow containers to run directly on a cluster, they always
have to be wrapped in a Pod.

Broadly speaking, there are three main reasons for Pods.
1. Pods augment containers
2. Pods assist in scheduling
3. Pods enable resource sharing

Pods augment containers

On the augmentation front, Pods augment containers in all of the following ways.

« Labels and annotations

Restart policies

« Probes (startup probes, readiness probes, liveness probes, and potentially more)
« Affinity and anti-affinity rules

« Termination control

« Security policies

« Resource requests and limits

Run a kubect! explain pods command to list all possible Pod attributes. Beware, the command returns over 1,000
lines and the following output has been trimmed.

$ kubectl explain pods --recursive

KIND: Pod
VERSION: v1
DESCRIPTION:

Pod is a collection of containers that can run on a host. This resource is
created by clients and scheduled onto hosts.

FIELDS:
apiVersion <string>
kind <string>
metadata <Object>
annotations <map[string]string>
labels <map[string]string>
name <string>
namespace <string>
<Snip>

It’s a useful command for finding which properties any object supports. It also shows the format of properties
(string, map, object etc.).

Even more useful, is the ability to drill into specific attributes. The following command drills into the restart
policy attribute of a Pod object.
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$ kubectl explain pod.spec.restartPolicy

KIND: Pod

VERSION: w1

FIELD: restartPolicy <string>
DESCRIPTION:

Restart policy for all containers within the pod. One of Always, OnFailure, Never.
Default to Always.
More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/. ..

You’ll see a lot of Pod features as you progress through the book. However, it’s worth a quick introduction to
some of them right now.

Labels let you group Pods and associate them with other objects in powerful ways. Annotations let you add
experimental features and integrations with 3rd-party tools and services. Probes let you test the health and status
of Pods, enabling advanced scheduling, updates, and more. Affinity and anti-affinity rules give you control over
where Pods run. Termination control lets you to gracefully terminate Pods and the applications they run. Security
policies let you enforce security features. Resource requests and limits let you specify minimum and maximum
values for things like CPU, memory and disk IO.

Despite bringing so many features to the party, Pods are super-lightweight and add very little overhead.

Figure 4.1 shows a Pod as a wrapper around one or more containers.

apiVersion: vl -
kind: Pod
metadata: @
name: hello-pod > GEY Labels, probes, affinity, policies...
labels:
zone: prod
version: vl e
spec: —_— I App and dependencies
containers:
- name: hello-ctr
image: nigelpoulton/k8sbook:1.0
ports:
- containerPort: 8080 _ == —

Figure 4.1

Pods assist in scheduling

On the scheduling front, every container in a Pod is guaranteed to be scheduled to the same cluster node. This
in turn guarantees they’ll be in the same region and zone in your cloud or datacenter. We call this co-scheduling
and co-locating.

Labels, affinity and anti-affinity rules, and resource requests and limits give you fine-grained control over which
nodes Pods can run on.

Note: Remember that nodes are host servers that Pods run on. They can be physical servers, virtual
machines, or cloud instances.
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Pods enable resource sharing

On the sharing of resources front, Pods provide a shared execution environment for one or more containers. This
shared execution environment includes things such as.

« Shared filesystem
« Shared network stack (IP address and ports...)
« Shared memory

« Shared volumes

You'll see it later, but every container in a Pod shares the Pod’s execution environment. So, if a Pod has two
containers, both containers share the Pod’s IP address and can access any of the Pod’s volumes to share data.

We'll cover all of these features throughout the book, but hopefully you understand some of the advantages of
using Pods.

Static Pods vs controllers
There are two ways to deploy Pods.

1. Directly via a Pod manifest

2. Indirectly via a controller

Pods deployed directly from a Pod manifest are called static Pods and have no super-powers such as self-healing,
scaling, or rolling updates. This is because they’re only monitored and managed by the local kubelet process
which is limited to attempting container and Pod restarts on the local node. If the node they’re running on fails,
there’s no control-plane process watching and capable of starting a new one on a different node.

Pods deployed via controllers have all the benefits of being monitored and managed by a highly-available
controller running on the control-plane. The local kubelet on the node they’re running on can still attempt local
restarts, but if restart attempts fail, or the node itself fails, the observing controller can start a replacement Pod
on a different node.

Just to be clear, it’s vital to understand that Pods as mortal. When they die, they’re gone. There’s no fixing
them and bringing them back from the dead. This firmly places them in the cattle category in the pets vs cattle
paradigm. Pods are cattle, and when they die, they get replaced by another. There’s no tears and no funeral. The
old one is gone, and a shiny new one - with the same config, but a different IP address and UID - magically
appears and takes its place.

This is why applications should always store state and data outside the Pod. It’s also why you shouldn’t rely on
individual Pods - they’re ephemeral, here today, gone tomorrow...

In the real world, you’ll almost always deploy and manage Pods via controllers.

Single-container and multi-container Pods

Pods can run one or more containers. The single-container model is the simplest, but multi-container Pods are
important in real-world production environments and vital for service meshes. You’ll learn more about multi-
container Pods later in the chapter.
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Deploying Pods
The process of deploying a Pod to Kubernetes is as follows.

1. Define it in a YAML manifest file

. Post the YAML to the API server

. The API server authenticates and authorizes the request

. The configuration (YAML) is validated

. The scheduler deploys the Pod to a healthy node with enough available resources

N WN

. The local kubelet monitors it

If the Pod is deployed via a controller, the configuration will be added to the cluster store as part of overall desired
state and a controller will monitor it.

Let’s dig a bit deeper.

The anatomy of a Pod

At the highest level, a Pod is an execution environment shared by one or more containers. Shared execution
environment means the Pod has a set of resources that are shared by every container it runs. These resources
include IP address, ports, hostname, sockets, memory, volumes, and more...

It can be useful to think of Pods as shared environments, and containers as application processes.

If you’re using Docker or containerd as your container runtime, a Pod is actually a special type of container
called a “pause container”. You heard that right, a Pod is just a fancy name for a special container. This means
containers running inside of Pods are really containers running inside of containers. For more information, watch
“Inception” by Christopher Nolan, starring Leonardo DiCaprio ;-)

Seriously though, a Pod is a collection of resources that containers running inside of it inherit and share. These
resources are actually Linux kernel namespaces, and include the following:

+ net namespace: IP address, port range, routing table...
« pid namespace: isolated process tree

- mnt namespace: filesystems and volumes...

« UTS namespace: Hostname

« IPC namespace: Unix domain sockets and shared memory

Let’s look at how the Pod shared execution environment model affects networking.
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Pods and shared networking

Each Pod creates its own network namespace. This means a Pod has its own IP address, a single range of TCP and
UDP ports, and a single routing table. If it’s a single-container Pod, the container has full access to the IP, port
range and routing table. If it’s a multi-container Pod, all containers share the IP, port range and routing table.

Figure 4.2 shows two Pods, each with its own IP. Even though one of them is a multi-container Pod, it still only
gets a single IP.

pod . pod
Main Supporting
container container

5000
/‘ 10.0.10.15 ,\ l 10.0.10.22 ’
10.0.10.15:80 10.0.10.15:5000
Figure 4.2

In Figure 4.2, external access to the containers in the Pod on the left is achieved via the IP address of the Pod
coupled with the port of the container you’re trying to reach. For example, 10.0.10.15:80 will get you to the
main application container, but 10.0.10.15.5000 will get you to the supporting container.

Container-to-container communication within the same Pod happens via the Pod’s 1ocalhost adapter and a port
number. For example, the main container in Figure 4.2 can reach the supporting container on localhost :5000.

The pod network
On the topic of networking, every Pod gets its own unique IP addresses that’s fully routable on an internal

Kubernetes network called the pod network. The pod network is flat, meaning every Pod can talk directly to
every other Pod without the need for complex port mappings. This is shown in Figure 4.3.

pod pod pod

l 10.0.10.6 ’ ' 10.0.10.7 ' l 10.0.10.8 '

I Pod network (flat and open) l

Figure 4.3 Inter-Pod communication
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In a default out-of-the-box cluster, the Pod network is wide open from a security perspective. You should use
Network Policies to lock down access.

Atomic deployment of Pods

Pod deployment is an atomic operation. This means it’s all-or-nothing — deployment either succeeds or it doesn’t.
You’ll never have a scenario where a partially deployed Pod is servicing requests. Only after all a Pod’s resources
are running and ready will it start servicing requests.

Pod lifecycle

The lifecycle of a typical Pod is something like this...

You define it in a declarative YAML object that you post to the API server and it enters the pending phase. It’s
then scheduled to a healthy node with enough resources and the local kubelet instructs the container runtime to
pull all required images and start all containers. Once all containers are pulled and running, the Pod enters the
running phase. If it’s a short-lived Pod, as soon as all containers terminate successfully the Pod itself terminates
and enters the succeeded state. If it’s a long-lived Pod, it remains indefinitely in the running phase.

Shorted-lived and long-lived Pods

Pods can run all different types of applications. Some, such as web servers, are intended to be long-lived and
should remain in the running phase indefinitely. If any containers in a long-lived Pod fail, the local kubelet may
attempt to restart them.

We say the kubelet “may” attempt to restart them. This is based on the container’s restart policy which is
defined in the Pod config. Options include Always, OnFailure, and Never. Always is the default restart policy
and appropriate for most long-lived Pods.

Other workload types, such as batch jobs, are designed to be short-lived and only run until a task completes. Once
all containers in a short-lived Pod successfully terminate, the Pod terminates and its status is set to successful.
Appropriate container restart policies for short-lived Pods will usually be Never or OnFailure.

Kubernetes has several controllers for different types of long-lived and short-lived workloads. Deployments,
StatefulSets, and DaemonSets are examples of controllers designed for long-lived Pods. Jobs and CronJobs are
examples designed for short-lived Pods.

Pod immutability

Pods are immutable objects. This means you can’t modify them after they’re deployed.

This can be quite a mindset change for some people, especially if you come from a background of deploying
servers and regularly patching and updating them.

The immutable nature of Pods is a key aspect of cloud-native microservices design patterns and forces the
following behaviors.

« When updates are needed, replace all old Pods with new ones that have the updates
« When failures occur, replace failed Pods with new identical ones

To be clear, you never actually update a running Pod, you always replace it with a new Pod containing the
updates. You also never log onto failed Pods and attempt fixes, you build fixes into an updated Pod and replace
failed ones with the updated one.
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Pods and scaling

All Pods run a single application container instance, making them an ideal unit of scaling - if you need to scale
the app, you add or remove Pods. This is call horizontal scaling.

You never scale an app by adding more of the same application containers to a Pod. Multi-container Pods are not
a way to scale an app, they’re only for co-scheduling and co-locating containers that need tight coupling.

Pod theory summary

1. Pods are the atomic unit of scheduling in Kubernetes

2. Single-container Pods are the simplest. However, multi-container Pods are ideal for co-locating tightly
coupled workloads and are fundamental to service meshes

3. Pods get scheduled on nodes (host physical servers, VMs, cloud instances), and you can’t schedule a single
Pod to span multiple nodes

4. Pods are defined declaratively in manifest files you post to the API server

5. You almost always deploy Pods via higher-level controllers

Multi-container Pods

Multi-container Pods are a powerful pattern and heavily used in real-world environments.
At a very high-level, every container should have a single clearly defined responsibility. For example, an
application that pulls content from a repository and serves it as a web page has two clear functions:

1. Pull the content

2. Serve the web page

In this example you should design two containers, one responsible for pulling the content and the other to serve
the web page. We call this separation of concerns or separation of responsibilities.

This design approach keeps each container small and simple, encourages re-use, and makes troubleshooting
simpler.

However, there are scenarios where it’s a good idea to tightly couple two or more functions. Consider the same
example app that pulls content and serves it via a web page. A simple design would have the “sync” container
(the one pulling content updates) put content updates in a volume shared with the “web” container. For this to
work, both containers need to run in the same Pod so they have access to the same shared volume in the Pod’s
shared execution environment.

Co-locating multiple containers in the same Pod allows containers to be designed with a single responsibility but
work closely with others.

Kubernetes offers several well-defined multi-container Pod patterns.
« Sidecar pattern
« Adapter pattern
+ Ambassador pattern
« Init pattern

Each one is an example of the one-container-one-responsibility model.
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Sidecar multi-container Pods

The sidecar pattern is probably the most popular and most generic multi-container pattern. It has a main
application container and a sidecar container. It’s the job of the sidecar to augment or perform a secondary
task for the main application container. The previous example of a main application web container, plus a helper
pulling up-to-date content is a classic example of the sidecar pattern — the “sync” container pulling the content
from the external repo is the sidecar.

An increasingly important user of the sidecar model is the service mesh. At a high level, service meshes inject
sidecar containers into application Pods, and the sidecars do things like encrypt traffic and expose telemetry and
metrics.

Adapter multi-container Pods

The adapter pattern is a specific variation of the generic sidecar pattern where the helper container takes non-
standardized output from the main container and rejigs it into a format required by an external system.

A simple example is NGINX logs being sent to Prometheus. Out-of-the-box, Prometheus doesn’t understand
NGINX logs, so a common approach is to put an adapter sidecar into the NGINX Pod that converts NGINX logs
into a format accepted by Prometheus.

Ambassador multi-container Pods

The ambassador pattern is another variation of the sidecar pattern. This time, the helper container brokers
connectivity to an external system. For example, the main application container can just dump its output to
a port the ambassador container is listening on and sit back while the ambassador container does the hard work
of getting it to the external system.

It acts a lot like political ambassadors that interface with foreign nations on behalf of a government. In Kubernetes,
ambassador containers interface with external systems on behalf of the main app container.

Init multi-container Pods

The init pattern is not a form of sidecar. It runs a special init container that’s guaranteed to start and complete
before your main app container. It’s also guaranteed to only run once.

As the name suggests, it’s job in life is to run tasks and initialise the environment for the main application
container. For example, a main app container may need permissions setting, an external API to be up and
accepting connections, or a remote repository cloning to a local volume. In cases like these, an init container
can do that prep work and will only exit when the environment is ready for the main app container. The main
app container will not start until the init container completes.

Hands-on with Pods

If you’re following along, be sure to clone the book’s GitHub repo and run all of the following commands from
within the pods folder.
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$ git clone https://github.com/nigelpoulton/Thek8sBook.git
Cloning into 'TheK8sBook'. ..

If you don’t have git, or are uncomfortable using it, you can just visit the repo and copy the file contents into
files with the same name on your local machine.

You can follow along with any of the Kubernetes clusters you saw how to build in the “Getting Kubernetes”
chapter.

List any existing Pods to make it easier to identify the Pods you’ll create in the following steps.

$ kubectl get pods
No resources found in default namespace.

Pod manifest files

You’ll be using the following Pod manifest. It’s available in the book’s GitHub repo under the pods folder called
pod.yml:

kind: Pod
apiVersion: v1
metadata:

name: hello-pod

labels:
zone: prod
version: vi

spec:

containers:

- name: hello-ctr
image: nigelpoulton/k8sbook:1.0
ports:

- containerPort: 8080

Let’s step through it and find out what it’s describing.

Straight away you can see four top-level resources:

e kind
e apiVersion
* metadata

* spec

The .kind field tells Kubernetes the type of object being defined. This file is defining a Pod object.

apiVersion defines the schema version to use when creating the object. This file is defining a Pod object and
telling Kubernetes to build it using the v1 Pod schema.

The normal format for apiversion is <api-group>/<version>. However, Pods are defined in a special API group
called the core group which omits the api-group part. For example, StorageClass objects are defined in the v1
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schema of the storage.k8s.io API group and are described in YAML files as storage.k8s.io/v1. However, Pods
are in the core API group which omits the API group name, so we describe them in YAML files as just v1.

So far, you know you’re deploying a Pod object as defined in v1 of the core API group.

The .metadata section is where you attach things such as names, labels, annotations, and a Namespace. The
name helps you identify the object in the cluster, and the labels let you create loose couplings with other objects.
Annotations can help integrate with 3rd-party tools and services. We'll discuss Namespaces in a future chapter.

The .metadata section of this manifest is naming the Pod “hello-pod” and assigning it two labels. You’ll use the
labels in a future chapter to loosely couple it to a Service for stable networking. As it’s not specifying a Namespace,
it’ll be deployed to the default Namespace. It’s not good practice to use the default namespace in the real world,
but it’s fine for these examples.

The . spec section is where you define the containers the Pod will run. This is called the Pod template, and this
example is defining a single-container Pod based on the nigelpoulton/k8sbook: 1.0 image. It’s calling the container
hello-ctr and exposing it on port 8ego.

If this was a multi-container Pod, you’d define additional containers in the .spec section.

Manifest files: Empathy as Code

Quick side-step.

Configuration files, like Kubernetes manifests, are excellent sources of documentation. As such, they have a few
secondary benefits. A couple of these include:

« Speeding-up on-boarding of new team members

« Bridging the gap between developers and operations

For example, if you need a new team member to understand the basic functions and requirements of an
application, get them to read its Kubernetes manifest files.

Also, if your operations teams complain that developers don’t give accurate application requirements and
documentation, make your developers use Kubernetes. This forces them to describe applications in Kubernetes
manifests, which can then be used by operations to understand how the application works and what it requires
from the environment. This is especially true in more advanced setups where you define things such as resource
requirements and limits in manifest files.

These kinds of benefits were described as a form of empathy as code by Nirmal Mehta in his 2017 DockerCon
talk entitled “A Strong Belief, Loosely Held: Bringing Empathy to IT”.

Back on track...

Deploying Pods from a manifest file
You need to run the following commands from the pods folder where you cloned the book’s GitHub repo to.

$ kubectl apply -f pod.yml
pod/hello-pod created

Although the Pod is showing as created, it might not be fully deployed and available yet. This is because it takes
time to pull the image.

Run a kubectl get pods to check the status.
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$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hello-pod 0@/1 ContainerCreating © 9s

You can see the container is still creating — probably waiting while the container runtime pulls the image from
Docker Hub.

This is a good time to mention that Kubernetes will pull (download) images from Docker Hub by default. To
download from another registry, you need to specify the registry URL before the image name in the YAML file.
The following image is in the Google Container Registry (k8s.gcr.io): k8s.ger.io/git-sync:v3.1.6

You can add the --watch flag to the command to monitor it and see when the status changes to Running.
Congratulations. The Pod is running on a healthy node and is being monitored by the local kubelet process.

In future chapters, you’ll see how to connect to the app running in the Pod.

Introspecting running Pods

The two main commands for checking the status of Pods are kubectl get and kubectl describe.

kubectl get

As good as kubectl get pods is, it’s a bit light on detail. Not to worry though, there’s plenty of options for deeper
introspection.

First up, you can add a couple of flags that give you more information:

+ -0 wide gives a couple more columns but is still a single line of output

«+ -o yaml takes things to the next level, returning a full copy of the Pod from the cluster store.

The following command shows a snipped output from of a kubectl get pods -o yaml command. The output is
broadly divided into two parts:

« desired state (.spec)

« observed state (.status)

$ kubectl get pods hello-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
annotations:

kubectl .kubernetes.io/last-applied-configuration:

name: hello-pod
namespace: default
spec: <<== Desired state is in this block
containers:
- image: nigelpoulton/k8sbook:1.0
imagePullPolicy: IfNotPresent
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name: hello-ctr

ports:

status:
conditions:
- lastProbeTime:

<<== Observed state is in this block

null

lastTransitionTime: "2021-02-01T18:21:51Z2"

status: "True"

type: Initialized
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The full output contains a lot more than the 13-line YAML file you posted. So, where does this extra information

come from?

Two main sources:

« Pod objects have a lot of properties. Anything not explicitly set in the YAML file is automatically expanded
with default values.

« The .status section is the current observed state of the Pod.

kubectl describe

Another great command for introspection is kubectl describe. This provides a nicely formatted multi-line
overview of an object. It even includes important object lifecycle events.

$ kubectl describe pods hello-pod

Name: hello-pod
Namespace: default
Start Time: Mon, @1 Feb 2021 18:21:51 +0000
Labels: version=vi
zone=prod

Status: Running
IP: 10.42.1.28
Containers:

hello-ctr:

Container ID:
Image:
Port:

Conditions:
Type
Initialized
Ready
ContainersReady
Events:
Type Reason
Normal Scheduled
Normal Pulling

containerd://4f66e48e. ..
nigelpoulton/k8sbook:1.0
8080/TCP

Status
True
True
True

Age Message

5m30s Successfully assigned

5m30s Pulling image "nigelpou

l1ton/k8sbook:1.0"
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Normal Pulled 5m8s Successfully pulled image ...
Normal Created 5m8s Created container hello-ctr
Normal Started 5m8s Started container hello-ctr

The output has been snipped to fit the page.

kubectl logs

Another useful command for introspecting Pods is kubectl 1logs. Like other Pod-related commands, if you don’t
specify a container with the --container flag, it executes against the first container in the Pod. The format of the

command is kubectl logs <pod>.

Each container in a multi-container Pod gets a name. The first Pod in the YAML object is the first container, and
all commands will run against this unless you specify otherwise. If you need the command to run against another
container, just add the --container flag and specify the container name.
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The following YAML snippet is from a multi-container Pod called “multipod” that defines a container called app

and another called syncer.

spec:
containers:
- name: app <<==== First container
image: nginx
ports:
- containerPort: 8080
- name: syncer <<==== Second container
image: k8s.gcr.io/git-sync:v3.1.6
volumeMounts:
- name: html
<Snip>

The following command runs against the syncer container.

$ kubectl logs multipod --container syncer
<Snip>

kubectl exec: running commands in Pods

Another way to introspect a running Pod is to log into it or execute commands in it. You can do both of these
with kubectl exec. The following example shows how to execute a ps aux command in the first container in the

hello-pod Pod.

$ kubectl exec hello-pod -- ps aux
PID  USER TIME  COMMAND
1 root 0:00 node ./app.js

11 root 0:00 ps aux
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The output shows the main application process (app. js) is running.

It’s also possible to use kubectl exec to get shell access to a container running in a Pod. When you do this,
your terminal prompt will change and you’ll be able to execute commands from inside the Pod (as long as the
command binaries are installed in it).

The following kubectl exec command will log-in to the first container in the hel1o-pod Pod. Once inside, install
the cur1 utility and run a curl command to transfer data from the process listening on port 8ese.

Note: This example is just for demonstration purposes. Installing tools inside running Pods and
containers is an anti-pattern and should be avoided. If you need to make changes to a Pod, you
should create a new Pod with the updates and replace old ones with the new one.

$ kubectl exec -it hello-pod -- sh

# apk add curl
<Snip>

# curl localhost:8080
<html><head><title>K8s rocks!</title><link rel="stylesheet" href="http://netdna....

The -it flags on the kubectl exec command make the session interactive and connects STDIN and STDOUT on
your terminal to STDIN and STDOUT inside the first container in the Pod. Your shell prompt will change to
indicate your shell is now connected to the container.

If you’re running multi-container Pods, you’ll need to pass the --container flag and give it the name of the
container you want to create the exec session with. If you don’t specify this flag, the command will execute
against the first container in the Pod. You can see the ordering and names of containers in a Pod with the kubect1
describe pods <pod> command. You can also inspect the Pod’s YAML file.

Pod hostnames

Every container in a Pod inherits its hostname from the name of the Pod. This means all containers in a multi-
container Pod get the same hostname.

The Pod you deployed is named hello-pod in the pod.ym! file.

kind: Pod

apiVersion: v1

metadata:
name: hello-pod <<<=== This line
labels:
<Snip>

Run the following command from within the interactive exec session you already have to the Pod. The command
is case-sensitive.
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$ env | grep HOSTNAME
HOSTNAME=hello-pod

The hostname of the container is set to the Pod’s name. With this in mind, you should always set Pod names as
valid DNS names (a-z and 0-9 — the minus sign and the period sign).

Type exit to drop back to the terminal of your local machine.

Check Pod immutability

Pods are designed as immutable objects. You can use kubectl edit to try and update some Pod attributes.

Try editing any of the following,

+ Pod name
« Container port

« Container name

Kubernetes will prevent you from changing them.

Multi-container Pod - init container

The following YAML defines a multi-container Pod with an init container and main app container.

apiVersion: vi1
kind: Pod
metadata:
name: initpod
labels:
app: initializer
spec:
initContainers:
- name: init-ctr
image: busybox
command: ['sh', '-c', 'until nslookup k8sbook; do echo waiting for k8sbook service;\
sleep 1; done; echo Service found!']
containers:
- name: web-ctr
image: nigelpoulton/web-app:1.0
ports:
- containerPort: 8080

The spec. initContainers block defines one or more containers that Kubernetes guarantees will run and complete
before main app container starts.

This example has a single init container called “init-ctr” that loops until a Kubernetes Service object called
“k8sbook” is up and present.

Deploy it with the following command and then run a kubectl get pods with the --watch flag.
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$ kubectl apply -f initpod.yml
pod/initpod created

$ kubectl get pods --watch
NAME READY STATUS RESTARTS AGE
initpod 0/1 Init:0/1 7] 5s

The 1nit:0/1 status tells you that zero out of one init containers has completed successfully. The Pod will remain
in this phase until a Service called “k8sbook” is created.

Create the Service and watch the Pod status change.

$ kubectl apply -f initsvec.yml
service/k8sbook created

$ kubectl get pods --watch

NAME READY  STATUS RESTARTS  AGE

initpod /1 Init:0/1 Q 18s

initpod ©/1 PodInitializing (%) 25s
initpod 1/1 Running 7] 2m49s

As soon as the Service appears, the init container successfully completes, allowing the main application container
to start.

Multi-container Pod - sidecar container

Sidecar containers are architecturally different to init containers. The sidecar is long-lived and runs alongside
the main application container for the entire lifespan of the main container.

The following YAML file defines a Pod with two containers. Both mount the same volume and use it to share
data.

The first container is called “ctr-web” and is the main app container. It serves a static web page based on content
loaded from the shared volume. The second container is called “ctr-sync” and is the sidecar. It syncs content from
a GitHub repo into the same shared volume. Net result, if the contents of the GitHub repo change, the “ctr-sync”
sidecar container will copy the new content into the shared volume where the “ctr-web” container will notice
and update the web page.

The mechanics of how it all works isn’t really important here. What’s important is seeing how two containers
are defined in a single Pod YAML.
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apiVersion: vi1
kind: Pod
metadata:
name: git-sync
labels:
app: sidecar
spec:
containers:
- name: ctr-web
image: nginx
volumeMounts:
- name: html
mountPath: /usr/share/nginx/
- name: ctr-sync
image: k8s.gcr.io/git-sync:v3.1.6
volumeMounts:
- name: html
mountPath: /tmp/git
env:
- name: GIT_SYNC_REPO
value: https://github.com/nigelpoulton/ps-sidecar.git
name: GIT_SYNC_BRANCH
value: master
name: GIT_SYNC_DEPTH
value: "1"
name: GIT_SYNC_DEST
value: "html"

volumes:
- name: html
emptyDir: {}

To see it in action, you’ll need to fork the following GitHub repo (you’ll need a GitHub account to be able to do
this).

https://github.com/nigelpoulton/ps-sidecar

Update the GIT_SYNC_REPO value in the sidecarpod.yml and save your changes.

Deploy the application (Pod and Service).
$ kubectl apply -f sidecarpod.yml

You can now use a web browser to connect to the app via the Service.

It’s currently displaying content from your forked repo. To see the sidecar container in action, make a change to
the contents of your forked repo, wait a moment, and then refresh your browser tab viewing the app.

Feel free to run the kubectl get pods and kubectl describe pod commands to see how multi-container Pods
appear in the outputs.

There’s obviously a lot more to Pods than what we’ve covered. However, you’ve learned enough to get started.
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Clean-up

Use kubectl delete pods and kubectl delete svc to delete any Pods and Services still running form this chapter.
You’ll need to provide the name of the Pods and Services you’re deleting.

The following command deletes the git-sync Pod. It may take a few seconds for it to gracefully terminate.

$ kubectl delete pod git-sync
pod "git-sync" deleted

Chapter Summary

In this chapter, you learned the atomic unit of deployment in Kubernetes is the Pod. Each Pod has one or more
containers and gets deployed to a single node in the cluster as an all-or-nothing atomic operation.

Pods are defined and deployed declaratively using YAML manifest files, and it’s normal to deploy them via higher-
level controllers such as Deployments and DaemonSets. If a Pod is not deployed via a controller it’s called a static
Pod.

You use kubect1 apply to POST the YAML manifests to the API server, and Kubernetes picks a node to run the Pod
on.

The kubelet daemon on the assigned worker node is responsible for pulling the strings to get the Pod started and
then monitoring it and attempting local fixes.

If the node a static Pod is running on fails, the missing Pod doesn’t get replaced by another one on another node.
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Namespaces are a native way to divide a single Kubernetes cluster into multiple virtual clusters.

This chapter will set the scene for Namespaces, get you up-to-speed with creating and managing them, and
familiarise you with use-cases. How they integrate with things like service discovery and resource quotas will
be discussed in later chapters.

We’ll split the chapter as follows.

« Use cases for Namespaces
« Inspecting Namespaces
« Creating and managing Namespaces

« Deploying to Namespaces

It’s important to know that Kubernetes Namespaces are not the same as Linux kernel namespaces. Kernel
namespaces divide operating systems into virtual operating systems called containers. Kubernetes Namespaces
divide Kubernetes clusters into virtual clusters called... you guessed it... Namespaces.

We'll capitalise the word “Namespace” when referring to Kubernetes Namespaces. This follows the pattern of
capitalizing Kubernetes API objects and makes it obvious we’re not referring to other types of “namespaces”.

Use cases for Namespaces

Namespaces partition a Kubernetes cluster and are designed as an easy way to apply quotas and policies to groups
of objects. They’re not designed for strong workload isolation.

Before going any further, it’s important to understand that most Kubernetes objects are deployed to a Namespace.
These objects are said to be namespaced and include common objects such as Pods, Services and Deployments.
Other objects exist outside of Namespaces and include nodes and PodSecurityPolicies.

If you don’t explicitly define a target Namespace when deploying a namespaced object, it’ll be deployed to the
default Namespace.

You can run the following command to see all Kubernetes API resources (objects) supported by your cluster. The
output displays whether an object is namespaced or not. The output is trimmed.



5: Virtual clusters with Namespaces 54

$ kubectl api-resources

NAME SHORTNAMES . NAMESPACED  KIND

nodes no false Node
persistentvolumeclaims pvc true PersistentVolumeClaim
persistentvolumes pv false PersistentVolume

pods po true Pod

podtemplates true PodTemplate
replicationcontrollers rc true ReplicationController
resourcequotas quota true ResourceQuota

secrets true Secret
serviceaccounts sa true ServiceAccount
services svc true Service

Namespaces a good way of sharing a single cluster among different departments and environments. For example,
a single cluster might have the following Namespaces.

« Dev
o Test
- QA
Each one can have its own set of users and permissions, as well as unique resource quotas.

What they’re not good for, is isolating hostile workloads. This is because a compromised container or Pod in one
Namespace can wreak havoc in other Namespaces. Putting this into context, you shouldn’t place competitors,
such as Pepsi and Coke, in separate Namespaces on the same shared cluster.

If you need strong workload isolation, the current method is to use multiple clusters. There are projects and
technologies aiming to provide better solutions, but at the time of writing, the safest and most common way of
isolating workloads is putting them on their own clusters.

Inspecting Namespaces

Every Kubernetes cluster has a set of pre-created Namespaces (virtual clusters).

Run the following command to list yours.

$ kubectl get namespaces

NAME STATUS AGE
kube-system Active 3d
default Active 3d
kube-public Active 3d
kube-node-lease Active 3d

The default Namespace is where newly created objects go unless you explicitly specify otherwise. Kube-system
is where DNS, the metrics server, and other control plane components run. Kube-public is for objects that need
to be readable by anyone. And last but not least, kube-node-lease is used for node heartbeat and managing node
leases.

Run a kubectl describe to inspect one of the Namespaces on your cluster.

Note: You can substitute namespace with ns when working with kubect!.
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$ kubectl describe ns default
Name: default

Labels: <none>
Annotations: <none>

Status: Active

No resource quota.

No LimitRange resource.

You can also add -n or --namespace to regular kubectl commands to filter results based on a specific Namespace.

List Service objects in the kube-system Namespace (your output might be different).

$ kubectl get svc --namespace kube-system

NAME TYPE CLUSTER-IP EXTERNAL-IP  PORT(S) AGE
kube-dns ClusterIP 10.43.0.10 <none> 53/UDP,53/TCP,9158. . . 67m
metrics-server ClusterIP 10.43.4.203 <none> 443/TCP 67m
traefik-prometheus  ClusterIP 10.43.49.213 <none> 9100/TCP 67m
traefik LoadBalancer 10.43.222.75 <pending> 80:31716/TCP,443:31... 6Tm

You can also use the --all-namespaces flag to return objects from all Namespaces.

Creating and managing Namespaces

To follow along with these examples, you’ll need a clone of the book’s GitHub repo and run all commands from
within the namespaces folder.

$ git clone https://github.com/nigelpoulton/Thek8sBook.git
<Snip>

$ cd TheK8sBook/namespaces
Namespaces are first-class resources in the core vi API group. This means they’re stable, well understood, and

have been around for a long time. It also means you can create and manage them imperatively with kubect1, and
declaratively with YAML manifests.

Create a new Namespace, called “hydra”, with the following imperative command.

$ kubectl create ns hydra
namespace/hydra created

The following YAML is from the shield-ns.ym1 file in the namespaces folder of the book’s GitHub repo. It defines
a simple Namespace called “shield”.



5: Virtual clusters with Namespaces 56

kind: Namespace
apiVersion: vi
metadata:
name: shield
labels:
env: marvel

Create it with the following command.

$ kubectl apply -f shield-ns.yml
namespace/shield created

List all Namespaces to see the two new ones you created.

$ kubectl get ns

NAME STATUS  AGE
<Snip>

hydra Active 9m35s
shield Active 3s

If you know anything about the Marvel Cinematic Universe, you’ll know Shield and Hydra are bitter enemies
and should not be sharing the same cluster only separated by Namespaces.

Delete the “hydra” Namespace.

$ kubectl delete ns hydra
namespace "hydra" deleted

Configuring kubect1 use a specific Namespace

When you start using Namespaces, you'll quickly realise it’s painful remembering to add the -n or - -namespace
flag on all kubectl commands. A better way might be to set your kubeconfig to automatically work with a
particular Namespace.

The following command configures kubect1 to run all future commands against the shield Namespace.

$ kubectl config set-context --current --namespace shield
Context "k3d-tkb" modified.

Run a few simple kubectl get commands to test it works.
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Deploying to Namespaces

As previously mentioned, most objects exist in the context of a Namespace. If you don’t specify otherwise, new
objects will be created in the default Namespace.

There are two ways to deploy objects to a specific Namespace.

« Imperatively

« Declaratively

The imperative method requires you to add the -n or --namespace flag to commands. The declarative method
specifies the Namespace in the YAML manifest file.

We'll declaratively deploy a simple app to the shield Namespace and test it.

The application is defined in the shield-app.ym1 file in the namespaces folder. It defines a ServiceAccount, Service,
and Pod. The following snipped content shows all three objects are declaratively configured for the shield
Namespace. At this point in the book you don’t need to understand what everything in the YAML is doing.
For example, you’ll learn all about Service objects in an upcoming chapter.

apiVersion: v1
kind: ServiceAccount
metadata:
namespace: shield <<== Namespace
name: default
apiVersion: v1
kind: Service
metadata:
namespace: shield <<== Namespace
name: the-bus
spec:
ports:
- nodePort: 31112
port: 8080
targetPort: 8080
selector:
env: marvel
apiVersion: v1
kind: Pod
metadata:
namespace: shield <<== Namespace
name: triskelion
<Snip>

Deploy it with the following command. You don’t have to specify the Namespace on the command line.
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$ kubectl apply -f shield-app.yml
serviceaccount/default configured
service/the-bus configured
pod/triskelion created

Run a few commands to verify all three objects were deployed to the shield Namespace. Remember to use the
-n or --namespace flag if you haven’t configured kubectl to automatically use that Namespace.

$ kubectl get pods -n shield
NAME READY  STATUS RESTARTS  AGE
triskelion 1/1 Running Q 48s

$ kubectl get svc -n shield
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
the-bus NodePort 10.43.30.174 <none> 8080:31112/TCP 52s

Use curl or your browser to connect to the app on localhost:31112.

Congratulations. You’ve created a Namespace and deployed an app to it. Connecting to the app was no different
to connecting to an app in the default Namespace.

Clean-up

The following commands will clean-up your cluster and revert your kubeconfig to use the default Namespace.
Delete the shield app. Be sure to run the command from the directory where the shield-app.ym! file is located.
$ kubectl delete -f shield-app.yml

serviceaccount "default" deleted

service "the-bus" deleted
pod "triskelion" deleted

Delete the shield Namespace.

$ kubectl delete ns shield
namespace "shield" deleted

Set your kubeconfig back to using the default Namespace. If you don’t do this, future commands will
automatically run against the deleted shield Namespace and will fail.

$ kubectl config set-context --current --namespace default
Context "k3d-tkb" modified.

Chapter Summary

In this chapter, you learned that Kubernetes has a technology called Namespaces that can divide a cluster for
resource and accounting purposes. Each Namespace can have its own users and RBAC rules, as well as resource
quotas.

You also learned they are not designed as strong boundaries for isolating workloads.
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In this chapter, you’ll see how to use Deployments to bring cloud-native features such as self-healing, scaling,
rolling updates, and versioned rollbacks to stateless apps on Kubernetes.

The chapter is divided as follows:

+ Deployment theory

« Create a Deployment

« Perform scaling operations
« Perform a rolling update

o Perform a rollback

Kubernetes offers several controllers that augment Pods with important capabilities. The Deployment controller
is specifically designed for stateless apps. We’ll cover some other controllers later in the book.

Deployment theory

There are two major pieces to Deployments.

1. The spec

2. The controller

The Deployment spec is a declarative YAML object where you describe the desired state of a stateless app. You
give that to Kubernetes where the Deployment controller implements and manages it. The controller aspect is
highly-available and operates as a background loop reconciling observed state with desired state.

Deployment objects, and all of their features and attributes, are defined in the apps/v1 workloads API sub-group.

Note: The Kubernetes API is architecturally divided into smaller sub-groups to make it easier to
manage and navigate. The apps sub-group is where Deployments, DaemonSets, StatefulSets, and
other workload-related objects are defined. We sometimes call it the workloads API.

You start with a stateless application, package it as a container, then define it in a Pod template. At this point you
could run it on Kubernetes. However, static Pods like this don’t self-heal, they don’t scale, and they don’t allow
for easy updates and rollbacks. For these reasons, you’ll almost always wrap them in a Deployment object.

Figure 6.1 shows a Pod template wrapped in a Deployment object. In fact, there are three levels of nesting. The
container holds the application, the Pod augments the container with labels, annotations, and other metadata
useful for Kubernetes, and the Deployment further augments things with scaling and updates.
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apiVersion: apps/vl - T
kind: Deployment
metadata:
name: hello-deploy
spec:

replicas: 10
selector: - -
matchLabels: Scaling, self-healing, updates...

app: hello-world
minReadySeconds: 10
strategy: LY Co-location, resource sharing...

type: RollingUpdate
rollingUpdate:
maxUnavailable: 1 —_—
maxSurge: 1 — m]]]]]]
template: Appand
metadata: ////’ dependencies
labels:
app: hello-world
spec: _—
containers:
- name: hello-pod
image: nigelpoulton/k8sbook:1.0
ports:
- containerPort: 8080

Figure 6.1

You post the Deployment object to the API server where, Kubernetes implements it and the Deployment controller
watches it.

Deployments and Pods

A Deployment object only manages a single Pod template. For example, an application with a front-end web
service and a back-end catalog will have a different Pod for each (two Pod templates). As a result, it’ll need
two Deployment objects — one managing front-end Pods, the other managing back-end Pods. However, a
Deployments can manage multiple replicas of the same Pod. For example, the front-end Deployment might
be managing 5 identical front-end Pod replicas.

Deployments and ReplicaSets

Behind-the-scenes, Deployments rely heavily on another object called a ReplicaSet. While it’s usually recom-
mended not to manage ReplicaSets directly (let the Deployment controller manage them), it’s important to
understand the role they play.

At a high-level, containers are a great way to package applications and dependencies. Pods allow containers to
run on Kubernetes and enable co-scheduling and a bunch of other good stuff. ReplicaSets manage Pods and bring
self-healing and scaling. Deployments manage ReplicaSets and add rollouts and rollbacks.

Figure 6.2. is similar to 6.1, but adds a ReplicaSet into the relationship and shows which object is responsible for
which features.



6: Kubernetes Deployments 61

apivVersion: apps/vil B
kind: Deployment
metadata:

name: hello-deploy
spec:

strategy:
type: RollingUpdate E—
yp nevp Rollouts and rollbacks

rollingUpdate:
maxUnavailable: 1
maxsSurge: 1 - @
replicas: 10 DS , Scaling, self-healing

selector:
7]

matchLabels:
app: hello-world pod » o pod ; 0
minReadySeconds: 10 . Co-lo, sharing... Co-lo, sharing...
/'l App & deps | App & deps

L v
template:
metadata:
labels:
app: hello-world
spec: _—
containers:
- name: hello-pod
image: nigelpoulton/k8sbook:1.0
ports:
- containerPort: 8080

N\

Figure 6.2

Think of Deployments as managing ReplicaSets, and ReplicaSets as managing Pods. Put them together, and you’ve
got a great way to deploy and manage stateless applications on Kubernetes.

Self-healing and scalability

Pods are great. They let you co-locate containers, share volumes, share memory, simplify networking, and a lot
more. But they offer nothing in the way of self-healing and scalability — if the node a Pod is running on fails, the
Pod is lost.

Enter Deployments...

« If a Pod managed by a Deployment fails, it will be replaced — self-healing

« If Pods managed by a Deployment see increased or decreased load, they can be scaled

Remember though, behind-the-scenes, it’s actually the ReplicaSets doing the self-healing and scalability. You’ll
see them in action soon.

It's all about the state

Before going any further, it’s critical to understand three concepts that are fundamental to everything about
Kubernetes:

« Desired state

« Observed state (sometimes called actual state or current state)
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« Reconciliation
Desired state is what you want. Observed state is what you have. If they match, everybody’s happy. If they don’t
match, a process of reconciliation brings them back together.

The declarative model is a method for telling Kubernetes your desired state, while avoiding the detail of how to
implement it. You leave the how up to Kubernetes.

Declarative vs imperative

There are two competing models. The declarative model and the imperative model.

The declarative model is all about describing an end-goal - telling Kubernetes what you want. The imperative
model is all about long lists of commands to reach an end-goal - telling Kubernetes how to do something.

The following is an extremely simple analogy that might help:

+ Declarative: Make me a chocolate cake to feed 10 people.

« Imperative: Drive to store. Buy; eggs, milk, flour, cocoa powder... Drive home. Pre-heat oven. Mix
ingredients. Place in baking tray. Place tray in oven for 30 minutes. Remove from oven and turn oven
off. Add icing. Leave to stand.

The declarative model is stating what you want (chocolate cake for 10). The imperative model is a long list of
steps that will hopefully make a chocolate cake for 10.

Let’s look at a more concrete example.

Assume an application with two microservices — front-end and back-end. To meet expected demand, you know
you need 5 instances of the front-end Pod and 2 instances of the back-end Pod.

Taking the declarative approach, you write a simple configuration file telling Kubernetes you want 5 replicas of
the front-end Pod all listening externally on port 80. You also want 2 back-end Pods listening internally on port
27017. That’s your desired state.

Once you’ve described this in a config file, you give it to Kubernetes and sit back while Kubernetes does the hard
work of implementing and monitoring it. It’s a beautiful thing.

The opposite of this is the imperative model. It has no concept of desired state, it’s just a list of steps and
instructions.

To make things worse, imperative instructions can have endless potential variations. For example, the commands
to pull and start containerd containers are different from the commands to pull and start cri-o containers. This
creates more work, is prone to more errors, and because it’s not declaring a desired state, there’s no self-healing.
Believe me when I tell you, this is not so beautiful.

Kubernetes supports both models, but strongly prefers the declarative model.

Note: containerd and cri-o are CRI container runtimes that Kubernetes runs on cluster nodes
instead of Docker to perform low-level tasks such as starting and stopping containers.
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Controllers and reconciliation

Fundamental to desired state is the process of reconciliation.

For example, ReplicaSets are implemented as a controller running as a background reconciliation loop checking
the right number of Pod replicas are present on the cluster. If there aren’t enough, it adds more. If there are too
many, it terminates some.

Assume a scenario where desired state is 10 replicas, but only 8 are present. It makes no difference if this is due
to a failure, or if it’s because an autoscaler has increased desired state from 8 to 10. Either way, this is a red-alert
condition for Kubernetes, so it orders the control plane to general quarters and brings up two more replicas. And
the best part... it does all this without calling you at 4:20 am!

The exact same reconciliation process powers self-healing, scaling, rollouts, and rollbacks. Let’s take a closer look.

Rolling updates with Deployments

Zero-downtime rolling-updates of stateless apps are what Deployments are all about, and they’re amazing.
However, they require a couple of things from your microservices applications in order to work properly.

1. Loose coupling via APIs

2. Backwards and forwards compatibility

Both of these are hallmarks of modern cloud-native microservices apps and work as follows.

All microservices in an app should be decoupled and only communicate via well-defined APIs. This allows any
microservice to be updated without having to think about clients and other microservices that interact with them
- everything talks to formalised APIs that expose documented interfaces and hide specifics. Ensuring releases
are backwards and forwards compatible means you can perform independent updates without having to factor
in which versions of clients are consuming the service.

With those points in mind, zero-downtime rollouts work like this.

Assume you’re running 5 replicas of a stateless web front-end. As long as all clients communicate via APIs and
are backwards and forwards compatible, it doesn’t matter which of the 5 replicas a client connects to. To perform
a rollout, Kubernetes creates a new replica running the new version and terminates an existing one running the
old version. At this point, you've got 4 replicas on the old version and 1 on the new. This process repeats until all
5 replicas are on the new version. As the app is stateless, and there are always multiple replicas up and running,
clients experience no downtime or interruption of service.

There’s actually a lot that goes on behind the scenes, so let’s look a bit closer.

You design applications with each discrete microservice as its own Pod. For convenience - self-healing, scaling,
rolling updates and more — you wrap the Pods in their own higher-level controller such as a Deployment. Each
Deployment describes all the following:

« How many Pod replicas
« What images to use for the Pod’s container(s)
+ What network ports to expose

« Details about how to perform rolling updates
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In the case of Deployments, when you post the YAML file to the API server, the Pods get scheduled to healthy
nodes and a Deployment and ReplicaSet work together to make the magic happen. The ReplicaSet controller sits
in a watch loop making sure our old friends observed state and desired state are in agreement. A Deployment
object sits above the ReplicaSet, governing its configuration, as well as how rollouts will be performed.

All good so far.

Now, assume you're exposed to a known vulnerability and need to rollout a newer image with the fix. To do
this, you update the same Deployment YAML file with the new image version and re-post it to the API server.
This updates the existing Deployment object with a new desired state requesting the same number of Pods but
all running the newer image.

To make this happen, Kubernetes creates a second ReplicaSet to create and manage the Pods with the new image.
You now have two ReplicaSets - the original one for the Pods with the old image, and a new one for the Pods
with the new image. As Kubernetes increases the number of Pods in the new ReplicaSet (with the new version of
the image) it decreases the number of Pods in the old ReplicaSet (with the old version of the image). Net result,
you get a smooth incremental rollout with zero downtime.

You can rinse and repeat the process for future updates — just keep updating the same Deployment manifest,
which should be stored in a version control system.

Brilliant.

Figure 6.3 shows a Deployment that’s been updated once. The initial release created the ReplicaSet on the left,
and the update created the one on the right. You can see the ReplicaSet for the initial release has been wound
down and no longer manages any Pods. The one associated with the update is active and owns all the Pods.

Initial release Update

pod pod pod

Figure 6.3

It’s important that the old ReplicaSet from the initial release still exists with its configuration intact. You’ll see
why in the next section.

Rollbacks

As you saw in Figure 6.3, older ReplicaSets are wound down and no longer manage any Pods. However, their
configurations still exist on the cluster, making them a great option for reverting to previous versions.

The process of a rollback is the opposite of a rollout — you wind one of the old ReplicaSets up while you wind
the current one down. Simple.

Figure 6.4 shows the same app rolled back to the initial release.
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Initial release Update

G
pod pod pod

Figure 6.4

That’s not the end though. Kubernetes gives you fine-grained control over how updates and rollbacks proceed.
For example, you can insert delays, control the pace and cadence of the release, and you can even probe the
health and status of updated replicas.

But talk is cheap, let’s see this stuff in action.

Create a Deployment

You’ll need a Kubernetes cluster and the lab files from the book’s GitHub repo if you want to follow along.

$ git clone https://github.com/nigelpoulton/Thek8sBook.git
Cloning into 'TheK8sBook'. ..

If you don’t know how to use git, or can’t install it, you can just go to the GitHub repo and copy the text from
the relevant files into files with the same name on your local machine.

Be sure to run all commands from within the deployments folder.
$ cd TheK8sBook/deployments

The following YAML snippet is from the deploy.ymi file. It defines a single-container Pod wrapped in a
Deployment object. It’s been annotated to highlight some important sections.

apiVersion: apps/vi
kind: Deployment

metadata:
name: hello-deploy <<==== Deployment name. Must be valid DNS name
spec:
replicas: 10 <<==== Number of Pods to deploy & manage
selector:
matchLabels:

app: hello-world
revisionHistorylLimit: 5
progressDeadlineSeconds: 300
minReadySeconds: 10
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strategy: <<==== This block controls how updates happen
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 1
template: <<==== Below here is the PodTemplate
metadata:
labels:
app: hello-world
spec:
containers:
- name: hello-pod
image: nigelpoulton/k8sbook:1.0
ports:
- containerPort: 8080

Let’s step through it and explain some of the important parts.

Right at the very top, you specify the API version to use. At the time of writing, the latest stable Deployment
schema is defined in the apps/vt1 API sub-group.

Next, the kind field tells Kubernetes you’re defining a Deployment object.

The metadata section gives the Deployment a name. This should be a valid DNS name. So, alphanumerics, the
dot and the dash are valid, and you should avoid exotic characters.

The spec section is where most of the action happens. Anything directly below .spec relates to the Deployment.
Anything nested below .spec.template is the Pod template the Deployment uses to stamp out Pod replicas. In
this example, the Pod template defines a single-container Pod.

spec.replicas is how many Pod replicas the Deployment should create and manage.

spec.selector is a list of labels that Pods must have in order for the Deployment to manage them. Notice how the
Deployment selector matches the labels assigned to the Pod lower down in the Pod template (app=hello-world).

spec.revisionHistoryLimit tells Kubernetes how many older versions/ReplicaSets to keep. Keeping more gives
you more rollback options, but keeping too many can bloat the object. This can be a problem on large clusters
with lots of software releases.

spec.progressDeadlineSeconds tells Kubernetes how long to wait during a rollout for each new replica to come
online. The example sets a 5 minute deadline, meaning each new replica has 5 minutes to come up before
Kubernetes considers the rollout stalled. To be clear, the clock is reset after each new replica comes up, meaning
each step in the rollout gets its own 5 minute window.

And finally, spec.strategy tells the Deployment controller how to update the Pods when a rollout occurs.

Use kubectl apply to deploy it on the cluster.

Note: kubectl apply posts the YAML file to the Kubernetes API server and includes all necessary
authentication tokens.
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$ kubectl apply -f deploy.yml
deployment.apps/hello-deploy created

At this point, the Deployment configuration is persisted to the cluster store as a record of intent and the 10
replicas will be scheduled to healthy worker nodes. In the background, Deployment and ReplicaSet controllers
are watching the state of play and eager to perform their reconciliation magic.

Inspecting Deployments

You can use the normal kubectl get and kubectl describe commands to see details of Deployments and
ReplicaSets.

$ kubectl get deploy hello-deploy
NAME DESIRED  CURRENT UP-TO-DATE AVAILABLE  AGE
hello-deploy 10 10 10 10 24s

$ kubectl describe deploy hello-deploy

Name: hello-deploy

Namespace: default

Annotations: deployment.kubernetes.io/revision: 1

Selector: app=hello-world

Replicas: 10 desired | 10 updated | 10 total | 10 available | @ unavailable
StrategyType: RollingUpdate

MinReadySeconds: 10

RollingUpdateStrategy: 1 max unavailable, 1 max surge
Pod Template:
Labels: app=hello-world

Containers:
hello-pod:
Image: nigelpoulton/k8sbook:1.0
Port: 8080/TCP
<SNIP>

OldReplicaSets: <none>
NewReplicaSet: hello-deploy-65cbc9474c (10/10 replicas created)
<Snip>

The command outputs have been trimmed for readability, but take a minute to look at them as they contain a lot
of important information.

As mentioned earlier, Deployments automatically create associated ReplicaSets. Check this with the following
command.

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
hello-deploy-65cbc9474c 10 10 10 im

Right now you only have one ReplicaSet. This is because you’ve only performed an initial rollout. However, you
can see the name of the ReplicaSet matches the name of the Deployment plus a hash on the end. This is a crypto-
hash of the Pod template section of the Deployment manifest (everything below .spec.template). You’ll see this
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shortly, but making changes to the Pod template section initiates a rollout and a new ReplicaSet with a hash of
the updated Pod template.

You can get more detailed information about the ReplicaSet with the usual kubectl describe command. Your
ReplicaSet will have a different name

$ kubectl get rs hello-deploy-65cbc9474c

Name: hello-deploy-65cbc9474c
Namespace: default
Selector: app=hello-world, pod-template-hash=65cbc9474c
Labels: app=hello-world
pod-template-hash=65cbc9474c
Annotations: deployment .kubernetes.io/desired-replicas: 10

deployment.kubernetes.io/max-replicas: 11
deployment.kubernetes.io/revision: 1
Controlled By: Deployment/hello-deploy
Replicas: 10 current / 10 desired
Pods Status: 10 Running / @ Waiting / @ Succeeded / @ Failed
Pod Template:
Labels: app=hello-world
pod-template-hash=65cbc9474c

Containers:
hello-pod:
Image: nigelpoulton/k8sbook:1.0@
Port: 8080/TCP
<Snip>

Notice how the output is similar to the Deployment output. This is because the config of the ReplicaSet is
dictated by the Deployment that created it. The status (observed state) of the ReplicaSet is also rolled up into the
Deployment status.

As with the Deployment output, the ReplicaSet output tells us a lot about it and how it connects to Pods and its
governing Deployment.

Accessing the app

As things stand, you’ve got 10 replicas of a web app running. In order to access it from a stable name or IP address,
or even from outside the cluster, you need a Kubernetes Service object. We’ll discuss these in detail in the next
chapter, but for now it’s enough to know they provide networking for a set of Pods.

The following YAML defines a Service that works with the Pod replicas previously deployed. It’s included in the
“deployments” folder of the book’s GitHub repo called svc.ym!1.
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apiVersion: vi1
kind: Service
metadata:
name: hello-svc
labels:
app: hello-world

spec:
type: NodePort
ports:
- port: 8080

nodePort: 30001

protocol: TCP
selector:

app: hello-world

Deploy it with the following command. Be sure to run the command from the deployments directory.

$ kubectl apply -f svc.yml
service/hello-svec created

Now the Service is deployed, you can access the app by hitting any of the cluster nodes on port 30001

If you’re running Docker Desktop you should be able to use 1ocalhost: 30001. Unfortunately, the current versions
of Docker Desktop for Mac contain a bug and this doesn’t work. It may be fixed in your version.

If you’re running your cluster in the cloud, you need to hit the public IP or public DNS name of one of your
cluster nodes on 30001.

If you’re using Minikube, get your Minikube IP ($ minikube ip)and append port 30001.

Figure 6.5 shows the Service being accessed from outside the cluster via a node called nodet1 on port 3e001. It
assumes node1 is resolvable via DNS, and port 3eee1 is allowed on any intervening firewalls.

©© ® @ ThekssBook x  +

<« C A NotSecure | node1:30001 *

Kubernetes Rocks!

Check out my K8s Deep Dive course!

The video course

Figure 6.5



6: Kubernetes Deployments 70

Perform scaling operations

Manually scaling the number of replicas in a Deployment is easy. You can do it imperatively with the kubectl
scale command, or declaratively by updating the YAML file and re-posting to the API server. You’ll do it both
ways, but the preferred way is the declarative way.

Verify the current number of replicas.

$ kubectl get deploy hello-deploy
NAME READY  UP-TO-DATE  AVAILABLE  AGE
hello-deploy 10/10 10 10 2Tm

Run the following command to scale down to 5 and verify the operation.

$ kubectl scale deploy hello-deploy --replicas 5
deployment .apps/hello-deploy scaled

$ kubectl get deploy hello-deploy
NAME READY  UP-TO-DATE  AVAILABLE  AGE
hello-deploy 5/5 5 5 2Tm

You’ve successfully scaled the Deployment, but there’s a potential problem. The state of your environment no
longer matches what is in your declarative manifest — the cluster has 5 replicas but the Deployment YAML
still defines 10. This can cause issues in the future if you use the YAML file to update other properties of the
Deployment. For example, if you update the image version in the YAML file and post it to the API server, you’ll
also increase the replica count back to 10. For this reason, you should always keep your YAML manifests in sync
with your live environment.

Let’s re-post the YAML file and take the replica count back to 10. Editing the YAML file and posting it to
Kubernetes is the preferred way to manually scale apps.

You can edit the YAML file and set a different number of replicas, but the examples later in the chapter will
assume you have 10.

$ kubectl apply -f deploy.yml
deployment .apps/hello-deploy configured

$ kubectl get deploy hello-deploy
NAME READY UP-TO-DATE AVAILABLE AGE
hello-deploy 10/10 10 10 29m

You may have noticed the scaling operations were almost instantaneous. This is different to rolling updates that
you're going to see next.

Kubernetes also has autoscalers that scale Pods and infrastructure based on resource demand.
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Perform a rolling update

In this section, you’ll see how to perform a rolling update on the app already deployed. We’ll assume the new
version of the app has already been created and containerized as an image with the 2.0 tag. All that’s left to do
is perform the rollout. To simplify the process and keep the focus on Kubernetes, we’ll ignore real-world CI/CD
workflows and version control tools.

Before continuing, it’s vital you understand that update operations are replacement operations. When you
“update” a Pod, you're actually terminating it and replacing it with a brand new one. Pods are designed as
immutable objects, so you never change or update existing ones.

Ok, let’s crack on.

The first step is to update the image version in the Deployment’s resource manifest. The initial release of the
app is using the nigelpoulton/k8sbook:1.0 image. Update that to reference the newer nigelpoulton/k8sbook:2.0
image and save your changes. This ensures next time the manifest is posted to the API server, all Pods managed
by the Deployment will be replaced with new ones running the new 2.0 image.

The following trimmed output shows the updated file. The only change is to the container image line in the Pod
template section.

apiVersion: apps/vi
kind: Deployment
metadata:
name: hello-deploy
spec:
replicas: 10
<Snip>
template:
<Snip>
spec:

containers:

- name: hello-pod
image: nigelpoulton/k8sbook:2.0 <<-- The only line that changed
ports:

- containerPort: 8080

Before posting it to Kubernetes, let’s look at the settings governing how the rollout will work.

Terminology: We often use the terms update, rollout, and release to mean the same thing — issuing
anew version of an app.

The .spec section of the manifest contains all the settings governing how updates will be performed.
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<Snip>
revisionHistoryLimit: 5
progressDeadlineSeconds: 300
minReadySeconds: 10
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 1
<Snip>

revisionHistoryLimit tells Kubernetes to keep the configs of the previous 5 releases. This means the previous 5
ReplicaSet objects will be kept and you can rollback to any of them.

progressDeadlineSeconds governs how long Kubernetes waits for each new Pod replica to start, before considering
the rollout to have stalled. This config gives each Pod replica its own 5 minute window to come up.

.spec.minReadySeconds throttles the rate at which replicas are replaced. The one in the example tells Kubernetes
that any new replica must be up and running for 10 seconds, without any issues, before it’s allowed to
update/replace the next one in sequence. Longer waits give you a chance to spot problems and avoid updating all
replicas to a dodgy version. In the real world, you should make the value large enough to trap common failures.

There is also a nested .spec.strategy map telling Kubernetes you want this Deployment to:

« Update using the RollingUpdate strategy
+ Never have more than one Pod below desired state (maxUnavailable: 1)

« Never have more than one Pod above desired state (naxSurge: 1)

As the desired state of the app requests 10 replicas, maxSurge: 1 means you’ll never have more than 11 replicas
during the update process, and maxUnavailable: 1 means you'll never have less than 9. The net result is a rollout
that updates two Pods at a time (the delta between 9 and 11 is 2).

What you’ve seen so far is great, but we haven’t explained how Kubernetes knows which Pods to terminate and
replace when performing the update.

The answer to this is simple but vital... label selectors!

If you look closely at the dep1oy.ym1 file, you’ll see the Deployment spec has a selector block. This is a list of labels
the Deployment controller looks for when finding Pods to update during rollout operations. In this example, it’s
looking for Pods with the app=hel10-wor1d label, and the Pod template will create Pods with that label. Net result...
the Pods created by this Deployment will be managed by it.
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apiVersion: apps/vi
kind: Deployment
metadata:

name: hello-deploy

spec:
selector: The Deployment will manage all
matchLabels: <<=== replicas on the cluster with
app: hello-world <<=== this label
<Snip>
template:
metadata:
labels:
app: hello-world <<=== Matches the label selector
<Snip>

The Deployment’s label selector is immutable, so you can’t change it once it’s deployed.

With the updated manifest ready and saved, you can initiate the update by re-posting it to the API server. Be
sure to add the --record flag this time as we’ll reference it later.

$ kubectl apply -f deploy.yml --record
deployment .apps/hello-deploy configured

The update may take some time to complete. This is because it’s incrementing two Pods at a time, pulling the
new image on each node, starting the new Pods, and then waiting 10 seconds before moving on to the next two.

You can monitor the progress with kubectl rollout status.

$ kubectl rollout status deployment hello-deploy

Waiting for rollout to finish: 4 out of 10 new replicas...
Waiting for rollout to finish: 4 out of 10 new replicas...
Waiting for rollout to finish: 6 out of 1@ new replicas...
AC

If you press Ctr1+C to stop watching the progress, you can run kubectl get deploy commands while the update
is in process. This lets you see the effect of some of the update-related settings in the manifest. For example, the
following command shows that 5 of the replicas have been updated and you currently have 11. 11 is 1 more than
the desired state of 10. This is a result of the maxSurge=1 value in the manifest.

$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hello-deploy 10 11 5 11 31im

Pausing and resuming rollouts

It’s possible to pause and resume a rollout using kubect!.

If the rollout is still in progress, you can pause it with the following command.
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$ kubectl rollout pause deploy hello-deploy
deployment .apps/hello-deploy paused

Running a kubectl describe provides some interesting info.

$ kubectl describe deploy hello-deploy

Name: hello-deploy
Annotations: deployment.kubernetes.io/revision: 2
Selector: app=hello-world
Replicas: 10 desired | 4 updated | 11 total | 11 available | © unavailable
StrategyType: RollingUpdate
MinReadySeconds: 10
RollingUpdateStrategy: 1 max unavailable, 1 max surge
<Snip>
Conditions:
Type Status Reason
Available True MinimumReplicasAvailable
Progressing Unknown DeploymentPaused

OldReplicaSets: hello-deploy-85fd664fff (7/7 replicas created)
NewReplicaSet: hello-deploy-5445f6dcbb (4/4 replicas created)

The deployment .kubernetes. io annotation shows the object is on revision 2 (revision 1 was the initial rollout and
this update is revision 2). Replicas shows the rollout is incomplete. The third line form the bottom shows the
Deployment condition as “progressing” but paused. Finally, you can see the ReplicaSet for the initial release is
wound down to 7 replicas and the one for the new release is up to 4.

If a scale-up operation occurs during a rollout, the additional replicas will be balanced across both ReplicaSets.
In this example, if the Deployment was increased to 20 by adding 10 new replicas, Kubernetes would assign 7 of
the new replicas to the old ReplicaSet and 4 to the new. This happens even if the rollout is not paused.

You can resume the rollout with the following command.

$ kubectl rollout resume deploy hello-deploy
deployment .apps/hello-deploy resumed

Once it completes, you can verify with kubectl get deploy.

$ kubectl get deploy hello-deploy
NAME DESIRED  CURRENT  UP-TO-DATE  AVAILABLE  AGE
hello-deploy 10 10 10 10 39m

The output shows the rollout as complete — 10 Pods are up-to-date and available.

If you’ve been following along with the examples, you’ll be able to hit refresh in your browser and see the
updated app (Figure 6.6). The old version displayed “Kubernetes Rocks!”, the new one displays “The Kubernetes
Book!!!”.
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Figure 6.6

Perform a rollback

A moment ago, you used kubect1 apply to perform a rolling update on the “hello-deploy” Deployment. You used
the --record flag so Kubernetes would maintain a documented revision history. The following command shows
the Deployment with two revisions.

$ kubectl rollout history deployment hello-deploy
deployment .apps/hello-deploy

REVISION CHANGE-CAUSE

1 <none>

2 kubectl apply --filename-deploy.yml --record=true

Revision 1 was the initial deployment that used the 1.0 image tag. Revision 2 is the rolling update you just
performed. You can see the command used to invoke the update has been recorded in the object’s history. This
is only there because you used the - -record flag when invoking the update. This might be a good reason for you
to use the --record flag.

You know that rolling updates create new ReplicaSets, and that old ReplicaSets aren’t deleted. The fact the old
ones still exist makes them ideal for executing rollbacks, which are the same as updates, just in reverse.

The following commands show the two ReplicaSet objects. The second command shows the config of the old one
and that it still references the old image version. The output is trimmed to fit the book.
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$ kubectl get rs

NAME DESIRED  CURRENT  READY  AGE
hello-deploy-65cbc9474c @ %) (4] 42m
hello-deploy-6£f8677b5b 10 10 10 5m

$ kubectl describe rs hello-deploy-65cbc94T4c

Name: hello-deploy-65cbc94T4c
Namespace: default
Selector: app=hello-world, pod-template-hash=65cbc9474c
Labels: app=hello-world
pod-template-hash=65cbc9474c
Annotations: deployment.kubernetes.io/desired-replicas: 10

deployment.kubernetes.io/max-replicas: 11

deployment .kubernetes.io/revision: 1

kubernetes.io/change-cause: kubectl apply --filename=deploy.yml --record=true
Controlled By: Deployment/hello-deploy

Replicas: © current / @ desired
Pods Status: © Running / @ Waiting / @ Succeeded / © Failed
Pod Template:
Containers:
hello-pod:
Image: nigelpoulton/k8sbook:1.0
Port: 8080/TCP

The line you’re interested in is the one shown second-from-last in the book, as it shows the old image version.
Therefore, flipping the Deployment back to this ReplicaSet will automatically replace all Pods with the original
version.

Note: Don’t get confused when I refer to the rollback as an “update”. That’s exactly what it is. A
rollback follows exactly the same logic and rules as a rollout — terminate Pods with the current
image and replace them with Pods running the new image. Just in the case of a rollback, the “new”
image is actually an “older” one.

The following example uses kubect1 rollout to revert the application to revision 1. This is an imperative operation
and not recommended. However, it’s convenient for quick rollbacks, just make sure you remember to update your
source YAML files to reflect the changes you make.

$ kubectl rollout undo deployment hello-deploy --to-revision=1
deployment.apps "hello-deploy" rolled back

Although it might look like the operation is instantaneous, it isn’t. Like we said before, rollbacks follow the same
rules defined in the strategy block of the Deployment object. In this example, that’ll be minReadySeconds: 10,
maxUnavailable: 1, and maxSurge: 1. You can verify this and track the progress with the following kubectl get
deploy and kubectl rollout commands.
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$ kubectl get deploy hello-deploy
NAME DESIRED CURRNET UP-TO-DATE AVAILABE AGE
hello-deploy 10 11 4 9 45m

$ kubectl rollout status deployment hello-deploy
Waiting for rollout to finish: 6 out of 1@ new replicas have been updated...
Waiting for rollout to finish: out of 10 new replicas have been updated...

Waiting for rollout to finish:

T

Waiting for rollout to finish: 8 out of 10 new replicas have been updated...
1 old replicas are pending termination...
9

Waiting for rollout to finish:
AC

of 10 updated replicas are available. ..

Congratulations. You’ve performed a rolling update and a successful rollback.

Just a quick reminder. The rollback operation you performed was an imperative one. This means the current
state of the cluster no longer matches your source YAML files — the latest version of the YAML file lists the 2.0
image, but you rolled the cluster back to1.e. This is a fundamental flaw with the imperative approach. In the real
world, following a rollback operation like this, you should manually update your source YAML files to reflect
the changes invoked by the rollback.

Rollouts and labels

You’ve already seen that Deployments and ReplicaSets use labels and selectors to find Pods they own.

In earlier versions of Kubernetes, it was possible for Deployments to take over management of existing static
Pods if they had the same labels. However, recent versions use the system-generated pod-template-hash label so
only Pods created by the Deployment/ReplicaSet will be managed.

Assume a quick example. You already have 5 Pods on a cluster with the app=front-end label. At a later date, you
create a Deployment that requests 10 Pods with the same app=front-end label. Older versions Kubernetes would
notice there were already 5 Pods with that label and only create 5 new ones, and the Deployment/ReplicaSet
would manage all 10. However, newer versions of Kubernetes tag all Pods created by a Deployment/ReplicaSet
with the pod-template-hash label. This stops higher-level controllers seizing ownership of existing static Pods.

The following extremely snipped outputs show how this label connects everything.

$ kubectl describe deploy hello-deploy
Name: hello-deploy

<Snip>

NewReplicaSet: hello-deploy-5445f6dcbb

$ kubectl describe rs hello-deploy-5445f6dcbb

Name: hello-deploy-5445f6dcbb
<Snip>>
Selector: app=hello-world, pod-template-hash=5445f6dcbb

$ kubectl get pods --show-labels

NAME READY  STATUS LABELS
hello-deploy-5445f6dcbb. . 1/1 Running app=hello-world, pod-template-hash=5445f6dcbb
hello-deploy-5445f6dcbb. . 1/1 Running app=hello-world, pod-template-hash=5445f6dcbb

hello-deploy-5445f6dcbb. . 1/1 Running app=hello-world, pod-template-hash=5445f6dcbb



6: Kubernetes Deployments 78

hello-deploy-5445f6dcbb. . 1/1 Running app=hello-world, pod-template-hash=5445f6dcbb
<Snip>

You shouldn’t mess about with pod-template-hash label or selector.

Clean-up

Use kubectl delete -f deploy.yml and kubectl delete -f svc.yml to delete the Deployment and Service created
in the examples.

Chapter summary

In this chapter, you learned that Deployments are a great way to manage stateless apps on Kubernetes. They
augment Pods with self-healing, scalability, rolling updates, and rollbacks.

Behind-the-scenes, Deployments use ReplicaSets to do most of the work with Pods - it’s actually a ReplicaSet
that creates, terminates, and otherwise manages Pods, but the Deployment tells the ReplicaSet what to do.

Like Pods, Deployments are objects in the Kubernetes API and you should work with them declaratively.
They’re defined in the apps/v1 workloads API sub-group and implement a controller architecture running as
a reconciliation loop on the control plane.

When you perform updates with the kubect1 apply command, previous versions of ReplicaSets get wound down,
but they stick around making it easy to perform rollbacks.
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In previous chapters, you’ve deployed applications to Kubernetes and seen how controllers add self-healing,
scaling and rollouts. Despite all of this, Pods are still unreliable and you should not connect directly to them.
This is where Services come to the rescue providing stable and reliable networking for a set of unreliable Pods.

The chapter is divided as follows:

« Setting the scene
+ Theory

« Hands-on

Setting the scene

When Pods fail, they get replaced by new ones with new IPs. Scaling-up introduces new Pods with new IP
addresses. Scaling down removes Pods. Rolling updates also replace existing Pods with new ones with new IPs.
This creates massive IP churn and demonstrates why you should never connect directly to any particular Pod.

You also need to know 3 fundamental things about Kubernetes Services.

First, when talking about Services with a capital “S”, we’re talking about the Service object in Kubernetes that
provides stable networking for Pods. Just like a Pod, ReplicaSet, or Deployment, a Kubernetes Service is a REST
object in the API that you define in a manifest and post to the API server.

Second, every Service gets its own stable IP address, its own stable DNS name, and its own stable port.

Third, Services use labels and selectors to dynamically select the Pods to send traffic to.

Service Theory

Figure 7.1 shows a simple application managed by a Deployment controller. There’s a client (which could be
another microservice) that needs a reliable network endpoint to access the Pods. Remember, it’s a bad idea to
talk directly to individual Pods because they can disappear at any point via scaling operations, rollouts and
rollbacks, and failures.
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Figure 7.1

Figure 7.2 shows the same application with a Service thrown into the mix. The Service fronts the Pods with a
stable IP, DNS name, and port. It also load-balances traffic to Pods with the right labels.

Client

IP: reliable
DNS: reliable
Port: reliable

Figure 7.2

With a Service in place, the Pods can scale up and down, they can fail, and they can be updated and rolled
back. And clients will continue to access them without interruption. This is because the Service is observing the
changes and updating its list of healthy Pods. But it never changes its stable IP, DNS, and port.

Think of Services as having a static front-end and a dynamic back-end. The front-end, consisting of the IP, DNS
name, and port, never changes. The back-end, comprising the list of healthy Pods, can be constantly changing.
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Labels and loose coupling

Services are loosely coupled with Pods via labels and selectors. This is the same technology that loosely couples
Deployments to Pods and is key to the flexibility of Kubernetes. Figure 7.3 shows an example where 3 Pods are
labelled as zone=prod and version=1, and the Service has a selector that matches.

Selector:
zone=prod, ver=v1

/ \
V%) Q \7)
pod pod pod
) ver=vl ) ver=vl ) ver=vl

Figure 7.3

In Figure 7.3, the Service is providing stable networking to all three Pods — you send requests to the Service and
it forwards them to the Pods. It also provides basic load-balancing.

For a Service to send traffic to a Pod, the Pod needs every label the Service is selecting on. It can also have
additional labels the Service isn’t looking for. If that’s confusing, the examples in Figures 7.4 and 7.5 will help.

Figure 7.4 shows an example where none of the Pods match. This is because the Service is looking for Pods with
both labels. The logic is a Boolean AND.

Selector:
zone=prod, ver=v1

o

pod pod pod

Figure 7.4

Figure 7.5 shows an example that does work. This time the Pods have all the labels the Service is selecting on. It
makes no difference if the Pods have additional labels. The Service is looking for Pods with two specific labels,
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it finds them, and it ignores the fact they have additional labels.

Selector:
zone=prod, ver=v1

N
N7 ’/ N7

B

Figure 7.5

The following excerpts, from a Service YAML and Deployment YAML, show how selectors and labels work.

sve.yml

apiVersion: vi1
kind: Service
metadata:
name: hello-svc
spec:
ports:
- port: 8080
selector:
app: hello-world <<== Send to Pods with these labels
env: tkb <<== Send to Pods with these labels

deploy.yml

apiVersion: apps/vi
kind: Deployment
metadata:
name: hello-deploy
spec:
replicas: 10
<Snip>
template:
metadata:
labels:
app: hello-world <<== Pod labels
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env: tkb <<== Pod labels
spec:
containers:
<Snip>

In the example, the Service is selecting on Pods with the app=hello-world and book=tkb labels. The Deployment
has a Pod template with the same two labels. This means any Pods it deploys will match the Service’s selector
and receive traffic from it. This loose coupling is how Services know which Pods to send traffic to.

Services and Endpoint objects

As Pods come-and-go (scaling, failures, rollouts etc.), the Service dynamically updates its list of healthy matching
Pods. It does this through a combination of label selection and a construct called an Endpoints object.

Every time you create a Service, Kubernetes automatically creates an associated Endpoints object. The Endpoints
object is used to store a dynamic list of healthy Pods matching the Service’s label selector.

It works like this...

Kubernetes is constantly evaluating the Service’s label selector against all healthy Pods on the cluster. Any new
Pods that match the selector get added to the Endpoints object, whereas any Pods that disappear get removed.
This means the Endpoints object is always up to date.

When sending traffic to Pods via a Service, the cluster’s internal DNS to resolves the Service name to an IP address.
It then sends the traffic to this stable IP address and the traffic gets routed to one of the Pods in the Endpoints
list. However, a Kubernetes-native application (that’s a fancy way of saying an application that understands
Kubernetes and can query the Kubernetes API) can query the Endpoints API directly, bypassing the DNS lookup
and use of the Service’s IP.

Note: Recent versions of Kubernetes are replacing Endpoints objects with more efficient Endpoint
slices. The functionality is identical, but Endpoint slices are higher performance and more efficient.

Now that you know the fundamentals, let’s look at some use-cases.

Accessing Services from inside the cluster

Kubernetes supports several types of Service. The default type is ClusterIP.

A ClusterIP Service has a stable virtual IP address that is only accessible from inside the cluster. We call this
a “ClusterIP”. It’s programmed into the network fabric and guaranteed to be stable for the life of the Service.
Programmed into the network fabric is fancy way of saying the network just knows about it and you don’t need
to bother with the details.

Anyway, the ClusterIP is registered against the name of the Service in the cluster’s internal DNS service. All
Pods in the cluster are pre-programmed to use the cluster’s DNS service, meaning all Pods can convert Service
names to ClusterIPs.

Let’s look at a simple example.

Creating a new Service called “magic-sandbox” will dynamically assign a stable ClusterIP. This name and
ClusterIP are automatically registered with the cluster’s DNS service. These are all guaranteed to be long-lived
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and stable. As all Pods in the cluster send service discovery requests to the internal DNS, they can all resolve
“magic-sandbox” to the ClusterIP. iptables or IPVS rules are distributed across the cluster to ensure traffic sent
to the ClusterIP gets routed to matching Pods.

Net result... if a Pod (application microservice) knows the name of a Service, it can resolve that to a ClusterIP
address and connect to the Pods behind it.

This only works for Pods and other objects on the cluster, as it requires access to the cluster’s DNS service. It
does not work outside of the cluster.

Accessing Services from outside the cluster
Kubernetes has two types of Service for requests originating from outside the cluster.

« NodePort

- LoadBalancer

NodePort Services build on top of the ClusterIP type and enable external access via a dedicated port on every
cluster node. We call this port the “NodePort”.

You already know the default Service type is ClusterIP, and it registers a DNS name, virtual IP, and port with the
cluster’s DNS. NodePort Services build on this by adding a NodePort that can be used to reach the Service from
outside the cluster.

The following YAML shows a NodePort Service called “magic-sandbox”.

apiVersion: v1
kind: Service
metadata:
name: magic-sandbox
spec:
type: NodePort
ports:
- port: 8080
nodePort: 30050
selector:
app: hello-world

Pods on the cluster can access this Service by the name “magic-sandbox” on port sese. Clients connecting from
outside the cluster can send traffic to any cluster node on port 30050.

Figure 7.6 shows a NodePort Service where 3 Pods are exposed externally on port 30050 on every cluster node.
In step 1, an external client hits node2 on port 3005e. In step 2 it’s redirected to the Service object. Step 3 shows
the associated Endpoint object with an always-up-to-date list of Pods matching the label selector. Step 4 shows
the client being directed to a healthy Pod on node1.
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Figure 7.6

The Service could just as easily have directed the client to a Pod on node 3 or 4. In fact, future requests may go
to other Pods as the Service performs basic load-balancing.

LoadBalancer Services make external access even easier by integrating with an internet-facing load-balancer
on your underlying cloud platform. You get a high-performance highly-available public IP or DNS name that
you can access the Service from. You can even register friendly DNS names to make access even simpler - you
don’t need to know cluster node names or IPs.

You'll create and use a LoadBalancer Service in the hands-on section later. They only work on clouds that support
them.

Service discovery

The book has an entire chapter dedicated to a service discovery deep dive, so this section will be brief.

Kubernetes implements Service discovery in a couple of ways:

+ DNS (preferred)

«+ Environment variables (definitely not preferred)

Kubernetes clusters run an internal DNS service that is the centre of service discovery. Service names are
automatically registered with the cluster DNS, and every Pod and container is pre-configured to use the cluster
DNS. This means every Pod/container can resolve every Service name to a ClusterIP and connect to the Pods
behind it.

The alternative form of service discovery is through environment variables. Every Pod gets a set of environment
variables that resolve Services currently on the cluster. However, they cannot learn about new Services added
after the Pod they are in was created. This is a major reason DNS is the preferred method.

See the service discovery chapter for a deeper dive.
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Summary of Service theory

The front-end of a Service provides an immutable IP, DNS name and port that is guaranteed not to change for
the entire life of the Service. The back-end of a Service uses labels and selectors to load-balance traffic across a
potentially dynamic set of application Pods.

Hands-on with Services

Let’s put the theory to the test.

There are two ways to create Services.

« The imperative way (not recommended)

« The declarative way

You’ll test Services for internal and external access, and take a closer look at Endpoints objects.

To follow along, you’ll need the lab files from the book’s GitHub repo. You can clone the repo with the following
command, or you can manually copy the file contents into files on your local machine.

$ git clone https://github.com/nigelpoulton/Thek8sBook.git
Cloning into 'TheK8sBook'. ..

The imperative way

The imperative way is not the Kubernetes way. It moves your cluster and apps out of sync with your YAML files.

Use kubectl to declaratively deploy the following Deployment (later steps will be done imperatively). Be sure to
run the command from within the services folder.

$ kubectl apply -f deploy.yml
deployment .apps/svc-test created

Now the “svc-test” Deployment is running, it’s time to imperatively deploy a Service for it.

The following command imperatively creates a new Service that will provide networking and load-balancing for
the Pods created and managed by the svc-test Deployment.

$ kubectl expose deployment svc-test --type=NodePort
service/hello-svc exposed

Run a kubectl get to ensure it was created.
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$ kubectl get svc -o wide

NAME TYPE CLUSTER-IP EXTERNAL-IP  PORT(S) AGE  SELECTOR
kubernetes ClusterIP 10.43.0.1 <none> 443/TCP 19d <none>
svc-test NodePort 10.43.48.145 <none> 8080:30013/TCP 10s chapter=services

The first line is a system Service that exposes the Kubernetes API on the cluster. Your Service is on the second
line, and you can see the imperative command was clever enough to read the Deployment spec and configure
the correct label selector and container port. It also gave the Service the same name as the Deployment.

You can get more detailed info with the kubectl describe command.

$ kubectl describe svc svc-test

Name: svc-test
Namespace: default

Labels: <none>
Annotations: <none>

Selector: chapter=services
Type: NodePort

IP: 10.43.48.145

Port: <unset> 8080/TCP
TargetPort: 8080/TCP

NodePort: <unset> 30013/TCP
Endpoints: 10.42.0.116:8080,10.42.0.117:8080,10.42.1.118:8080 + 2 more. ..
Session Affinity: None

External Traffic Policy: Cluster

Events: <none>

Some interesting values in the output include:

« Selector is the list of labels the Service looks for when building its list of Pods to send traffic to

« IP is the permanent internal ClusterIP (VIP) of the Service

Port is the port the Service listens on inside the cluster
« TargetPort is the port the application is listening on
« NodePort is the cluster-wide port that can be used for external access

+ Endpoints is the dynamic list of healthy Pod IPs that match the selector

Now that you know the cluster-wide NodePort (30¢13), you can open a web browser and access the app. To do
this, you need to know the IP address of at least one of your cluster nodes, and you need to be able to reach it
from your browser - e.g. a publicly routable IP if you’re accessing via the internet.

Figure 7.7 shows a web browser accessing a node with an IP address of 54.246.255.52 on the cluster-wide
NodePort 30013.
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Figure 7.7

The app you’ve deployed is a simple web app. It’s built to listen on port 8ese, and you’ve configured a Kubernetes
Service to map port 30013 on every cluster node back to port 8080 on the app. By default, cluster-wide NodePorts
are between 30,000 - 32,767. In this example it was dynamically assigned, but you can also explicitly choose a
port if using a YAML file.

Coming up next, you’ll see how to do the same thing the proper way - the declarative way. To do that, you
need to clean up by deleting the Service you just created. You can do this with the following kubectl delete svc
command.

$ kubectl delete svc svc-test
service "svc-test" deleted

The declarative way
Time to do things the proper way... the Kubernetes way.

A Service manifest file

You’ll use the following resource manifest to deploy the same Service you deployed in the previous section.
However, this time you’ll specify a value for the cluster-wide NodePort.
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apiVersion: vi1
kind: Service
metadata:

name: svc-test

spec:
type: NodePort
ports:
- port: 8080

nodePort: 30001

targetPort: 8080

protocol: TCP
selector:

chapter: services

Let’s step through it.
Services are mature objects defined in the v1 core API group (apiversion).
The kind field tells Kubernetes you’re defining a Service object.

The metadata block defines a name for the Service. You can also apply labels and annotations here. Any labels
you add here are used to identify the Service and are not related to selecting Pods.

The spec section is where you actually define the Service. This example is telling Kubernetes to deploy a NodePort
Service. The port value tells Kubernetes to listen internally on port 8ese, and the NodePort value tells it to
listen externally on 300e1. The targetPort value is part of the back-end configuration and tells Kubernetes to
forward traffic to the application Pods on port 8ege. Then you’re explicitly telling it to use TCP (default). Finally,
spec.selector tells the Service to send traffic to all healthy Pods on the cluster with the chapter=services label.

Deploy it with the following command.

$ kubectl apply -f svc.yml
service/svc-test created

Introspecting Services
Now the Service is deployed, you can inspect it with the usual kubectl get and kubectl describe commands.

$ kubectl get svc sve-test
NAME TYPE CLUSTER-IP EXTERNAL-IP  PORT(S) AGE
hello-svc NodePort 100.70.40.2 <none> 8080:30001/TCP 8s

The Service is up and exposed via every cluster node on port 30001. This means you can point a web browser to
the name or IP of any node on that port and reach the Service. You’ll need to use the IP address of a node you
can reach, and you’ll need to ensure any firewall and security rules allow the traffic to flow.

Endpoints objects

Earlier in the chapter, you learned every Service gets its own Endpoints object with the same name as the Service.
This holds a list of all the Pods the Service matches and is dynamically updated as matching Pods come and go.
You can see Endpoints, and the newer EndpointSlices, with the normal kubectl commands.

The following examples show EndpointSlices, but you can run the same commands for Endpoints.
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$ kubectl get endpointslices
NAME ADDRESSTYPE  PORTS  ENDPOINTS AGE
svc-test-sbhbj IPv4 8080 10.42.1.119,10.42.0.117,10.42.1.120. .. 6m38s

$ Kubectl describe endpointslice svc-test-sbhbj

Name: svc-test-sbhbj
Namespace: default
Labels: endpointslice.kubernetes.io/managed-by=endpointslice-controller.k8s.io

kubernetes.io/service-name=svc-test
Annotations: endpoints.kubernetes.io/last-change-trigger-time: 2021-02-05T20:01:31Z
AddressType: IPv4
Ports:
Name Port Protocol

<unset> 8080 TCP

Endpoints:
- Addresses: 10.42.1.119
Conditions:
Ready: true
Hostname: <unset>
TargetRef: Pod/svc-test-84db6ff656-wd5wT
Topology: kubernetes.io/hostname=k3d-gsk-book-server-0
- Addresses: 10.42.0.117
<Snip>
Events: <none>

The full output of the kubectl describe command has a block for each healthy Pod containing useful info.

LoadBalancer Services

Now for the best type of Service. And it’s also the easiest.

If your cluster is on a cloud platform, deploying a Service with type=LoadBalancer will provision one of your
cloud’s internet-facing load-balancers and configure it to send traffic to your Service. It’s a beautiful thing.

The following YAML is from the 1b.ym1 file. It defines a new Service called “clou-1b” that will provision a cloud
load-balancer listening on port 9eee and forwarding traffic on port 8ese to all Pods with the chapter=services
label. Basically, a cloud load-balancer sending traffic to the Pods you already deployed through the “svc-test”
Deployment.

apiVersion: v1
kind: Service
metadata:
name: cloud-1b
spec:
type: LoadBalancer
ports:
- port: 9000
targetPort: 8080
selector:
chapter: services
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Deploy it with the following command.

$ kubectl apply -f 1b.yml
service/cloud-1b created

Now list it.

$ kubectl get svc --watch

NAME TYPE CLUSTER-IP EXTERNAL-IP  PORT(S) AGE
cloud-1b LoadBalancer 10.43.128.113 172.21.0.4 9000:32688/TCP  47s
<Snip>

The EXTERNAL - IP column shows the public address assigned to the Service by your cloud. On some cloud platforms
it may be a DNS name instead of an IP, and it may take a minute or two to populate. The delay is while Kubernetes
works with your cloud platform to provision and configure the load-balancer.

Copy the value in the EXTERNAL-IP column and paste it into your browser with port 9eee to get to the app.

Congratulations, you just configured a high performance highly-available internet facing load-balancer to front
your Service.

Clean-up

Clean-up the lab with the following command. These will delete the Deployment and Services. Endpoints and
EndpointSlices are automatically deleted with their Service.

$ kubectl delete -f deploy.yml -f svc.yml -f lb.yml
deployment.apps "svc-test" deleted

service "svc-test" deleted

service "cloud-1b" deleted

Chapter Summary

In this chapter, you learned that Services bring stable and reliable networking to apps deployed on Kubernetes.
On the front end, they provide a stable DNS name that’s automatically registered with the cluster DNS, as well
as a stable virtual IP. On the back end, they load-balance traffic across a dynamic set of Pods that match a label
selector. They also let you expose elements of your application to the outside world, including integrating with
cloud load-balancers.

Services are first-class objects in the Kubernetes API and should be managed declaratively through version-
controlled YAML manifest files.
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Ingress is all about accessing multiple web applications through a single LoadBalancer Service.

A working knowledge of Kubernetes Services is recommended before reading this chapter. If you don’t have this,
consider reading the previous chapter first.

The chapter is divided as follows.

« Setting the scene for Ingress
« Ingress architecture

« Hands-on with Ingress

We'll be capitalising the word “Ingress” as it’s a resource in the Kubernetes APL This adds clarity and is in-
line with recent updates to the official style guide for the Kubernetes docs. We’ll also be using the terms
“LoadBalancer” and “load-balancer” as follows.

« LoadBalancer refers to a Kubernetes Service object of type=LoadBalancer

+ load-balancer is the cloud service performing internet-facing load balancing

As an example... when you create a Kubernetes LoadBalancer Service, Kubernetes talks to your cloud platform
and provisions a cloud load-balancer.

Finally, the chapter focuses on the latest generally available v1 Ingress as defined in the networking.k8s.io APL
Earlier beta versions, defined in the extensions/vibetat API, may have some slight variations.

Setting the Scene for Ingress

In the previous chapter, you saw how Service objects provide stable networking for Pods. You also saw how to
expose applications to external consumers via NodePort Services and LoadBalancer Services. However, both of
these have limitations.

NodePorts only work on high port numbers (30000-32767) and require knowledge of node names or IPs.
LoadBalancer Services fix this, but require a 1-to-1 mapping between an internal Service and a cloud load-
balancer. This means a cluster with 25 internet-facing apps will need 25 cloud load-balancers, and cloud load-
balancers aren’t cheap. They may also be a finite resource — you may be limited to how many cloud load-balancers
you can provision.

Ingress fixes this by exposing multiple Services through a single cloud load-balancer.

It creates a LoadBalancer Service, on port 80 or 443, and uses host-based and path-based routing to send traffic
to the correct backend Service. This is shown in Figure 8.1, and don’t worry if it’s unclear at this point. We’ll
keep building the picture, and the hands-on bits should clarify any doubts.
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Figure 8.1

Ingress architecture

Ingress is a stable resource in the Kubernetes API. It went GA in Kubernetes 1.19 after being in beta for over 15
releases. During the 3+ years it was in alpha and beta, service meshes increased in popularity and there’s some
overlap in functionality. As a result, if you plan to run a service mesh, you may not need Ingress.

Ingress is defined in the networking.k8s.io API sub-group as a vi1 object and is based on the usual two constructs.

1. A controller

2. An object spec

The object spec defines rules that govern traffic routing, and the controller implements the rules.

However, a lot of Kubernetes clusters don’t ship with a built-in Ingress controller - you have to install your
own. This is the opposite of other API resources, such as Deployments and ReplicaSets, which have a built-in
pre-configured controller. However, some hosted Kubernetes clusters, such as GKE, do pre-install one.

Once you have an Ingress controller, you deploy Ingress objects with rules that govern how traffic hitting the
Ingress is routed.

On the topic of routing, Ingress operates at layer 7 of the OSI model, also known as the “application layer”. This
means it has awareness of HTTP headers, and can inspect them and forward traffic based on hostnames and
paths.

The following table shows how hostnames and paths can route to backend ClusterIP Services.

Host-based example Path-based example Backend K8s Service
shield.mcu.com mcu.com/shield sve-shield
hydra.mcu.com mcu.com/hydra svc-hydra

Figure 8.2 shows two different hostnames (URLs) configured to hit the same load-balancer. An Ingress object is
watching, and uses the hostnames in the HTTP headers to route traffic to the appropriate backend Service. This
is an example of the HTTP host-based routing pattern, and it’s almost identical for path-based routing.
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Figure 8.2 Host-based routing

For this to work, name resolution needs to point the appropriate DNS names to the public endpoint of the Ingress
load-balancer.

Note: A quick side-step. The “OSI model” is the reference model for modern networking. It
comprises seven layers numbered 1-7, with the lowest layers concerned with things like signalling
and electronics, the middle layers dealing with reliability through things like acks and retries, and
the higher layers adding awareness of user apps such as HTTP services. Ingress operates at layer
7, also known as the application layer, and implements HTTP intelligence.

In summary, Ingress exposes multiple ClusterIP Services through a single cloud load-balancer. You create and
deploy Ingress objects that are rules governing how traffic reaching the load-balancer is routed to backend
Services. The Ingress controller, which you usually have to install yourself, uses hostnames and paths to make
intelligent routing decisions.

Now that you know the basics, let’s see it in action.

Hands-on with Ingress

The following examples require a Kubernetes cluster running on a cloud platform that supports load-balancer
integration. All of the major clouds will work. The examples are tweaked for the NGINX Ingress controller, which
you’ll see how to install, but we’ll point out things you’ll need to change if you want to run with a different Ingress
controller.

If you’re following along, you’ll need a clone of the book’s GitHub repo and you’ll need to run all commands
from within the ingress folder.

$ git clone https://github.com/nigelpoulton/Thek8sBook.git
Cloning from...

$ cd ingress

Installing the NGINX Ingress controller

It’s possible to skip this step if your cluster has a built-in Ingress controller (GKE does).
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The NGINX Ingress controller is installed from a YAML file hosted in the Kubernetes GitHub repo. It installs a
bunch of Kubernetes constructs including a Namespace, ServiceAccounts, ConfigMap, Roles, RoleBindings, and
more.

Install it with the following command. I've split the command over two lines because the URL is so long. If you’re
following along you’ll have to run it on a single line. You should also make sure you're installing the latest release
(See https://Qithub.com/kubernetes/ingress—nginx/releases)

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/
controller-v@.44.9/deploy/static/provider/cloud/deploy.yaml

namespace/ingress-nginx created

serviceaccount/ingress-nginx created

<Snip>

role.rbac.authorization.k8s.io/ingress-nginx-admission created

Check the ingress-nginx Namespace to make sure the controller Pod is running. It may take a few moments to
enter the running phase.

$ kubectl get pods -n ingress-nginx \
-1 app.kubernetes.io/name=ingress-nginx

NAME READY  STATUS RESTARTS  AGE
ingress-nginx-admission-create-brbwh 0/1 Completed Qo 27s
ingress-nginx-admission-patch-8dpfl 0/1 Completed ] 2Ts
ingress-nginx-controller-7fc74cf778-2frpg 1/1 Running 7] 33s

Don’t worry about the Completed Pods. These were short-lived to initialise the environment.

Once the controller Pod is running, you’ve got an NGINX Ingress controller and you’re ready to create some
Ingress objects. However, before doing that, let’s see how to use Ingress classes in case your cluster has multiple
Ingress controllers.

Configure Ingress classes for clusters with multiple Ingress controllers
If you're following along on a GKE cluster, you’ll now have two Ingress controllers.

« The built-in GKE Ingress controller loadbalancer-controller

« The NGINX Ingress controller nginx-ingress-controller
The way Kubernetes knows which Ingress controller to use when you deploy an Ingress object is via Ingress
classes. You create Ingress classes, and then tag Ingress objects with a particular class.

The following YAML object defines an Ingress class called “igc-nginx” for the newly installed NGINX Ingress
controller. You can reference this later when deploying Ingress objects.
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apiVersion: networking.k8s.io/vi
kind: IngressClass
metadata:
name: igc-nginx
spec:
controller: nginx.org/ingress-controller

Create it with the following command.

$ kubectl apply -f ig-class.yml
ingressclass.networking.k8s.io/igc-nginx created

You can list and describe it with the usual kubect1 commands. There is currently no shortname for them, so you’ll
have to use “ingressclass” when using kubect!1.

With an Ingress controller and Ingress class in place, you’re ready to configure and create Ingress objects.

Configuring host-based and path-based routing

This section deploys two apps and a single Ingress object. The Ingress will be configured to route to both apps
via a single load-balancer.

You’ll complete all of the following steps.

1. Deploy an app called shield and front it with a ClusterIP Service (backend) called svc-shield
2. Deploy an app called hydra and front it with a ClusterIP Service (backend) called svc-hydra
3. Deploy an Ingress object to route the following hostnames and paths

 Host-based: shield.mcu.com >> svc-shield

« Host-based: hydra.mcu.com >> svc-hydra

« Path-based: mcu.com/shield >> svc-shield

« Path-based: mcu.com/hydra >> svc-hydra
4. A cloud load-balancer will be created and the Ingress controller will monitor it for traffic

5. Configure DNS name resolution to point shield.mcu.com, hydra.mcu.com, and mcu.com to the cloud load-
balancer

The overall architecture is shown in Figure 8.3.
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Figure 8.3 Host-based routing

Traffic flow to the shield app using host-based routing will be as follows.

1. A client will send traffic to shield.mcu.com
. Name resolution will send the traffic to the load-balancer’s public endpoint
. Ingress will read the HTTP headers for the hostname (shield.mcu.com)

. An Ingress rule will trigger and the traffic will be routed to the svc-shield ClusterIP backend

g W N

. The ClusterIP Service will ensure the traffic reaches the shield Pod

Deploy the apps

The shield and hydra apps, as well as associated ClusterIP Services, are defined in the app.ym1 file in the ingress
folder. It defines the following.

+ Two Pods. One called shield and one called hydra, both listening on port 8080

« Two ClusterIP Services. One called svc-shield and the other called svc-hydra

Deploy it with the following command.

$ kubectl apply -f app.yml
service/svc-shield created
service/svec-hydra created
pod/shield created
pod/hydra created

Check them with kubect1 get and kubectl describe commands.

Create the Ingress object

The Ingress object you’ll be deploying is defined in ig-all.yml. It defines an Ingress object called “mcu-all” with
four rules.
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apiVersion: networking.k8s.io/vi
kind: Ingress
metadata:
name: mcu-all
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
ingressClassName: nginx
rules:
- host: shield.mcu.com
http:

paths:

- path: /
pathType: Prefix
backend:

service:
name: svc-shield
port:
number : 8080
- host: hydra.mcu.com
http:

paths:

- path: /
pathType: Prefix
backend:

service:
name: svc-hydra
port:
number : 8080
- host: mcu.com
http:

paths:

- path: /shield
pathType: Prefix
backend:

service:
name: svc-shield
port:
number : 8080

- path: /hydra
pathType: Prefix
backend:

service:
name: svc-hydra

port:
number : 8080

Let’s step through it.
The first 4 lines define normal stuff, such as the type of object and which schema version to use.

The annotation tells the controller to make a best-effort attempt to re-write paths to the path expected by your
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app. This example will re-write incomng paths to “/”. For example, traffic hitting the load-balancer via the /shield
path will have the path re-written to “/”. You’ll see an example shortly. Also, this annotation is specific to the
NGINX Ingress controller and you’ll have to comment it out if you’re using a different one.

The spec.ingressClassName field tells Kubernetes to target this Ingress object at the NGINX controller you
installed earlier. You’ll have to delete this line, or comment it out, if you’re using the built-in Ingress controller.

The rules are a little more complex, so let’s look at an example of a host-based rule and a path-based rule.

The following host-based rule triggers on traffic arriving via shield.mcu.com at the root “/” path and forwards
it to a backend Service called svc-shield. “svc-shield” is one of the ClusterIP Services deployed earlier via the
app.yml file.

- host: shield.mcu.com <<=== Traffic arriving via this hostname
http:
paths:
- path: / <<=== Arriving at root (no subpath specified)
pathType: Prefix
backend: <<=== This block references an existing
service: "backend" ClusterIP Service
name: svc-shield <<=== called "svc-shield"
port: <<=== that's listening on
number : 8080 <<=== port 8080

The following path-based rule triggers when traffic arrives from mcu.com/shield. It gets routed to the same
sve-shield backend Service.

- host: mcu.com <«=== Traffic arriving via this hostname
http:
paths:
- path: /shield <<=== Arriving on this subpath
pathType: Prefix
backend:
service:
name: svc-shield
port:
number : 8080

Deploy it with the following command.

$ kubectl apply -f ig-all.yml
ingress.networking.k8s.io/mcu-all created

Inspecting Ingress objects

List the Ingress objects in the default Namespace. It may take a minute or so for yours to acquire an address. This
is while Kubernetes provisions a load-balancer on your cloud.
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$ kubectl get ing
NAME CLASS HOSTS ADDRESS PORTS
mcu-all nginx shield.mcu.com,hydra.mcu.com,mcu.com  130.211.24.199 80

The cLass field shows which Ingress class is handling this set of rules. It may show as <None> if you only have
a single Ingress controller and didn’t configure classes. The HOSTs field shows it’s configured to handle traffic
based on three hostnames. The ADDRESS column is the public endpoint of the cloud load-balancer. In this example
it’s an IP address, but some clouds provide a URL. This one is configured for port 80.

On the topic of ports, Ingress is an HTTP/HTTPS solution.
Describe the Ingress. The output is trimemd to fit the page.

$ kubectl describe ing mcu-all

Name: mcu-all
Namespace: default
Address: 130.211.24.199
Default backend: default-http-backend:80 10.120.2.6:8080)
Rules:
Host Path Backends
shield.mcu.com / shield:8080 10.120.0.19:8080)
hydra.mcu.com / hydra: 8080 10.120.0.20:8080)
mcu.com /shield shield:8080 10.120.0.19:8080)
/hydra hydra: 8080 10.120.0.20:8080)
Annotations: nginx.ingress.kubernetes.io/rewrite-target: /
Events:
Type Reason Age From Message
Normal Sync 85s (x2...) nginx-ingress-controller Scheduled for sync

Let’s step through the output.
The Address line is the public IP of the cloud load-balancer associated with the Ingress.

Default backend is where the controller sends traffic hitting the Ingress from an unknown host or path. Not all
Ingress controllers implement a default backend.

The rules define the mappings between hosts, paths, and backends. Remember that “backends” are usually
ClusterIP Services pre-configured to send traffic to application Pods.

The annotations often define integrations with your cloud back-end as well as controller-specific features. This
example’s telling the controller to re-write all paths to look like they arrived on root “/”. This is a kind of best
effort approach, and as you’ll see later, it doesn’t work with all apps.

You should also be able to view the Ingress and load-balancer on your cloud backend. Figure 8.4 shows how it
looks on the Google Cloud at the time of writing.
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< Ingress Details (! REFRESH 2 EDIT W DELETE 8 KUBECTL ~
Type Ingress
Load balancer External HTTP(S) LB
IP address 130.211.24.199 (2
Routes
Route Service Pod selector Clusters Pods
shield.mcu.com/ 2 svc-shield env=shield ingress 1/1
hydra.mcu.com/ 2 svc-hydra env=hydra ingress 11
Serving pods
Service Name Status Restarts Createdon 4
svc-hydra hydra @& Running 0 Feb 11,2021, 12:19:45 PM
svc-shield shield @& Running 0 Feb 11,2021, 12:19:45 PM
Load balancing resources
Load balancer k8s2-um-8k5xclds-default-mcu-host-hdr21iw2

Figure 8.4 Host-based routing
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At this point, the application and backend Services are running and Ingress is configured to route traffic. The
only thing left to configure is DNS name resolution so that shield.mcu.com, hydra.mcu.com and mcu.com resolve to

the public endpoint of the Ingress.

Configure DNS name resolution

In the real world, you’ll configure your internal DNS or internet DNS to point hostnames to the Ingress load-

balancer. How you do this varies depending on your environment and who your internet

DNS is with.

If you're following along, it’s possible to edit the hosts file on your laptop or computer as a temporary solution.

On Mac and Linux, edit the /etc/hosts file and add the following lines. The example uses the public IP of the

Ingress retrieved from the kubectl get ing command. Yours will be different.
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$ sudo vi /etc/hosts

# Host Database

<Snip>

130.211.24.199 shield.mcu.com
130.211.24.199 hydra.mcu.com
130.211.24.199 mcu.com

On Windows the file is located at C: \Windows\System32\drivers\etc\hosts.
Save your changes.

With this done, any traffic you send to shield.mcu.com, hydra.mcu.com, or mcu.com will be sent to the Ingress
load-balancer.

Test the Ingress
Open a web browser and try all of the following URLs.

« shield.mcu.com
« hydra.mcu.com

e mcu.com

Figure 8.5 shows what happens to each request. Notice the traffic for the mcu.com request is routed to the default
backend. This is because there’s no ingress rule for mcu.com. Depending on your Ingress controller, the message
will be different, and you Ingress may not even implement a default backend. The default backend configured by
the GKE built-in Ingress returns a helpful message saying “response 404 (backend NotFound), service rules for [
/ ] non-existent “.

svc-shield

sbiehj

U
"‘Con,
mcu.com

Y
d‘a‘“c“JjD

svc-hydra

Figure 8.5

Now try connecting to either of the following.

« mcu.com/shield

« mcu.com/hydra
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The Ingress uses path-based routing with the re-write targets feature to handle these connections. Notice how
the image doesn’t display for either. This is because not all apps work correctly with path rewrites.

Congratulations, you’ve successfully configured Ingress for host-based and path-based routing — you’ve got two
applications running on a Kubernetes cluster, fronted by a couple of internal ClusterIP Services, and they’re both
exposed through a single cloud-based internet-facing load-balancer managed by Kubernetes Ingress!

Clean-up

If you’ve been following along, you’ll have several things running on you Kubernetes cluster. Most importantly,
the cloud load-balancer created by the Ingress controller costs money, so be sure to delete it when you’re finished.

Delete the Ingress object.

$ kubectl delete ingress mcu-all
ingress.networking.k8s.io "mcu-all" deleted

Delete the apps and Services using the YAML file. It may take a few seconds for the applications inside the Pods
to gracefully terminate.

$ kubectl delete -f app.yml

service "svc-shield" deleted
service "svc-hydra" deleted

pod "shield" deleted

pod "hydra" deleted

If you want to, you can delete the NGINX Ingress controller with the following three commands.

$ kubectl delete namespace ingress-nginx

namespace "ingress-nginx" deleted

$ kubectl delete clusterrole ingress-nginx
clusterrole.rbac.authorization.k8s.io "ingress-nginx" deleted

$ kubectl delete clusterrolebinding ingress-nginx
clusterrolebinding.rbac.authorization.k8s.io "ingress-nginx" deleted

Finally, don’t forget to reset your /etc/hosts file if you added manual entries earlier.
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$ sudo vi /etc/hosts

# Host Database

<Snip>

130.211.24.199 shield.mcu.com <<=== Delete this entry
130.211.24.199 hydra.mcu.com <<=== Delete this entry
130.211.24.199 mcu.com <<=== Delete this entry

Chapter summary

In this chapter, you learned that Ingress is a way to expose multiple applications and Kubernetes Services via a
single cloud load-balancer. They’re stable objects in the API but have feature overlap with a lot of service meshes
— if you’re running a service mesh you may not need Ingress.

Most Kubernetes clusters require you to install an Ingress controller and lots of options exist. However, some
hosted Kubernetes services make things easy by shipping with a built-in Ingress controller.

Once you have an Ingress controller up and running, you create and deploy Ingress objects that are sets of rules
governing how incoming traffic is routed to applications and Services on your Kubernetes cluster. It supports
host-based and path-based HTTP routing.
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In this chapter, you’ll learn what service discovery is, why it’s important, and how it’s implemented in Kubernetes.
You’ll also learn some troubleshooting tips.

To get the most from this chapter, you should know what Kubernetes Services are and how they work.

The chapter is split into the following sections:

+ Quick background

Service registration
« Service discovery

« Service discovery and Namespaces

Troubleshooting service discovery

Note: The word “service” has a lot of meanings. So for clarity, we capitalise the first letter when
referring to the Service resource in the Kubernetes APL

Quick background

Here’s the outrageously high-level... finding stuff on a crazy-busy platform like Kubernetes is hard. Service
discovery makes it possible.

Let’s paint a bit more of a picture.

Kubernetes runs cloud-native microservices apps that scale up and down, self-heal from failures, and regularly
get replaced by newer releases. All of this makes individual app instances unreliable. To solve this, Kubernetes
has a super-stable Service object that fronts unreliable app instances with a stable IP, DNS name, and port. All
good so far, but in a big bustling environment like many Kubernetes clusters, apps need a way to find the other
apps they work with. This is where service discovery comes into play.

There are two major components to service discovery:

» Registration

» Discovery

Service registration

Service registration is the process of an application posting its connection details to a service registry so other
apps can find it and consume it.



9: Service discovery deep dive

Service registry

Register service

L
@ my-svc: 10.0.0.15

Discover service

my-svc Consume

@

10.0.0.15 «

®

Service provider

Figure 9.1

A few important things to note about service discovery in Kubernetes:

1. Kubernetes uses its internal DNS as a service registry

Service consumer

2. All Kubernetes Services automatically register their details with DNS
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For this to work, Kubernetes provides a well-known internal DNS service that we usually call the “cluster DNS”.
It’s well known because every Pod in the cluster knows where to find it. It’s implemented in the kube-system
Namespace as a set of Pods managed by a Deployment called coredns. These Pods are fronted by a Service called
kube-dns. Behind the scenes, it’s based on a DNS technology called CoreDNS and runs as a Kubernetes-native

application.

The previous sentence contains a lot of detail, so the following commands show how its implemented. You can

run them on your own Kubernetes cluster.

This command lists the Pods running the cluster DNS.

$ kubectl get pods -n kube-system -1 k8s-app=kube-dns

NAME READY  STATUS RESTARTS  AGE
coredns-5644d7b6d9- fk4c9 1/1 Running Q 28d
coredns-5644d7b6d9-sb5zl1r 1/1 Running Q 28d

This lists the Deployment managing them.

$ kubectl get deploy -n kube-system -1 k8s-app=kube-dns
NAME READY  UP-TO-DATE  AVAILABLE  AGE
coredns 2/2 2 2 28d

This lists the Service fronting them. It shows the well known IP configured on every Pod/container.

$ kubectl get svc -n kube-system -1 k8s-app=kube-dns
NAME TYPE CLUSTER-IP EXTERNAL-IP

kube-dns ClusterIP 192.168.200.10 <none>

PORT(S)
53/UDP,53/TCP,9153/TCP  28d

AGE

The process of service registration looks like this (exact flow might slightly differ):
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1. You post a new Service manifest to the API server
. The request is authenticated, authorized, and subjected to admission policies

. The Service is allocated a stable virtual IP address called a ClusterIP

SWwW N

. An Endpoints object (or EndpointSlice) is created to hold a list of healthy Pods matching the Service’s
label selector

w

. The Pod network is configured to handle traffic sent to the ClusterIP (more on this later)

6. The Service’s name and IP are registered with the cluster DNS

Step 6 is the secret sauce.

We mentioned earlier that cluster DNS is a Kubernetes-native application. This means it knows it’s running on
Kubernetes and implements a controller that watches the API server for new Service objects. Any time it observes
one, it automatically creates the DNS records mapping the Service name to its ClusterIP. This means apps, and
even Services, don’t need to perform their own service registration — the cluster DNS does it for them.

It’s important to understand that the name registered in DNS for the Service is the value stored in itsmetadata. name
property. This is why it’s important that Service names are valid DNS names and don’t include exotic characters.
The ClusterIP is dynamically assigned by Kubernetes.

apiVersion: v1
kind: Service
metadata:

name: ent <<=== this name is registered with the cluster DNS
spec:

selector:

app: web
ports:

At this point, the Service’s front-end configuration (name, IP, port) is registered with DNS and the Service can
be discovered by apps and clients.

The Service back-end

Now the Service’s front-end is registered and can be discovered by other apps, the back-end needs building so
there’s something to send traffic to. This involves maintaining a list of healthy Pod IPs the Service will load-
balance traffic to.

As explained in the chapter on Services, every Service has a label selector that determines which Pods it will
load-balance traffic to. See Figure 9.2.

Back-end
Pods that

Front-end

- Stable name

match
label selector

- Stable IP
- Stable port

Figure 9.2
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To help with backend operations, such as knowing which Pods to send traffic to and how traffic is routed,
Kubernetes builds and Endpoints/EndpointSlice for every Service.

The following command shows an Endpoints object for a Service called ent. It has the IP address and port of two
Pods matching the corresponding Service’s label selector.

$ kubectl get endpoint ent
NAME ENDPOINTS AGE
ent 192.168.129.46:8080,192.168.130.127:8080 14m

Figure 9.3 shows the same ent Service that will load-balance traffic to two Pods. It also shows the Endpoints
object with the IPs of the two Pods matching the Service’s label selector.

Name: ent Name: ent
192.168.129.46 < > L'Z:tgzsaggzm 240
192.168.130.127 :

I Selector: app=enterprise

pod pod

IP: 192.168.129.46 IP: 192.168.130.127
Labels: app=enterprise Labels: app=enterprise
Figure 9.3

The kubelet agent on every node is watching the API server for new Endpoints/EndpointSlice objects. When
it sees one, it creates local networking rules to redirect ClusterIP traffic to Pod IPs. In modern Linux-based
Kubernetes clusters, the technology used to create these rules is the Linux IP Virtual Server (IPVS). Older versions
used iptables.

At this point the Service is fully registered and ready to be used:

« Its front-end configuration is registered with DNS
« Its back-end label selector is created
« Its Endpoints object (or EndpointSlice) is created

« Nodes and kube-proxies have created the necessary local routing rules

Summarising service registration

Let’s summarise the service registration process with the help of a simple flow diagram.
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Figure 9.4

You post a new Service resource manifest to the API server where it’s authenticated and authorized. The
Service is allocated a ClusterIP and its configuration is persisted to the cluster store. An associated Endpoints or
EndpointSlice object is created to hold the list of healthy Pod IPs matching the label selector. The cluster DNS is
running as a Kubernetes-native application and watching the API server for new Service objects. It observes it
and registers the appropriate DNS A and SRV records. Every node is running a kube-proxy that observes the new
objects and creates local IPVS/iptables rules so traffic to the Service’s ClusterIP is routed to the Pods matching

the Service’s label selector.

Service discovery

Let’s assume there are two microservices apps on the same Kubernetes cluster — enterprise and cerritos. The
Pods for enterprise sit behind a Service called ent and the Pods for cerritos sit behind another Service called
cer. They’ve been assigned ClusterIPs, registered with DNS, and things are as follows.

App Service name ClusterIP
Enterprise ent 192.168.201.240
Cerritos cer 192.168.200.217

@ Name: ent

|
Load-balancing

pod pod pod pod

enterprise

Port: 8080

IP: 192.168.201.240

(kube-dns)
192.168.200.10

®

Cluster DNS

ent: 192.168.201.240
cer: 192.168.200.217

Name: cer
IP: 192.168.200.217
Port: 8080

o

Load-balancing

1

pod pod pod

cerritos

Figure 9.5

For service discovery to work, apps need to know both of the following.
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1. The name of the other apps they want to connect to (the Service fronting it)

2. How to convert the name to an IP address

Application developers are responsible for point 1. They need to code apps with the names of other apps they
want to consume. Actually, they need to code the names of Services fronting the remote apps. For example, if the
cerritos app wants to connect to enterprise, it needs to know the name of the ent Service.

Kubernetes takes care of point 2, converting the name to an IP.

Converting names to IP addresses using the cluster DNS

Kubernetes automatically configures every container so it can find and use the cluster DNS to convert Service
names to IPs. It does this by populating every container’s /etc/resolv.conf file with the IP address of cluster
DNS Service as well as any search domains that should be appended to unqualified names.

An “unqualified name” is a short name such as ent. Appending a search domain converts it to a fully qualified
domain name (FQDN) such as ent.default.svc.cluster.local.

The following snippet shows a container that is configured to send DNS queries to the cluster DNS at
192.168.200.10. It also lists three search domains to append to unqualified names.

$ cat /etc/resolv.conf

search svc.cluster.local cluster.local default.svc.cluster.local
nameserver 192.168.200.10

options ndots:5

The following snippet proves that nameserver in the previous /etc/resolv.conf matches the IP address of the
cluster DNS (the kube-dns Service). This means Service names will be sent to the cluster DNS for conversion to
IP addresses.

$ kubectl get svc -n kube-system -1 k8s-app=kube-dns
NAME TYPE CLUSTER-IP PORT(S) AGE
kube-dns  ClusterIP  192.168.200.10 53/UDP,53/TCP,9153/TCP ~ 3h53m

With what you’ve learned so far, let’s talk through the process of the enterprise app sending connections to the
cerritos app.

The process is as follows.

1. Know the name of the remote app (Service)
2. Name resolution

3. Network routing

First up, the enterprise app needs to know to send connections to the cer Service. That’s the job of the app
developer. However, once it knows the remote Service name, it needs to convert it into an IP address. Fortunately,
the container it’s running in knows how to do this, and sends it to the cluster DNS where it’s resolved to a
ClusterIP (in this case, 192.168.200.217).

All good so far, but ClusterIPs are virtual IPs that require additional magic before traffic reaches the cerritos
app.
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Some network magic

ClusterIPs are on a “special” network called the service network, and there are no routes to it! This means
containers send all ClusterIP traffic to their default gateway.

Terminology: A default gateway is where devices send traffic when there’s no known route.
Normally, the default gateway forwards traffic to another device with a larger routing table in
the hope it will have a route to the destination. A simple analogy might be driving from City A to
City Z. The local roads in City A probably don’t have signposts to City Z, so you follow signs to
the major highway/motorway. Once on the highway/motorway there’s more chance you’ll find
directions to City Z. If the first signpost doesn’t have a route, you keep driving until you see one
that does. Occasionally you don’t find a sign and you get lost or run out of battery/fuel. Routing
is similar, if a device doesn’t have a route for the destination network, it sends it from one default
gateway to the next until hopefully a device has a route. As with driving, it’s also possible you
never find a route and the traffic times out.

The container’s default gateway sends the traffic to the node it’s running on.

The node doesn’t have a route to the service network either, so it sends it to its own default gateway. Doing this
causes the traffic to be processed by the node’s kernel, which is where the magic happens...

Every Kubernetes node runs a system service called kube-proxy. At a high-level, kube-proxy is responsible for
capturing traffic destined for ClusterIPs and redirecting it to the IP addresses of Pods matching the Service’s
label selector. Let’s look a bit closer...

kube-proxy is a Pod-based Kubernetes-native app that implements a controller watching the API server for new
Services and Endpoints objects. When it sees them, it creates local IPVS rules telling the node to intercept traffic
destined for the Service’s ClusterIP and forward it to individual Pod IPs.

This means that every time a node’s kernel processes traffic headed for an address on the service network, a trap
occurs, and the traffic is redirected to the IP of a healthy Pod matching the Service’s label selector.

Kubernetes originally used iptables to do this trapping and load-balancing. However, it was replaced by IPVS
in Kubernetes 1.11. The is because IPVS is a high-performance kernel-based L4 load-balancer that scales better
than iptables and implements better load-balancing.

Summarising service discovery

Let’s quickly summarise the service discovery process with the help of the flow diagram in Figure 9.6.
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Figure 9.6

Assume the “enterprise” app is sending traffic to “cerritos”. First up, it needs the name of the “cer” Service sitting
in front of “cerritos”. Like we said before, it’s the responsibility of the application developer to make sure this is
known.

An instance of the “enterprise” app tries to send traffic to the “cer” Service. But networks work with numbers,
not names. So the container hosting the “enterprise” app sends the “cer” name to cluster DNS asking it to resolve
it to an IP address. The container knows how to do this because it’s pre-configured with the address of cluster
DNS in its /etc/resolv. conf file. The cluster DNS replies with the ClusterIP and the “enterprise” container sends
the traffic to the network. However, ClusterIPs are on the special service network and the container doesn’t have
a route to it. So it sends it to its default gateway, which forwards it to the node its running on. The node doesn’t
have a route either, so it sends it to its own default gateway. En-route, the request is processed by the node’s
kernel. A trap is triggered, and the request is redirected to the IP address of a Pod that matches the Services label
selector.

Service discovery and Namespaces

It’s important to understand that every cluster has an address space, and that Namespaces partition it.

Cluster address spaces are based on a DNS domain that we call the cluster domain. The domain name is usually
cluster.local and objects have unique names within it. For example, a Service called ent will have a fully
qualified domain name (FQDN) of ent.default.svc.cluster.local

The format is <object-name> . <namespace>.svc.cluster.local
Namespaces let you partition the address space below the cluster domain. For example, creating a couple of

Namespaces called dev and prod will give you two new address spaces.

« dev: <object-name>.dev.svc.cluster.local
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« prod: <object-name>.prod.svc.cluster.local

Object names have to be unique within a Namespace but not across Namespaces. For example, you can’t have
two Services called “ent” in the same Namespace, but you can if they’re in different Namespaces. This is useful
for parallel development and production configurations. For example, Figure 9.7 shows a single cluster divided
into dev and prod Namespaces with identical configurations deployed to each.

®@
®
@

dev

svc.cluster.local

&
®

ent
cer
ent

prod
cer

Figure 9.7

Objects can connect to Services in the local Namespace using short names such as ent and cer. But connecting to
objects in a remote Namespace requires FQDNs such asent.dev.svc.cluster. local and cer.dev.svc.cluster. local.

Service discovery example

Let’s walk through a quick example.

The following YAML is called sd-example.yml and it’s in the service-discovery folder of the book’s GitHub repo.
It defines two Namespaces, two Deployments, two Services, and a standalone jump Pod. The two Deployments
have identical names, as do the Services. However, they’re deployed to different Namespaces. The jump Pod is
deployed to the dev Namespace.
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dev prod

ent ent

N7

pod pod pod pod pod
enterprise jump enterprise
Figure 9.8

apiVersion: vi1
kind: Namespace
metadata:
name: dev
apiVersion: v1
kind: Namespace
metadata:
name: prod
apiVersion: apps/vi
kind: Deployment
metadata:
name: enterprise
labels:
app: enterprise
namespace: dev
spec:
selector:
matchLabels:

app: enterprise

replicas: 2
template:
metadata:

labels:
app: enterprise

spec:

containers:

- image: nigelpoulton/k8sbook:text-dev
name: enterprise-ctr
ports:

- containerPort: 8080
apiVersion: apps/vi
kind: Deployment
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metadata:
name: enterprise
labels:
app: enterprise
namespace: prod
spec:
selector:
matchLabels:

app: enterprise

replicas: 2
template:
metadata:

labels:
app: enterprise

spec:

containers:

- image: nigelpoulton/k8sbook:text-prod
name: enterprise-ctr
ports:

- containerPort: 8080
apiVersion: v1
kind: Service
metadata:

name: ent
namespace: dev
spec:
selector:
app: enterprise
ports:
- port: 8080
type: ClusterIP
apiVersion: v1
kind: Service
metadata:
name: ent
namespace: prod
spec:
selector:
app: enterprise
ports:
- port: 8080
type: ClusterIP
apiVersion: vi1
kind: Pod
metadata:
name: jump
namespace: dev
spec:
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terminationGracePeriodSeconds: 5
containers:
- name: jump

image: ubuntu

tty: true

stdin: true

Deploy the configuration to your cluster.

$ kubectl apply -f sd-example.yml
namespace/dev created
namespace/prod created

deployment .apps/enterprise created
deployment.apps/enterprise created
service/ent created

service/ent created

pod/jump-pod created

Check it was correctly applied. The following outputs are trimmed to fit the page and don’t show all objects.

$ kubectl get all --namespace dev

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/ent  ClusterIP  192.168.202.57 <none> 8080/TCP 43s
NAME READY  UP-TO-DATE  AVAILABLE  AGE
deployment.apps/enterprise 2/2 2 2 43s
<snip>

$ kubectl get all --namespace prod

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/ent ClusterIP 192.168.203.158 <none> 8080/TCP 52s
NAME READY  UP-TO-DATE  AVAILABLE  AGE
deployment.apps/enterprise  2/2 2 2 52s

<snip>

You have an enterprise app and ent Service in both Namespaces (dev and prod). You also have a jump Pod in
the dev Namespace. Let’s test how service discovery works within a Namespace and across them.

The next steps will:

1. Log on to the jump Pod in the dev Namespace
. Check its /etc/resolv.conf file

. Connect to ent in the local dev Namespace

W N

. Connect to ent in the remote prod Namespace

To help with the demo, the versions of the app used in each Namespace are slightly different.
Log on to the jump Pod.
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$ kubectl exec -it jump --namespace dev -- bash
root@jump: /#

Your terminal prompt will change to indicate you are attached to the jump Pod.

Inspect the contents of the /etc/resolv.conf file and check the search domains listed include the dev Namespace
(search dev.svc.cluster.local) and not the prod Namespace.

$ cat /etc/resolv.conf

search dev.svc.cluster.local svc.cluster.local cluster.local default.svc.cluster.local
nameserver 192.168.200.10

options ndots:5

The search domains lists the dev Namespace, and the nameserver is set to the IP of the cluster DNS.

Install the cur1 utility.

$ apt-get update && apt-get install curl -y
<snip>

Use curl to connect to the version of the app running in dev by using the ent short name. The app listens on port
8080@.

$ curl ent:8080
Hello from the DEV Namespace!
Hostname: enterprise-7d49557d8d-k4jjz

The “Hello from the DEV Namespace” response proves the connection reached the instance in the dev Namespace.

When the curl command was issued, the container automatically appended dev.svc.cluster.local to the ent
name and sent the query to the cluster DNS specified in /etc/resolv.conf. DNS returned the ClusterIP for the
ent Service in the local dev Namespace and the app sent the traffic to that address. En-route to the node’s default
gateway the traffic triggered a trap in the node’s kernel and was redirected to one of the Pods hosting the app.

Run the cur1 command again, but this time append the domain name of the prod Namespace. This will cause the
cluster DNS to return the ClusterIP for the instance in the prod Namespace and traffic will eventually reach a
Pod running in prod

$ curl ent.prod.svc.cluster.local :8080
Hello from the PROD Namespace!
Hostname: enterprise-5464d8c4f9-vTxsk

This time the response comes from a Pod in the prod Namespace.

The test proves that short names are resolved to the local Namespace (the same Namespace the app is running
in) and connecting across Namespaces requires FQDNs.

Remember to detach your terminal from the container by typing exit.
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Troubleshooting service discovery

Service registration and discovery involves a lot of moving parts. If any of them stops working, the whole process
can break. Let’s quickly run through what needs to be working and how to check them.

Kubernetes uses the cluster DNS as its service registry. This runs as one or more Pods in the kube-system
Namespace with a Service object providing a stable endpoint. The important components are:
« Pods: Managed by the coredns Deployment
« Service: A ClusterIP Service called kube-dns listening on port 53 TCP/UDP
- Endpoints object: Also called kube-dns
All objects relating to the cluster DNS are in the kube-system Namespace and tagged with the k8s-app=kube-dns
label. This is helpful when filtering kubect1 output.
Make sure the coredns Deployment and its managed Pods are up and running.
$ kubectl get deploy -n kube-system -1 k8s-app=kube-dns
NAME READY  UP-TO-DATE  AVAILABLE  AGE

coredns 2/2 2 2 28d

$ kubectl get pods -n kube-system -1 k8s-app=kube-dns

NAME READY STATUS RESTARTS AGE
coredns-5644d7b6d9-T74pv7  1/1 Running @ 28d
coredns-5644d7b6d9-s759f 1/1 Running Q 28d

Check the logs from each of the coredns Pods. You’ll need to substitute the names of the Pods in your environment.
The following output is typical of a working DNS Pod.

$ kubectl logs coredns-5644d7b6d9-T4pvT7 -n kube-system
2020-02-19T21:31:01.456Z [INFO] plugin/reload: Running configuration...
2020-02-19T21:31:01.457Z [INFO] CoreDNS-1.6.2

2020-02-19T21:31:01.457Z [INFO] linux/amd64, gol.12.8, T95a3eb
CoreDNS-1.6.2

linux/amd64, gol1.12.8, 795a3eb

Assuming the Pods and Deployment are working, you should also check the Service and associated Endpoints
object. The output should show the service is up, has an IP address in the ClusterIP field, and is listening on port
53 TCP/UDP.

The ClusterIP address for the kube-dns Service should match the IP address in the /etc/resolv.conf files of all
containers on the cluster. If the IP addresses are different, containers will send DNS requests to the wrong IP
address.

$ kubectl get svc kube-dns -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP  PORT(S) AGE
kube-dns  ClusterIP  192.168.200.10 <none> 53/UDP,53/TCP,9153/TCP  28d

The associated kube-dns Endpoints object should also be up and have the IP addresses of the coredns Pods listening
on port 53.
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$ kubectl get ep -n kube-system -1 k8s-app=kube-dns
NAME ENDPOINTS AGE
kube-dns  192.168.128.24:53,192.168.128.3:53,192.168.128.24:53 + 3 more. .. 28d

Once you’ve verified the fundamental DNS components are up and working, you can proceed to perform more
detailed and in-depth troubleshooting. Here are some simple tips.

Start a troubleshooting Pod that has your favourite networking tools installed (ping, traceroute, curl, dig, nslookup
etc.). The standard ger . io/kubernetes-e2e-test-images/dnsutils:1.3 image is a popular choice if you don’t have
your own custom image with your tools installed. Unfortunately, there’s no image tagged as latest in the repo.
This means you have to specify a version. At the time of writing, 1.3 has been the latest version for a long time.

The following command starts a new standalone Pod called netutils, based on the dnsutils image just mentioned.
It will also connect your terminal to it.

$ kubectl run -it dnsutils \
--image gcr.io/kubernetes-e2e-test-images/dnsutils:1.3

A common way to test DNS resolution is to use nslookup to resolve the kubernetes Service fronting the API server.
The query should return an IP address as well as the name kubernetes.default.svc.cluster.local.

# nslookup kubernetes

Server: 192.168.200.10
Address: 192.168.200.10%53
Name: kubernetes.default.svc.cluster.local

Address: 192.168.200.1

The first two lines should return the IP address of your cluster DNS. The last two lines should show the FQDN
of the kubernetes Service and its ClusterIP. You can verify the ClusterIP of the kubernetes Service by running a
kubectl get svc kubernetes command.

Errors such as “nslookup: can’t resolve kubernetes” are possible indicators that DNS isn’t working. A possible
solution is to restart the coredns Pods. They’re managed by a Deployment object and will be automatically
recreated.

The following command deletes the DNS Pods and must be ran from a terminal with kubect1 installed. If you’re
still logged on to the netutils Pod, you’ll need to type exit to disconnect.

$ kubectl delete pod -n kube-system -1 k8s-app=kube-dns
pod "coredns-5644d7b6d9-2pdmd" deleted
pod "coredns-5644d7b6d9-wsjzp" deleted

Verify they’ve restarted and test DNS again. They’ll be restarted because they’re managed by a Deployment
object.
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Summary

In this chapter, you learned that Kubernetes uses the internal cluster DNS for service registration and service
discovery.

All new Service objects are automatically registered with the cluster DNS, and all containers are pre-configured
to use the cluster DNS for service discovery.

The cluster DNS resolves Service names to ClusterIPs. These are stable virtual IPs on a special network called
the service network. Although there are no routes to this network, the kube-proxy configures all cluster nodes to
redirect traffic destined for the service network to Pod IPs on the Pod network.
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Storage is critical to most real-world production applications. Fortunately, Kubernetes has a mature and feature-
rich storage subsystem called the persistent volume subsystem.

The chapter is divided as follows:

« The big picture

« Storage providers

« The Container Storage Interface (CSI)

« The Kubernetes persistent volume subsystem
+ Dynamic provisioning with Storage Classes

« Hands-on

Kubernetes supports lots of storage back-ends, and each requires slightly different configuration. The examples
in this chapter are designed to work on Google Kubernetes Engine (GKE) clusters and will not work on other
cluster types. The principles and theory that you’ll learn is applicable to all types of Kubernetes, it’s just the
examples that only work on GKE.

The big picture

Kubernetes supports lots of types of storage from lots of different places. For example, block, file, and object
storage from a variety of external systems that can be in the cloud or your on-premises datacenters. However,
no matter what type of storage, or where it comes from, when it’s exposed on Kubernetes it’s called a volume.
For example, Azure File resources surfaced in Kubernetes are called volumes, as are block devices from an HPE
3PAR array, and object storage from Alicloud.

Figure 10.1 shows the high-level architecture.

............... €« | DD

Plugin layer
Storage back-ends (cslI)
(Portworx, NetApp, Hedvig,
GCE PD, Azure File...)

Persistent volume subsystem

Figure 10.1

On the left are storage providers. They can be traditional enterprise storage arrays from established vendors
like EMC and NetApp, or they can be cloud storage services such as AWS Elastic Block Store (EBS) and GCE
Persistent Disks (PD). All that’s required is a plugin allowing their storage resources to be surfaced as volumes
in Kubernetes.
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In the middle of the diagram is the plugin layer. In simple terms, this is the glue that connects external storage
with Kubernetes. Modern plugins are be based on the Container Storage Interface (CSI) which is an open
standard aimed at providing a clean storage interface for container orchestrators such as Kubernetes. If you’re
a developer writing storage plugins, the CSI abstracts the internal Kubernetes machinery and lets you develop
out-of-tree.

Note: Prior to the CSI, all storage plugins were implemented as part of the main Kubernetes code
tree (in-tree). This meant they had to be open-source, and all updates and bug-fixes were tied
to the main Kubernetes release-cycle. This was a nightmare for plugin developers as well as the
Kubernetes maintainers. However, now that we have the CSI, storage vendors no longer need to
open-source their code, and they can release updates and bug-fixes against their own timeframes.

On the right of Figure 10.1 is the Kubernetes persistent volume subsystem. This is a set of API objects that enable
applications to consume storage. There are a growing number of storage-related API objects, but the core ones
are:

« Persistent Volumes (PV)
« Persistent Volume Claims (PVC)
« Storage Classes (SC)

Throughout the chapter, we may refer to them by their PascalCase truncated API names — PersistentVolume,
PersistentVolumeClaim, and StorageClass.

PVs are mapped to external storage assets, PVCs are like tickets that authorize applications (Pods) to use them,
and SCs make it all dynamic.

Consider the quick example in Figure 10.2.

A Kubernetes cluster is running on AWS and the AWS administrator has created a 25GB EBS volume called
“ebs-vol”. The Kubernetes administrator creates a PV called “k8s-vol” that links back to the “ebs-vol” via the
ebs.csi.aws.com CSI plugin. While that might sound complicated, it’s not. The PV is simply a way of representing
the external storage asset on the Kubernetes cluster. Finally, the Pod uses a PVC to claim access to the PV and

start using it.
ebs.csi.aws.com
plugin @
pod

Amazon Web Services

Figure 10.2
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A few things worth noting.

1. This was a very manual process that involved the AWS administrator. StorageClasses make this automated.
2. There are rules preventing multiple Pods accessing the same volume (more on this later).

3. You cannot map an external storage volume to multiple PVs. For example, you cannot have a 50GB external
volume that has two 25GB Kubernetes PVs each using half of it.

Let’s dig a bit deeper.

Storage Providers

Kubernetes uses storage from a wide range of external systems. These can be native cloud services such as
AWS Elastic Block Store and Azure File, but they can also be traditional on-premises storage arrays providing
iscsI, Fc and NFS volumes. Other options exist, but the take-home point is that Kubernetes gets its storage from
a wide range of external systems including battle-hardened enterprise-grade systems from all the major data
management companies.

Some obvious restrictions apply. For example, you can’t use AWS storage services if your Kubernetes cluster is
running in Microsoft Azure.

Each provider (a.k.a provisioner) needs a CSI plugin to expose their storage assets to Kubernetes. The plugin
usually runs as a set of Pods in the kube-system Namespace.

The Container Storage Interface (CSI)

The CSI is a vital piece of the Kubernetes storage jigsaw and has been instrumental in bringing enterprise-grade
storage from traditional vendors to Kubernetes. However, unless you're a developer writing storage plugins,
you’re unlikely to interact with it very often.

It’s an open-source project that defines a standards-based interface so that storage can be leveraged in a uniform
way across multiple container orchestrators. For example, a storage vendor should be able to write a single CSI
plugin that works across multiple orchestrators such as Kubernetes and Docker Swarm. In practice, Kubernetes
is the focus, but Docker is implementing support for the CSI.

In the Kubernetes world, the CSI is the preferred way to write plugins (drivers) and means that plugin code no
longer needs to exist in the main Kubernetes code tree. It also exposes a clean interface and hides all the ugly
volume machinery inside of the Kubernetes code (no offense intended).

From a day-to-day perspective, your main interaction with the CSI will be referencing the appropriate CSI plugin
in your YAML manifest files, and reading its documentation to find supported features and attributes.

Sometimes we call plugins “provisioners”, especially when we talk about Storage Classes later in the chapter.

The Kubernetes persistent volume subsystem

From a day-to-day perspective, this is where you’ll spend most of your time configuring and interacting with
storage.
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You start out with raw storage on the left of Figure 10.3. This plugs in to Kubernetes via a CSI plugin. You then
use persistent volume subsystem API resources to leverage and use the storage in your apps.

............... e DD

Plugin layer
Storage providers (csli)

Persistent volume subsystem

Figure 10.3

The three core API resources in the persistent volume subsystem are:

« Persistent Volumes (PV)

« Persistent Volume Claims (PVC)

« Storage Classes (SC)
Others exist, and storage vendors can extend the Kubernetes API with their own resources to support advanced
features.

At a high level, PVs are how external storage assets are represented in Kubernetes. PVCs are like tickets that
grant a Pod access to a PV. SCs make it all dynamic.

Let’s walk through another example.

Assume you have an external storage system with two tiers of storage:

« Flash/SSD fast storage

+ Mechanical slow archive storage

You expect apps on your Kubernetes cluster to use both, so you create two Storage Classes and map them as
follows.

External tier Kubernetes Storage Class name
SSD sc-fast
Mechanical sc-slow

With the StorageClass objects in place, applications can create volumes on-the-fly by creating Persistent Volume
Claims (PVC) referencing either of the storage classes. Each time this happens, the CSI plugin referenced in the
SC instructs the external storage system to create an appropriate storage asset. This is automatically mapped to
a PV on Kubernetes and the app uses the PVC to claim it and mount it for use.

Don’t worry if it seems confusing, it’ll make sense when you go through the hands-on later.

Before doing that, you need to learn a bit more about PVCs and SCs.
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Dynamic provisioning with Storage Classes

As the name suggests, storage classes allow you to define different classes/tiers of storage. How you define them
is up to you and will depend on the types of storage you have available. For example, if your external storage
systems support fast and slow storage, as well as remote replication, you might define these three classes:

e fast-local
e fast-replicated

e slow-archive-local

As far as Kubernetes goes, storage classes are resources in the storage.k8s.io/vt API group. The resource type
is StorageClass, and you define them in regular YAML files that you post to the API server for deployment. You
can use the sc shortname to refer to them when using kubectl.

Note: You can use kubectl api-resources to see a full list of API resources and their shortnames.
It also shows if the resource is namespaced, its API group, and what its equivalent kind is when
writing YAML files.

A StorageClass YAML

The following SC defines a class of storage called “fast-local”, based on AWS solid state drives (io1) in the Ireland
Region (eu-west-1a). It also requests a performance level of 10 IOPs per gigabyte and encrypted volumes.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: fast-local
provisioner: ebs.csi.aws.com
parameters:
type: iol
iopsPerGB: "10"
encrypted: true
allowedTopologies:
- matchLabelExpressions:
- key: topology.ebs.csi.aws.com/zone
values:
- eu-west-1a

As with all Kubernetes YAML, kind tells the API server what type of object you’re defining, and apiversion tells
it which version of the schema to use when creating it. metadata.name is an arbitrary string that lets you give the
object a friendly name - this example is defining a class called “fast-local”. provisioner tells Kubernetes which
plugin to use, and the parameters block lets you finely tune the storage attributes. Finally, the allowedTopologies
property lets you list where replicas should go.

A few quick things worth noting:

1. StorageClass objects are immutable - this means you can’t modify them after they’re deployed
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2. metadata.name should be meaningful as it’s how you and other objects refer to the class
3. The terms provisioner and plugin are used interchangeably

4. The parameters block is for plugin-specific values, and each plugin is free to support its own set of values.
Configuring this section requires knowledge of the storage plugin and associated storage back-end. Each
provisioner usually provides documentation.

Multiple StorageClasses

You can configure as many StorageClasses as you need. However, each class can only relate to a single type of
storage on a single back-end. For example, if you have a Kubernetes cluster with StorageOS and Portworx storage
back-ends, you’ll need at least two StorageClasses.

On the flip-side, each back-end storage system can offer multiple classes/tiers of storage, each of which needs its
own StorageClass on Kubernetes. A simple example we’ll see later is the slower standard persistent disk and
the faster SSD persistent disk tiers offered by the Google Cloud back-end. These are typically implemented with
the following SCs on a GKE cluster.

1. standard-rwo for the slower standard disk

2. premium-rwo for the faster SSD

The following SC defines a block storage volume on a Commvault Hedvig array that is replicated between
datacenters in Sunderland and New York. It will only work if you have Commvault Hedvig storage systems and
appropriate replication configured on the storage system.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: sc-hedvig-rep
provisioner: io.hedvig.csi
parameters:

backendType: "hedvig-block"

rp: "DataCenterAware"

dcNames: "sunderland,new-york"

As you can see, the parameters block defines the interesting values and requires knowledge of the plugin and the
storage back-end. Consult your storage plugin documentation for details.

Working with StorageClasses
The basic workflow for deploying and using a StorageClass is as follows:

1. Have a storage back-end (can be cloud or on premises)
. Create your Kubernetes cluster

. Install and configure the CSI storage plugin

NS \V}

. Create one or more StorageClasses on Kubernetes
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5. Deploy Pods and PVCs that reference those StorageClasses

The following YAML snippet defines a StorageClass, a PersistentVolumeClaim, and a Pod. All three objects can
be defined in a single YAML file by separating them with three dashes (---).

Pay close attention to how the PodSpec references the PVC by name, and in turn, the PVC references the SC by
name.

kind: StorageClass
apiVersion: storage.k8s.io/v1

metadata:

name: fast <<=== Referenced by the PVC
provisioner: pd.csi.storage.gke.io
parameters:

type: pd-ssd

apiVersion: vi
kind: PersistentVolumeClaim
metadata:

name: mypvc <<=== Referenced by the PodSpec
spec:

accessModes:

- ReadWriteOnce

resources:

requests:
storage: 50Gi

storageClassName: fast <<=== Matches name of the SC
apiVersion: vi1
kind: Pod
metadata:

name: mypod
spec:

volumes:

- name: data
persistentVolumeClaim:
claimName: mypvc <<=== Matches PVC name
containers:
<SNIP>

The previous YAML is truncated and doesn’t include a full PodSpec.

So far, you’ve seen a few SC definitions. However, each one was slightly different as each one related to a different
provisioner (storage plugin/back-end). You’ll need to refer to your plugin documentation to know which options
yours supports.

Additional volume settings

There are a few other important settings you can configure in a StorageClass. We’ll cover:

« Access mode

+ Reclaim policy
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Access mode
Kubernetes supports three access modes for volumes.

+ ReadWriteOnce (RWO)
+ ReadWriteMany (RWM)

« ReadOnlyMany (ROM)

ReadwriteOnce defines a PV that can only be bound as R/W by a single PVC. Attempts to bind it from multiple
PVCs will fail.

ReadwriteMany defines a PV that can be bound as R/W by multiple PVCs. This mode is usually only supported by
file and object storage such as NFS. Block storage usually only supports Rwo.

ReadOnlyMany defines a PV that can be bound as R/O by multiple PVCs.

It’s important to understand that a PV can only be opened in one mode - it’s not possible for a single PV to be
bound to a PVC in ROM mode and another PVC in RWM mode.

Reclaim policy

A volume’sReclaimPolicy tells Kubernetes how to deal with a PV when its PVC is released. Two policies currently
exist:

e Delete

* Retain

Delete is the most dangerous, and it’s the default for PVs created dynamically via storage classes unless you
specify otherwise. It deletes the PV and associated storage resource on the external storage system when the
PVC is released. This means all data will be lost! You should obviously use this policy with caution.

Retain will keep the associated Pv object on the cluster as well as any data stored on the associated external
asset. However, other PVCs are prevented from using it in future. The obvious disadvantage is it requires manual
clean-up.

Let’s quickly summarize what you’ve learned about storage classes before walking through a demo.

StorageClasses (SC) let you dynamically create physical back-end storage resources that get automatically
mapped to Persistent Volumes (PV) on Kubernetes. You define SCs in YAML files that reference a plugin and
tie them to a particular tier of storage on a particular storage back-end. For example, high-performance AWS SSD
storage in the AWS Mumbai Region. The SC needs a name, and you deploy it using kubectl apply. Once deployed,
the SC watches the API server for new PVC objects referencing its name. When matching PVCs appear, the SC
dynamically creates the required asset on the back-end storage system and maps it to a PV on Kubernetes. Apps
can then claim it with a PVC.

There’s always more detail, such as mount options and volume binding modes, but what you’ve learned so far is
enough to get you started.

Let’s bring everything together with a demo.
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Hands-on

This section walks you through using StorageClasses to dynamically provision storage on an external storage
system and have it mapped to Kubernetes. We’ll split the work as follows:

« Use an existing storage class
« Create and use a new storage class
The examples will only work on a regional Google Kubernetes Engine (GKE) cluster with the CSI plugin installed.

If you created a GKE cluster as shown in Chapter 3, you’re ready to go. If your Kubernetes cluster is somewhere
else, the StorageClass YAML won’t work, but the overall workflow will be the same.

Using an existing StorageClass

The following command lists all SCs defined on a typical GKE cluster. Yours may look different.

$ kubectl get sc

NAME PROVISIONER RECLAIMPOLICY  VOLUMEBINDINGMODE
premium-rwo pd.csi.storage.gke.io Delete WaitForFirstConsumer
standard (default) kubernetes.io/gce-pd Delete Immediate
standard-rwo pd.csi.storage.gke.io Delete WaitForFirstConsumer

There’s quite a lot to learn from the output.

First up, all three SCs were automatically created when the cluster was built. This is common on hosted
Kubernetes platforms, but your cluster may not have any.

The one on the second line is listed as the “default”. This means it will be used by any PVCs that do not explicitly
specify an SC. Default SCs are only useful in development environments and times when you do not have specific
storage requirements. In production environments, you should explicitly use an SC that meets the requirements
of the app.

The PROVISIONER column shows two of the SCs using the CSI plugin, the other is using the legacy in-tree plugin.

The RECLAIM POLICY is set to Delete for all three. This means any PVCs that use these SCs will create PVs and
volumes that will be deleted when the PVC is deleted. This will result in data being lost. The alternative isRetain.

Setting VOLUMEBINDINGMODE to “Immediate” will create the volume on the external storage system as soon as the
PVC is created. If you have multiple datacenters or cloud regions, the volume might be created in a different
datacenter or region than the Pod that eventually consumes it. Setting it to WaitForFirstConsumer will delay
creation until a Pod using the PVC is created. This ensures the volume will be created in the same datacenter or
region as the Pod.

You can use kubectl describe to get more detailed information, and kubectl get sc <name> -o yaml will show
the full configuration in YAML format.
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$ kubectl describe sc premium-rwo

Name: premium-rwo

IsDefaultClass: No

Annotations: components . gke.io/component-name=pdcsi-addon. ..
Provisioner: pd.csi.storage.gke.io

Parameters: type=pd-ssd

AllowVolumeExpansion: True

MountOptions: <none>

ReclaimPolicy: Delete

VolumeBindingMode: WaitForFirstConsumer

Events: <none>

Let’s create a new volume using the premium-rwo SC.

List any existing PVs and PVCs so that it’s easy to identify the ones you’ll create in the next steps.

$ kubectl get pv

No resources found

$ kubectl get pvc

No resources found in default namespace.

The following PVC definition is from the pvc-gke-premium.yml file in the storage folder of the book’s GitHub
repo. It describes a PVC called pvc-prem that will provision a 10GB volume via the premium-rwo StorageClass. It
will only work if your GKE cluster has a StorageClass called premium-rwo.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: pvc-prem
spec:
accessModes:
- ReadWriteOnce
storageClassName: premium-rwo
resources:
requests:
storage: 10Gi

Create the PVC with the following command. Be sure to run it from the folder where the YAML file exists.

$ kubectl apply -f pvc-gke-premium.yml
persistentvolumeclaim/pvc-prem created

The following commands show a PVC has been created. However, it’s in the pending state and no PV has
been created. This is because the premium-rwo StorageClass volume binding mode is set to WaitForFirstConsumer
meaning it won’t provision a volume and PV until a Pod claims it.
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$ kubectl get pv

No resources found

kubectl get pvc

NAME STATUS VOLUME  CAPACITY ACCESS MODES  STORAGECLASS  AGE
pvc-prem Pending premium-rwo im

Create the Pod from the prempod.ymi file. This Pod mounts a volume via the pvc-prem PersistentVolumeClaim
that you just created and is currently in the pending state awaiting a Pod to mount it.

$ kubectl apply -f prempod.yml
pod/prempod created

Give the Pod a minute to start, then re-check the status of any PVCs and PVs.

$ kubectl get pvc
NAME STATUS  VOLUME CAPACITY  ACCESS MODES  STORAGECLASS  AGE
pvc-prem Bound pvc-T796afda8. . . 10Gi RWO premium-rwo 9m48s

kubectl get pv
NAME CAPACITY  MODES  RECLAIM POLICY  STATUS  CLAIM STORAGECLASS
pvc-T796af. . . 10Gi RWO Delete Bound default/pvc-prem premium-rwo

The PVC now shows as bound and an associated PV has been created. If you check the Google Cloud backend,
you’ll see a new persistent disk created with the same name (see Google Cloud Console > Compute Engine >
Disks).

Delete the Pod and the PVC.

$ kubectl delete pod prempod
pod "prempod" deleted

$ kubectl delete pvc pvc-prem
persistentvolumeclaim "pvc-prem" deleted

When the PVC is deleted, the PV and associated volume on the Google Cloud back-end will be automatically
deleted. This is because the PVC was created through the premium-rwo SC which has the ReclaimPolicy set to
Delete. Verify this.

$ kubectl get pv
No resources found

You can also check in the Google Cloud Console by going to Compute Engine > Disks.
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Creating and using a new storage class

In this section, you’ll create your own new storage class and use it to create a new volume.

The SC you’ll create is defined in the sc-gke-fast-repl.yml file in the storage folder of the book’s GitHub repo
and defines a class called “sc-fast-repl” with the following properties.

« Fast SSD storage (type: pd-ssd)
. Rephcated(replication—type: regional—pd)
« Create On-denland(volumeBindingMode: WaitForFirstConsumer)

« Keep data when the PVC is deleted (reclaimPolicy: Retain)

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

name: sc-fast-repl
provisioner: pd.csi.storage.gke.io
parameters:

type: pd-ssd

replication-type: regional-pd
volumeBindingMode: WaitForFirstConsumer
reclaimPolicy: Retain

Deploy the SC and verify it exists. You must run the command from the folder containing the YAML file, and it
will only work on regional GKE clusters with the GKE CSI driver running.

$ kubectl apply -f sc-gke-fast-repl.yml
storageclass.storage.k8s.io/sc-fast-repl created

$ kubectl get sc

NAME PROVISIONER RECLAIMPOLICY  VOLUMEBINDINGMODE
premium-rwo pd.csi.storage.gke.io Delete WaitForFirstConsumer
sc-fast-repl pd.csi.storage.gke.io Retain WaitForFirstConsumer

With the SC in place, deploy the app and PVC defined in the vol-app.ym1 file. It contains a PVC defining a 20G
volume based on the newly created sc-fast-repl SC. It also defines a Pod that mounts a volume from it. When
you deploy the app, a new PVC and PV will be created, as well as a replicated persistent disk on the Google Cloud
back-end.

$ kubectl apply -f vol-app.yml
persistentvolumeclaim/pvcl created
pod/volpod created

Use kubect1 to check the PVC and PV exist.

The mechanics behind the operation that created the PV are as follows:
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1. You created the sc-fast-repl StorageClass
2. The SC controller started watching the API server for new PVCs referencing it

3. The app you deployed created the pvc2 PVC that requested a 20GB volume from the sc-fast-repl
StorageClass

4. The StorageClass loop noticed the PVC and dynamically created the back-end volume and PV

Congratulations. You’ve seen how to create a StorageClass and dynamically create volumes from it.

Clean-up

The Pod and PVC were both deployed from the vol-app.ym1 file. This means you can delete them both with the
following command.

$ kubectl delete -f vol-app.yml
persistentvolumeclaim "pvc2" deleted
pod "volpod" deleted

Even though the Pod and PVC are deleted, a kubectl get pv will show the PV still exists. This is because the
class it was created from is using the Retain reclaim policy. This keeps PVs, associated back-end volumes, and
data even when PVCs are deleted. You can verify this in the Google Cloud back-end (Compute Engine > Disks
and check for a 20G regional disk).

Manually delete the PV with a kubectl delete pv command and then be sure to delete the regional disk on the
Google Cloud back-end. Failure to delete the regional disk on the back-end may result in unexpected charges.

Chapter Summary

In this chapter, you learned that Kubernetes has a powerful storage subsystem that allows it to dynamically
provision and leverage storage from a wide variety of external storage back-ends.

Each back-end requires a plugin to expose its assets to Kubernetes, and the preferred type of plugin is a CSI
plugin. Once a plugin is enabled, Persistent Volumes (PV) are used to represent external storage resources on the
Kubernetes cluster, and Persistent Volume Claims (PVC) are used to give Pods access to PV storage.

Storage Classes allow applications to dynamically request storage. You create a Storage Class object that
references a class, or tier, of storage from a storage back-end. Once created, the Storage Class watches the API
Server for new Persistent Volume Claims that reference it. When a matching PVC arrives, the SC dynamically
creates the storage and makes it available as a PV that can be mounted as a volume into a Pod (container).
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Most business applications comprise two main parts.

« The application

« The configuration
A simple example is a web server such as NGINX or httpd (Apache). Neither are very useful without a
configuration. However, when you combine them with a configuration, they become extremely useful.

In the past, we coupled the application and the configuration into a single easy-to-deploy unit. As we moved
into the early days of cloud-native microservices applications, we brought this model with us. However, it’s an
anti-pattern in the cloud-native world. You should de-couple the application and the configuration, bringing
benefits such as:

«+ Re-usable application images

« Simpler development and testing

« Simpler and fewer disruptive changes

We'll explain all of these, and more, as we go through the chapter.

The chapter is divided as follows:

« The big picture
«+ ConfigMap theory
» Hands-on with ConfigMaps

« Hands-on with Secrets

The big picture

As already mentioned, most applications comprise an application binary and a configuration. This doesn’t change
with apps on Kubernetes. You build and store them separately, and bring them together at run-time.

Let’s consider an example to understand some of the benefits...
Quick example

Imagine you work for a company that deploys modern applications to Kubernetes, and you have three distinct
environments:

« Dev

o Test
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e Prod

Your developers write and update applications. Initial testing is performed in the dev environment, further testing
is done in the test environment where more stringent rules and the likes are applied. Finally, stable components
graduate to the prod environment.

However, each environment has subtle differences. These include things such as number of nodes, configuration
of nodes, network and security policies, different sets of credentials and certificates, and more.

You currently package each application microservice with its configuration baked into the container (the
application and configuration are packaged as a single artefact). With this in mind, you have to perform all
of the following for every business application:

« build three distinct images (one for dev, one for test, one for prod)
« store the images in three distinct repositories (dev, test, prod)

« run each version of the image in a specific environment (dev in dev, test in test, prod in prod)

Every time you change the config of an app, even small changes like fixing a typo, you need to build and package
an entirely new image and perform some type of update to the entire app.

Analysing the example

There are several drawbacks to the approach of storing the application and its configuration as a single artefact
(container image).

As your dev, test, and prod environments have different characteristics, each environment needs its own image.
A dev or test image won’t work in the prod environment because of things like different security credentials. This
requires extra work to create and maintain 3x copies each application. This complicates matters and increases
the chances of misconfiguration, including things that work in dev and test but not in prod.

You also have to store 3x images in 3 distinct repositories. Plus, you need to be very careful about permissions
to repositories. This is because your prod images contain sensitive configuration data, sensitive passwords, and
sensitive encryption keys. You probably don’t want dev and test engineers having access to prod images.

It’s also harder to troubleshoot an issue if you push an update that includes both an application binary update as
well as a configuration update. If the two are tightly coupled, it’s harder to isolate the fault. Also, if you need to
make a minor configuration change (for example fix a typo on a web page) you need to re-package, re-test, and
re-deploy the entire application and configuration.

None of this is ideal.

What it looks like in a de-coupled world

Now consider you work for the same company, but this time your application and its configuration are de-coupled.
This time.

 You build a single application image that’s shared across all three environments
+ You store a single image in a single repository

+ You run a single version of each image in all environments
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To make this work, you build your application images as generically as possible with no embedded configuration.
You then create and store configurations in separate objects, and apply a configuration to the application at when
you run it. For example, you have a single copy of a web server that you can deploy to all three environments.
When you deploy it to prod you apply the prod configuration. When you run it in dev, you apply the dev
configuration...

In this model, you create and test a single version of each application image that you store in a single repository.
All staff can have access to the image repository as there’s no sensitive data in the images. Finally, you can easily
push changes to the application and its configuration independent of each other — updating a simple typo in a
config no longer requires the entire application binary and image to be rebuilt and re-deployed.

You can even re-use images across different apps. For example, a hardened stripped-down NGINX image can be
used by lots of different apps — just load different configs at run-time.

Let’s see how Kubernetes makes this possible...

ConfigMap theory

Kubernetes provides an object called a ConfigMap (CM) that lets you store configuration data outside of a Pod.
It also lets you dynamically inject the config into a Pod at run-time.

Note: When we use the term Pod we mean container. After all, it is ultimately a container that
receives the configuration data and runs the app.

ConfigMaps are first-class objects in the Kubernetes API under the core API group, and they’re v1. This tells us
a lot of things:

1. They’re stable (v1)
. They’ve been around for a while (the fact that they’re in the core API group)

. You can operate on them with the usual kubectl commands

BSNWwW N

. They can be defined and deployed via the usual YAML manifests
ConfigMaps are typically used to store non-sensitive configuration data such as:

« Environment variables

- Entire configuration files (things like web server configs and database configs)
» Hostnames

« Service ports

« Accounts names

You should not use ConfigMaps to store sensitive data such as certificates and passwords. Kubernetes provides
a different object, called a Secret, for storing sensitive data. Secrets and ConfigMaps are very similar in design
and implementation, the major difference is that Kubernetes takes steps to obscure the data stored in Secrets. It
makes no such efforts to obscure data stored in ConfigMaps.

You'll see Secrets at the end of the chapter.
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How ConfigMaps work

At a high-level, a ConfigMap is a place to store configuration data that can be seamlessly injected into containers
at runtime. As far as any app is concerned, there is no ConfigMap. The config data simply surfaces where it’s
expected and the app has no idea it was put there by a ConfigMap.

Let’s look a bit closer...

Behind the scenes, ConfigMaps are a map of key/value pairs and we call each key/value pair an entry.

+ Keys are an arbitrary name that can be created from alphanumerics, dashes, dots, and underscores
« Values can contain anything, including multiple lines with carriage returns

« Keys and values are separated by a colon — key:value
Some simple examples might be:

« db-port:13306
« hostname:msb-prd-db1

More complex examples can store entire configuration files like this one:

key: conf
value:

directive in;

main block;

http {

server {

listen 80 default_server;
server_name *.nigelpoulton.com;
root /var/www/nigelpoulton.com;
index index.html

location / {
root /usr/share/nginx/html;
index index.html;

Once data is stored in a ConfigMap, it can be injected into containers at run-time via any of the following
methods:

« Environment variables
« Arguments to the container’s startup command

« Files in a volume
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All of the methods work seamlessly with existing applications. In fact, all an application sees is its configuration
data in either; an environment variable, an argument to a startup command, or a file in a filesystem. The
application is unaware the data originally came from a ConfigMap.

e o) | (D
= value ' —» </app>
env var

cmd

Figure 11.1 shows how the pieces connect.

A

Figure 11.1

The most flexible of the three methods is the volume option, whereas the most limited is the startup command.
You’ll look at each in turn, but before we do that let’s quickly mention Kubernetes-native applications.

ConfigMaps and Kubernetes-native apps

A Kubernetes-native application is one that knows it’s running on Kubernetes and can talk to the Kubernetes
APL As a result, they can access ConfigMap data directly via the API without needing things like environment
variables and volumes. This can simplify application configuration, but the application will only run on
Kubernetes (Kubernetes lock-in). At the time of writing, Kubernetes-native applications are rare.

Hands-on with ConfigMaps

You’ll need a Kubernetes cluster and the lab files from the book’s GitHub repo if you want to follow along.

$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning into 'TheK8sBook'. ..

If you don’t know how to usegit, or can’t install it, you can just go to the repo and copy the text from the relevant
files into files with the same name on your local machine.

Be sure to run all of the following commands from within the configmaps folder.

As with most Kubernetes objects, you can create them imperatively and declaratively. We’ll look at the imperative
method first.

Creating ConfigMaps imperatively

The command to imperatively create a ConfigMap is kubectl create configmap, but you can shorten configmap
to cm. The command accepts two sources of data:
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« Literal values on the command line (- - from-1literal)

« Files (--from-file)

Run the following command to create a ConfigMap called testmapt with two map entries from literal command-
line values.

$ kubectl create configmap testmapl \
--from-literal shortname=A0S \
--from-literal longname="Agents of Shield"

The following kubectl describe command shows how the two entries are stored in the map.

$ kubectl describe cm testmapil

Name: testmapl
Namespace: default
Labels: <none>

Annotations: <none>

Data

longname:

Agents of Shield
shortname:

A0S
Events: <none>

You can see the object is essentially a map of key/value pairs dressed up as a Kubernetes object.

The next command creates a ConfigMap from a file called cmfile.txt. It assumes you have a local file called
cmfile.txt in your working directory. The file contains the following single line of text and is available in the
configmaps directory of the book’s GitHub repo.

Kubernetes FTW

Run this command to create the ConfigMap from the contents of the file. Notice that the command uses the
--from-file argument instead of --from-literal.

$ kubectl create cm testmap2 --from-file cmfile.txt
configmap/testmap2 created

Inspecting ConfigMaps

ConfigMaps are first class API objects. This means you can inspect and query them in the same way as any other
API object.

List all ConfigMaps in the current Namespace.
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$ kubectl get cm

AME DATA  AGE
testmapl 2 11m
testmap2 1 2m23s

The following kubectl describe command shows the following interesting info about the testmap2 map:

« A single map entry was created
« The name of the entry’s key is the name of the file (cmfile.txt)

« The entry’s value is the contents of the file

$ kubectl describe cm testmap2

Name: testmap2
Namespace: default
Labels: <none>

Annotations: <none>

Data
cmfile.txt: <K-- key
Kubernetes FTW <<-- value

Events: <none>
You can also see the entire object by using the -o yam1 flag with kubect1 get.

$ kubectl get cm testmapl -o yaml
apiVersion: v1
data:
longname: Agents of Shield
shortname: AOS
kind: ConfigMap
metadata:
creationTimestamp: "2021-02-09T10:09:46Z"
managedFields:
<Snip>
manager: kubectl-create
operation: Update
time: "2021-02-09T10:09:46Z"
name: testmapl
namespace: default
resourceVersion: "311949"
uid: 56321c4f-52f5-4f£3-90cd-22e018588065

An interesting thing to note is that ConfigMap objects don’t have the concept of state (desired state and actual
state). This is why they have a data block instead of spec and status blocks.

Let’s find out how to create a ConfigMap declaratively before you use one to inject data into a Pod.
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Creating ConfigMaps declaratively

The following ConfigMap manifest defines two map entries; firstname and lastname. It’s available in the book’s
GitHub repo under the configmaps folder called multimap.yml. Alternatively, you can create an empty file and
practice writing your own manifests from scratch.

kind: ConfigMap
apiVersion: v1
metadata:

name: multimap
data:

given: Nigel

family: Poulton

You can see that a ConfigMap manifest has the normal kind and apiVersion fields, as well as the usual metadata
section. However, as previously mentioned, they don’t have a spec section. Instead, they have a data section that
defines the map of key/values.

You can deploy it with the following command (the command assumes you have a copy of the file in your working
directory called multimap.ym1).

$ kubectl apply -f multimap.yml
configmap/multimap created

This next YAML looks slightly more complicated but it’s actually not - it creates a ConfigMap with just a single
map entry in the data block. It looks more complicated because the value portion of the map entry is a full
configuration file.

kind: ConfigMap
apiVersion: v1
metadata:
name: test-conf
data:
test.conf: |
env = plex-test
endpoint = 0.0.0.0:31001
char = utf8
vault = PLEX/test
log-size = 512M

The previous YAML file inserts a pipe character (|) after the name of the entry’s key property. This tells Kubernetes
that everything following the pipe is to be treated as a single literal value. Therefore, the ConfigMap object is
called test-conf and it contains a single map entry as follows:
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Key Value

test.conf env = plex-test
endpoint = 0.0.0.0:31001
char = utf8

vault = PLEX/test
log-size = 512M

You can deploy the previous CM with the following kubectl command. It assumes you have a local copy of the
file called singlemap.yml.

$ kubectl apply -f singlemap.yml
configmap/test-conf created

List and describe the multimap and test-conf ConfigMaps you just created. The following shows the output of a
kubectl describe against the test-conf map.

$ kubectl describe cm test-conf

Name: test-conf
Namespace: default
Labels: <none>

Annotations: <none>
Data

test.conf:

env = plex-test
endpoint = ©0.0.0.0:31001
char = utf8

vault = PLEX/test
log-size = 512M

Events: <none>

ConfigMaps are extremely flexible and can be used to insert complex configurations, including JSON files and
even scripts, into containers at run-time.

Injecting ConfigMap data into Pods and containers

You’ve seen how to imperatively and declaratively create ConfigMap objects and populate them with data. Now
let’s see how to get that data into applications running in containers.

There are three main ways to inject ConfigMap data into a container:

« As environment variables
« As arguments to container startup commands

« Asfiles in a volume

Let’s look at each.
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ConfigMaps and environment variables

A common way to get ConfigMap data into a container is via environment variables. You create the ConfigMap,
then you map its entries into environment variables in the container section of a Pod template. When
the container is started, the environment variables appear in the container as standard Linux or Windows
environment variables.

Figure 11.2. shows this.

A

spec:
containers:

env: ] pod
-name: firstname

valueFrom: mm]]]
|_» configMapKeyRef: | —]

L — name: multima =
— ovrgven " I
Family = poulton | -

multimap

————p [ -name:lastname —
valueFrom:
configMapKeyRef:
name: multimap
key: Family

Figure 11.2

You already have a ConfigMap called multimap that has two entries:

« given=Nigel

« family=Poulton
The following Pod manifest deploys a single container that creates two environment variables in the container.

« FIRSTNAME: Maps to the given entry
« LASTNAME: Maps to the family entry

apiVersion: vi
kind: Pod
<Snip>
spec:
containers:
- name: ctril
env:
- name: FIRSTNAME
valueFrom:
configMapKeyRef:
name: multimap
key: given
name: LASTNAME

valueFrom:

configMapKeyRef:
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name: multimap
key: family
<Snip>

When the Pod is scheduled and the container started, FIRSTNAME and LASTNAME will be created as standard Linux
environment variables inside the container. Applications can use these like regular environment variables —
because they are!

Run the following commands to deploy a Pod from the envpod.ym1 file and list environment variables that include
the NAME string in their name. This will list the FIRSTNAME and LASTNAME variables and you’ll see they’re populated
with the values from the multimap ConfigMap.

$ kubectl apply -f envpod.yml
pod/envpod created

$ kubectl exec envpod -- env | grep NAME
HOSTNAME=envpod

FIRSTNAME=Nigel

LASTNAME=Poulton

A drawback to using ConfigMaps with environment variables is that environment variables are static. This means
updates made to the map are not reflected in running containers. For example, if you update the values of the
given and family entries in the ConfigMap, environment variables in existing containers won’t see the updates.
This is a major reason environment variables aren’t very good.

ConfigMaps and container startup commands

The concept of using ConfigMaps with container startup commands is simple. You specify a startup command
for a container, and then customize it with variables.

The following Pod template is from the startuppod.yml file and describes a single container called args1. It’s
based on the busybox image and runs the /bin/sh startup command on line 5.

spec:
containers:
- name: argsi
image: busybox
command: [ "/bin/sh", "-c", "echo First name $(FIRSTNAME) last name $(LASTNAME)" ]
env:
- name: FIRSTNAME
valueFrom:
configMapKeyRef:
name: multimap
key: given
name: LASTNAME
valueFrom:

configMapKeyRef:
name: multimap
key: family
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If you look closely at the startup command, you’ll see that it references two variables; FIRSTNAME and LASTNAME.
Each of these is defined in the env: section directly below the startup command.

« FIRSTNAME is based on the given entry in the multimap ConfigMap

« LASTNAME is based on the family entry in the same ConfigMap

The relationship is shown in in Figure 11.3.

Family

poulton

FIRSTNAME LASTNAME
multimap.given multimap.family

[“/bin/sh","-c","echo First name|$(FIRSTNAME) lastnamelS(LASTNAME)l']
Figure 11.3

Running a Pod based on the previous YAML will print “First name Nigel last name Poulton” to the container’s
logs and then quit (succeed).

$ kubectl logs startup-pod -c argsl
First name Nigel last name Poulton

Describing the Pod will yield the following lines describing the environment of the Pod.

Environment:
FIRSTNAME: <set to the key 'given' of config map 'multimap'>
LASTNAME: <set to the key 'family' of config map 'multimap'>

Using ConfigMaps with container startup commands is an extension of environment variables. As such, it suffers
from the same limitations — updates to entries in the map will not be reflected in running containers.

If you ran the startup-pod it’ll probably be in a CrashLoopBackof f loop. This is because it’s startup command runs
and completes, causing the Pod to succeed. Delete it with kubectl delete pod startup-pod.

ConfigMaps and volumes

Using ConfigMaps with volumes is the most flexible option. You can reference entire configuration files, as well
as make updates to the ConfigMap and have them reflected in running containers. This means you can make
changes to entries in a ConfigMap, after you’ve deployed a container, and those changes be seen in the container
and available for running applications. The updates may take a minute or so to appear in the container.

The high-level process for exposing ConfigMap data via a volume looks like this.
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1. Create the ConfigMap
. Create a ConfigMap volume in the Pod template

. Mount the ConfigMap volume into the container

[ OC \V]

. Entries in the ConfigMap will appear in the container as individual files

This process is shown in Figure 11.4
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multimap

[etc/name
N povrrreet I ARG E
vol (] Family

Figure 11.4
You still have the multimap ConfigMap with two values.

« given=Nigel

« family=Poulton
The following YAML creates a Pod called cmvol with the following configuration.

« spec.volumes creates a volume called volmap based on the multimap ConfigMap

e spec.containers.volumeMounts mounts the volmap volume to /etc/name

apiVersion: v1

kind: Pod

metadata:
name: cmvol

spec: <<=== This block creates a
volumes: <<=== special type of volume called
- name: volmap <<=== a ConfigMap volume based on
configMap: the ConfigMap called
name: multimap <<=== "multimap"
containers:
- name: ctr

image: nginx

volumeMounts: <<=== These lines mount the
- name: volmap <<=== the "volmap" volume into the
mountPath: /etc/name <«=== container at "/etc/name"

The following commands deploy the container (from the cmvol.yml manifest) and then run a kubectl
command to list the files in the ‘/etc/name/ directory.

146

exec
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$ kubectl apply -f cmpod.yml
pod/cmvol created

$ kubectl exec cmvol -- 1s /etc/name
family
given

Edit the ConfigMap and change any of the values in the data block, you can even change them all. This may
require a basic understanding of the vi editor. If you’re not comfortable with vi you can edit the YAML file in a
different editor and use kubectl apply to re-post it to the API server.

$ kubectl edit cm multimap

# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving
# this file will be reopened with the relevant failures.
#
apiVersion: v1
data:
City: Macclesfield << changed
Country: UK << changed
kind: ConfigMap
metadata:
<Snip>

Save your changes and re-run the previouskubectl exec command to list the contents of the container’s filesystem.
It may take a minute for the changes to be updated in the running container.

$ kubectl exec cmvol -- 1s /etc/name

City

Country

$ kubectl exec cmvol -- cat /etc/name/Country
UK

Congratulations, the contents of the multimap ConfigMap have been exposed into the containers filesystem via
ConfigMap volume and you’ve tested making an edit.

Hands-on with Secrets

Secrets are almost identical to ConfigMaps — they hold application configuration data that is injected into
containers at run-time. However, Secrets are designed for sensitive data such as passwords, certificates, and
OAuth tokens.
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Are Secrets secure

The quick answer to this question is “no”. But here’s the slightly longer answer...

Despite being designed for sensitive data, Kubernetes does not encrypt Secrets. It merely obscures them as base-
64 encoded values that can easily be decoded. Fortunately, it’s possible to configure encryption-at-rest with
EncryptionConfiguration objects, and most service meshes encrypt network traffic.

A typical workflow for a Secret is as follows.

. The Secret is created and persisted to the cluster store as an un-encrypted object
. A Pod that uses it gets scheduled to a cluster node
. The Secret is transferred over the network, un-encrypted, to the node

. The kubelet on the node starts the Pod and its containers

G W N e

. The Secret is mounted into the container via an in-memory tmpfs filesystem and decoded from base64 to
plain text

6. The application consumes it

7. If/when the Pod is deleted, the Secret is deleted form the node

While it’s possible to encrypt the Secret in the cluster store and leverage a service mesh to encrypt it in-flight on
the network, it’s always mounted as plain-text in the Pod/container. This is so the app can consume it without
having to perform decryption or base64 decoding operations.

Also, use of in-memory tmpfs filesystems mean they’re never persisted to disk on a node.
So, to cut a long story short, no Secrets aren’t very secure. But you can take extra steps to make them secure.
They’re also limited to 1MiB (1,048,576 bytes) in size.

An obvious use-case for Secrets is a generic TLS termination proxy for use across your dev, test, and prod
environments. You create a standard image, and load the appropriate TLS keys at run-time for each environment.

This is shown in the Figure 11.5.
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Figure 11.5
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Inspecting system Secrets
By default, every Pod gets a Secret mounted into it as a volume, which it uses to authenticate itself if it talks to
the API server.

If you’ve been following along, you’ll still have the “cmvol” Pod running. Run the following command and
identify the fields mapping the Secret to the Secret volume and container mount point.

1. $ kubectl describe pod cmvol

2. Name: cmvol

3. Namespace: default

4. <Snip>

5. Containers:

6. ctr:

7. Container ID: containerd://@de32d677251cbbda3ebeb3e8. . .
8. Image: nginx

9. Mounts:

10. /etc/name from volmap (rw)

11. /var/run/secrets/kubernetes.io/serviceaccount from default-token-s9nmx (ro)
12. <Snip>

13. Volumes:

14. default-token-s9nmx:

15. Type: Secret (a volume populated by a Secret)

16. SecretName: default-token-s9nmx

17. Optional: false

18. QoS Class: BestEffort

19. <Snip>

Lines 13 - 17 define a Secret volume called “default-token-s9nmx” based on a Secret with the same name, and
line 11 shows it mounted in the container at /var/run/secrets/kubernetes.io/serviceaccount.

You can see the Secret by listing all Secrets in the default Namespace. The name of yours will be different.
$ kubectl get secrets

NAME TYPE DATA  AGE

default-token-s9nmx  kubernetes.io/service-account-token 3 21d

Describe the Secret to see more info.

$ kubectl describe secret default-token-s9nmx

Name: default-token-s9nmx
Namespace: default
Labels: <none>

Annotations: kubernetes.io/service-account.name: default
kubernetes.io/service-account.uid: cb5b5a4b3-3cbc. ..
Type: kubernetes.io/service-account-token

Data
token: eyJhbGciOiJSUzZIINiIsIm. . .
ca.crt: 570 bytes

namespace: T bytes
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Creating Secrets

Before proceeding with this section, remember that Secrets are not encrypted in the cluster store, not encrypted
in-flight on the network, and not encrypted when surfaced in a container. There are ways to encrypt them at-rest
in the cluster store and to encrypt network traffic. However, they need to be surfaced in containers in plain text
so applications can read them.

As with all API resources, Secrets can be created imperatively and declaratively.

Create a new Secret called creds with the following imperative command.

$ kubectl create secret generic creds --from-literal user=nigelpoulton \
--from-literal pwd=Password123

Earlier you learned that Kubernetes obscures Secrets by encoding them as base64 values. Check this with the
following command.

$ kubectl get secret creds -o yaml
apiVersion: v1
kind: Secret
data:
pwd: UGFzc3dvemQxMjM=
user: bmlnZWxwb3VsdGOu
<Snip>

The username and password values are both base64-encoded. Run the following command to decode them. You’ll
need the base64 utility on your system for the decoding to work. If you don’t have it, you can use an online
decoder.

$ echo UGFzc3dvemQxMjM= | base64 -d
Password123

The decoding completes without requiring a key, proving that base64 encoding is not secure.

The following YAML object is from the tkb-secret.yml file in the configmaps folder. It describes a Secret called
“tkb-secret” with two base64-encoded entries. If you want to add plain text entries, rename the data object to
stringData. Although this allows you to enter values in plain text, they’ll still be stored as base64, and subsequent
kubectl commands will retrieve them as base64.

apiVersion: vi1
kind: Secret
metadata:
name: tkb-secret
labels:
chapter: configmaps
type: Opaque
data: <<=== Change to stringData for plain text values
username: bmlnZWxwb3VsdGOu
password: UGFzc3dvemQxMjM=

Deploy it to your cluster. Be sure to run the command from the configmaps folder.
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$ kubectl apply -f tkb-secret.yml
secret/tkb-secret created

Run kubectl get and kubectl describe commands to inspect it.

Using Secrets in Pods

The most flexible way to inject a Secret into a Pod (container) is via a special type of volume called a Secret
volume.

The following YAML describes a single-container Pod with a Secret volume called “secret-vol” based on the
tkb-secret created in the previous step. It also mounts it into the container at /etc/tkb.

apiVersion: v1
kind: Pod
metadata:
name: secret-pod
labels:
topic: secrets
spec:
volumes:
- name: secret-vol
secret:
secretName: tkb-secret
containers:
- name: secret-ctr
image: nginx
volumeMounts:
- name: secret-vol
mountPath: "/etc/tkb"

Secret vols are automatically mounted as read-only to prevent containers and applications accidentally mutating
them.

Deploy it with the following command. Doing this will transfer the unencrypted Secret over the network to the
kubelet on the node that will run the Pod where it will be mounted into the Pod via a tmpfs mount.

$ kubectl apply -f secretpod.yml
pod/secret-pod created

The following command shows the Secret is mounted as two files at /etc/tkb — one file for each entry in the
Secret.

$ kubectl exec secret-pod -- ls /etc/tkb
password
username

Showing the contents of either file will show the entries have been exposed in the container in plain text for use
by applications.
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$ kubectl exec secret-pod -- cat /etc/tkb/password
Password123

There are more ways to use ConfigMaps and Secrets, but you know enough now to get started.

Clean-up

Use kubectl get to list the Pods, ConfigMaps and Secrets deployed in the chapter, and delete them with kubect1l
delete.

Chapter Summary

ConfigMaps and Secrets are the Kubernetes native way of decoupling applications and config data.

They’re both first-class object in the Kubernetes API and can be created and manipulated with the usual kubect1
apply, kubectl get, and kubectl describe commands. ConfigMaps are designed for application configuration
parameters and even entire configuration files, whereas Secrets are designed for sensitive configuration data.

Both can be injected into containers at run-time via various constructs, with volumes being the preferred method,
as they allow updates to eventually be reflected in running containers.

Secrets are not encrypted by default in the cluster store or when in transit on the network.
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In this chapter, you’ll learn how to use StatefulSets to deploy and manage stateful applications on Kubernetes.

For the purposes of this chapter, we’re defining a stateful application as one that creates and saves valuable data.
An example might be an app that saves data about client sessions and uses it for future sessions. Other examples
include databases and other data stores.

We’ll divide the chapter as follows:

« StatefulSet theory
« Hands-on with StatefulSets

The theory section introduces you to the way StatefulSets work and what they bring to the game. But don’t
worry if you don’t understand everything at first, you’ll cover most of it again when you go through the hands-
on section.

The theory of StatefulSets

It’s often useful to compare StatefulSets with Deployments. Both are first-class API objects and follow the typical
Kubernetes controller architecture. They’re both implemented as controller that operate reconciliation loops
watching the state of the cluster, via the API server, and moving the observed state into sync with desired state.
Deployments and StatefulSets also support self-healing, scaling, updates, and more.

However, there are some vital differences between StatefulSets and Deployments. StatefulSets guarantee.

« Predictable and persistent Pod names
« Predictable and persistent DNS hostnames

« Predictable and persistent volume bindings

These three properties form the state of a Pod, sometimes referred to as its sticky ID. StatefulSets ensure this
state/sticky ID is persisted across failures, scaling, and other scheduling operations, making them ideal for
applications that require unique Pods that are not interchangeable.

As a quick example, failed Pods managed by a StatefulSet will be replaced by new Pods with the exact same Pod
name, the exact same DNS hostname, and the exact same volumes. This is true even if the replacement Pod is
started on a different cluster node. The same is not true of Pods managed by a Deployment.

The following YAML snippet shows some of the properties of a typical StatefulSet.
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apiVersion: apps/vi
kind: StatefulSet
metadata:
name: tkb-sts
spec:
selector:
matchLabels:
app: mongo
serviceName: "tkb-sts"
replicas: 3
template:
metadata:
labels:
app: mongo
spec:
containers:
- name: ctr-mongo
image: mongo:latest

The name of the StatefulSet is tkb-sts and it defines three Pod replicas running the mongo:latest image. You
post this to the API server, it’s persisted to the cluster store, the replicas are assigned to cluster nodes, and the
StatefulSet controller monitors the state of the cluster making sure observed state matches desired state.

That’s the big picture. Let’s take a closer look at some of the major characteristics of StatefulSets before walking
through an example.

StatefulSet Pod naming

All Pods managed by a StatefulSet get predictable and persistent names. These names are vital, and are at the
core of how Pods are started, self-healed, scaled, deleted, attached to volumes, and more.

The format of StatefulSet Pod names is <StatefulSetName>-<Integer>. The integer is a zero-based index ordinal,
which is just a fancy way of saying “number starting from 0”. The first Pod created by a StatefulSet always gets
index ordinal “0”, and each subsequent Pod gets the next highest. Assuming the previous YAML snippet, the first
Pod created will be called tkb-sts-0, the second will be called tkb-sts-1, and the third will be called tkb-sts-2.

Be aware that StatefulSet names need to be a valid DNS names, so no exotic characters.

Ordered creation and deletion

Another fundamental characteristic of StatefulSets is the controlled and ordered way they start and stop Pods.

StatefulSets create one Pod at a time, and always wait for previous Pods to be running and ready before creating
the next. This is different from Deployments that use a ReplicaSet controller to start all Pods at the same time,
causing potential race conditions.

As per the previous YAML snippet, tkb-sts-0 will be started first and must be running and ready before the
StatefulSet controller starts tkb-sts-1. The same applies to subsequent Pods — tkb-sts-1 needs to be running and
ready before tkb-sts-2 starts etc. See Figure 12.1
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Figure 12.1

Note: Running and ready are terms used to indicate all containers in a Pod are running and the
Pod is ready to service requests.

Scaling operations are also governed by the same ordered startup rules. For example, scaling from 3 to 5 replicas
will start a new Pod called tkb-sts-3 and wait for it the be running and ready before creating tkb-sts-4. Scaling
down follows the same rules in reverse — the controller terminates the Pod with the highest index ordinal (number)
first, waits for it to fully terminate before terminating the Pod with the next highest ordinal.

Knowing the order in which Pods will be scaled down, as well as knowing that Pods will not be terminated in
parallel, is a game-changer for many stateful apps. For example, clustered apps that store data can potentially
lose data if multiple replicas go down at the same time. StatefulSets guarantee this will never happen. You can
also inject other delays via things like terminationGracePeriodSeconds to further control the scaling down process.
All in all, StatefulSets bring a lot to the table for clustered apps that create and store data.

Finally, it’s worth noting that StatefulSet controllers do their own self-healing and scaling. This is architecturally
different to Deployments which use a separate ReplicaSet controller for these operations.

Deleting StatefulSets

There are two major things to consider when deleting StatefulSets.

Firstly, deleting a StatefulSet does not terminate Pods in order. With this in mind, you may want to scale a
StatefulSet to 0 replicas before deleting it.

You can also use terminationGracePeriodSeconds to further control the way Pods are terminated. It’s common
to set this to at least 10 seconds to give applications running in Pods a chance to flush local buffers and safely
commit any writes that are still “in-flight”.

StatefulSets and Volumes

Volumes are an important part of a StatefulSet Pod’s sticky ID (state).

When a StatefulSet Pod is created, any volumes it needs are created at the same time and named in a special way
that connects them to the right Pod . Figure 12.2 shows a StatefulSet called “ss” requesting 3 replicas. You can see
how each Pod and volume (PVC) is created and how the names connect volumes to Pods.
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Volumes are appropriately decoupled from Pods via the normal Persistent Volume Claim system. This means
volumes have separate lifecycles to Pods, allowing them to survive Pod failures and termination operations.
For example, any time a StatefulSet Pod fails or is terminated, associated volumes are unaffected. This allows
replacement Pods to attach to the same storage as the Pods they’re replacing. This is true, even if replacement
Pods are scheduled to different cluster nodes.

The same is true for scaling operations. If a StatefulSet Pod is deleted as part of a scale-down operation, subsequent
scale-up operations will attach new Pods to the surviving volumes that match their names.

This behavior can be a life-saver if you accidentally delete a StatefulSet Pod, especially if it’s the last replica!

Handling failures

The StatefulSet controller observes the state of the cluster and attempts to keep observed state in sync with desired
state. The simplest example is a Pod failure. If you have a StatefulSet called tkb-sts with 5 replicas, and tkb-sts-3
fails, the controller will start a replacement Pod with the same name and attach it to the same volumes.

However, if a failed Pod recovers after Kubernetes has replaced it, you’ll have two identical Pods trying to write
to the same volume. This can result in data corruption. As a result, the StatefulSet controller is extremely careful
how it handles failures.

Possible node failures are very difficult to deal with. For example, if Kubernetes loses contact with a node, how
does it know if the node is down and will never recover, or if it’s a temporary glitch such as a network partition,
a crashed kubelet, or the node is simply rebooting? To complicate matters further, the controller can’t even force
the Pod to terminate, as the local kubelet may never receive the instruction. With all of this in mind, manual
intervention is needed before Kubernetes will replace Pods on failed nodes.

Network ID and headless Services

We’ve already said that StatefulSets are for applications that need Pods to be predictable and long-lived. As a
result, other parts of the application as well as other applications may need to connect directly to individual Pods.
To make this possible, StatefulSets use a headless Service to create predictable DNS hostnames for every Pod
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replica. Other apps can then query DNS for the full list of Pod replicas and use these details to connect directly
to Pods.

The following YAML snippet shows a headless Service called “mongo-prod” that is listed in the StatefulSet YAML
as the governing Service.

apiVersion: v1
kind: Service
metadata:
name: mongo- prod
spec:
clusterIP: None
selector:
app: mongo
env: prod

apiVersion: apps/v1
kind: StatefulSet
metadata:
name: sts-mongo
spec:
serviceName: mongo-prod <<==== Governing Service

Let’s explain the terms headless Service and governing Service.

A headless Service is just a regular Kubernetes Service object without an IP address (spec.clusterIP set to None).
It becomes a StatefulSet’s governing Service when you list it in the StatefulSet manifest under spec.serviceName.

When the two objects are combined like this, the Service will create DNS SRV records for each Pod replica that
matches the label selector of the headless Service. Other Pods and apps can then find members of the StatefulSet
by performing DNS lookups against the name of the headless Service. You’ll see this in action later, and obviously
applications need coding with this intelligence.

That covers most of the theory, let’s walk through an example and see how it all comes together.

Hands-on with StatefulSets

In this section, you'll deploy a working StatefulSet. The example is intended to demonstrate the way StatefulSets
work and reinforce what you’ve already learned. It’s not intended as a production-grade application configura-
tion.

The examples we’ll show are on Google Kubernetes Engine (GKE). StatefulSets and what you’re about to see
work just fine on other Kubernetes clusters, but the StorageClass YAML file used in the examples is designed for
GKE.

All of the YAML files we’ll refer to are in the statefulsets folder of the book’s GitHub repo. You can clone the
repo with the following command.

$ git clone https://github.com/nigelpoulton/Thek8sBook.git

If you’re following along, you’ll deploy the following three objects:
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1. A StorageClass
2. A headless Service
3. A StatefulSet

To make things easier to follow, you’ll inspect and deploy each object individually. However, all three can be
grouped in a single YAML file separated by three dashes (see app.ym1 in the statefulsets folder of the repo).

Deploying the StorageClass
StatefulSets that use volumes need to be able to create them dynamically. You need two objects to do this:

« StorageClass (SC)
« PersistentVolumeClaim (PVC)

The following YAML is from the gecp-sc.yml file and defines a StorageClass object called flash that will
dynamically provision SSD volumes (type=pd-ssd) from the Google Cloud using the GKE persistent disk CSI
driver (pd.csi.storage.gke.io). It will only work on Kubernetes clusters running on GCP or GKE with the CSI
driver enabled.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: flash
provisioner: pd.csi.storage.gke.io
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
parameters:
type: pd-ssd

Deploy the Storage class.

$ kubectl apply -f gcp-sc.yml
storageclass.storage.k8s.io/flash created

List your cluster’s StorageClasses to make sure it was created correctly.

$ kubectl get sc
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWEXPANSION  AGE
flash pd.csi.storage.gke.io Delete WaitForFirstConsumer true 5s

With the StorageClass in place, Persistent Volume Claims (PVC) can use it to dynamically create new volumes.
We'll circle back to this in a later step.
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Creating a governing headless Service

When learning about headless Services, it can be useful to visualize a Service object with a head and a tail. The
head is the stable IP address, and the tail is the list of Pods it sends traffic to. Therefore, a headless Service is a
Service object without an IP address.

The sole purpose of a headless Service is to create DNS SRV records for Pods that match its label selector. Clients
then need to know to use DNS to reach Pods instead of using the Service’s ClusterIP. This is why a headless
Service doesn’t need a ClusterIP.

The following YAML is from the statefulsets/headless-svc.yml file and describes a headless Service called
dullahan with no IP address (spec.clusterIP: None).

apiVersion: vi1
kind: Service
metadata:
name: dullahan
labels:
app: web
spec:
ports:
- port: 80
name: web
clusterIP: None
selector:
app: web

The only difference to a regular Service is that a headless Service must have its clusterIP set to None.

When combined with a StatefulSet, headless Services create predictable stable DNS entries for every Pod
matching the StatefulSet’s label selector. You’ll see this in a later step.

Deploy the headless Service to your cluster.

$ kubectl apply -f headless-svc.yml
service/tkb-sts created

Verify the operation.

$ kubectl get svc

NAME TYPE CLUSTER-IP  EXTERNAL-IP  PORT(S) AGE
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 145m
dullahan ClusterIP None <none> 80/TCP 10s

Deploy the StatefulSet

With the StorageClass and headless Service in place, it’s time to deploy the StatefulSet.

The following YAML is from the sts.ym1 file and defines the StatefulSet. Remember this is for learning purposes
only, it’s not intended as a production-grade deployment of an application.
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apiVersion: apps/vi
kind: StatefulSet
metadata:
name: tkb-sts
spec:
replicas: 3
selector:
matchLabels:
app: web
serviceName: "dullahan"
template:
metadata:
labels:
app: web
spec:

terminationGracePeriodSeconds:

containers:

- name: ctr-web
image: nginx:latest
ports:

- containerPort: 80
name: web

volumeMounts:

- name: webroot

mountPath: /usr/share/nginx/html

volumeClaimTemplates:
- metadata:
name: webroot

spec:

accessModes: [ "ReadWriteOnce"

storageClassName: "flash"
resources:
requests:
storage: 1Gi

There’s a lot to take in, so let’s step through the important parts.

10

]

160

The name of the StatefulSet is tkb-sts. This is important as it forms part of the name of every Pod the StatefulSet

will create.

The spec.replicas field defines 3 replicas. These will be named tkb-sts-0, tkb-sts-1, and tkb-sts-2. They’ll be
created in numerical order, and the StatefulSet controller will wait for each replica to be running and ready before

starting the next.

The spec.serviceName field designates the governing Service. This is the name of the headless Service created
in the previous step and will create the DNS SRV records for each StatefulSet replica. It’s called the governing

Service because it’s in charge of the DNS subdomain used by the StatefulSet.

The remainder of the spec.template section defines the Pod template that will be used to stamp out Pod replicas

— things such as which container image to use and which ports to expose.

Last, but most certainly not least, is the spec.volumeClaimTemplates section.
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Earlier in the chapter we said every StatefulSet that uses volumes needs to be able to create them dynamically.
To do this you need a StorageClass and a PersistentVolumeClaim (PVC).

You've already created the StorageClass, so you're ready to go with that aspect. However, PVCs present an
interesting challenge...

Each StatefulSet Pod needs its own unique storage. This means each one needs its own PVC. However, this isn’t
possible, as each Pod is created from the same template. Also, you’d have to pre-create a unique PVC for every
potential StatefulSet Pod, which also isn’t possible when you consider StatefulSets can be scaled up and down.

Clearly, a more intelligent StatefulSet-aware approach is needed. This is where volume claim templates come
into play.

At a high-level, a volumeClaimTemplate dynamically creates a PVC each time the StatefulSet controller spawns
anew Pod replica. It also contains the intelligence to name the PVC so it connects to the right Pod. This way, the
StatefulSet manifest contains a Pod template section for stamping out Pod replicas, and a volume claim template
section for stamping out PVCs.

The following YAML snippet shows the volumeClaimTemplate from the example. It defines a claim template
called webroot requesting a 10GB volume from the f1ash StorageClass created earlier.

volumeClaimTemplates:
- metadata:
name: webroot
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: "flash"
resources:
requests:
storage: 10Ci

When the StatefulSet object is deployed, it will create three Pod replicas and three PVCs.
Deploy the StatefulSet and watch the Pods and PVCs get created.

$ kubectl apply -f sts.yml
statefulset.apps/tkb-sts created

Watch the StatefulSet ramp up to 3 running replicas. It’ll take a minute or so for the 3 Pods and associated PVCs
to be created — each Pod needs to be running and ready before the next one is started.

$ kubectl get sts --watch

NAME READY  AGE
tkb-sts  @/3 10s
tkb-sts  1/8 23s
tkb-sts  2/3 46s
tkb-sts  3/83 69s

Notice how it took ~23 seconds to start the first replica. Once that was running and ready, it took another 23
seconds to start the second, and then another 23 for the third.

Now check the PVCs.
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$ kubectl get pvc

NAME STATUS  VOLUME CAPACITY  MODES  STORAGECLASS  AGE
webroot-tkb-sts-0 Bound pvc-1146...f274 10G1i RWO flash 86s
webroot-tkb-sts-1 Bound pvc-3026. . .6bcb 10Gi RWO flash 63s
webroot-tkb-sts-2 Bound pvc-2ceT. . .eb6d 10Gi RWO flash 40s

There are 3 new PVCs, each created at the same time as one of the StatefulSet Pod replicas. See how the name of
each PVC is based on the name of the StatefulSet and the Pod it’s associated with. The format of the PVC name
is the volumeClaimTemplate name, followed by a dash, followed by the name of the Pod replica it’s associated
with.

Pod Name | PVC Name

tkb-sts-0 <-> webroot-tkb-sts-0
tkb-sts-0 <-> webroot-tkb-sts-1
tkb-sts-0 <-> webroot-tkb-sts-2

At this point, the StatefulSet is up and the app is running.

Testing peer discovery

You know that pairing a headless Service with a StatefulSet creates DNS SRV records for each Pod matching the
Service’s label selector. You already have a headless Service and 3 StatefulSet Pods running, so you should have
three DNS SRV records - one for each Pod.

However, before testing this, it’s worth taking a moment to understand how DNS hostnames and DNS
subdomains work with StatefulSets.

By default, Kubernetes places all objects within the cluster.local DNS subdomain. You can choose something
different, but most lab environments use this domain, so we’ll assume it in this example. Within that domain,
Kubernetes constructs DNS subdomains as follows:

<object-name>.<service-name>.<namespace>.svc.cluster.local
So far, you’ve got three Pods called tkb-sts-0, tkb-sts-1, and tkb-sts-2 governed by the dullahan headless Service.
This means the 3 Pods will have the following fully qualified DNS names:

e tkb-sts-0.dullahan.default.svc.cluster.local

e tkb-sts-1.dullahan.default.svc.cluster.local

e tkb-sts-2.dullahan.default.svc.cluster.local
To test this, you’ll deploy a jump-pod that has the DNS dig utility pre-installed. You’ll exec onto that Pod and
use dig to query DNS for SRV records in the dullahan.default.svc.cluster.local subdomain.

Deploy the jump-pod from the /statefulSets/ jump-pod.yml file in the book’s GitHub repo.

$ kubectl apply -f jump-pod.yml
pod/jump-pod created

Exec onto the Pod.
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$ kubectl exec -it jump-pod -- bash
root@jump-pod: /#

Your terminal is now connected to the jump-pod. Run the following dig command from within the jump-pod.

$ dig SRV dullahan.default.svc.cluster.local

<Snip>

;; ADDITIONAL SECTION:
tkb-sts-0.dullahan.default.svc.cluster.local. 30 IN A 10.24.1.25
tkb-sts-2.dullahan.default.svc.cluster.local. 30 IN A 10.24.1.26
tkb-sts-1.dullahan.default.svc.cluster.local. 30 IN A 10.24.0.17
<Snip>

The query returns the fully qualified DNS names of each Pod, as well as each Pod’s IP. Other applications,
including the app itself, can use this method to discover an up-to-date list of Pods in the StatefulSet.

For this method of discovery to be useful, applications obviously need to know how to use it. For example, they
need to know the name of the headless Service governing the StatefulSet and they need to know to query DNS.

Scaling StatefulSets

Each time a StatefulSet is scaled up, a Pod and a PVC is created. However, when scaling a StatefulSet down,
the Pod is terminated but the PVC is not. This means future scale-up operations only need to create a new Pod,
which is then connected to the surviving PVC. The StatefulSet controller includes all of the intelligence to track
and manage all of this.

You currently have 3 StatefulSet Pod replicas and 3 PVCs. Edit the sts.ym1 file and change the replica count from
3 down to 2 and save your change. When you’ve done that, run the following command to re-post the YAML file
to the cluster.

$ kubectl apply -f sts.yml
statefulset.apps/tkb-sts configured

Check the state of the StatefulSet and verify the Pod count has reduced to 2.

$ kubectl get sts tkb-sts
NAME READY AGE
tkb-sts 2/2 14m

$ kubectl get pods

NAME READY  STATUS RESTARTS  AGE
tkb-sts-0 1/1 Running Q 15m
tkb-sts-1 1/1 Running Q 15m

The number of Pod replicas has been successfully scaled down to 2, and the Pod with the highest index ordinal
was deleted. However, you’ll still have 3 PVCs - remember, scaling down and deleting Pod replicas does not
delete associated PVCs.

Verify this.
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$ kubectl get pvc

NAME STATUS  VOLUME CAPACITY  MODES  STORAGECLASS  AGE
webroot-tkb-sts-0 Bound pvc-1146...f274 10G1i RWO flash 15m
webroot-tkb-sts-1 Bound pvc-3026. . .6bcb 10Gi RWO flash 15m
webroot-tkb-sts-2 Bound pvc-2ceT. . .eb6d 10Gi RWO flash 15m

The fact that all three PVCs still exist means that scaling back up to three replicas only requires a new Pod to be
created. As the name of the surviving PVC is webroot - tkb-sts-2, the StatefulSet controller knows to automatically
connect it to the new Pod.

Edit the sts.ym1 file and increment the number of replicas back to 3 and save your change. When you’ve done
that, re-post the YAML file to the API server with the following command.

$ kubectl apply -f sts.yml
statefulset.apps/tkb-sts configured

Give it a few seconds to deploy the new Pod and then verify with the following command.

$ kubectl get sts tkb-sts
NAME READY  AGE
tkb-sts 3/3 20m

You have 3 Pods again. Describe the new webroot-tkb-sts-2 PVC to verify it’s mounted by the correct Pod.

$ kubectl describe pvc webroot-tkb-sts-2 | grep Mounted
Mounted By: tkb-sts-2

It’s worth noting that scale down operations will be put on hold if any of the Pods are in a failed state. This is to
protect the resiliency of the app and integrity of any data.

Finally, it’s possible to tweak the controlled and ordered starting and stopping of Pods via the StatefulSet’s
spec.podManagementPolicy property.

The default setting is OrderedReady and implements the strict methodical ordering previously explained. Setting
the value to Parallel will cause the StatefulSet to act more like a Deployment where Pods are created and deleted
in parallel. For example, scaling from 2 > 5 Pods will create all three new Pods instantaneously, and scaling down
from 5 > 2 will delete three Pods in parallel. StatefulSet naming rules are still implemented, and the setting only
applies to scaling operations and does not impact rolling updates.

Performing rolling updates

StatefulSets support rolling updates. You update the image version in the YAML and re-post it to the API server.
Once authenticated and authorized, the controller replaces old Pods with new ones. However, the process always
starts with the highest numbered Pod and works down through the set, one-at-a-time, until all Pods are on the
new version. The controller also waits for each new Pod to be running and ready before replacing the one with
the next lowest index ordinal.

For more information, run $ kubectl explain sts.spec.updateStrategy.
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Test a Pod failure

A simple way to test a failure is to manually delete a Pod. This will delete the Pod but not the associated PVC.
The StatefulSet controller will notice observed state vary from desired state, realise a Pod is missing, and start
a new identical one in its place. This new Pod will have the same name and will be connected to the same PVC
volume.

Let’s test it.

Confirm you have three healthy Pods in your StatefulSet.

$ kubectl get pods

NAME READY  STATUS  AGE
tkb-sts-0 1/1 Running 37m
tkb-sts-1 1/1 Running 37m
tkb-sts-2 1/1 Running 18m

You’re about to delete the tkb-sts-0 Pod. But before you do that, run a quick $ kubectl describe to confirm the
PVC it’s currently using. You don’t need to do this, as you can deduce the name of the PVC from the name of
the volumeClaimTemplate and the StatefulSet. However, it’s good to confirm.

$ kubectl describe pod tkb-sts-0

Name: tkb-sts-0

Namespace: default

<Snip>

Status: Running

IP: 10.24.1.13

<Snip>

Volumes:

webroot:

Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim...)
ClaimName: webroot-tkb-sts-0@

<Snip>

Based on the output (your lab will be different) the values are as follows:

« Name: tkb-sts-0

« PVC: webroot-tkb-sts-0

Let’s delete the tkb-sts-0 Pod and see if the StatefulSet controller recreates it.
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$ kubectl delete pod tkb-sts-0
pod "tkb-sts-0" deleted

$ kubectl get pods --watch

NAME READY  STATUS RESTARTS  AGE
tkb-sts-1 1/1 Running 4] 43m
tkb-sts-2  1/1 Running (4] 24m
tkb-sts-0  9/1 Terminating Q 43m
tkb-sts-0  0/1 Pending (4] Os

tkb-sts-0  0/1 ContainerCreating © Os

tkb-sts-0 1/1 Running 4] 34s

Placing a --watch on the kubect1 get command shows the StatefulSet controller noticing the terminated Pod and
creating a replacement — desired state is 3 replicas but observed state dropped to 2. As the failure is clean and
easy to verify, the controller immediately kicked off the process to create a new Pod.

You can see the new Pod has the same name as the failed one, but does it have the same PVC?

The following command confirms it does.

$ kubectl describe pod tkb-sts-@ | grep ClaimName
ClaimName: webroot-tkb-sts-0@

Recovering from potential node failures is a lot more complex and requires manual intervention. This is because
failed nodes are notoriously hard to diagnose and confirm, and there’s always a risk the failure could be transient.
If the StatefulSet controller assumes a node has failed and replaces any StatefulSet Pods, but the node subsequently
recovers, there’s a chance of duplicate Pods on the network contending for the same storage. This can cause all
kinds of bad things to happen, including data corruption.

Deleting StatefulSets

Earlier in the chapter, you learned that deleting a StatefulSet does not terminate managed Pods in order. Therefore,
if your application is sensitive to ordered shutdown, you should scale the StatefulSet to 0 replicas before initiating
the delete operation.

Scale your StatefulSet to 0 replicas and confirm the operation. It may take a few seconds for the set to scale all
the way down to 0.

$ kubectl scale sts tkb-sts --replicas=0
statefulset.apps/tkb-sts scaled

$ kubectl get sts tkb-sts

NAME READY  AGE
tkb-sts 0/0 86m

Once the StatefulSet has no replicas you can delete it.
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$ kubectl delete sts tkb-sts
statefulset.apps "tkb-sts" deleted

You can also delete the StatefulSet by referencing its YAML file with $ kubectl delete -f sts.yml.
Feel free to exec onto the jump-pod and run another dig to prove the SRV records have been removed from DNS.

At this point, the StatefulSet object is deleted, but the headless Service, StorageClass, and jump-pod still exist.
You may want to delete them as well.

Chapter Summary

In this chapter, you learned how StatefulSets create and manage applications that need to persist state.
They can self-heal, scale up and down, and perform updates. Rollbacks require manual attention.

Each Pod replica spawned by a StatefulSet gets a predictable and persistent name, DNS hostname, and unique
set of volumes. These stay with the Pod for its entire lifecycle, including failures, restarts, scaling, and other
scheduling operations. In fact, StatefulSet Pod names are integral to scaling operations and connecting to storage
volumes.

However, StatefulSets are only a framework. Applications need to be written in ways to take advantage of the
way StatefulSets behave.
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Kubernetes is API-centric, and the API is served through the API server. In this chapter, you’ll follow a typical
API request as it passes through various security-related checks.

The chapter is divided as follows.

+ API security big picture
« Authentication
« Authorization (RBAC)

« Admission control

See chapter 14 for a detailed look at the APL.

API security big picture

All of the following make CRUD-style requests to the API server (create, read, update, delete).

« Operators and developers using kubectl
« Pods

« Kubelets

« Control plane services

« More...

Figure 13.1 shows the flow of a typical API request passing through all the standard checks. The flow is the same
no matter where the request originates.

gﬂ»@—%@—» 0,—>°

Subject API authN authz Admission
(user, group, server control
service acct)

Figure 13.1

Consider a quick example where a user called “grant-ward” is trying to create a Deployment called “hive” in the
“terran” Namespace.

User grant-ward issues a kubectl command to create the Deployment. This generates a request to the API server
with the user’s credentials embedded. Thanks to the magic of TLS, the connection between the client and the API
server is secure. The authentication module determines whether it’s grant-ward or an imposter. After that, the
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authorization module (RBAC) determines whether grant-ward is allowed to create Deployments in the terran
Namespace. If the request passes authentication and authorization, admission control checks and applies policies,
and the request is finally accepted and executed.

It’s a lot like flying on a plane. You travel to the airport and authenticate yourself with a photo ID, usually your
passport. You then present a ticket authorizing you to board the plane and occupy a particular seat. If you pass
authentication and are authorized to board, admission controls may then check and apply airline policies such
as not taking hot food onboard, restricting your hand luggage, and prohibiting alcohol in the cabin. After all of
that, you’re finally allowed to board the plane and take your seat.

You’re about to see things in more detail, but everything you’ll learn assumes you’re hitting the API on its
secured port. Some Kubernetes clusters also expose the API on a local unsecured port on every control plane node.
This bypasses TLS, authentication, and authorization, but it doesn’t bypass admission control. Even though the
unsecured port is only accessible if you can log on to a control plane node, you should probably disable it on
most clusters.

Let’s take a closer look at authentication.

Authentication

Authentication is about proving your identity. You might see or hear it shortened to authN, pronounced “auth

»

en .

At the heart of authentication are credentials. All requests to the API server have to include credentials, and
the authentication layer is responsible for verifying them. If verification fails, the API server returns an HTTP
401 and the request is denied. If it passes, it moves on to authorization.

The authentication layer in Kubernetes is pluggable, and popular modules include client certs, webhooks, and
integration with external identity management systems such as Active Directory (AD) and cloud-based Identity
Access Management (IAM). In fact, it’s impossible to create user accounts in Kubernetes as it does not have
its own built-in identity database. Instead, Kubernetes forces you to use an external system. This is great, as
Kubernetes doesn’t install yet another identity management silo.

Out-of-the-box, most Kubernetes clusters support client certificates, but in the real-world you’ll want to integrate
with your chosen cloud or corporate identity management system. Many of the hosted Kubernetes services make
it easy to integrate with their native identity management systems.

Checking your current authentication setup

Cluster details and credentials are stored in a kubeconfig file. Tools like kubectl read this file to know which
cluster to send commands to, as well as which credentials to use. It’s usually stored in the following location.

« Windows: C:\Users<user>.kube\config
« Linux/Mac: /home/<user>/ kube/config
Many Kubernetes installations can automatically merge cluster endpoint details and credentials into your existing

kubeconfig. For example, every GKE cluster provides a gcloud command that will merge the necessary cluster
details and credentials to your local kubeconfig config file. The following is an example, don’t try and run it.
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$ gcloud container clusters get-credentials tkb --zone europe-westl-c --project thek8sbook

Here’s what a kubeconfig file looks like. As you can see, it defines a cluster and a user, combines them into a
context, and sets the default context for all kubectl commands. It’s been snipped to fit the page.

apiVersion: vi1
kind: Config
clusters:
- cluster:
name: prod-shield
server: https://<url-or-ip-address-of-api-server>:443
certificate-authority-data: LSOtLS1CRUdAJTiBDRVJUSUZJQOFURSOtLS®..LSOtCg==
users:
- name: njfury
user:
as-user-extra: {}
token: eyJhbGciOiJSUzIINiIsImtpZCI6I1ZwMz1..SZY3uUQ
contexts:
- context:
name: shield-admin
cluster: prod-shield
namespace: default
user: njfury
current-context: shield-admin

You can see it’s divided into 4 top-level sections.

The clusters section defines one or more Kubernetes clusters. Each one has a friendly name, an API server
endpoint, and the public key of its certificate authority (CA). The cluster in the example is exposing the secure
API endpoint on port 443 (HTTPS), but it’s also common to see it exposed on 6443.

The users section defines one or more users. Each user requires a name and token. The token is often an X.509
certificate that is the user’s ID. If it is, it has to be signed by the cluster’s CA or a CA trusted by the cluster.

The contexts section combines users and clusters, and the current-context is the cluster and user kubectl will
use for all commands.

Assuming the previous kubeconfig, all kubectl commands will go to the “prod-shield” cluster and authenticate
as the “njfury” user. The authentication module is responsible for determining if the user really is njfury, and if
using client certificates, it’ll determine if the certificate is signed by a trusted CA.

If your cluster integrates with an external IAM system, it’ll hand-off authentication to that system.

Assuming authentication is successful, the request progresses to the authorization phase.
Authorization (RBAC)

Authorization happens immediately after successful authentication, and you’ll sometimes see it shortened to
authZ (pronounced “auth zee”).

Kubernetes authorization is pluggable and you can run multiple authZ modules on a single cluster. As soon as
any of the modules authorizes a request, it moves on to admissions control.

This section will cover the following.
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» RBAC big picture
« Users and permissions
« Cluster-level users and permissions

« Pre-configured users and permissions

RBAC big picture

The most common authorization module is RBAC (Role-Based Access Control). At the highest level, it’s about
three things.

1. Users

2. Actions

3. Resources

Which users can perform which actions against which resources.

The following table shows a few examples.

User (subject) Action Resource

Bao create Pods

Kalila list Deployments
Josh delete ServiceAccounts

RBAC is enabled on most Kubernetes clusters and has been stable/GA since Kubernetes 1.8. It’s a least-privilege
deny-by-default system. This means all actions are denied by default, and you enable specific actions by creating
allow rules. In fact, Kubernetes doesn’t support deny rules, it only supports allow rules. This might seem like a
small thing, but makes Kubernetes RBAC much simpler to implement and troubleshoot.

Users and Permissions
Two concepts are vital to understanding Kubernetes RBAC.

« Roles

+ RoleBindings

Roles define a set of permissions, and RoleBindings grant those permissions to users.

The following resource manifest defines a Role object. It’s called “read-deployments”, and grants permission to
get, watch, and 1ist Deployment objects in the “shield” Namespace.
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apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: shield
name: read-deployments
rules:
- apiGroups: ["apps"]
resources: ["deployments"]
verbs: ["get", "watch", "list"]

On their own, Roles don’t do anything. They need binding to a user.

The following RoleBinding grants the previous “read-deployments” Role to a user called “sky”.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: read-deployments
namespace: shield
subjects:
- kind: User
name: sky <<==== This is the authenticated user
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: Role
name: read-deployments <«==== This is the Role to bind to the user
apiGroup: rbac.authorization.k8s.io

If both of these are deployed to a cluster, an authenticated user called “sky” will be able to run commands such
as kubectl get deployments -n shield.

It’s important to understand that the username listed in the RoleBinding has to be a string, and has to match the
username that was successfully authenticated.

Looking closer at rules
The previous Role object has three properties.

« apiGroups
« resources

« verbs

Together, they define which actions are allowed against which objects. apiGroups and resources define the object,
and verbs define the actions. The example allows read access (get, watch and 1ist) against Deployment objects.

The following table shows some apiGroup and resources combinations.
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apiGroup resource Kubernetes API path

pods /api/v1/namespaces/{namespace}/pods

> secrets /api/v1/namespaces/{namespace}/secrets
“storage.k8s.io” storageclass /apis/storage.k8s.io/v1/storageclasses

“apps” deployments  /apis/apps/v1/namespaces/{namespace}/deployments

An empty set of double quotes (“”) in the apiGroups field indicates the core API group. All other API sub-groups
need specifying as a string enclosed in double quotes.

Kubernetes uses a standard set of verbs to describe the actions a subject can perform on a resource. Verb names
are self-explanatory and case-sensitive. The following table lists them and demonstrates the REST-based nature
of the API by showing how they map to HTTP methods. It also lists some common HTTP response codes.

HTTP method Kubernetes verbs Common responses

POST create 201 created, 403 Access Denied
GET get, list and watch 200 OK, 403 Access Denied
PUT update 200 OK, 403 Access Denied
PATCH patch 200 OK, 403 Access Denied
DELETE delete 200 OK, 403 Access Denied

The Kubernetes verbs column lists the verbs you use in the rules section of a Role object.

Running the following command shows all API resources supported on your cluster. It also shows API group and
supported verbs, and is a great resource for helping build rule definitions. The example has been trimmed to fit
the page

$ kubectl api-resources --sort-by name -o wide

NAME APIGROUP KIND VERBS

deployments apps Deployment [create delete ... get list patch update watch]
ingresses networking.k8s.io Ingress [create delete ... get list patch update watch]
pods Pod [create delete ... get list patch update watch]
secrets Secret [create delete ... get list patch update watch]
services Service [create delete get list patch update watch]

If you compare the output columns with the rules block of the previous Role object, you see how things map.

rules:

- apiGroups: ["apps"]
resources: ["deployments"]
verbs: ["get", "watch", "list"]

You can use the asterisk (*) to refer to all API groups, all resources, and all verbs. For example, the following rule
block grants all actions on all resources in every API group (basically cluster admin). It’s just for demonstration
purposes and you probably shouldn’t create a rule like this.
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rules:
- apiGroups: ["*"]
]

resources: ["
verbs: ["*"]

Cluster-level users and permissions
So far, you’ve seen Roles and RoleBindings. However, Kubernetes actually has 4 RBAC objects.

+ Roles

« ClusterRoles

+ RoleBindings

« ClusterRoleBindings

Roles and RoleBindings are namespaced objects. This means they can only be applied to a single Namespace.
ClusterRoles and ClusterRoleBindings are cluster-wide objects and apply to all Namespaces. All 4 are defined in
the same API sub-group and their YAML structures are almost identical.

A powerful pattern is to define Roles at the cluster level (ClusterRoles) and bind them to specific Namespaces
via RoleBindings. This lets you define common roles once, and re-use them across multiple Namespaces. For
example, the following YAML defines the same “read-deployments” role, but this time at the cluster level. This
can be re-used in selected Namespaces via RoleBindings.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: read-deployments
rules:
- apiGroups: ["apps"]
resources: ["deployments"]
verbs: ["get", "watch", "list"]

Look closely at the previous YAML. The only differences with the earlier one are that this one has its kind set to
ClusterRole instead of Role, and it doesn’t have a metadata.namespace property.

Figure 13.2 shows a role defined at the cluster level being applied to two Namespaces via two RoleBindings. It
can easily be applied to the other Namespaces via two more RoleBindings. The role was defined once and re-used
across multiple Namespaces.
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Figure 13.2

Pre-created users and permissions

To help with initial configuration and getting started, most clusters have a set of pre-created roles and bindings
granting permissions to an all-powerful user. Many will also configure kubect1 to operate under the context of
that user.

The following example walks you through the pre-created user, roles and bindings on a Docker Desktop cluster.
The names of Pods and RBAC objects will be different on other clusters, but the principles will be the same and
it gives you an idea of how things are made to work.

Docker Desktop runs the API server in Pod in the kube-system Namespace. It has an - -authorization flag that tells
Kubernetes which authorization modules to use. The following command shows the node and RBAC modules
are both enabled.

$ kubectl describe pod/kube-apiserver-docker-desktop \
--namespace kube-system | grep authorization

--authorization-mode=Node, RBAC

You won’t be able to interrogate the API server like this on a hosted Kubernetes cluster. This is because critical
control plane features like this are hidden from you.

Docker Desktop also updates your kubecontig file with a user called docker -desktop and any necessary credentials.
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$ kubectl config view

<Snip>

users:

- name: docker-desktop

user:

client-certificate-data: REDACTED
client-key-data: REDACTED

<Snip>

RBAC is enabled, and a user and kubeconfig is created. Now let’s look at the ClusterRole and ClusterRoleBinding
objects preconfigured to grant permissions to the docker-desktop user.

The following command shows a ClusterRoleBinding called “docker-for-desktop-binding” that’s bound to the
“cluster-admin” ClusterRole.

$ kubectl get clusterrolebindings | grep docker
NAME ROLE

docker - for -desktop-binding ClusterRole/cluster-admin

The following command describes the ClusterRoleBinding. As you can see, it’s granting all members of the
system-serviceaccounts group access to the pre-created cluster-admin role. As a result, the docker-desktop user
configured in your kubeconfig file gets access to the all-powerful c1luster-admin Role.

$ kubectl describe clusterrolebindings docker -for-desktop-binding
Name: docker - for -desktop-binding

Labels: <none>

Annotations: <none>

Role:
Kind: ClusterRole
Name: cluster-admin <<==== This is the role it's bound to
Subjects:
Kind Name Namespace
Group system:serviceaccounts kube-system <<==== Members of this group get the binding

As a result of this binding, all commands in a default out-of-the-box Docker Desktop cluster are executed with
cluster-admin permissions. This might be OK for development environments (which is what Docker Desktop is
intended for) but it’s not appropriate for production.

The following command shows the powers the cluster-admin role has — all verbs on all resources in all
Namespaces.
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$ kubectl describe clusterrole cluster-admin
Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:

Resources Non-Resource URLs Resource Names Verbs

Summarising authorization

Authorization ensures authenticated users are allowed to carry out the actions they’re attempting. RBAC is a
popular Kubernetes authorization module and implements least privilege access based on a deny-by-default
model where all actions are assumed to be denied unless a rule exists that allows it. The model is similar to a
whitelist firewall where everything is blocked and you open up access by creating allow rules.

Kubernetes RBAC uses Roles and ClusterRoles to create permissions, and it uses RoleBindings and Cluster-
RoleBindings to grant those permissions to users.

Once a request passes authentication and authorization, it moves on to admission control.

Admission control

Admission control runs immediately after successful authentication and authorization, and it’s all about policies.

There are two types of admission controllers.

» Mutating
« Validating

The names are self-explanatory. Mutating controllers check for compliance and can modify requests, whereas
validating controllers check for policy compliance but cannot modify requests. Mutating controllers always run
first, and both types only apply to requests that will modify state. Requests to read state are not subjected to
admission control.

Assume a quick example where all new and updated objects to your cluster must have the env=prod label. A
mutating controller can check for the presence of the label and add it if it doesn’t exist. On the flip side, a
validating controller can only reject the request if it doesn’t exist.

The following command on a Docker Desktop cluster shows the API server is configured to use the NodeRestriction
admission controller.

$ kubectl describe pod/kube-apiserver-docker-desktop \
--namespace kube-system | grep admission

--enable-admission-plugins=NodeRestriction
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Most real-world clusters will have a lot more admission controllers enabled.

There are lots of admission controllers, but the AlwaysPullImages controller is a great example. It’s a mutating
controller that sets the spec.containers. imagePullPolicy of all new Pods to “Always”. This means the images for
all containers in all Pods will always be pulled from the registry. This accomplishes quite a few things, including
the following.

« Preventing the use of locally cached images that could be malicious
« Preventing other Pods and processes using locally cached images

« Forcing the container runtime to present valid credentials to the registry to get the image

If any admission controller rejects a request, the request is immediately rejected without checking other
admission controllers. However, if all admission controllers approve the request, it gets persisted to the cluster
store and instantiated on the cluster.

As previously mentioned, there are lots of admission controllers, and they’re becoming more and more important
in real-world production clusters.

Chapter summary

In this chapter, you learned that all requests to the API server include credentials and pass through authentication,
authorization, and admission control. The connection between the client and the API server is also secured with
TLS.

The authentication layer is responsible for validating the identity of requests. Client certificates are commonly
used, and integration with AD and other IAM services is recommended for production clusters. Kubernetes does
not have its own identity database, meaning it doesn’t store or manage user accounts.

The authorization layer checks whether the authenticated user is authorized to carry out the action in the request.
This layer is also pluggable and the most common module is RBAC. RBAC comprises 4 objects that define
permissions and assign them to users.

Admission control kicks in after authorization and is responsible for enforcing policies. Validating admission
controllers reject requests if they don’t conform to policy, whereas mutating admission controllers can modify
requests to enforce policies.
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Understanding the Kubernetes API, and how it works, is vital to mastery of Kubernetes. However, it can be
extremely confusing if you’re new to APIs and not comfortable with terms like RESTful. If that’s you, this chapter
will blow away the confusion and get you up-to-speed with the fundamentals of the Kubernetes API.

The chapter is divided as follows.

+ Kubernetes API big picture
+ The API server
+ The API

A couple of quick things before we get cracking with the chapter...

First up. I've made no attempt to make this chapter jargon-free. In fact, I've intentionally included a lot of jargon
so you get comfortable with it. I've also included an extended chapter summary full of jargon you should be able
to understand if you’ve read the whole chapter.

Last up. I've included and bunch of hands-on commands and exercises. I've made them as simple as possible to
follow along with, and I highly recommend you do. They’ll re-inforce the theory you’re about to learn.

OK, let’s do this.

Kubernetes API big picture

Let’s start out with the super high level...

Kubernetes is API centric. This means everything in Kubernetes is about the AP, and everything goes through
the API and API server. We'll get into detail in a second, but for now, let’s just look at the big picture.

Clients send requests to Kubernetes to create, read, update, and delete objects such as Pods and Services. For the
most part, you’ll use kubect1 to send these requests, however, you can craft them in code or use API testing and
development tools to generate them. The point is, no matter how you generate requests, they go to the API server
where they’re authenticated and authorized. Assuming they pass the auth tests, they’re executed on the cluster.
If it’s a create request, the object is deployed to the cluster and the serialized state of it is persisted to the cluster
store.

The overall process is depicted in Figure 14.1 and shows the central nature of the API and API server. However,
other components, such as the cluster store and scheduler, are also very important.
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API request flow
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Figure 14.1

JSON serialization

We've already introduced a fair bit of jargon, so let’s start busting some of it.
What is meant by “serialized state of an object”.

Serialization is the process of converting an object into a string, or stream of bytes, so it can be sent over a
network and persisted to a data store. The reverse process of converting a string or stream of bytes into and
object is deserialization.

Kubernetes serializes objects, such as Pods and Services, as JSON strings to be sent over HTTP. The process
happens in both directions, with clients like kubect1 serializing objects when posting to the API server, and the
API server serializing responses back to clients. In the case of Kubernetes, the serialised state of objects are also
persisted to the cluster store which is usually based on the etcd database.

So, in Kubernetes, serialization is the process of converting an object to into a JSON string to be sent over an
HTTP connection and persisted to the cluster store.

However, as well as JSON, Kubernetes also supports Protobuf as a serialization schema. This is faster, more
efficient, and scales better than JSON. But it’s not as user-friendly when it comes to introspection and
troubleshooting. At the time of writing, Protobuf is mainly used for internal cluster traffic, whereas JSON is
used when communicating with external clients.

One final thing on serialization. When clients send requests to the API server, they use the Content-Type
header to list the serialization schemas they support. For example, a client that only supports JSON will specify
Content-Type: application/json in the HTTP header of the request. Kubernetes will honour this with a serialized
response in JSON.

You’ll see this in some of the examples later.

APl analogy

While we’re being super high level, let’s consider a quick analogy that might help you conceptualise the
Kubernetes APL

Amazon sells lots of stuff. That stuff is stored in warehouses and listed online on the Amazon website. You use
a browser to search the website and buy stuff. 3rd-parties even sell their own stuff through Amazon and you use
the same browser and website. When you buy stuff through the website, it gets delivered to you and you can
start using it. The Amazon website even lets you track your stuff while it’s being prepared and delivered. Once
it’s delivered, it’s yours and Amazon is only involved if you want to do things like order more or send stuff back.

Well, it’s pretty much the same with the Kubernetes API.
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Kubernetes offers lots of objects such as Pods, Services, and Ingresses. They’re defined in the API and exposed
through the API server. You use tools like kubect1 to request them. 3rd-parties even define their own objects in
Kubernetes and you use the same kubectl and API server to request them. When you request an object through
the API server, it gets created on your cluster and you can start using it. The API server even lets you watch it
while it’s being created. Once it’s created, Kubernetes continues to observe it and you can query its state through

the API server. Actions like creating more and deleting objects are also done through the API server.

The comparison is shown in Figure 14.2, and a feature-for-feature comparison is shown in the following table.

Keep in mind, however, it’s just an analogy and not everything is a perfect match.

w 3rd 3rd x
Party K8s Party
Q stuff resources || resources Q
Warehouse/fulfilment K8s API
: Deploy
Deliver 1 2
track observe
> Web/catalog APl server >
Amazon Kubernetes
Stuff Objects
Warehouse API
Browser kubectl
Amazon website API server

To recap. All deployable objects, such as Pods, Services and Ingresses, are defined as resources in the APL If an
object isn’t defined in the API, you can’t deploy it. This is the same with Amazon - you can only buy stuff that’s

listed on the website.

API Resources have properties you can view and configure. For example, Pod objects are defined in the API with

all of the following properties (they have more properties than shown).

- metadata (name, labels, namespace, annotations...)

restart policy

« service account name

« runtime class

« volumes

This is the same as buying things on Amazon. For example, when buying a USB cable, you can configure choices
such as USB type, cable length, and even cable colour.
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To deploy a Pod, you send a Pod YAML file to the API server. Assuming it’s valid and you’re authorized to create
Pods, it gets deployed to the cluster. After that, you can query the API server to get its current status. When it’s
time to delete it, you send the delete request to the API server.

This is also the same as buying through Amazon. To buy the previously mentioned USB cable, you input all the
colour, length and type options, and submit them to the Amazon website. Assuming it’s in stock and you provide
the funds, it gets shipped to you. After that, you can use the website to track the shipment. If you have to return
the item or make a complaint, you do all of that through the Amazon website.

OK, that’s enough with analogies. Let’s take a closer look at the API server.

The API server

The API server exposes the API over a secure RESTful interface using HTTPS. It acts as the front-end to the API
and is a bit like Grand Central for Kubernetes — everything talks to everything else via REST API calls to the API
server. For example:

+ All kubectl commands go to the API server (creating, retrieving, updating, deleting objects)
« All node Kubelets watch the API server for new tasks and report status to the API server

« All control plane services communicate via the API server (components don’t talk directly each other)

Let’s demystify a bit more jargon.

The API server is a Kubernetes control plane service. This usually means it runs as a set of Pods in the kube-system
Namespace on the control plane nodes of your cluster. If you build and manage your own Kubernetes clusters,
you need to make sure the control plane is highly-available and has enough performance to keep the API server
up-and-running and responding quickly to requests. If you’re using a hosted Kubernetes cluster, the way the API
server is implemented, including performance and availability, will be hidden from you.

The main job of the API server is to make API available to clients inside and outside the cluster. It uses TLS to
encrypt the client connection, and it leverages of a bunch of authentication and authorization mechanisms to
ensure only valid requests are accepted and actioned. Requests from internal and external sources all have to
pass through the same authentication and authorization.

The API is RESTful. This is jargon for a modern web API that accepts CRUD-style requests via standard HTTP
methods. CRUD-style operations are simple create, read, update, delete operations, and the common HTTP
methods include POST, GET, PUT, PATCH, and DELETE.

The following table shows how HTTP methods, CRUD operations, and kubectl commands match-up. If you’ve
read the chapter on API security, you’ll know we use the term verb to refer to CRUD operations.

HTTP method K38s CRUD verb kubectl example

POST create $ kubectl create -f <filename>

GET get list, watch $ kubectl get pods

PUT/PATCH update $ kubectl edit deployment <deployment-name>
DELETE delete $ kubectl delete ingress <ig-name>

As you can see, method names, CRUD verb names, and kubectl command names don’t always match. For
example, a kubect1 edit command requires a user be authorized to use the update verb, and will send an HTTP
PATCH request to the API server.
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It’s common for the API server to be exposed on port 443 or 6443, but it’s possible to configure it to operate on
whatever port you require. Running the following command shows the address and port your Kubernetes cluster
is exposed on.

$ kubectl cluster-info

Kubernetes master is running at https://0.0.0.0:52935

CoreDNS is running at https://0.0.0.0:52935/api/v1l/namespaces/../services/kube-dns:dns/proxy
Metrics-svr is running at https://0.0.0.0:52935/api/v1/../../../https:metrics-server:/proxy

In the example, the cluster is exposed on https://0.0.0.0:52935. This means any local address on port 52935.

A word on REST and RESTful

You’ll hear the terms REST and RESTful a lot. REST is short for REpresentational State Transfer, and it’s the de
facto standard for communicating with web-based APIs. Systems, such as Kubernetes, that use REST are often
referred to as RESTful.

REST requests comprise a verb and a path to a resource. Verbs relate to actions, and are the standard HTTP
methods you saw in the previous table. Paths are a URI path to the resource in the APL

Disambiguation: We often use the term verb to refer to CRUD operations as well as HTTP methods.
CRUD operations include create, read, update and delete, whereas the HTTP methods are GET,
POST, PUT, PATCH and DELETE. If it confusing, the term “verb” is used to refer to an action.

The following example shows a kubectl command and associated REST path that will list all Pods in the shield
Namespace

$ kubectl get pods --namespace shield

GET /api/v1l/namespaces/shield/pods

To visualise this, start a kubectl proxy and use curl to generate the request. The kubectl proxy command exposes
the API on your localhost adapter and takes care of authentication. You can use a different port.

$ kubectl proxy --port 9000 &
[1] 14774
Starting to serve on 127.0.0.1:9000

With the proxy running, use a tool like curl to form a request to the API server.
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$ curl http://localhost:9000/api/v1/namespaces/shield/pods
{

"kind": "PodList",

"apiVersion": "v1",

"metadata": {

"resourceVersion": "484812"

3,

"items": []
}

The example returned an empty list because there are no Pods running in the shield Namespace. Try another
request to list all Namespaces.

$ curl http://localhost:9000/api/v1/namespaces

Responses from the API server include common HTTP response codes, content type, and the actual payload. As
you learned earlier in the chapter, Kubernetes uses JSON as its preferred content type. As a result, the previous
kubectl get command will result in an HTTP 200 (OK) response code, content type will be application/json and
the payload will be a serialized JSON list of all Pods in the shield Namespace.

Run one of the previous curl commands again, but add the -v flag to see the send and receive headers. The
response has been trimmed to fit the book and draw your attention to the most important parts.

$ curl -v http://localhost:9000/api/v1/namespaces/shield/pods

v

GET /api/v1l/namespaces/shield/pods HTTP/1.1
> Accept: */*

~

HTTP/1.1 200 OK

Content-Type: application/json
X-Kubernetes-Pf-Flowschema-Uid: 499d0001-d874-4b06-ba. ..c37f7
X-Kubernetes-Pf-Prioritylevel-Uid: aeb490e6-1890-41ab. . .94e82

A A

~

{
"kind": "PodList",
"apiVersion": "v1",
"metadata": {

"resourceVersion": "487845"

1
"items": []

}

Lines starting with a > are header data sent by cur1, whereas lines starting with a < are header data returned to
curl by the API server.

The > lines show curl sending a GET request to the /api/vi/namespaces/shield/pods REST path and telling the
API server it can accept any valid serialization schema. The lines starting with < show the API server returning an
HTTP response code and using JSON as the serialization schema. The X-Kubernetes lines are additional priority
and fairness settings specific to Kubernetes.
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A word on CRUD

CRUD is an acronym for the four basic functions web APIs use to manipulate and persist objects — create, read,
update, delete. As previously mentioned, the Kubernetes API exposes and implements CRUD-style operations
via the common HTTP methods.

Let’s consider an example.

The following JSON is from the “ns.json” file in the api folder of the book’s GitHub repo. It defines a new
Namespace object called “shield”

"kind": "Namespace",

"apiVersion": "v1",

"metadata": {
"name": "shield",
"labels": {

"chapter":

}

}

}

api

You can create it with the kubectl apply -f ns.json command. Behind the scenes, kubectl creates a request to
the API server using the HTTP POST method. This is why you’ll occasionally see some documentation refer
to “POSTing” to the API server. The POST method creates a new object of the specified resource type. In this
example, it’ll create a new Namespace object called “shield”.

The following is a simplified example of the request header. The body will be the contents of the JSON file.
Request header:

POST https://<api-server>/api/v1l/namespaces
Content-Type: application/json
Accept: application/json

The content-Type and Accept fields of the header tell the API server the content is being sent in JSON, and, the
client expects a response in JSON.

If the request is successful, the response will include a standard HTTP response code, content type, and actual
payload.

HTTP/1.1 200 (OK)
Content-Type: application/json
{

Talk is cheap though... try posting it to the API server with the following curl command. You’ll need a kubectl
proxy process exposing the API server on port 9000 (kubectl proxy --port 9000 &) and you’ll need to run the
command from the directory containing the ns. json file.
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$ curl -X POST -H "Content-Type: application/json" \
--data-binary @ns. json http://localhost:9000/api/v1/namespaces

<Snip>

The -x PosT argument forces curl to use the HTTP POST method. The -H "Content-Type. .." tells the API server
the request contains serialized JSON. The --data-binary @ns. json specifies the manifest file, and the URI is the
address the API server is exposed on by kubectl proxy.

You can verify the new Namespace was created with the kubectl get namespaces command.

Feel free to delete the newly created Namespace by specifying the DELETE HTTP method.

$ curl -X DELETE -H "Content-Type: application/json" http://localhost:9000/api/v1/namespaces/shield
{
"kind": "Namespace",
"apiVersion": "v1",
"metadata": {
"name": "shield",
<Snip>
}
"spec": {
"finalizers": [
"kubernetes"
]
3,
"status": {
"phase": "Terminating"
}
}

In summary, the API server exposes the API over a secure RESTful interface that lets you manipulate and query
the state of objects on the cluster. It runs on the control plane, which needs to be highly available and have
enough performance to service requests quickly.

The API

The API is where all Kubernetes resources are defined. It’s large, modular, and RESTful.

When Kubernetes was originally created, the API was monolithic in design with all resources existing in a
single global namespace. However, as Kubernetes grew, it became necessary to divide the API into smaller more
manageable groups. Figure 14.3 shows a simplified view of what it currently looks like.
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Figure 14.3

As you can see, the image shows the API with 4 groups. There are a lot more than 4, but the image only shows
4 for simplicity.

At the highest level, there are two types of API group.

« The core group

+ The named groups

The core API group

Resources in the core group are mature objects that were created in the early days of Kubernetes before the
API was divided into groups. They tend to be fundamental objects such as Pods, nodes, Services, Secrets, and
ServiceAccounts. They’re located in the API below /api/vi. The following table lists some example paths for
resources in the core group. You'll sometimes see and hear these paths referred to as REST paths.

Resource Path

Pods /api/vl/namespaces/{namespace}/pods/
Services /api/vl/namespaces/{namespace}/services/
Nodes /api/v1/nodes/

Namespaces /api/v1/namespaces/

Notice that some objects are namespaced and some aren’t. Namespaced objects have longer REST paths as you
have to include two additional segments — . ./namespaces/{namespace}/. .. For example, listing all Pods in the
“shield” Namespace requires the following path.

GET /api/v1/namespaces/shield/pods/

Expected HTTP response codes for read requests are either 200: 0k or 401: Unauthorized.

On the topic of REST paths, GVR stands for group, version, resource, and can be a good way to remember
the structure of REST paths in the Kubernetes API. A simple example is shown in Figure 14.4, but paths for
namespaced objects include longer resource segments.
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Group Ver Resource
/apis/storage.k8s.io/vl/storageclasses

Figure 14.4

You shouldn’t expect any new resources to be added to the core group. Anything new will be added to a named
group.

Named API groups

The named API groups are the future of the AP, and all new resources go into named groups. Sometimes we
refer to them as “sub-groups”

Each of the named groups is a collection of related resources. For example, the “apps” group is where all resources
that manage application workloads such as Deployments, ReplicaSets, DaemonSets, and StatefulSets are defined.
Likewise, the “networking.k8s.i0” group is where Ingresses, Ingress Classes, Network Policies, and other network-
related resources exist. Notable exceptions to this pattern are older resources in the core group that came along
before the named groups existed. For example, Pods and Services are both in the core group. However, if they
were invented today, Pods would probably go in the “apps” group, and Services in the “networking.k8s.io” group.

Resources in the named groups live below the /apis/{group-name}/{version}/ path. The following table lists some
examples.

Resource Path

Ingress /apis/networking.k8s.io/v1/namespaces/{namespace}/ingresses/
RoleBinding /apis/rbac.authorization.k8s.io/v1/namespaces/{namespace}/rolebindings/
ClusterRole /apis/rbac.authorization k8s.io/v1/clusterroles/

StorageClass  /apis/storage.k8s.io/v1/storageclasses/

Notice how the URI paths for named groups start with /apis and include the name of the group. This is different
to the core group that starts with /api in the singular and doesn’t include a group name. In fact, in places you’ll
see the core API group referred to by empty double quotes (“”). This is because when the API was first designed,
no thought was given to groups — everything was “just in the APT".

Dividing the API into smaller groups makes it more scalable and easier to navigate. It also makes it easier to
extend.

The following commands are good for seeing API related info for your clusters.

kubectl api-resources is great for seeing which resources are available on your cluster, as well as which API
groups they’re served from. It also shows resource shortnames, and whether objects are namespaced or cluster-
scoped. The output has been tweaked to fit the book as well as show a mix of resources from different groups.
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$ kubectl api-resources

NAME SHORTNAMES APIGROUP NAMESPACED KIND
namespaces ns false Namespace
nodes no false Node

pods po true Pod
deployments deploy apps true Deployment
replicasets rs apps true ReplicaSet
statefulsets sts apps true StatefulSet
cronjobs cj batch true CronJob

Jjobs batch true Job
ingresses ing networking.k8s.io true Ingress
networkpolicies netpol networking.k8s.io true NetworkPolicy
storageclasses sc storage.k8s.io false StorageClass

The next command shows which API versions are supported on your cluster. It doesn’t list which resources
belong to which APIs, but it’s good for finding out whether you have things such as alpha APIs enabled or not.
Notice how some API groups have multiple versions enabled such as beta and a stable.

$ kubectl api-versions
admissionregistration.k8s.io/v1
admissionregistration.k8s.io/vibetal
apiextensions.k8s.io/v1
apiextensions.k8s.io/vibetal

<Snip>

scheduling.k8s.io/vibetal
storage.k8s.io/v1
storage.k8s.io/vibetal

vi

The next one is a more complicated command that lists just the kind and version fields for resources supported
on your cluster. The output is trimmed so that it gives you an idea of what you get. It doesn’t work on Windows.

$ for kind in “kubectl api-resources | tail +2 | awk '{ print $1 }'; \
do kubectl explain $kind; done | grep -e "KIND:" -e "VERSION:"

KIND: Namespace

VERSION: v1

KIND: Node

VERSION: v1

<Snip>

KIND: HorizontalPodAutoscaler
VERSION: autoscaling/vi1

KIND: CronJob

VERSION: batch/vibetal

KIND: Job

VERSION: batch/v1
<Snip>
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A quick word on accessing the API

While kubect1 can be useful for getting API info, it’s often better to explore the API more directly using one of
the following options.

« API development tools
o Commands like cur1, wget, and Invoke-WebRequest

« Web browser

The simplest way to do this, is to run a kubectl proxy command that exposes the API on your localhost adapter
and handles all security and authentication.

The following command exposes the API on port 9000 on your localhost adapter. The proxy remains up until you
kill the process (process ID 14781 in the example). If you run the command without the “&” on the end, you’ll
need to open a new terminal window to run commands.

You don’t need to run this if you already have a kubectl proxy running.

$ kubectl proxy --port 9000 &
[1] 14781
Starting to serve on 127.0.0.1:9000

Kubectl is now proxying the API server on localhost:9080. Run some curl commands to explore the APL

The following two commands list all API versions available below the core API group, and the same for the
named API groups.

$ curl http://localhost:9000/api
{
"kind": "APIVersions",
"versions": [
VL
1.
"serverAddressByClientCIDRs": [
{
"clientCIDR": "0.0.0.0/0",
"serverAddress": "172.21.0.4:6443"

$ curl http://localhost:9000/apis
{
"kind": "APIGroupList",
"apiVersion": "v1",
"groups": [
<Snip>
{
"name": "apps",

"versions": [
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{
"groupVersion": "apps/v1i",
"version": "v1"

}

1,

"preferredVersion": {
"groupVersion": "apps/vi",
"version": "vi"

}

3,
<Snip>

You can list specific object instances, or lists of objects on your cluster. The following shows a list of all
Namespaces on a cluster.

R

curl http://localhost:9000/api/v1/namespaces

"kind": "NamespacelList",
"apiVersion": "v1",
"metadata": {
"resourceVersion": "478774"
1
"items": [
{
"metadata": {
"name": "kube-system",
"uid": "aB8c48564-d87d-41e@-af1d-1729c6849b52",
"resourceVersion": "5",
"creationTimestamp": "2021-01-17T17:44:59Z",
"managedFields": [

{
"manager": "k3s",
"operation": "Update",
"apiVersion": "v1",
<Snip>

Feel free to poke around. You can put the same URI paths into a browser and API tools like Postman.

Leave the kubectl proxy process running as you’ll use it again later in the chapter.

Alpha beta and stable

Kubernetes has a strict process for adding new resources to the API. They come in as alpha, progress through
beta, and eventually reach stable status.

Resources in alpha are experimental and should be considered hairy and scary. Expect bugs, expect features to
be dropped without warning, and expect lots of change as they graduate through beta to stable. A lot of clusters
disable alpha APIs by default, and you should use them with extreme caution.

A resource that progresses through two alpha versions will go through the following APIs.
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« /apis/some-api/vialpal/...

« /apis/some-api/vlalpa2/...

The phase after alpha is beta.

Resources in beta are considered “pre-release” and are starting to look and feel a lot like they will when they
graduate to stable. Features that are part of beta objects will rarely be dropped when the resource graduates to
stable. However, small changes should be expected. Most clusters enable beta APIs by default, and many people
use beta objects in production environments. However, that’s not a recommendation, you need to make those
decisions yourself.

A resource that progresses through two beta versions will be served through the following APIs.

« /apis/some-api/vbetal/...

« /apis/some-api/vbeta2/...
The final phase after beta is stable, sometimes referred to as generally available (GA). Stable resources are
considered production-ready, and Kubernetes has a strong long-term commitment to them.

Examples of paths to stable resources include the following.

« /apis/some-api/v1/...

« /apis/some-api/v2/...
Most stable resources are currently at v1, but occasionally some continue being developed and change so much
that a v2 is required. For an object to become v2, it progresses through alpha and beta again as follows.

« /apis/some-api/v2alpaX/... —>>

« /apis/some-api/v2betaX/... —>>

« /apis/some-api/v2
It’s usually possible to deploy an object through a beta API, but continue to work with them through later API

versions. For example, you can deploy an object via a vibetat APIL, but update and manage it at a later date
through the stable vi APL

Resource deprecation

As mentioned in the previous section, alpha and beta objects are subject to changes before graduating to stable.
However, once an object is stable, Kubernetes has a strong commitment to maintaining long-term usability and
support. Basically, once an object is stable (v1, v2 etc.) it has a long life.

Kubernetes commits to support beta and stable objects as follows.
« Stable/GA: Objects are expected to be long-lived. When deprecated, stable objects will be supported for a
further 12 months, or 3 releases, whichever’s longest.

« Beta: Objects in beta have a 9 month window to either graduate to stable, or release a newer beta version.
This is designed to avoid beta features going stale or staying in beta for too long like the Ingress resource
did (Ingress remained in beta for more than 15 releases of Kubernetes).

Recent versions of Kubernetes return deprecation warning messages any time you use a deprecated resource. For
example, deploying an Ingress from the old extensions/vibetal API results in the following deprecation warning.
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$ kubectl apply -f deprecate.yml
Warning: extensions/vibetal Ingress is deprecated in v1.14+, unavailable in v1.22+;
Use networking.k8s.io/v1 Ingress

Resources, objects, and primitives

You'll often see the terms resources, objects, and even primitives used interchangeably. And that’s fine, most
people do it and everyone understands what you mean.

However, technically speaking, the Kubernetes API is resource-based. This means everything in the API is a
resource. It just so happens that most API resources, such as Pods, Services, Ingresses etc. are objects. However,
some resources are lists, and an even smaller number are operations. However, most resources are objects, so we
often use the terms “resource” and “object” to mean the same thing.

Resources can be either namespaced or cluster-scoped. Namespaced objects have to be deployed to a particular
Namespace, whereas cluster-scoped objects can either be bound to multiple Namespaces, or exist entirely outside
the realm of Namespaces. Node objects are an example of a cluster-scoped resource that exists entirely outside of
Namespaces and cannot ever be deployed to one. On the flip side, ClusterRoles are an example of a cluster-scoped
object that can be bound to specific Namespaces via ClusterRoleBindings.

Remember, kubectl api-resources lists all resources and whether they’re namespaced or cluster-scoped.

Extending the API

Kubernetes runs a set of built-in controllers that read an object’s spec, deploy and maintain it on the cluster,
and keep its status section up-to-date. However, you can extend Kubernetes by adding your own resources and
controllers.

A common example of 3rd-parties extending the Kubernetes API can be seen in the storage world where vendors
expose advanced features, such as snapshot schedules, via custom resources in the Kubernetes API. In this model,
storage is surfaced inside of Kubernetes via CSI drivers, Pods consume it via built-in Kubernetes resources such
as StorageClasses and PersistentVoumeClaims, but advanced features such as snapshot scheduling is consumed
via custom resources in the APL

The high-level pattern for extending the API involves two main things:

« Writing your custom controller

« Creating the custom resource

Kubernetes has a CustomResourceDefinition (CRD) object that lets you create new resources in the API that
look, smell, and feel like native Kubernetes resources. This means you can create a custom resource, and then
use kubectl to create and inspect it just like it’s a native resource. They also get their own REST paths in the API.

The following YAML is from the crd.yml file in the api folder of the book’s GitHub repo. It defines a new
namespaced custom resource called “books” in the “nigelpoulton.com” named group that is served via the “v1”
path.
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apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:

name: books.nigelpoulton.com

spec:
group: nigelpoulton.com <<-- Named API group
scope: Cluster <<-- Can be "Namespaced" or "Cluster"
names:
plural: books <<-- All resources need a plural and singular name defined
singular: book <<-- Singular names are used on CLI and command outputs
kind: Book <<-- kind property used in YAML files
shortNames:
- bk <<-- Short name used by kubectl
versions: <<-- Resources can be served by multiple API versions
- name: vi
served: true <<-- If set to false, "v1" will not be served
storage: true <<-- Store instances of the object as this version
schema: <<-- This block defines the properties of your custom resource
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
<Snip>

Use the following command to make a local copy of the GitHub repo and the lab files. You’ll need to have git
installed for this to work.

$ git clone https://github.com/nigelpoulton/Thek8sBook.git
Change into the api directory.
$ cd TheK8sBook/api

If you're following along, deploy the custom resource with the following command. Be sure to run it from the
api folder containing the crd.ym1 file.

$ kubectl apply -f crd.yml
customresourcedefinition.apiextensions.k8s.io/books.nigelpoulton.com created

Once deployed, the new resource exists in the API and you can deploy objects from it. This particular one will
be served on the following REST path.

apis/nigelpoulton.com/v1/books/

Verify it exists in the APL
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$ kubectl api-resources | grep books
NAME SHORTNAMES APIGROUP NAMESPACED KIND
books bk nigelpoulton.com false Book

$ kubectl explain book
KIND: Book
VERSION: nigelpoulton.com/v1
DESCRIPTION:
<empty>
FIELDS:
<Snip>

The following YAML is from the tkb.yml file in the api folder of the book’s GitHub repo. It defines a new Book
object called “tkb”. Notice how the fields in the spec section match the names and types defined in the custom
resource YAML definition (crd.ym1).

apiVersion: nigelpoulton.com/v1
kind: Book
metadata:
name: tkb
spec:
bookTitle: "The Kubernetes Book"
topic: Kubernetes
edition: 2

Deploy it with the following command.

$ kubectl apply -f tkb.yml
book.nigelpoulton.com/tkb created

You can now list and describe it with the usual commands. The following GET command uses the resource’s “bk”
shortname.

$ kubectl get bk
NAME  TITLE EDITION
tkb The Kubernetes Book 2

Finally, you can use tools like curl to query the new API group and resource. The simplest way to do this is to
run a kubectl proxy.

The following commands start a kubectl proxy and list all resources under the new nigelpoulton.com named
group. You may already have a kubectl proxy process running.
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$ kubectl proxy --port 9000 &
[1] 14784
Starting to serve on 127.0.0.1:9000

$ curl http://localhost:9000/apis/nigelpoulton.com/v1/
{
"kind": "APIResourcelList",
"apiVersion": "v1",
"groupVersion": "nigelpoulton.com/v1",
"resources": [
{
"name": "books",
"singularName": "book",
"namespaced": false,
"kind": "Book",
"verbs": [
"delete",
"deletecollection",
"get",
"list",
"patch",
"create",
"update",
"watch"
1,
"shortNames": [
"bk"
1,

"storageVersionHash": "rQ@xvbvJ3/s="

This is all good an interesting. But a custom resource doesn’t do anything until you create a custom controller
to go with it. Doing this is beyond the scope of this chapter, but you’ve learned a lot about the Kubernetes API
and how it works.

Chapter summary

Now that you’ve read the chapter, all of the following should make sense. But don’t worry if some bits are still
vague or confusing. APIs can be hard to understand, and the Kubernetes API is large and complex. Anyway, here
goes...

Kubernetes is API centric, and the API is exposed internally and externally via the API server.

The API server runs as a control plane service, and all internal and external clients interact with each other and
the API, via the API server. This means your control plane needs to be highly available and high performance. If
it’s not, you risk slow API response times or entirely losing access to the APL Also, all requests to the API server
are authenticated, authorized, and protected by TLS.
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The API itself is a modern resource-based RESTful API that accepts CRUD-style operations via uniform HTTP
methods such as POST, GET, PUT, PATCH, and DELETE. It’s divided into named groups for convenience and
extensibility. Older resources created in the early days of Kubernetes exist in the original core group which
is accessed via the /api/vt REST path. All newer objects go into named groups. For example, newer network
resources are defined in the networking.k8s.io sub-group available at the /apis/networking.k8s.io/v1/ REST
path.

Resources in the Kubernetes API are generally objects. However, they can also be lists or operations. The vast
majority are objects, so we sometimes use the terms “resources” and “objects” to mean the same thing. It’s
common to refer to their API definitions as resources, or resource definitions, whereas running instances on a
cluster are often referred to as objects. For example, the Pod “resource” exists in the core API group, and there are
5 Pod “objects” running in the default Namespace.

All new resources come into the API as alpha, progress through beta, and eventually graduate to stable. Alpha
resources are subject to change and disabled in many clusters due to their unstable nature. Beta resources are
more stable and consist of features expected to be carried through to the stable version. Most clusters enable
beta resources by default, but you should be cautious using them in production. Stable resources are considered
production-grade and Kubernetes has a strong commitment to them that is backed by a clear deprecation policy
that guarantees they’ll be supported for at least 12 months, or three versions, after the deprecation announcement.

Finally, the Kubernetes API is becoming the de facto cloud API with many 3rd-party technologies extending it
so they can be exposed through it. Kubernetes makes it easy to extend the API with your own custom resources
through CustomResourceDefinitions that make your custom resources look like native Kubernetes resources.

OK, hopefully that made sense. But don’t worry if you're still a bit unsure about some of the points. I highly
recommend you play around with as many of the examples as possible. Also consider reading the chapter again
in a day or so, as it often takes time and more than one reading of something before you grasp it.

Finally, if you liked this chapter, or any other chapter in the book, jump over to Amazon and show the book some
love with a quick review. The cloud-native gods will smile on you ;-)
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Security is more important than ever before, and Kubernetes is no exception. Fortunately, there’s a lot of things
you can do to secure Kubernetes, and you’ll see some of them in the next chapter. However, before doing that,
it’s a good idea to model some of the common threats.

Threat model

Threat modeling is the process of identifying vulnerabilities so you can put measures in place to prevent
and mitigate them. This chapter introduces the popular STRIDE model and shows how it can be applied to
Kubernetes.

STRIDE defines six categories of potential threat:

« Spoofing
« Tampering
+ Repudiation

Information disclosure

« Denial of service

Elevation of privilege
While the model is good, it’s important to keep in mind that it’s just a model, and model guarantees to cover all
possible threats. However, they are good at providing a structured way to look at things.

For the rest of this chapter, we’ll look at each of the six threat categories in turn. For each one, we’ll give a quick
description, and then look at some of the ways it applies to Kubernetes and how we can prevent and mitigate.

The chapter doesn’t try to cover everything. It’s just giving you ideas and getting you started.

Spoofing

Spoofing is pretending to be somebody else with the aim of gaining extra privileges on a system.

Let’s look at some of the ways Kubernetes prevents different types of spoofing.

Securing communications with the API server

Kubernetes is comprised of lots of small components that work together. These include control plane services
such as the API server, controller manager, scheduler, cluster store, and others. It also includes Node components
such as the kubelet and container runtime. Each of these has its own set of privileges that allow it to interact with,
and even modify the cluster. Even though Kubernetes implements a least-privilege model, spoofing the identity
of any of these can cause problems.



15: Threat modeling Kubernetes 199

If you read the RBAC and API security chapter, you'll know that Kubernetes requires all components to
authenticate via cryptographically signed certificates (mTLS). This is good, and Kubernetes makes it easy by
auto-rotating certificates and the likes. However, it’s vital you consider the following:

1. A typical Kubernetes installation will auto-generate a self-signed certificate authority (CA). This is the
CA that will issue certificates to all cluster components. And while it’s better than nothing, on its own
it’s probably not enough for production environments.

2. Mutual TLS (mTLS) is only as secure as the CA issuing the certificates. Compromising the CA can render
the entire mTLS layer ineffective. So, keep the CA secure!

A good practice is to ensure that certificates issued by the internal Kubernetes CA are only used and trusted
within the Kubernetes cluster. This requires careful approval of certificate signing requests, and you need to
make sure the Kubernetes CA doesn’t get added as a trusted CA for any systems outside of Kubernetes.

As mentioned in previous chapters, all internal and external requests to the API server are subject to authen-
tication and authorization checks. As a result, the API server needs a way to authenticate (trust) internal and
external sources. A good way to do this is having two trusted key pairs:

« one for authenticating internal systems

« the other for authenticating external systems

In this model, you’d use the cluster’s self-signed CA to issue keys to internal systems. You’d also configure
Kubernetes to trust one or more trusted 3rd-party CAs to issue keys to external systems.

Securing Pod communications

As well as spoofing access to the cluster, there’s also the threat of spoofing an application for app-to-app
communications. This is when one Pod spoofs another. Fortunately, you can leverage Secrets to mount certificates
into Pods that are used to authenticate Pod identity.

While on the topic of Pods, every Pod has an associated ServiceAccount that is used to provide an identity for the
Pod within the cluster. This is achieved by automatically mounting a service account token into every Pod as a
Secret. Two points to note:

1. The service account token allows access to the API server

2. Most Pods probably don’t need to access the API server

With these two points in mind, it’s often recommended to set automountServiceAccountToken to false for Pods that
you know don’t need to communicate with the API server. The following Pod manifest shows how to do this.
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apiVersion: vi1

kind: Pod

metadata:
name: service-account-example-pod

spec:
serviceAccountName: some-service-account
automountServiceAccountToken: false
<Snip>

If the Pod does need to talk to the API server, the following non-default configurations are worth exploring.
« expirationSeconds

« audience

These let you force a time when the token will expire, as well as restrict the entities it works with. The following
example, inspired from official Kubernetes docs, sets an expiry period of one hour and restricts it to the vault
audience in a projected volume.

apiVersion: v1
kind: Pod
metadata:
name: nginx
spec:
containers:
- image: nginx
name: nginx
volumeMounts:
- mountPath: /var/run/secrets/tokens
name: vault-token
serviceAccountName: my-pod
volumes:
- name: vault-token
projected:

sources:

- serviceAccountToken:
path: vault-token
expirationSeconds: 3600
audience: vault

Tampering

Tampering is the act of changing something, in a malicious way, so you can cause one of the following.
« Denial of service. Tampering with the resource to make it unusable.
« Elevation of privilege. Tampering with a resource to gain additional privileges.

Tampering can be hard to avoid, so a common counter-measure is to make it obvious when something has been
tampered with. A common example, outside of information security, is packaging medication. Most over-the-
counter drugs are packaged with tamper-proof seals. These make it easy to see if the product has been tampered
with.

Let’s have a quick look at some of the cluster components that can be tampered with.
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Tampering with Kubernetes components
All of the following Kubernetes components, if tampered with, can cause harm:

« eted

« Configuration files for the API server, controller-manager, scheduler, etcd, and kubelet
« Container runtime binaries

« Container images

« Kubernetes binaries
Generally speaking, tampering happens either in transit or at rest. In transit refers to data while it is being
transmitted over the network, whereas at rest refers to data stored in memory or on disk.

TLS is a great tool for protecting against in transit tampering, as it provides built-in integrity guarantees — you’ll
be warned if the data has been tampered with.

The following recommendations can also help prevent tampering with data when it is at rest in Kubernetes.

« Restrict access to the servers that are running Kubernetes components — especially control plane

components.

« Restrict access to repositories that store Kubernetes configuration files.

« Only perform remote bootstrapping over SSH (remember to safely guard your SSH keys).

« Always perform SHA-2 checksums on downloads.

« Restrict access to your image registry and associated repositories.
This isn’t an exhaustive list. But if you implement it, you’ll greatly reduce the chances of having your data
tampered with while at rest.

As well as the items listed, it’s good production hygiene to configure auditing and alerting for important binaries
and conlfig files. If configured and monitored correctly, these can help detect potential tampering attacks.

The following example uses a common Linux audit daemon to audit access to the docker binary. It also audits
attempts to the change the binary’s file attributes.

$ auditctl -w /usr/bin/docker -p wxa -k audit-docker
We'll refer to this example later in the chapter.

Tampering with applications running on Kubernetes

As well as infrastructure components, application components are also potential tampering targets.

A good way to prevent a live Pod from being tampered with, is setting its filesystems to read-only. This guarantees
filesystem immutability and can be accomplished through a Pod Security Policy or the securityContext section
of a Pod manifest file.



15: Threat modeling Kubernetes 202

Note: PodSecurityPolicy objects allow you to force security settings on all Pods in a cluster, or
targeted sub-sets of Pods. They re a great of enforcing standards without developers and operations
staff having to remember to do it for every individual Pod.

You can make a container’s root filesystem read-only by setting the readonlyRootFilesystem property to true. As
previously mentioned, this can be set via a PodSecurityPolicy object, or in Pod manifest files. The same can be
done for other filesystems that are mounted into containers via the allowedHostPaths property.

The following YAML shows how to use both settings in a Pod manifest. The al1owedHostPaths section makes sure
anything mounted beneath /test will be read-only.

apiVersion: v1
kind: Pod
metadata:
name: readonly-test
spec:
securityContext:
readOnlyRootFilesystem: true
allowedHostPaths:
- pathPrefix: "/test"
readOnly: true
<Snip>

The same can be implemented in a PodSecurityPolicy object as follows.

apiVersion: policy/vibetal # Will change in a future version
kind: PodSecurityPolicy
metadata:

name: tampering-example
spec:

readOnlyRootFilesystem: true

allowedHostPaths:

- pathPrefix: "/test"

readOnly: true

Repudiation

At a very high level, repudiation is creating doubt about something. Non-repudiation is providing proof about
something. In the context of information security, non-repudiation is proving certain actions were carried out
by certain individuals.

Digging a little deeper, non-repudiation includes the ability to prove:

» What happened
« When it happened
« Who made it happen
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+ Where it happened
« Why it happened
» How it happened

Answering the last two usually requires the correlation of several events over a period of time.

Fortunately, auditing of Kubernetes API server events can usually help answer these questions. The following is
an example of an API server audit event (you may need to manually enable auditing on your API server).

"kind":"Event",
"apiVersion":"audit.k8s.io/v1",
"metadata":{ "creationTimestamp":"2020-03-03T10:10:00Z" },
"level":"Metadata",
"timestamp": "2020-03-03T10:10:00Z",
"auditID":"Te@cbccf-8d8a-4f5f-aefb-60b8af2d2ad5",
"stage":"RequestReceived",
"requestURI":"/api/vl/namespaces/default/persistentvolumeclaims",
"verb":"list",
"user": {

"username": " fname. lname@example.com",

"groups":[ "system:authenticated" ]
3,
"sourcelPs":[ "123.45.67.123" ],
"objectRef": {

"resource":"persistentvolumeclaims",

"namespace": "default",

"apiVersion":"v1"
3,
"requestReceivedTimestamp":"2010-03-03T10:10:00.123456Z",
"stageTimestamp": "2020-03-03T10:10:00.123456Z"

Although the API server is central to most things in Kubernetes, it’s not the only component that requires auditing
for non-repudiation. At a minimum, you should collect audit logs from container runtimes, kubelets, and the
applications running on your cluster. This is without even mentioning network firewalls and the likes.

Once you start auditing multiple components, you quickly need a centralised location to store and correlate
events. A common way to do this is deploying an agent to all nodes via a DaemonSet. The agent collects logs
(runtime, kubelet, application...) and ships them to a secure central location.

If you do this, it’s vital the centralised log store is secure. If the security of the central log store is compromised,
you can no longer trust the logs, and their contents can be repudiated.

To provide non-repudiation relative to tampering with binaries and configuration files, it might be useful to use
an audit daemon that watches for write actions on certain files and directories on your Kubernetes Masters and
Nodes. For example, earlier in the chapter you saw an example that enabled auditing of changes to the docker
binary. With this enabled, starting a new container with the docker run command will generate an event like
this:
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type=SYSCALL msg=audit(1234567890.123:12345): arch=abc123 syscall=59 success=yes exit=0 a@=12345678abc\
al=0 a2=abc12345678 al3=a items=1 ppid=1234 pid=12345 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 \
s\

gid=0 fsgid=0 tty=pts@ ses=1 comm="docker" exe="/usr/bin/docker" subj=system_u:object_r:container_runt\
ime_exec_t:s0@ key="audit-docker"

type=CWD msg=audit(1234567890.123:12345): cwd="/home/firstname"

type=PATH msg=audit(1234567890.123:12345): item=0 name="/usr/bin/docker" inode=123456 dev=fd:00 mode=0\
100600 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:container_runtime_exec_t:s@

Audit logs like this, when combined and correlated with Kubernetes’ audit features, create a comprehensive and
trustworthy picture that cannot be repudiated.

Information Disclosure

Information disclosure is when sensitive data is leaked. There are lots of ways it can happen, including hacked
data stores and APIs that unintentionally expose sensitive data.

Protecting cluster data

In the Kubernetes world, the entire configuration of the cluster is stored in the cluster store (usually etcd). This
includes network and storage configuration, as well as passwords and other sensitive data in Secrets. For obvious
reasons, this makes the cluster store a prime target for information disclosure attacks.

As a minimum, you should limit and audit access to the nodes hosting the cluster store. As will be seen in the
next paragraph, gaining access to a cluster node can allow the logged-on user to bypass some of the security
layers.

Kubernetes 1.7 introduced encryption of Secrets but doesn’t enable it by default. Even when this becomes default,
the data encryption key (DEK) is stored on the same node as the Secret! This means gaining access to a node lets
you to bypass encryption. This is especially worrying on nodes that host the cluster store (etcd nodes).

Fortunately, Kubernetes 1.11 enabled a beta feature that lets you store key encryption keys (KEK) outside of your
Kubernetes cluster. These types of keys are used to encrypt and decrypt data encryption keys and should be safely
guarded. You should seriously consider Hardware Security Modules (HSM) or cloud-based Key Management
Stores (KMS) for storing your key encryption keys.

Keep an eye on upcoming versions of Kubernetes for further improvements to encryption of Secrets.

Protecting data in Pods

As previously mentioned, Kubernetes has an API resource called a Secret that is the preferred way to store and
share sensitive data such as passwords. For example, a front-end container accessing an encrypted back-end
database can have the key to decrypt the database mounted as a Secret. This is a far better solution than storing
the decryption key in a plain-text file or environment variable.

It is also common to store data and configuration information outside of Pods and containers in Persistent
Volumes and ConfigMaps. If the data on these is encrypted, keys for decrypting them should also be stored
in Secrets.

With all of this, it’s vital that you consider the caveats outlined in the previous section relative to Secrets and
how their encryption keys are stored. You don’t want to do the hard work of locking the house but leaving the
keys in the door.
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Denial of Service

Denial of Service (DoS) is all about making something unavailable. There are many types of DoS attack, but a
well-known variation is overloading a system to the point it can no longer service requests. In the Kubernetes
world, a potential attack might be to overload the API server so that cluster operations grind to a halt (even
essential system services have to communicate via the API server).

Let’s take a look at some potential Kubernetes systems that might be targets of DoS attacks, and some ways to
protect and mitigate.

Protecting cluster resources against DoS attacks

It’s a time-honored best practice to replicate essential control plane services on multiple nodes for high availability
(HA). Kubernetes is no different, and you should run multiple Masters in an HA configuration for your production
environments. Doing this prevents a single Master from becoming a single point of failure. In relation to certain
types of DoS attacks, an attacker may need to attack more than one Master to have a meaningful impact.

You should also consider replicating control plane nodes across availability zones. This may prevent a DoS attack
on the network of a particular availability zone from taking down your entire control plane.

The same principle applies to worker nodes. Having multiple worker nodes not only allows the scheduler to
spread your applications over multiple nodes and availability zones, it may also render DoS attacks on any single
node or zone ineffective (or less effective).

You should also configure appropriate limits for the following:

» Memory
- CPU
« Storage

« Kubernetes objects

Placing limits on things can help prevent important system resources from being starved, therefore preventing
potential DoS.

Limiting Kubernetes objects includes things like; limiting the number of ReplicaSets, Pods, Services, Secrets, and
ConfigMaps in a particular Namespace.

Here’s an example manifest that limits the number of Pod objects in the skippy namespace to 100.

apiVersion: v1
kind: ResourceQuota
metadata:
name: pod-quota
spec:
hard:
pods: "100"

One more feature — podPidsLimit — restricts the number of processes a Pod can create.

Assume a scenario where a Pod is the target of a fork bomb attack. This is a specialised attack where a rogue
process creates as many new processes as possible in an attempt to consume all resources on a system and grind
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it to a halt. Placing a limit on the number of processes a Pod can create will prevent the Pod from exhausting the
resources of the node and confine the impact of the attack to the Pod. Once the podPidsLimit is exhausted, a Pod
will typically be restarted.

This also ensures a single Pod doesn’t exhaust the PID range for all the other Pods on the node, including the
Kubelet. One thing to note though... setting the correct value requires a good estimate of how many Pods will
run simultaneously on each Node. Without a ballpark estimate, you can easily over or under allocate PIDs to
each pod.

Protecting the API Server against DoS attacks

The API server exposes a RESTful interface over a TCP socket, making it susceptible to botnet-based DoS attacks.

The following may be helpful in either preventing or mitigating such attacks.

« Highly available masters. Having multiple API server replicas running on multiple nodes across multiple
availability zones.

+ Monitoring and alerting API server requests based on sane thresholds

« Using things like firewalls to limit API server exposure to the internet

As well as botnet DoS attacks, an attacker may also attempt to spoof a user or other control plane service in an
attempt to cause an overload. Fortunately, Kubernetes has robust authentication and authorization controls to
prevent spoofing. However, even with a robust RBAC model, it’s vital that you safeguard access to accounts with
high privileges.

Protecting the cluster store against DoS attacks

Cluster configuration is stored in etcd, making it vital that etcd be available and secure. The following
recommendations help accomplish this:

«+ Configure an HA etcd cluster with either 3 or 5 nodes
« Configure monitoring and alerting of requests to etcd

« Isolate etcd at the network level so that only members of the control plane can interact with it

A default installation of Kubernetes installs etcd on the same servers as the rest of the control plane. This is usually
fine for development and testing, however, large production clusters should seriously consider a dedicated etcd
cluster. This will provide better performance and greater resilience.

On the performance front, etcd is probably the most common choking point for large Kubernetes clusters.
With this in mind, you should perform testing to ensure the infrastructure it runs on is capable of sustaining
performance at scale — a poorly performing etcd can be as bad as an etcd cluster under a sustained DoS attack.
Operating a dedicated etcd cluster also provides additional resilience by protecting it from other parts of the
control plane that might be compromised.

Monitoring and alerting of etcd should be based on sane thresholds, and a good place to start is by monitoring
eted log entries.
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Protecting application components against DoS attacks

Most Pods expose their main service on the network, and without additional controls in place, anyone with access
to the network can perform a DoS attack on the Pod. Fortunately, Kubernetes provides Pod resource request limits
to prevent such attacks from exhausting Pod and Node resources. As well as these, the following will be helpful:

« Define Kubernetes Network Policies to restrict Pod-to-Pod and Pod-to-external communications

« Utilize mutual TLS and API token-based authentication for application-level authentication (reject any
unauthenticated requests)

For defence in depth, you should also implement application-layer authorization policies that implement least
privilege.

Figure 15.1 shows how all of these can be combined to make it hard for an attacker to successfully DoS an
application.

B :> Check whether network policies
allow this outbound connection

Network Layer Initialize communication
policy
enforcement

Check whether network policies <:
allow this inbound connection

Transport Layer Mutual TLS handshake

Authentication @ N @

Application Layer Check whether authorization policies allow <:
authorization this service-to-service communication

Figure 15.1

Elevation of privilege

Privilege escalation is gaining higher access than what is granted, usually in order to cause damage or gain
unauthorized access.

Let’s look at a few ways to prevent this in a Kubernetes environment.
Protecting the API server
Kubernetes offers several authorization modes that help safeguard access to the API server. These include:

« Role-based Access Control (RBAC)
+ Webhook
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« Node

You should run multiple authorizers at the same time. For example, a common best practice is to always have
RBAC and node enabled.

RBAC mode lets you restrict API operations to sub-sets of users. These users can be regular user accounts as
well as system services. The idea is that all requests to the API server must be authenticated and authorized.
Authentication ensures that requests are coming from a validated user, whereas authorization ensures the
validated user is allowed to perform the requested operation. For example, can Lily create Pods? In this example,
Lily is the user, create is the operation, and Pods is the resource. Authentication makes sure that it really is Lily
making the request, and authorization determines if she’s allowed to create Pods.

Webhook mode lets you offload authorization to an external REST-based policy engine. However, it requires
additional effort to build and maintain the external engine. It also makes the external engine a potential single-
point-of-failure for every request to the API server. For example, if the external webhook system becomes
unavailable, you may not be able to make any requests to the API server. With this in mind, you should be
rigorous in vetting and implementing any webhook authorization service.

Node authorization is all about authorizing API requests made by kubelets (Nodes). The types of requests made to
the API server by Nodes is obviously different to those generally made by regular users, and the node authorizer
is designed to help with this.

See the chapter on RBAC and API security for more detail.

Protecting Pods

The next few sections will look at a few of the technologies that help reduce the risk of elevation of privilege
attacks against Pods and containers. We’ll look at the following:

« Preventing processes from running as root
« Dropping capabilities
« Filtering syscalls

« Preventing privilege escalation

As you proceed through the following sections, it’s important to remember that a Pod is just an execution
environment for one or more containers — application code runs in containers, which in turn, run inside of
Pods. Some of the terminology used will refer to Pods and containers interchangeably, but usually we will mean
container.

Do not run processes as root

The root user is the most powerful user on a Linux system and is always User ID 0 (UID 0). Therefore, running
application processes as root is almost always a bad idea as it grants the application process full access to the
container. This is made even worse by the fact that the root user of container often has unrestricted root access
on the host system as well. If that doesn’t make you afraid, nothing will!

Fortunately, Kubernetes lets you force container processes to run as unprivileged non-root users.

The following Pod manifest configures all containers that are part of this Pod to run processes as UID 1000. If
the Pod has multiple containers, all processes in all containers will run as UID 1000
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apiVersion: vi1
kind: Pod
metadata:
name: demo
spec:
securityContext: # Applies to all containers in this Pod
runAsUser: 1000 # Non-root user
containers:
- name: demo
image: example.io/simple:1.0

runAsUser is one of many settings that can be configured as part of what we refer to as a PodSecurityContext
(.spec.securityContext).

It’s possible for two or more Pods to be configured with the same runasuser UID. When this happens, the
containers from both Pods will run with the same security context and potentially have access to the same
resources. This might be fine if they are replicas of the same Pod or container. However, there’s a high chance
this will cause problems if they’re different containers. For example, two different containers with R/W access
to the same host directory or volume can cause data corruption (both writing to the same dataset without co-
ordinating write operations). Shared security contexts also increase the possibility of a compromised container
tampering with a dataset it shouldn’t have access to.

With this in mind, it is possible to use the securityContext.runAsUser property at the container level instead of
at the Pod level:

apiVersion: v1
kind: Pod
metadata:
name: demo
spec:
securityContext: # Applies to all containers in this Pod
runAsUser: 1000 # Non-root user
containers:
- name: demo
image: example.io/simple:1.0
securityContext:
runAsUser: 2000 # Overrides the Pod setting

This example sets the UID to 1000 at the Pod level, but overrides it at the container level so that processes in one
particular container run as UID 2000. Unless otherwise specified, all other containers in the Pod will use UID
1000.

A couple of other things that might help get around the issue of multiple Pods and containers using the same
UID include:

« Enabling user namespaces

« Maintaining a map of UID usage

User namespaces is a Linux kernel technology that allows a process to run as root within a container, but run as
a different user outside of the container. For example, a process can run as UID 0 (the root user) in the container,



15: Threat modeling Kubernetes 210

but get mapped to UID 1000 on the host. This can be a good solution for processes that need to run as root
inside the container, but you should check whether it has full support from your version of Kubernetes and your
container runtime.

Maintaining a map of UID usage is a clunky way to prevent multiple different Pods and containers using
overlapping UIDs. It’s a bit of a hack and requires strict adherence to a gated release process for releasing Pods
into production.

Note: A strict gated release process is a good thing for production environments. The hacky part
of the previous section is the UID map itself, as well as the fact that you’re introducing an external
dependency and complicating releases and troubleshooting.

Drop capabilities

While user namespaces allow container processes to run as root inside the container but not on the host machine,
it remains a fact that most processes don’t really need to run as full root inside the container. However, it is
equally true that many processes do require more privileges than a typical non-root user. What is needed, is a
way to grant the exact set of privileges a process requires in order to run. Enter capabilities.

Time for a quick bit of background...

We’ve already said the root user is the most powerful user on a Linux system. However, its power is a combination
of lots of small privileges that we call capabilities. For example, the sYs_TINME capability allows a user to set the
system clock, whereas the NET_ADMIN capability allows a user to perform network-related operations such as
modifying the local routing table and configuring local interfaces. The root user holds every capability and is
therefore extremely powerful.

Having a modular set of capabilities like this allows you to be extremely granular when granting permissions.
Instead of an all or nothing (root or non-root) approach, you can grant a process the exact set of capabilities it
requires to run.

There are currently over 30 capabilities, and choosing the right ones can be daunting. With this in mind, an
out-of-the-box Docker runtime drops over half of them by default. This is a sensible-default that is designed to
allow most processes to run, without leaving the keys in the front door. While sensible defaults like these are
better than nothing, they’re often not good enough for a lot of production environments.

A common way to find the absolute minimum set of capabilities an application requires, is to run it in a test
environment with all capabilities dropped. This will cause the application to fail and log messages about the
missing permissions. You map those permissions to capabilities, add them to the application’s Pod spec, and run
the application again. You rinse and repeat this process until the application runs properly with the minimum
set of capabilities.

As good as this is, there are a few things to consider.

Firstly, you must perform extensive testing of your application. The last thing you want is a production edge
case that you hadn’t accounted for in your test environment. Such occurrences can crash your application in
production!

Secondly, every fix and update to your application requires the exact same extensive testing against the capability
set.

With these considerations in mind, it is vital that you have testing procedures and production release processes
that can handle all of this.
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By default, Kubernetes implements the default set of capabilities implemented by your chosen container runtime
(E.g. containerd or Docker). However, you can override this in a Pod Security Policy, or as part of a container’s
securityContext field.

The following Pod manifest shows how to add the NET_ADMIN and cHOwN capabilities to a container.

apiVersion: v1

kind:

Pod

metadata:

name: capability-test

spec:

containers:

- name: demo

image: example.io/simple:1.0

securityContext:

capabilities:
add: ["NET_ADMIN", "CHOWN"]

Filter syscalls

seccomp, short for secure computing, is similar in concept to capabilities but works by filtering syscalls rather
than capabilities.

The way a Linux process asks the kernel to perform an operation is by issuing a syscall. seccomp lets you control
which syscalls a particular container can make to the host kernel. As with capabilities, a least privilege model is
preferred, where the only syscalls a container is allowed to make are the ones it needs to in order to run.

seccomp went GA in Kubernetes 1.19 and can be used in different ways based on the following seccomp profiles.

1. Non-blocking: Allows a Pod to run, and records every syscall it makes to an audit log you can use to

create a custom profile. The idea is to run your application Pod in a dev/test environment and make it do
everything it’s designed to do. When you’re done, you’ll have a log file listing every syscall the Pod needs
in order to run. You then use this to create a custom profile that only allows the syscalls the app needs
(least privilege).

. Blocking: Blocks all syscalls. It’s extremely secure, but prevents a Pod from doing anything useful.

. Runtime Default: Forces a Pod to use the seccomp profile defined by its container runtime. This is

a common place to start if you haven’t created a custom profile yet. Profiles that ship with container
runtimes aren’t the most secure in the world, but they’re not wide open either. They’re usually designed
to be balance of usable and secure, and they’re thoroughly tested.

. Custom: A profile that only allows the syscalls your application needs in order to run. Everything else

is blocked. It’s common to extensively test your application in dev/test with a non-blocking profile that
records all syscalls to an audit log. You then use this log to identify the syscalls your app makes and build
the customized profile. The danger with this approach is that your app has some edge-cases that you miss
with your testing. If this happens, your application can fail in production when it hits an edge-cases and
uses a syscall not captured during testing.

Obviously, custom profiles operate the least privilege model and are the preferred approach from a security
perspective.
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Prevent privilege escalation by containers

The only way to create a new process in Linux is for one process to clone itself and then load new instructions
on to the new process. We’re obviously over-simplifying, but the original process is called the parent process,
and the copy is called the child.

By default, Linux allows a child process to claim more privileges than its parent. This is usually a bad idea. In
fact, you’ll often want a child process to have the same, or less privileges than its parent. This is especially true
for containers, as their security configurations are defined against their initial configuration, and not against
potentially escalated privileges.

Fortunately, it’s possible to prevent privilege escalation through a PodSecurityPolicy or the securityContext
property of an individual container.

The following Pod manifest shows how to prevent privilege escalation for an individual container.

apiVersion: v1
kind: Pod
metadata:
name: demo
spec:
containers:
- name: demo
image: example.io/simple:1.0
securityContext:
allowPrivilegeEscalation: false

Pod Security Policies

As you’ve seen throughout the chapter, you can enable security settings on a per-Pod basis by setting security
context attributes in individual Pod YAML files. However, this approach doesn’t scale, it requires developers and
operators to remember to do this for every Pod, and is prone to errors. Pod Security Policies offer a better way.

Pod Security Policies allow you to define security settings at the cluster level. You can then apply them to targeted
sets of Pods as part of the deployment process. This approach scales better, requires less effort from developers
and admins, and is less prone to error. It also lends itself to situations where you have a team dedicated to securing
apps in production.

Pod Security Policies are implemented as an admission controller, and in order to use them, a Pod’s ServiceAc-
count must be authorized to use it. Once this is done, policies are applied to new requests to create Pods as they
pass through the API admission chain.

Pod Security Policy example

Let’s finish the chapter with a quick look at an example of a Pod Security Policy that covers many of the points
discussed in this chapter, as well as some other known secure defaults.

It’s based on an example from the official Kubernetes docs:

*https://kubernetes.io/docs/concepts/policy/pod-security-policy/#example-policies
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apiVersion: policy/vibetal
kind: PodSecurityPolicy
metadata:
name: restricted
annotations:

213

seccomp.security.alpha.kubernetes.io/allowedProfileNames: 'docker/default’

apparmor .security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'’

seccomp.security.alpha.kubernetes.io/defaultProfileName: 'docker/default'

apparmor .security.beta.kubernetes.io/defaultProfileName: 'runtime/default'’

spec:
privileged: false

allowPrivilegeEscalation: false

requiredDropCapabilities:

# Prevent privilege escalation

- ALL # Drops all root capabilities (non-privileged user)

# Allow core volume types.
volumes:

- 'configMap'

- 'emptyDir'

- 'projected’

- 'secret'

- 'downwardAPI'

# Assume that PVs set up by the cluster admin are safe to use.

- 'persistentVolumeClaim'

hostNetwork: false # Prevent access to the host network namespace

hostIPC: false # Prevent access to the host IPC namespce

hostPID: false # Prevent access to the host PID namespace

runAsUser:

rule: 'MustRunAsNonRoot' # Prevent from running as root

runAsGroup:

rule: 'MustRunAs' # controls which primary Group ID containers are run with

ranges:
- min: 1
max: 65535
seLinux:

rule: 'RunAsAny' # Any SELinux options can be used

supplementalGroups:

rule: 'MustRunAs' # Allow all except root (UID @)

ranges:
- min: 1
max: 65535
fsGroup:

rule: 'MustRunAs' # Sets range for groups that own Pod volumes

ranges:
- min: 1
max: 65535

readOnlyRootFilesystem: true # Force root filesystem to be R/0O

forbiddenSysctls:

- '"¥' #Forbids any sysctls from being accessible from a pod

There’s no denying that configuring effective security policies is both important and challenging. A common
practice is to start with a restrictive policy like the one just shown, then tweak it to fit your requirements. A lot



15: Threat modeling Kubernetes 214

of experimenting will be required.

It may also be a good idea to configure several Pod Security Policies that vary in how restrictive they are, then
allow development teams to work with cluster administrators to choose the one that best fits the application.

Towards more secure Kubernetes

In 2019, the CNCF (Cloud Native Computing Foundation) commissioned a third-party security audit of
Kubernetes. There were several findings, including threat modeling, manual code reviews, dynamic penetration
testing, and a cryptography review. All findings were given a difficulty and severity level, and all high severity
findings were fixed prior to the release of the report. You can find the report here: http://shorturl.at/stwxH

The 2020 “Cloud Native Security Whitepaper” is also of interest, as is the Kubernetes perspective provided by
this book’s co-author Pushkar Joglekar on the official Kubernetes blog: http://shorturl.at/evQ48

Reports like thses can be a great way to learn more about Kubernetes and how the internals work. Studying
reports like these is a great way to level-up after reading this chapter.

Chapter summary

In this chapter, you saw how the STRIDE model can be used to threat model Kubernetes. You stepped through
the six categories of threat, and looked at some ways to prevent and mitigate them.

You saw that one threat can often lead to another, and that there are multiple ways to mitigate a single threat.
As always, defence in depth is a key tactic.

The chapter finished by discussing how Pod Security Policies provide a flexible and scalable way to implement
Pod security defaults.

In the next chapter, you’ll see some best practices and lessons learned from running Kubernetes in production.
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In the previous chapter, you saw how to threat model Kubernetes using STRIDE. In this chapter, you’ll cover
some common security-related challenges that you’re likely to encounter when implementing Kubernetes in the
real world.

While every Kubernetes deployment is different, there are many similarities. As a result, the examples you’ll see
will apply to most Kubernetes deployments, large and small.

Now then, we’re not offering cookbook style solutions. Instead, we’ll be looking at things from the kind of high-
level view a security architect has.

The chapter’s divided into the following four sections:

«+ CI/CD pipeline
« Infrastructure and networking
« Identity and access management

« Security monitoring and auditing

Cl/CD pipeline

Containers are a revolutionary application packaging and runtime technology.

On the packaging front, they bundle application code and dependencies into an image. As well as code and
dependencies, images contain the commands required to run the application. This has enabled containers to
hugely simplify the process of building, sharing, and running applications. It’s also overcome the infamous “it
worked on my laptop” issue.

However, containers make running dangerous code easier than ever before.

With this in mind, let’s look at some ways you can secure the flow of application code from a developer’s laptop
to production servers.

Image Repositories

You store images in registries, and registries are either public or private.

Note: Each registry is divided into one or more repositories, and you actually store images in
repositories.

Public registries are on the internet and are the easiest way to download images and run containers. However,
it’s important to understand that they host a mixture of official images and community images. Official images
are usually provided by product vendors and have undergone a vetting process to ensure certain levels of quality.
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Typically, official images implement good practices, are regularly scanned for known vulnerabilities, contain up-
to-date code, and may be supported by the product vendor. Community images are none of that. Yes, there are
some excellent community images, but you should practice extreme caution when using them.

With all of this in mind, it’s important you implement a standard way for developers to obtain and consume
images. It’s also vital that any such process be as frictionless as possible for developers — if there’s too much
friction, your developers will look for ways to bypass them.

Let’s discuss a few things that might help.

Use approved base images

Images are made up of multiple layers that build on top of each other to form a useful image. But all images start
with a base layer.

Figure 16.1 shows a simple example of an image with three layers. The base layer contains the core OS and
filesystem components applications need in order to run. The middle layer contains the application library
dependencies. The top layer contains the code that your developers have written. The combination of the three
is an image, and it contains everything needed to run the application.

Figure 16.1

As all images have a base layer containing the required operating system (OS) and filesystem constructs for
applications to build on, it’s a common practice to have a small number of approved base images. It’s also common,
but not essential, for these base images to be derived from official images. For example, if you develop your
applications on CentOS Linux, your base images may be based on the official CentOS image — you take the
official CentOS base image and tweak it for your requirements.

In this model, all of your applications will build on top of a common approved base image like shown in Figure
16.2.
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Figure 16.2

While there’s up-front effort required to create and implement an approved set of base images, the long-term
security benefits are worth it.

From a developer perspective. Developers can focus entirely applications and dependencies without worrying
about maintaining OS stuff such as patching, drivers, audit settings, and more.

From an ops perspective. Base images reduce software sprawl. This makes testing easier, as you’ll always be
testing on a known base image. It makes pushing updates easier, you only need to update a small number of
approved base images that can be easily made available to all developers. It also makes troubleshooting easier,
as you have a small number of well-known base images providing your building blocks. It may also reduce the
number of base image configurations that need tying into support contracts.

Non-standard base images

As good as it is to have a small number of approved base images, there may still be applications that need
something more bespoke. This means you will need processes in place to

« Identify why an existing approved base image cannot be used

+ Determine whether an existing approved base image can be updated to meet requirements (including if
it’s worth the effort)

+ Determine the support implications of bringing an entirely new image into the environment

Generally speaking, updating an existing base image - such as adding a device driver for GPU computing -
should be preferred over introducing an entirely new image.

Control access to images

There are several ways to protect your organization’s container images. The most secure practical option is
to host your own private registry within your own firewall. This allows you to manage how the registry is
deployed, how it’s replicated, and how it is patched. It may also enable you to integrate permissions with existing
identity management providers, such as Active Directory, as well as allow you to create repositories that fit your
organizational structure.

If you don’t have the means for a dedicated private registry, you can host your images in private repositories on
public registries such as Docker Hub. However, this is not as secure as hosting your own private registry within
your own firewalled network.
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Whichever solution you choose, you should only host images that are approved to be used within your
organization. Normally, these will be from a trusted source and vetted by your information security team. You
should place access controls on repositories that store these images, so that only approved users can push and

pull them.
Away from the registry itself, you should also:

« Restrict which cluster nodes have internet access, keeping in mind that your image registry may be on
the internet

« Configure access controls that only allow authorized users/nodes can push to repositories

Expanding on the list above...

If you’re using a public registry, you’ll probably need to grant your Nodes access to the internet so they can pul1
images. In this situation, a best practice is to limit internet access to the addresses and ports of any registries you
use. You should also implement strong RBAC rules to maintain control over who is pushing and pulling images
from which repositories. For example, developers should probably be able to push and pull from dev and test
repositories, but not production. Whereas operations teams should probably be able to pul1 from non-production,
as well as push and pull to production repos.

Finally, you may only want a sub-set of Nodes (build nodes) to be able to push images. You may even want to
lock things down so that only your automated build systems can push to certain repositories.

Moving images from non-production to production

Many organizations have separate environments for development, testing, and production.

Generally speaking, development environments have less rules and are commonly used as places where
developers can experiment. This can often involve non-standard images that your developers eventually want to
use in production.

The following sections outline some measures you can take to ensure only safe images get approved into
production.

Vulnerability scanning

Top of the list for vetting images before allowing them into production should be vulnerability scanning. This is a
process where your images are scanned at a binary level and their contents checked against databases of known
security vulnerabilities (CVEs).

If you have an automated CI/CD build pipeline, you should definitely integrate vulnerability scanning. As part of
this, you should consider implementing policies that automatically fail builds and quarantine images containing
certain categories of vulnerabilities. For example, you might implement a build phase that scans images and
automatically fails anything using images with known critical vulnerabilities.

Two things to keep in mind if you do this...
Firstly, scanning engines are only as good as the vulnerability databases they use.

Secondly, scanning engines might not implement intelligence. For example, a method in Python that performs
TLS verification might be vulnerable to Denial of Service attacks when the Common Name contains a lot of
wildcards. However, if you never use Python in this way, the vulnerability might not be relevant and you might
want to consider it a false positive. With this in mind, you may want to implement a solution that provides the
ability to mark certain vulnerabilities as not applicable.
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Configuration as code

Scanning app code for vulnerabilities is a widely accepted as good production hygiene. However, reviewing
application configurations, such as Dockerfiles and Kubernetes YAML files, is less widely adopted.

The build once, run anywhere mantra of containers means a single container or Pod configuration can have
hundreds or thousands of running instances. If any one of these configurations pulls in vulnerable code, you can
easily end up running hundreds or thousands of instances of vulnerable code. With this in mind, if you are not
already reviewing your Dockerfiles and Kubernetes YAML files for security issues, you should start now!

A well-publicised example of not reviewing configurations was when an IBM data science experiment embedded
private TLS keys in its container images. This made it possible for an attacker to pull the image and gain root
access to the Nodes that were hosting the containers. This wouldn’t have happened if a security review had been
performed against the application’s Dockerfiles.

There continue to be advancements in automating these types of checks with tools that implement policy as code
rules.

Sign container images

Trust is a big deal in today’s world, and cryptographically signing content at every stage in the software delivery
pipeline is becoming a must have. Fortunately, Kubernetes, and many container runtimes, support the ability to
cryptographically sign and verify images.

In this model, developers cryptographically sign their images, and consumers cryptographically verify them
when they pu1l and run them. This process gives the consumer confidence the image they’re working with is the
image they asked for and hasn’t been tampered with.

Figure 16.3 shows the high-level image signing and verification process.

&
< .
& &
(verify)
- [ e
. . A
Publisher (developer) Consumer
Figure 16.3

Image signing, and the verification of signatures, is usually implemented by the container runtime and Kubernetes
doesn’t get actively involved.

As well as signing images like this, higher-level tools often allow you to implement enterprise-wide policies that
require certain teams to sign images before allowing them to be used.
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Image promotion workflow

With everything that we’ve covered so far, a CI/CD pipeline for promoting an image to production should include
as many of the following security-related steps as possible:
1. Configure environment to only pu1l and run signed images
. Configure network rules to restrict which Nodes can push and pull images
. Configure repositories with RBAC rules
. Developers build images using approved base images

. Developers sign images and push to approved repos

[= NS B N N V)

. Images are scanned for known vulnerabilities
« Policies dictate whether images are promoted or quarantined based on scan results
7. Security team:

+ Reviews source code and scan results
« Updates vulnerability rating as appropriate
+ Reviews container and Pod configuration files

8. Security team signs the image

9. All image pull and container run operations verify image signatures

These steps are examples and not intended to represent an exact workflow.

Let’s switch our focus away from images and CI/CD pipelines.

Infrastructure and networking

In this section, you’ll a few ways you can isolate workloads.

We'll start at the cluster level, switch to the runtime level, and then look outside of the cluster at supporting
infrastructure such as network firewalls.

Cluster-level workload isolation

Cutting straight to the chase, Kubernetes doesn’t support secure multi-tenant clusters. The only cluster-level
security boundary in Kubernetes is the cluster itself.

Let’s look a bit closer...
The only way to divide a Kubernetes cluster is by creating Namespaces. A Kubernetes Namespace is not the same
as a Linux kernel namespace, it’s a logical partition of a single Kubernetes cluster. In fact, it’s little more than a
way of grouping resources and applying things like:

« Limits

« Quotas

« RBAC rules



16: Real-world Kubernetes security 221

The take-home point is that Kubernetes Namespaces do not guarantee Pod in one Namespace will not impact
Pod in another Namespace. As a result, you should not run potentially hostile production workloads on the same
physical cluster. The only way to run potentially hostile workloads, and guarantee true isolation, is to run them
on separate clusters.

Despite this, Kubernetes Namespaces are useful and you should use them. Just don’t use them as security
boundaries.

Let’s look at how Namespaces relate to soft multi-tenancy and hard multi-tenancy.

Namespaces and soft multi-tenancy

For our purposes, soft multi-tenancy is hosting multiple trusted workloads on shared infrastructure. By trusted,
we mean workloads that don’t require absolute guarantees that one Pod/container cannot impact another.

An example of trusted workloads might be an e-commerce application comprising a web front-end service and
a back-end recommendation service. Both are part of the same e-commerce application, so are not hostile, but
they might benefit from:

« Isolating the teams responsible for each service

« Having different resource limits and quotas for each service

In this situation, a single cluster with one Namespace for the front-end service and another for the back-end
service might be a good solution. However, exploiting a vulnerability in one service might give the attacker
access to Pods in the other service.

Namespaces and hard multi-tenancy
Let’s define hard multi-tenancy as hosting untrusted and potentially hostile workloads on shared infrastructure.
Only... as we said before, this isn’t currently possible with Kubernetes.

This means truly hostile workloads — workloads that require a strong security boundary - need to run on separate
Kubernetes clusters! Examples include.

« Isolating production and non-production workloads on dedicated clusters
« Isolating different customers on dedicated clusters

« Isolating sensitive projects and business functions on separate clusters

Other examples exist, but you get the picture. If you have workloads that require strong separation, put them on
their own clusters.

Note: The Kubernetes project has a dedicated Multitenancy Working Group that’s actively working
on the multitenancy models Kubernetes supports. This means that future releases of Kubernetes
might support hard multitenancy.
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Node isolation

There are times when individual applications require non-standard privileges, such as running as root or
executing non-standard syscalls. Isolating these on their own clusters might be overkill, but the increased risk of
collateral damage would probably justify running them on a ring-fenced subset of worker Nodes. In this case, if
one Pod is compromised it can only impact other Pods on the same Node.

You should also apply defence in depth principles by enabling stricter audit logging and tighter runtime defence
options on Nodes running workloads with non-standard privileges.

Kubernetes offers several technologies, such as labels, affinity and anti-affinity rules, and taints, to help target
workloads to specific Nodes.

Runtime isolation

So far, we’ve looked at cluster-level isolation and Node-level isolation. Now let’s look at the various types of
runtime isolation.

Containers versus virtual machines can be a polarizing topic. However, when it comes to workload isolation
there is only one winner... the virtual machine.

The most popular container model has multiple containers sharing a single kernel, with isolation provided by
kernel constructs that were never designed as strong security boundaries. The technical term for these types of
containers are called namespaced containers.

In the hypervisor model, every virtual machine gets its own dedicated kernel and is strongly isolated from other
virtual machines using hardware enforcement.

From a workload isolation perspective, virtual machines win.

However, it’s becoming easier and more common to augment containers with additional security technologies
such as apparmor and SELinux, seccomp, capabilities, and user namespaces. Unfortunately, these can add
significant complexity and may still be less secure than a virtual machine.

Another thing to consider, is different classes of container runtime. Two examples are gVisor and Kata
Containers, both of which are re-writing the rules and providing stronger levels of workload isolation.
Integrating runtimes like these with Kubernetes is made simple thanks to the Container Runtime Interface (CRI)
and Runtime Classes.

There are also projects that enable Kubernetes to orchestrate other workloads such as virtual machines and
serverless functions.

While all of this might feel overwhelming, everything discussed here needs to be considered when determining
the levels of isolation your workloads require.

To summarize, the following workload isolation options exist:
1. Virtual Machines: Every workload gets its own virtual machine and kernel. It provides excellent isolation
but is relatively slow and heavy-weight.

2. Traditional namespaced containers: Every workload gets its own container but shares a common kernel.
Not the best isolation, but fast and light-weight.

3. Run every container in its own virtual machine: This option attempts to combine the versatility of
containers with the security of VMs by running every container in its own dedicated VM. Despite using
specialized lightweight VMs, this loses some of the appeal of containers and is not a popular solution.
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4. Use appropriate runtime classes: This is a relatively new that allows you to run all workloads as
containers, but target those requiring stronger isolation to an appropriate container runtime.

Finally, running a mix of containers and virtual machines can increase network complexity.

Network isolation

On the topic of networking, firewalls are an integral part of any layered security system. At a high level, they
implement rules that allow or deny system-to-system communication.

As the names suggest, allow rules permit traffic to flow, whereas deny rules stop traffic flowing. The overall
intent is to lock things down so only authorized communications occur.

In Kubernetes, Pods communicate with each other over a special internal network called the Pod network.
However, Kubernetes does not implement the Pod network, instead, it implements a plugin model called the
Container Network Interface (CNI). Vendors and the community are responsible for writing CNI plugins that
actually provide the Pod network. There are lots of CNI plugins available, but they fall into two broad types:

« Overlay
« BGP

Each of these is different, and each has a different impact on firewall implementation and network security. Let’s
take a quick look at each.

Kubernetes and overlay networking

The most common way to build the Pod network is as an overlay network. In the Kubernetes world, overlay
networking builds a simple flat Pod network that hides any complexity that might exist between the nodes in
the cluster. For example, you might have your cluster deployed across two different subnets, but have all Pods
on a single flat Pod network. In this scenario, the Pods only know about the flat overlay Pod network and have
no knowledge of the networks the Nodes are on. Figure 16.4 shows four Nodes on two different networks, with
Pods connected to a single overlay Pod network.

Overlay 10.0.0.0/24

172.31.1.0/24 192.168.1.0/24

| L3 infra

Figure 16.4

Generally speaking, overlay networks encapsulate packets for transmission over VXLAN tunnels. In this model,
the overlay network is a virtual Layer 2 network operating on top of existing Layer 3 infrastructure. Traffic is
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encapsulated in order to pass between Pods on different Nodes. This simplifies implementation, but encapsulation
poses challenges for some firewalls. See Figure 16.5

Src: 172.12.34.56
CNI »| Pod Src:10.0.0.5 »/ CNI
Pod Dst: 10.0.0.9
Node IP: Src: 172.12.34.57 Node IP:
172.12.34.56 172.12.34.57

Figure 16.5

Kubernetes and BGP

BGP is the protocol that powers the internet. However, at its core it’s a simple and scalable protocol that creates
peer relationships that are used to share routes and perform routing.

The following analogy might help if you’re new to BGP. Imagine you want to send a birthday card to a friend
who you lost contact with and no longer have their address. However, your child has a friend at school whose
parents are still in touch with your old friend. In this situation, you give the card to your child and ask them to
give it to their friend at school. This friend gives it to their parents who deliver it to your friend.

This is similar to BGP. BGP Routing happens through a network of peers that help each other find a route for
packets to go from one Pod to another.

BGP doesn’t encapsulate packets, making life easier for firewalls. See Figure 16.6.

BGP Peer BGP Peer
Pod Src: 10.0.0.5
—> >,
Pod Dst: 10.0.0.9
Node IP: Node IP:
172.12.34.56 172.12.34.57
Routing table Routing table
10.0.0.9 via 172.12.34.57 10.0.0.5 via 172.12.34.56

How this

impacts firewalls

Figure 16.6

We’ve already defined a firewall as a network entity that allows or disallows traffic-flow based on source and
destination addresses. For example:

« Allow traffic from the 10.0.0.0/24 network
« Disallow traffic from the 192.168.0.0/24 network

If your Pod network is an overlay network, source and destination Pod IP addresses are encapsulated so they
can traverse the underlay network. This means only firewalls that crack open packets and inspect the contents
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will be able to filter on Pod source and Pod destination IPs. You should consider this when choosing your Pod
network and firewall solutions.

With this in mind, if your Pod-to-Pod traffic has to traverse existing firewalls that don’t perform deep packet
inspection, it might be a better idea to choose a BGP Pod network. This is because BGP doesn’t obscure Pod
source and destination addresses.

You should also consider whether to deploy physical firewalls, host-based firewalls, or a combination of both.

Physical firewalls are dedicated network hardware devices that are usually managed by a central team. Host-
based firewalls are operating systems (OS) features and are usually managed by the team that deploys and
manages your OSes.

Both solutions have their pros and cons, and a combination of the two is often the most secure. However, you
should consider things such as whether your organization has a long and complex procedure for implementing
changes to physical firewalls. If it does, it might not suit the nature of your Kubernetes deployment, and a different
firewall solution might be preferable.

Packet capture

On the topic of networking and IP addresses, not only are Pod/container IP addresses sometimes obscured by
encapsulation, they are also dynamic and can be recycled and re-used by different Pods and containers. This
causes a lot of IP churn and reduces how useful IP addresses are in identifying systems and workloads. With this
in mind, the ability to associate IP addresses with Kubernetes-specific identifiers such as Pod IDs, Service aliases,
and container IDs when performing things like packet capturing is extremely useful.

Let’s switch tack and look at some ways of controlling user access to Kubernetes.

Identity and access management (IAM)

Controlling user access to Kubernetes is important in any production environment. Fortunately, Kubernetes has
a robust RBAC subsystem that integrates with existing IAM providers such as Active Directory and other LDAP
systems.

Most organizations already have a centralized IAM provider that’s integrated with company HR systems to
simplify employee lifecycle management.

Fortunately, Kubernetes leverages existing IAM providers instead of implementing its own. For example, a new
employee joining the company will automatically get an identity in Active Directory, which integrates with
Kubernetes RBAC and can grant that user certain permissions in Kubernetes. Likewise, an employee leaving the
company will automatically have his or her Active Directory identity removed or disabled, resulting in their
access to Kubernetes being revoked.

RBAC went GA in Kubernetes 1.8 and it is highly recommended that you leverage its full capabilities. See the
chapter on RBAC and API security for more info.

Managing Remote SSH access to cluster nodes

Almost all Kubernetes administration is done via the API server, meaning it should be rare for a user to require
remote SSH access to Kubernetes cluster nodes. In fact, remote SSH access to cluster nodes should only be for
the following types of activity.
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+ Node management activities that cannot be performed via the Kubernetes API
« Break the Glass activities such as when the API server is down
« Deep troubleshooting

You should probably have tighter controls over who has remote access to control plane nodes.
Multi-factor authentication (MFA)

With great power comes great responsibility...

Accounts with administrator access to the API server, and root access to cluster nodes, are extremely powerful
and are prime targets for attackers and disgruntled employees. As such, their use should be protected by multi-
factor authentication (MFA) where possible. This is where a user has to input a username and password followed
by a second stage of authentication. For example.

« Stage 1: Tests knowledge of a username and password
« Stage 2: Tests possession of something like a one-time password device/app

You should also secure access to workstations and user profiles that have kubectl installed.
Auditing and security monitoring

No system is 100% secure, and you should plan for the eventuality that you’ll be breached. When breaches happen,
it is vital you can do at least two things:

1. Recognize that a breach has occurred
2. Build a detailed timeline of events that cannot be repudiated

Auditing is key to both of these, and the ability to build a reliable timeline helps answer the following post-event
questions; what happened, how did it happen, when did it happen and who did it... In extreme circumstances,
information like this can even be called upon in court.

Good auditing and monitoring solutions also help to identify vulnerabilities in your security systems.

With these points in mind, you should ensure reliable auditing and monitoring is high on your list of priorities,
and you shouldn’t go live in production without them.

Secure Configuration

There are various tools and checks that can be useful in ensuring your Kubernetes environment is provisioned
according to best practices and in-line with company policies.

The Center for Information Security (CIS) has published an industry standard benchmark for Kubernetes security,
and Aqua Security (aquasec.com) has written an easy-to-use tool called kube-bench to implement the CIS tests.
In its most basic form, you run kube-bench against each node in your cluster and get a report outlining which
tests passed and which failed.

Many organizations consider it a best practice to run kube-bench on all production nodes as part of the node
provisioning process. Then, depending on your risk appetite, you can pass or fail provisioning tasks based on the
results.

kube-bench reports can also serve as a valuable baseline in the aftermath of an incident. In situations like this,
you run an additional kube-bench after a breach and compare the results with the initial baseline to determine if
and where the configuration has changed.
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Container and Pod lifecycle Events

As previously mentioned, Pods and containers are ephemeral in nature, meaning they don’t live for long -
certainly not as long as VMs and physical servers. This means you’ll see a lot of events announcing new Pods
and containers, as well as a lot of events announcing terminated Pods and containers. It also means you may
need a solution that stores logs in an external system and keeps them around for a while after their Pods and
containers have terminated. If you don’t, you may find it frustrating that you don’t have logs for old terminated
containers available for inspection.

Logs entries relating to container lifecycle events may also be available from your container runtime (engine)
logs.

Application logs

In some situations, there’s not a lot Kubernetes can do to protect the applications it runs. For example, Kubernetes
can’t prevent an application from running vulnerable code. This means it is important to capture and analyse
application logs as a way to identify potential security-related issues.

Fortunately, most containerized applications send log messages to standard out (stdout) and standard error
(stderr). These are then directed to the container’s logs. However, some applications send log messages to other
locations such as proprietary log files, so be sure to check your application’s documentation.

Actions performed by users

Most of your Kubernetes configuration will be done via the API server where all requests should be logged.
However, it’s also possible to gain remote SSH access to control plane nodes and directly manipulate Kubernetes
objects. This may include local unauthenticated access to the API, as well as directly modifying control plane
systems such as eted.

We’ve already spoken about limiting who has remote SSH access to Masters and Nodes, and bolstering security via
things like multi-factor authentication. However, logging all activities performed via SSH sessions, and shipping
them to a secure log aggregator is highly recommended. As is the practice of always having a second pair of eyes
involved in remote access sessions.

Managing log data

A key advantage of containers is application density — you can run a lot more applications on your servers and
in our datacenters. While this is great, it has the side-effect of generating massive amounts of logging and audit
data that can easily become too much to analyse with traditional tools. At the time of writing, there is a lot of
work being done to resolve this, including areas such as machine learning, but there is currently no easy solution.

On the negative side, such vast amounts of log-related data makes proactive analysis difficult — too much data to
analyse. However, on the positive side, you have a lot of valuable data that can be used by security first-responders,
as well as for post-event reactive analysis.

Migrating existing apps to Kubernetes

Every business has a mix of apps — some more business critical than others. With this in mind, it’s important to
adopt a careful and planned approach to migrating apps to Kubernetes.

One approach may be a crawl, walk then run strategy as follows:
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1. Crawl: Threat modeling your existing apps will help you understand the current security posture of those
applications. For example, which of your existing apps do and don’t communicate over TLS.

2. Walk: When moving to Kubernetes, ensure the security posture of these apps remains unchanged; neither
lower nor higher, just the same. For example, if an app doesn’t communicate over TLS, do not change this
as part of the migration.

3. Run: Start improving the security of applications after the migration is successful. Start with the simple
non-critical apps, and carefully work your way up to the mission critical ones. You may also want to
methodically deploy deeper levels of security. For example, initially configure apps to communicate over
one-way TLS and then eventually over two-way TLS (potentially using a service mesh).

Real world example

A great example of a container-related vulnerability, that can be prevented by implementing some of the best
practices we've discussed, occurred in February 2019. CVE-2019-5736 allowed a container process running as
root to escape its container and gain root access on the host and all containers running on the host.

As dangerous as the vulnerability is, the following things that we covered in this chapter would’ve prevented the
issue.

« Vulnerability scanning
» Not running processes as root

« Enabling SELinux

As the vulnerability has a CVE number, security scanning tools would’ve found it and alerted on it. Also,
organizations that don’t allow container processes to run as root will have been protected. Finally, common
SELinux policies, such as those that ship with RHEL and CentOS, prevented the issue.

Allin all, a great real-world example of the benefits of defence-in-depth and other security-related best practices.

Chapter summary

The purpose of this chapter was to give you an idea of some of the real-world security considerations effecting
many Kubernetes clusters.

We started out by looking at ways to secure the software delivery pipeline by discussing some image-related
best practices. These included how to secure your image registries, scanning images for vulnerabilities, and
cryptographically signing and verifying images. Then we looked at some of the workload isolation options that
exist at different layers of the infrastructure stack. In particular, we looked at cluster-level isolation, node-level
isolation, and some of the different runtime isolation options. We talked about identity and access management,
including places where additional security measures might be useful. We then talked about auditing, and finished
up with a real-world issue that could be easily avoided by implementing some of the best practices already
covered.

Hopefully you now have enough to go away and start securing your own Kubernetes clusters.



Terminology

This glossary defines some of the most common Kubernetes-related terms used throughout the book. Ping me if
you think I've missed anything important:

« tkb@nigelpoulton.com
« https://nigelpoulton.com/contact-us
« https://twitter.com/nigelpoulton
« https://www.linkedin.com/in/nigelpoulton/
Now then... I know that some of you are passionate about the definitions of technical terms. ’'m OK with that,
and I’'m not saying my definitions are the best — they’re designed to be helpful for readers.
OK, here goes.
Term Definition (according to Nigel)

Admission controller Code that validates or mutates resources to enforce policy. Runs as part of the
API admission chain immediately after authentication and authorization.

Annotation Object metadata often used to expose alpha or beta capabilities, or integrate with
3rd-party systems.

API Application Programming Interface. In the case of Kubernetes, all resources are
defined in the API, which is RESTful and exposed via the API server.

API group A set of related API resources. For example, networking resources are usually
located in the networking.k8s.io API group.

API resource All Kubernetes objects, such as Pods, Deployments and Services, are defined in
the API as resources.

API Server Exposes the API on a secure port over HTTPS. Runs on the control plane.

Cloud controller manager Control plane service that integrates with underlying cloud platform. For
example, when creating a LoadBalancer Service, the cloud controller manager
implements the logic to provision one of the underlying cloud’s internet-facing
load-balancers.

Cloud native A loaded term and means different things to different people. Cloud native is a
way of designing, building, and working with modern applications and
infrastructure. I personally consider an application to be cloud native if it can
self-heal, scale on-demand, perform rolling updates, and possibly rollbacks.

ConfigMap Kubernetes object used to hold non-sensitive configuration data. A great way to
add custom configuration data to a generic container, at runtime, without editing
the image.
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Container Lightweight environment for running modern apps. Each container is a virtual

Container Network Interface (CNI)

Container runtime

Container Runtime Interface (CRI)

Container Storage Interface (CSI)

Controller

Control plane

control plane node

Cluster

Cluster store

containerd

cri-o

CRUD

Custom Resource Definition (CRD)

Data plane

operating system with its own process tree, filesystem, shared memory, and
more. One container runs one application process.

Pluggable interface enabling different network topologies and architectures.
3rd-parties provide CNI plugins that enable overlay networks, BGP networks,
and various implementations of each.

Low-level software running on every cluster Node responsible for pulling
container images, starting containers, stopping containers, and other low-level
container operations. Typically containerd, Docker, or cri-o. Docker was
deprecated in Kubernetes 1.20 and support will be removed in a future version.

Low-level Kubernetes feature that allows container runtimes to be pluggable.
With the CRI you can choose the best container runtime for your requirements
(Docker, containerd, cri-o, kata, etc.)

Interface enabling external 3rd-party storage systems to integrate with
Kubernetes. Storage vendors write a CSI driver/plugin that runs as a set of Pods
on a cluster and exposes the storage system’s enhanced features to the cluster
and applications

Control plane process running as a reconciliation loop monitoring the cluster and
making the necessary changes so the observed state of the cluster matches
desired state.

The brains of every Kubernetes cluster. Implements the API, API server,
scheduler, all controllers, and more. The Master node of every cluster host the
various control plane services.

A cluster node hosting control plane services. Usually doesn’t run user
applications. Sometimes called a “Master”. You should deploy 3 or 5 for high
availability.

A set of worker and control plane nodes that work together to run user
applications

Control plane feature that holds the state of the cluster and apps. Typically based
on the etcd distributed data store and runs on the control plane. Can be deployed

to its own cluster for higher performance and higher availability.

Container runtime. Default on many modern clusters. Donated to the CNCF by
Docker, Inc.

Container runtime. Commonly used in OpenShift based Kubernetes clusters.

The four basic Create, Read, Update, and Delete operations used by many storage
systems.

API resource used for adding your own resources to the Kubernetes API.

The worker Nodes of a cluster that host user applications.
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Deployment Controller that deploys and manages a set of stateless Pods. Performs rollouts

Desired state

Endpoints object

eted

Ingress

Ingress class

Init container

JSON

K8s

kubectl

Kubelet

Kube-proxy

Label

Label selector

and rollbacks, and can self-heal. Uses a ReplicaSet controller to perform scaling
and self-healing operations.

What the cluster and apps should be like. For example, the desired state of an
application microservice might be 5 replicas of xyz container listening on port
8080/tcp. Vital to reconciliation.

Up-to-date list of healthy Pods matching a Service’s label selector. Basically, it’s
the list of Pods a Service will send traffic to. Might eventually be replaced by
EndpointSlices.

The open-source distributed database used as the cluster store on most
Kubernetes clusters

API resource that exposes multiple internal Services over a single external-facing
LoadBalancer Service. Operates at layer 7 and implements path-based and
host-based HTTP routing.

API resource that allows you to specify multiple different Ingress controllers on
your cluster.

A specialised container that runs and completes before the main app container
starts. Commonly used to check/initialize the environment for the main app
container.

JavaScript Object Notation. The preferred format for sending and storing data
used by Kubernetes.

Shorthand way to write Kubernetes. The “8” replaces the eight characters
between the “K” and the “s” of Kubernetes. Pronounced “Kates”. The reason why
people say Kubernetes’ girlfriend is called Kate.

Kubernetes command line tool. Sends commands to the API server and queries
state via the API server.

The main Kubernetes agent running on every cluster Node. It watches the API
Server for new work assignments and maintains a reporting channel back.

Runs on every cluster node and implements low-level rules that handle routing
of traffic from Services to Pods. You send traffic to stable Service names and
kube-proxy makes sure the traffic reaches Pods.

Metadata applied to objects for grouping. Works with label selectors to match
Pods with higher level controllers. For example, Services send traffic to Pods
based on sets of matching labels.

Used to identify Pods to perform actions on. For example, when a Deployment
performs a rolling update, it knows which Pods to update based on its label
selector — only Pods with the labels matching the Deployment’s label selector
will be replaced and updated.
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Term Definition (according to Nigel)

Manifest file YAML file that holds the configuration of one or more Kubernetes objects. For
example, a Service manifest file is typically a YAML file that holds the
configuration of a Service object. When you post a manifest file to the API
Server, its configuration is deployed to the cluster.

Master Another name for a control plane node. Not used very much anymore. You
should deploy 3 or 5 for high availability.

Microservices A design pattern for modern applications. Application features are broken into
their own small applications (microservices/containers) and communicate via
APIs. They work together to form a useful application.

Namespace A way to partition a single Kubernetes cluster into multiple virtual clusters.
Good for applying different quotas and access control policies on a single cluster.
Not suitable for strong workload isolation.

Node Also known as worker node. The nodes in a cluster that run user applications.

Observed state

Orchestrator

Persistent Volume (PV)

Persistent Volume Claim (PVC)

Pod

RBAC

Reconciliation loop

ReplicaSet

REST

Runs the kubelet process, a container runtime, and kube-proxy.

Also known as current state or actual state. The most up-to-date view of the
cluster and running applications. Controllers are always working to make
observed state match desired state.

A piece of software that deploys and manages apps. Modern apps are made from
lots of small microservices that work together to form a useful application.
Kubernetes orchestrates/manages these and keeps them healthy, scales them up
and down, and more... Kubernetes is the de facto orchestrator of microservices
apps based on containers.

Kubernetes object used to map storage volumes on a cluster. External storage
resources must be mapped to PVs before they can be used by applications.

Like a ticket/voucher that allows an app to use a Persistent Volume (PV).
Without a valid PVC, an app cannot use a PV. Combined with StorageClasses for
dynamic volume creation.

Smallest unit of scheduling on Kubernetes. Every container running on
Kubernetes must run inside a Pod. The Pod provides a shared execution
environment — IP address, volumes, shared memory etc.

Role-based access control. Authorization module the determines whether
authenticated users can perform actions against cluster resources.

A controller process watching the state of the cluster, via the API Server,
ensuring observed state matches desired state. Moist controllers, such as the
Deployment controller, run as a reconciliation loop.

Runs as a controller and performs self-healing and scaling. Used by Deployments.

REpresentational State Trasfer. The most common architecture for creating
web-based APIs. Uses the common HTTP methods (GET, POST, PUT, PATCH,
DELETE) to manipulate and store objects.
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Secret Like a ConfigMap for sensitive configuration data. A way to store sensitive data
outside of a container image, and have it inserted into a container at runtime.
Service Capital “S”. Kubernetes object for providing network access to apps running in

Service mesh

Sidecar

StatefulSet

Storage Class (SC)

Volume

Worker node

YAML

Pods. By placing a Service in front of a set of Pods, the Pods can fail, scale up and
down, and be replaced without the network endpoint for accessing them
changing. Can integrate with cloud platforms and provision internet-facing
load-balancers.

Infrastructure software that enables features such as encryption of Pod-to-Pod
traffic, enhanced network telemetry, and advanced routing. Common service
meshes used with Kubernetes include Consul, Istio, Linkerd, and Open Service
Mesh. Others also exist.

A special container that runs alongside, and augments, a main app container.
Service meshes are often implemented as sidecar containers that are injected into
Pods and add network functionality.

Controller that deploys and manages stateful Pods. Similar to a Deployment, but
for stateful applications.

Way to create different storage tiers/classes on a cluster. You may have an SC
called “fast” that creates NVMe-based storage, and another SC called
“medium-three-site” that creates slower storage replicated across three sites.

Generic term for persistent storage.

A cluster node for running user applications. Sometimes called a “Node” or
“worker”.

Yet Another Markup Language. The configuration language you normally write
Kubernetes configuration files in. It’s a superset of JSON.
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Thanks for reading my book. I hope you loved it and feel prepared to thrive in the cloud native world.

About the front cover

I love the front cover of this book, so, a huge thanks to the hundreds of people in the community who voted on
its design.

The YAML on the left represents the technical nature of the book. The Kubernetes wheel obviously represents
the main topic. The vertical symbols to the right are done in the style of digital rain code from the Matrix movies.
The symbols are a mix of container-related stuff, as well as a hidden message written in the Borg language from
Star Trek.

A word on the icons used in diagrams

There’s a great set of Kubernetes community icons available in the following GitHub repo.
https://github.com/kubernetes/community/tree/master/icons

I like them, and I use them a lot in blogs and video courses. However, they didn’t render well in printed copies
of the book. As a result, I painstakingly created my own similar set for use in the book. It took forever to create
them, so I hope you like them.

Now then. In no way am I trying to replace the community icons or say they aren’t good. On the contrary, they’re
great, and I use them in other projects. They just didn’t look good in printed editions of the book.
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Connect with me

Ilove connecting with readers and fellow techies. I can’t be free tech support, but I'll happily talk about technology
all day long.

You can reach me via any of the following:

« twitter.com/nigelpoulton
« nigelpoulton.com
« linkedin.com/in/nigelpoulton

« youtube.com/nigelpoulton

Feedback and reviews

Modern books live and die by Amazon reviews and stars. As I've probably spent at least 12 months of my life
writing and keeping this book up-to-date, I'd consider it a personal favor if you took a couple of minutes to write
an Amazon review. You can usually write them even if you bought the book form somewhere else. Your call

though, no pressure.

Drop me a line at tkbenigelpoulton.com if you want to suggest content or minor fixes for future editions.
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